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Abstract— Coexisting-cooperative-cognitive (Tri-Co) robots
are advanced systems designed for interaction with environ-
ments, humans, and other robots. Collaborative robots (cobots),
a subset of Tri-Co robots, specifically work safely alongside
humans. When it comes to improving cobot performance, un-
derstanding the relationship between their technical parameters
and performance indices becomes crucial. This paper proposes
a method that combines the idea of experimental science
and statistics, using Pearson correlation analysis to find this
relationship. We define local Pearson correlation coefficients
and influential indicators to measure each technical parameter’s
impact on performance indices. A case study on Rethink
Sawyer (Sawyer) cobot validates our theoretical framework and
underscores the practical applicability of our method.

I. INTRODUCTION

Tri-Co robots represent an advanced category of robotics

designed to interact seamlessly with their environment, hu-

mans, and other robots. They independently adjust to com-

plex and changing surroundings and collaborate effectively

[1]. Tri-Co Capabilities (TCCs) encompass a set of advanced

functionalities enabling these robots to operate as designed.

Collaborative robots (cobots) [2], as a representative type

of Tri-Co robots, are specifically designed to work alongside

human workers in a shared workspace. They are focused pri-

marily on collaboration and safety. Cobots are a high-value

research object due to the versatility in their applications such

as assembly, polishing, machine tending, quality inspection

[3] and stacking within industrial scenes.

Recent literature has focused on various aspects of cobot

performance and interaction. For example, Ajoudani [4]

explored human-robot collaboration dynamics, emphasizing

the importance of intuitive control interfaces and adap-

tive algorithms. Despite these advancements, the systematic

evaluation of TCCs still remains under-explored. Current

methodologies primarily address individual aspects of cobot

performance, such as intuitive user interfaces [5] and safety

[6], but do not provide a comprehensive assessment of TCCs.

The technical parameters significantly impact the kine-

matic and dynamic performance of the cobots. Identifying

which parameters have the greatest influence on performance

is crucial. The sensitivity analysis quantifies the specific

impact of each technical parameter on the performance

indices [7] [8]. However, this method usually involves con-

structing complex mathematical formulae to describe these
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relationships, which makes it challenging to model accurately

in engineering practice. Moreover, when dealing with a large

number of technical parameters and performance indices in

a robotic system, the practicality and efficiency of sensitivity

analysis methods are substantially limited.

This leads to a need for more accessible methodologies to

optimize cobot performance effectively. To fulfill the need,

this work proposes a simple yet novel statistical method to

explore the relationship between cobots’ technical parame-

ters and performance indices using Pearson correlation anal-

ysis. This method combines the idea of experimental science

and statistics. Preferred for its simplicity, interpretability, and

minimal assumptions, Pearson correlation analysis is accessi-

ble to individuals with limited statistical expertise and can be

complemented with various visualizations. Gu [9] discussed

the use of heatmaps to visualize Pearson correlations among

various genomic features. Other statistical graphs like scatter

plots and residual plots could also be used. This work uses

line charts and bar charts for the presentation of our results.

We chose Pearson correlation analysis over other statistical

methods due to its robustness and simplicity in practical ap-

plications, as highlighted in Bishara’s study [10] comparing

various correlation measures. There are numerous existing

studies that involve the application of Pearson correlation

analysis. Hao’s study [11] used such method to examine

the relationship between internet addiction and interpersonal

relationships among teenagers and college students.

Compared to existing studies, this work aims to make the

following distinctive contributions:

• Proposing a method that determines technical param-

eters’ impact on performance indices. This method

combines the idea of experimental science and statistics,

serving as a toolkit in the field of robotics.

• Defining local Pearson correlation coefficients and in-

fluential indicators. Since we essentially need to assess

the relationship between a scalar and a column vector,

which cannot be achieved by traditional Pearson corre-

lation analysis. By removing one entry from the matrix

at a time and analyzing the remainder, we manipulate

the column vectors that fall under the restriction of the

Pearson correlation analysis, allowing us to iteratively

repeat the procedure. Ultimately, we can gain insights

on the relationship of these entries in an indirect fashion.

The structure of this paper is organized as follows. Section

II introduces technical parameters and performance indices,

and gives a framework of the proposed method. Section

III describes TCCs testing. Section IV demonstrates the

correlation analysis method from a theoretical perspective.20
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Section V is a case study on Sawyer to actualize the proposed

method. Finally, section VI concludes and summarizes the

work done in this research and suggests future work.

II. BACKGROUND

A. Technical Parameters

Technical parameters are the specific characteristics and

capabilities that define a cobot’s performance, functionality,

and suitability for various tasks. They can be used for cobots’

design and evaluation. In this work, the cobot has 19 specific

technical parameters. We label them from Y 1 to Y 19, as

shown in Table I.

TABLE I: Technical Parameters and Notations

Notation Technical Parameter

Y1 Degree of freedom

Y2 Mass

Y3 Conventional power consumption

Y4 Peak power consumption

Y5 Real load

Y6 IP level

Y7 Maximum speed of each joint

Y8 Range of each joint motion

Y9 Maximum torque of each joint

Y10 Repetitive positioning accuracy

Y11 The arm span of robot

Y12 Bed area

Y13 Vision sensor

Y14 Tactile sensor

Y15 Force and torque sensor

Y16 Speed sensor

Y17 Position sensor

Y18 Auditory sensor

Y19 Acceleration sensor

B. Performance Indices

Performance indices are the metrics and criteria used to

assess the efficiency, effectiveness, and overall performance

of the cobot. In this work, the performance indices of our

cobot were obtained using a text clustering method called

K-means algorithm [13]. First, we constructed a text set that

consists of sufficient amount of abstracts. Then the text set

would go through a series of steps including text prepro-

cessing, text representation, feature selection, cluster analysis

using K-means, high-correlation feature word extraction,

experts closed-loop feedback correction, and clustering effect

check. During clustering, based on the elbow rule [12], we

set the number of clusters k to 4 since it was when the

degree of distortion significantly improved. By the end of

the process, we obtained four clusters: cobots-human, cobots-

cobots, cobots-environment, and safety protection & flexible

intelligent switching control, with each cluster having its

own corresponding indices. We label them from X1 to X47

, as shown in Table II. Note that some indices belong to

multiple clusters. Although they share the same name, they

represent different measures in different clusters. For exam-

ple, ”Adaptive impedance control” can be found in ”TCCs

of cobots-human” cluster, ”TCCs of cobots-cobots static

task allocation” cluster, and ”TCCs of cobots-environment”

cluster. We label them separately as X8, X21, and X31.

C. Framework of the Proposed Method

The framework of our proposed statistical method is

shown in Fig 1. Stage 1 calculates and collects the technical

parameters of our cobot. Performance indices are constructed

using the K-Means algorithm via clustering. The TCCs Test

Tasks and Sub-Tasks are designed based on the characteris-

tics of the performance indices of the cobot. Then TCCs

testing is performed. This is where the original data is

generated. Stage 2 mathematically normalizes all the original

data to make them computation ready. Stage 3 calculates the

influential indicator for our cobot. Stage 4 analyzes and de-

termines the impact of technical parameters on performance

indices. Note: Our experiment consists specifically of 19

technical parameters and 47 performance indices. The scope

of these parameters and indicators can be further extended to

cover more factors that can affect the performance of cobots

in future work.

Fig. 1: Framework of the Proposed Method

III. TCCS TESTING

A. Test Design

In line with the Tri-Co concept, test tasks were categorized

into three types: cobots-human, cobots-cobots, and cobots-

environment, with their quantity determined by covering

all corresponding performance indices. Therefore, five tasks

were designed accordingly: two cobots-human, two cobots-

cobots, and one cobots-environment task. This work takes

one cobots-human test task as an example. This particular

test task has four sub-tasks which will be given in sub-section

B. Our test setup is shown in Fig 2.
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TABLE II: Performance Indices and Notations

TCCs of cobots-human

Notation Index Notation Index

X1 Human feature recognition X7 Hybrid force/position control

X2 Active collision avoidance X8 Adaptive impedance control

X3 Task planning and coordination X9 Motion planning

X4 Autonomous decision-making X10 Human-robot collaboration

X5 Imitation learning X11 Human intentions understanding

X6 Contact based human-robot interaction X12 Human-robot contactless interaction

TCCs of cobots-cobots static task allocation

Notation Index Notation Index

X13 Static task allocation X20 Loose coordinated motion control

X14 Real-time communication X21 Adaptive impedance control

X15 Dynamic task allocation X22 Collision detection

X16 Adaptive learning X23 Hybrid force/position control

X17 Motion planning X24 Tight coordination motion control

X18 Real-time obstacle avoidance X25 Dynamic collaboration

X19 Static collaboration

TCCs of cobots-environment

Notation Index Notation Index

X26 Intelligent control X32 Real-time obstacle avoidance

X27 Collision detection X33 Motion planning in an unstructured environment

X28 Adaptive complementary filtering algorithm X34 Hybrid force/position control

X29 Kalman filtering algorithm X35 Multimodal information fusion and processing

X30 Collision avoidance X36 Modeling of work environment

X31 Adaptive impedance control

Safety protection rigid & flexible intelligent switching control

Notation Index Notation Index

X37 Rigid and flexible intelligent switching control X43 Power and force limitations

X38 Fixed point safety monitoring stop X44 Active compliance control

X39 Traction teaching X45 Safe skin

X40 Flexible joint X46 Security decision-making mechanism

X41 Speed and distance monitoring X47 Passive compliant mechanism

X42 Active and passive compliance control

Fig. 2: TCCs Test Setup

B. Test Tasks

Sub-Task 1: As shown in Fig 3, bolts and nuts are

randomly placed in area 1 and area 3. The tester selects a nut

from area 1 and holds it in the air right above area 2. At this

point, the cobot uses visual sensors to identify and match,

grabbing the corresponding bolt from area 3 and cooperating

with the tester in area 2 to assemble the bolt and nut.

Sub-Task 2: A phone charger and a three-pin plug are

randomly placed in area 1, a power strip is placed in area

2, and three USB cables are randomly placed in area 3. The

tester sequentially installs the phone charger and the three-

pin plug on the power strip, then installs the three USB cables

in their respective positions. Finally, the USB cables, three-

pin plug, and phone charger are unplugged and returned to

their original areas. At this point, the cobot should capture

the tester’s actions, then imitate the actions to replicate the

plugging-unplugging process.

Sub-Task 3: Area 1 has a memory module, area 2 has

a computer motherboard, and area 3 has a CPU. The tester

picks up the memory module and CPU and hands them to

the cobot, which then grips and installs the memory module

and CPU in their respective positions on the motherboard.

Sub-Task 4: Breaking down area 2 into three zones, three

different types of tracks are set in each zone. The cobot

uses visual sensors to recognize the tracks to determine the

magnitude of the vertically applied force F, then grabs a

cone-shaped sponge brush dipped in paint and vertically

draws out three different tracks on the working plane.

C. Test Explanation

In order to ensure quality and completeness of the test,

the following requirements need to be met:

• The cobot is aware of the test item information and the

layout information of the working area.

• The cobot is placed in a position where it can complete

the test tasks.
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Fig. 3: TCCs Testing with Sawyer

• The cobot is equipped with visual sensors and force-

control functions.

• The fitting curve of the line width D0 generated by

the cone-shaped sponge brush and the vertically applied

force F have been determined.

D. Test Scoring Criteria

• In sub-task 1, for each successfully assembled pair of

bolts and nuts, add 5 points.

• In sub-task 2, add 4 points for each successful insertion

or removal of a mobile phone charger or three-pin

plug, and add 4 points for each successful insertion or

removal of a USB cable.

• In sub-task 3, add 12 points for successfully installing

the CPU on the computer motherboard and add 8 points

for successfully installing a memory module.

• In sub-task 4, add points based on the difference

between the actual track drawn and the preset track,

formulated as 15 D0

Dread
. Up to 45 points can be added for

three different tracks.

• Add 10 points for total completion time within (0, 30]

minutes, add 6 points within (30, 35] minutes, add 2

points within (35, 40] minutes. No points are added for

total completion time exceeding 40 minutes.

• With three complete operations, add the job score and

bonus score together, then take the arithmetic average as

the total score. If the total score exceeds 100, it should

be counted as a full score of 100.

IV. CORRELATION ANALYSIS METHOD

We have previously established the technical parameters

and performance indices for the cobot. In this section, we

are conducting a quantitative analysis on how technical

parameters impact performance indices utilizing the Pearson

correlation analysis [14]. In order to proceed, we need to

build two column vectors with same dimension. First, we

put together the technical parameter data as a column vector.

Then, we have the cobot go through the TCCs testing

procedure introduced in section III. Note that we need to

make sure the number of tests is at least equivalent to

the number of technical parameters. By the end of the

test, we can obtain a column vector of K performance

indices, whose dimensions are consistent with those of the

technical parameters. To analyze the relationship between the

parameters with the indices, we use the Pearson correlation

coefficient. The mathematical formula is listed below:

Denote each parameter as P1, . . . , PM and each index as

I1, . . . , IK , where M is the number of parameters and K is

the number of indices, For the data matrix D, Di,j means

the i, j-th entry, and D̄·,l is the average of the l-th column

of D.

Define the two correlation coefficients:

For each Ik for k ∈ {1, 2, . . . ,K}, the global correlation coefficients is

rIk =

∑M

j=1

(

Dj,1 − D̄·,1

) (

Dj,k − D̄·,k

)

√

∑M

j=1

(

Dj,1 − D̄·,1

)

2 ∑M

j=1

(

Dj,k − D̄·,k

)

2

(1)

For each Ik, the local correlation coefficients with parameter Pm removed for m ∈ {1, 2, . . . ,M} is

rIk,−m =

∑M

j=1,j �=m

(

Dj,1 − D̄·,1

) (

Dj,k − D̄·,k

)

√

∑M

j=1,j �=m

(

Dj,1 − D̄·,1

)

2 ∑M

j=1,j �=m

(

Dj,k − D̄·,k

)

2

(2)

Define an influential indicator: For each Ik, the influential

indicator for parameter Pm is

rIk,Pm
= rIk − rIk,−m (3)

The global correlation coefficients and the local correlation

coefficients have values between −1 and 1, and the influential

indicator have values between −2 and 2. The greater the

absolute value, the stronger the correlation between two

variables. From above formulae, it can be observed that there

are M ×K indicators, reflecting each technical parameter’s

level of impact on performance indices.
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V. CASE STUDY

A. Data Generation

We had Sawyer cobot go through the TCCs testing proce-

dure introduced in section III for exactly 19 times to match

the number of technical parameters. Recall that we have 47

performance indices. This would give us a 19 × 47 matrix of

original data from Sawyer. Then we proceeded to normalize

all the data to make them computation ready. Part of the

normalized data is shown in Table III .

TABLE III: TCCs Data

Y
X

X1 X2 X3 X4 · · · X25 · · · X47

Y1 0.7 0.8 0.8 0.5 0.8 · · · 0.5 · · · 0.3

Y2 0.3 0.5 0.3 0.7 0.2 · · · 0.6 · · · 0.5

Y3 0.4 0.8 0.3 0.3 0.3 · · · 0.4 · · · 0.4

Y4 0.4 0.6 0.7 0.5 0.4 · · · 0.5 · · · 0.6

Y5 0.4 0.3 0.6 0.3 0.4 · · · 0.3 · · · 0.3

Y6 0.5 0.3 0.8 0.7 0.4 · · · 0.3 · · · 0.8

Y7 0.9 0.8 0.5 0.5 0.8 · · · 0.3 · · · 0.6

Y8 0.2 0.6 0.4 0.7 0.4 · · · 0.2 · · · 0.5

Y9 0.2 0.2 0.4 0.4 0.6 · · · 0.7 · · · 0.2

Y10 0.2 0.2 0.5 0.8 0.5 · · · 0.3 · · · 0.5

Y11 0.8 0.3 0.4 0.4 0.3 · · · 0.7 · · · 0.6

Y12 0.2 0.7 0.8 0.7 0.5 · · · 0.3 · · · 0.4

Y13 0.3 0.8 0.7 0.6 0.3 · · · 0.7 · · · 0.5

Y14 0.2 0.3 0.3 0.6 0.2 · · · 0.2 · · · 0.3

Y15 0.1 0.3 0.4 0.4 0.6 · · · 0.4 · · · 0.3

Y16 0.8 0.4 0.4 0.5 0.7 · · · 0.3 · · · 0.3

Y17 0.1 0.8 0.3 0.6 0.7 · · · 0.5 · · · 0.4

Y18 0.8 0.3 0.4 0.5 0.6 · · · 0.7 · · · 0.3

Y19 0.5 0.3 0.2 0.7 0.3 · · · 0.5 · · · 0.7

B. Computation and Results

Plug the normalized data into equation (1) for global Pear-

son correlation coefficients, equation (2) for local Pearson

correlation coefficients, where M and K are 19 and 47,

respectively. Use equation (3) for the influential indicators.

The calculation results are in the form of 19×47 correlation

matrices. We have visualized them in Fig. 4. and Fig 5. where

they are the local Pearson correlation coefficients and the

influential indicators, respectively. There are some noticeable

observations:

• All six line charts present mild fluctuation in the plot

lines. This means that the 19 technical parameters

have consistent impacts on the 47 performance indices.

Namely, there are very few parameters that have a huge

impact on one index but have a small impact on others.

• Fig 4(b) shows that almost all 19 technical parameters

have a large negative impact on index X11, which

represents ”Human intentions understanding”.

• Fig 4(d) shows that almost all 19 technical parameters

have a large negative impact on index X32, which

represents ”Real-time obstacle avoidance”

• Fig 4(f) shows that almost all 19 technical parameters

have a large positive impact on index X41 and index

X44 which represent ”Speed and distance monitoring”

and ”Active compliance control”, respectively.

Recall that an influential indicator is defined as each

technical parameter’s level of impact on each performance

index. By visualizing our influential indicators, one could

easily tell which technical parameter has the highest impact

on the performance indices, therefore potentially improve

the cobot’s performance in a more time-efficient fashion

for future studies. Taking our case as an example, Fig. 5

(b) shows that X37 is outstanding. This observation can be

interpreted as, ”the arm span of robot” has a relatively high

impact on ”rigid and flexible intelligent switching control”.

Due to space limitations, please refer to [13] for more

detailed descriptions of specific test tasks, scoring criteria,

and calculation results.

(a)

(b)

(c)

(d)

(e)
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(f)

Fig. 4: Local Pearson Correlation Coefficients

(a)

(b)

Fig. 5: Influential Indicators

VI. CONCLUSION

We proposed a statistical method to optimize cobot per-

formance by analyzing the relationship between technical

parameters and performance indices using Pearson’s correla-

tion analysis. Our method is accessible to those with limited

statistical expertise due to its simplicity, interpretability, and

practicality. We defined local Pearson correlation coefficients

and influential indicators to evaluate the impact of technical

parameters on performance indices. Our results confirmed

the feasibility and effectiveness of this method in providing

a comprehensive assessment of cobot capabilities, addressing

a significant gap in the literature that often focuses on

individual performance aspects. The case study on Sawyer in

Section V validates our theoretical framework and demon-

strates the practical applicability of our method.

Future research should extend this methodology to com-

plex and non-linear relationships between technical param-

eters and performance indices by applying non-linear trans-

formations like polynomial transformations or exponential

transformations to the data. Furthermore, integrating this

method with advanced machine learning algorithms could

enhance predictive power and provide deeper insights into

the optimization of cobot performance. Future work should

also include applying this methodology in various industrial

scenes and with different types of robotic systems.
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