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Abstract— Coexisting-cooperative-cognitive (Tri-Co) robots
are advanced systems designed for interaction with environ-
ments, humans, and other robots. Collaborative robots (cobots),
a subset of Tri-Co robots, specifically work safely alongside
humans. When it comes to improving cobot performance, un-
derstanding the relationship between their technical parameters
and performance indices becomes crucial. This paper proposes
a method that combines the idea of experimental science
and statistics, using Pearson correlation analysis to find this
relationship. We define local Pearson correlation coefficients
and influential indicators to measure each technical parameter’s
impact on performance indices. A case study on Rethink
Sawyer (Sawyer) cobot validates our theoretical framework and
underscores the practical applicability of our method.

I. INTRODUCTION

Tri-Co robots represent an advanced category of robotics
designed to interact seamlessly with their environment, hu-
mans, and other robots. They independently adjust to com-
plex and changing surroundings and collaborate effectively
[1]. Tri-Co Capabilities (TCCs) encompass a set of advanced
functionalities enabling these robots to operate as designed.

Collaborative robots (cobots) [2], as a representative type
of Tri-Co robots, are specifically designed to work alongside
human workers in a shared workspace. They are focused pri-
marily on collaboration and safety. Cobots are a high-value
research object due to the versatility in their applications such
as assembly, polishing, machine tending, quality inspection
[3] and stacking within industrial scenes.

Recent literature has focused on various aspects of cobot
performance and interaction. For example, Ajoudani [4]
explored human-robot collaboration dynamics, emphasizing
the importance of intuitive control interfaces and adap-
tive algorithms. Despite these advancements, the systematic
evaluation of TCCs still remains under-explored. Current
methodologies primarily address individual aspects of cobot
performance, such as intuitive user interfaces [5] and safety
[6], but do not provide a comprehensive assessment of TCCs.

The technical parameters significantly impact the kine-
matic and dynamic performance of the cobots. Identifying
which parameters have the greatest influence on performance
is crucial. The sensitivity analysis quantifies the specific
impact of each technical parameter on the performance
indices [7] [8]. However, this method usually involves con-
structing complex mathematical formulae to describe these
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relationships, which makes it challenging to model accurately
in engineering practice. Moreover, when dealing with a large
number of technical parameters and performance indices in
a robotic system, the practicality and efficiency of sensitivity
analysis methods are substantially limited.

This leads to a need for more accessible methodologies to
optimize cobot performance effectively. To fulfill the need,
this work proposes a simple yet novel statistical method to
explore the relationship between cobots’ technical parame-
ters and performance indices using Pearson correlation anal-
ysis. This method combines the idea of experimental science
and statistics. Preferred for its simplicity, interpretability, and
minimal assumptions, Pearson correlation analysis is accessi-
ble to individuals with limited statistical expertise and can be
complemented with various visualizations. Gu [9] discussed
the use of heatmaps to visualize Pearson correlations among
various genomic features. Other statistical graphs like scatter
plots and residual plots could also be used. This work uses
line charts and bar charts for the presentation of our results.

We chose Pearson correlation analysis over other statistical
methods due to its robustness and simplicity in practical ap-
plications, as highlighted in Bishara’s study [10] comparing
various correlation measures. There are numerous existing
studies that involve the application of Pearson correlation
analysis. Hao’s study [11] used such method to examine
the relationship between internet addiction and interpersonal
relationships among teenagers and college students.

Compared to existing studies, this work aims to make the
following distinctive contributions:

o Proposing a method that determines technical param-
eters’ impact on performance indices. This method
combines the idea of experimental science and statistics,
serving as a toolkit in the field of robotics.

o Defining local Pearson correlation coefficients and in-
fluential indicators. Since we essentially need to assess
the relationship between a scalar and a column vector,
which cannot be achieved by traditional Pearson corre-
lation analysis. By removing one entry from the matrix
at a time and analyzing the remainder, we manipulate
the column vectors that fall under the restriction of the
Pearson correlation analysis, allowing us to iteratively
repeat the procedure. Ultimately, we can gain insights
on the relationship of these entries in an indirect fashion.

The structure of this paper is organized as follows. Section
II introduces technical parameters and performance indices,
and gives a framework of the proposed method. Section
IIT describes TCCs testing. Section IV demonstrates the
correlation analysis method from a theoretical perspective.
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Section V is a case study on Sawyer to actualize the proposed
method. Finally, section VI concludes and summarizes the
work done in this research and suggests future work.

II. BACKGROUND
A. Technical Parameters

Technical parameters are the specific characteristics and
capabilities that define a cobot’s performance, functionality,
and suitability for various tasks. They can be used for cobots’
design and evaluation. In this work, the cobot has 19 specific
technical parameters. We label them from Y1 to Y19, as
shown in Table L.

TABLE I: Technical Parameters and Notations

Notation | Technical Parameter

Y1 Degree of freedom

Y2 Mass

Y3 Conventional power consumption
Y4 Peak power consumption

Y5 Real load

Y6 IP level

Y7 Maximum speed of each joint
Y8 Range of each joint motion
Y9 Maximum torque of each joint
Y10 Repetitive positioning accuracy
Y11 The arm span of robot

Y12 Bed area

Y13 Vision sensor

Y14 Tactile sensor

Y15 Force and torque sensor

Y16 Speed sensor

Y17 Position sensor

Y18 Auditory sensor

Y19 Acceleration sensor

B. Performance Indices

Performance indices are the metrics and criteria used to
assess the efficiency, effectiveness, and overall performance
of the cobot. In this work, the performance indices of our
cobot were obtained using a text clustering method called
K-means algorithm [13]. First, we constructed a text set that
consists of sufficient amount of abstracts. Then the text set
would go through a series of steps including text prepro-
cessing, text representation, feature selection, cluster analysis
using K-means, high-correlation feature word extraction,
experts closed-loop feedback correction, and clustering effect
check. During clustering, based on the elbow rule [12], we
set the number of clusters k to 4 since it was when the
degree of distortion significantly improved. By the end of
the process, we obtained four clusters: cobots-human, cobots-
cobots, cobots-environment, and safety protection & flexible
intelligent switching control, with each cluster having its
own corresponding indices. We label them from X1 to X47
, as shown in Table II. Note that some indices belong to
multiple clusters. Although they share the same name, they
represent different measures in different clusters. For exam-
ple, ”Adaptive impedance control” can be found in “TCCs
of cobots-human” cluster, "TCCs of cobots-cobots static
task allocation” cluster, and "TCCs of cobots-environment”
cluster. We label them separately as X8, X21, and X31.

C. Framework of the Proposed Method

The framework of our proposed statistical method is
shown in Fig 1. Stage 1 calculates and collects the technical
parameters of our cobot. Performance indices are constructed
using the K-Means algorithm via clustering. The TCCs Test
Tasks and Sub-Tasks are designed based on the characteris-
tics of the performance indices of the cobot. Then TCCs
testing is performed. This is where the original data is
generated. Stage 2 mathematically normalizes all the original
data to make them computation ready. Stage 3 calculates the
influential indicator for our cobot. Stage 4 analyzes and de-
termines the impact of technical parameters on performance
indices. Note: Our experiment consists specifically of 19
technical parameters and 47 performance indices. The scope
of these parameters and indicators can be further extended to
cover more factors that can affect the performance of cobots

in future work.
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Fig. 1: Framework of the Proposed Method

III. TCCs TESTING
A. Test Design

In line with the Tri-Co concept, test tasks were categorized
into three types: cobots-human, cobots-cobots, and cobots-
environment, with their quantity determined by covering
all corresponding performance indices. Therefore, five tasks
were designed accordingly: two cobots-human, two cobots-
cobots, and one cobots-environment task. This work takes
one cobots-human test task as an example. This particular
test task has four sub-tasks which will be given in sub-section
B. Our test setup is shown in Fig 2.
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TABLE II: Performance Indices and Notations

TCCs of cobots-human
Notation | Index Notation | Index
X1 Human feature recognition X7 Hybrid force/position control
X2 Active collision avoidance X8 Adaptive impedance control
X3 Task planning and coordination X9 Motion planning
X4 Autonomous decision-making X10 Human-robot collaboration
X5 Imitation learning X11 Human intentions understanding
X6 Contact based human-robot interaction X12 Human-robot contactless interaction
TCCs of cobots-cobots static task allocation
Notation | Index Notation | Index
X13 Static task allocation X20 Loose coordinated motion control
X14 Real-time communication X21 Adaptive impedance control
X15 Dynamic task allocation X22 Collision detection
X16 Adaptive learning X23 Hybrid force/position control
X17 Motion planning X24 Tight coordination motion control
X18 Real-time obstacle avoidance X25 Dynamic collaboration
X19 Static collaboration
TCCs of cobots-environment
Notation | Index Notation | Index
X26 Intelligent control X32 Real-time obstacle avoidance
X217 Collision detection X33 Motion planning in an unstructured environment
X28 Adaptive complementary filtering algorithm X34 Hybrid force/position control
X29 Kalman filtering algorithm X35 Multimodal information fusion and processing
X30 Collision avoidance X36 Modeling of work environment
X31 Adaptive impedance control
Safety protection rigid & flexible intelligent switching control
Notation | Index Notation | Index
X37 Rigid and flexible intelligent switching control | X43 Power and force limitations
X38 Fixed point safety monitoring stop X44 Active compliance control
X39 Traction teaching X45 Safe skin
X40 Flexible joint X46 Security decision-making mechanism
X41 Speed and distance monitoring X47 Passive compliant mechanism
X42 Active and passive compliance control

@ﬁ@ invS

Fig. 2: TCCs Test Setup

B. Test Tasks

Sub-Task 1: As shown in Fig 3, bolts and nuts are
randomly placed in area 1 and area 3. The tester selects a nut
from area 1 and holds it in the air right above area 2. At this
point, the cobot uses visual sensors to identify and match,
grabbing the corresponding bolt from area 3 and cooperating
with the tester in area 2 to assemble the bolt and nut.

Sub-Task 2: A phone charger and a three-pin plug are
randomly placed in area 1, a power strip is placed in area
2, and three USB cables are randomly placed in area 3. The
tester sequentially installs the phone charger and the three-

pin plug on the power strip, then installs the three USB cables
in their respective positions. Finally, the USB cables, three-
pin plug, and phone charger are unplugged and returned to
their original areas. At this point, the cobot should capture
the tester’s actions, then imitate the actions to replicate the
plugging-unplugging process.

Sub-Task 3: Area 1 has a memory module, area 2 has
a computer motherboard, and area 3 has a CPU. The tester
picks up the memory module and CPU and hands them to
the cobot, which then grips and installs the memory module
and CPU in their respective positions on the motherboard.

Sub-Task 4: Breaking down area 2 into three zones, three
different types of tracks are set in each zone. The cobot
uses visual sensors to recognize the tracks to determine the
magnitude of the vertically applied force F, then grabs a
cone-shaped sponge brush dipped in paint and vertically
draws out three different tracks on the working plane.

C. Test Explanation

In order to ensure quality and completeness of the test,
the following requirements need to be met:

o The cobot is aware of the test item information and the
layout information of the working area.

« The cobot is placed in a position where it can complete
the test tasks.
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Fig. 3: TCCs Testing with Sawyer

o The cobot is equipped with visual sensors and force-
control functions.

o The fitting curve of the line width Dy generated by
the cone-shaped sponge brush and the vertically applied
force F' have been determined.

D. Test Scoring Criteria

o In sub-task 1, for each successfully assembled pair of
bolts and nuts, add 5 points.

o In sub-task 2, add 4 points for each successful insertion
or removal of a mobile phone charger or three-pin
plug, and add 4 points for each successful insertion or
removal of a USB cable.

e In sub-task 3, add 12 points for successfully installing
the CPU on the computer motherboard and add 8 points
for successfully installing a memory module.

Define the two correlation coefficients:

e In sub-task 4, add points based on the difference
between the actual track drawn and the preset track,
formulated as 15 DD,;' Up to 45 points can be added for
three different tracks.

o Add 10 points for total completion time within (0, 30]
minutes, add 6 points within (30, 35] minutes, add 2
points within (35, 40] minutes. No points are added for
total completion time exceeding 40 minutes.

o With three complete operations, add the job score and
bonus score together, then take the arithmetic average as
the total score. If the total score exceeds 100, it should
be counted as a full score of 100.

IV. CORRELATION ANALYSIS METHOD

We have previously established the technical parameters
and performance indices for the cobot. In this section, we
are conducting a quantitative analysis on how technical
parameters impact performance indices utilizing the Pearson
correlation analysis [14]. In order to proceed, we need to
build two column vectors with same dimension. First, we
put together the technical parameter data as a column vector.

Then, we have the cobot go through the TCCs testing
procedure introduced in section III. Note that we need to
make sure the number of tests is at least equivalent to
the number of technical parameters. By the end of the
test, we can obtain a column vector of K performance
indices, whose dimensions are consistent with those of the
technical parameters. To analyze the relationship between the
parameters with the indices, we use the Pearson correlation
coefficient. The mathematical formula is listed below:
Denote each parameter as Pi,..., Py and each index as
I, ..., Ik, where M is the number of parameters and K is
the number of indices, For the data matrix D, D; ; means
the 4, j-th entry, and D.; is the average of the [-th column
of D.

For each I for k € {1,2,..., K}, the global correlation coefficients is

3521 (D1 = Do) (Dsk — Dox)

ey

T = M — 2 M — 2
\/Z]’:l (DJ\l - D'al) Zj:l (vak - Dwk)

For each Iy, the local correlation coefficients with parameter P, removed for m € {1,2,..., M} is

Zjl\il,jyém (Dj)l - D"l) (Djvk - ka)

(@)

TI,—m

Define an influential indicator: For each I, the influential
indicator for parameter P, is

TIImPWL = le, - T‘Ik,—m (3)

The global correlation coefficients and the local correlation
coefficients have values between —1 and 1, and the influential
indicator have values between —2 and 2. The greater the

\/ij\il,jyém (Dj,l - D"I)Q Zj]wzl,j;ém (Dj»k - Dwk)

2

absolute value, the stronger the correlation between two
variables. From above formulae, it can be observed that there
are M x K indicators, reflecting each technical parameter’s
level of impact on performance indices.
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V. CASE STUDY
A. Data Generation

We had Sawyer cobot go through the TCCs testing proce-
dure introduced in section III for exactly 19 times to match
the number of technical parameters. Recall that we have 47
performance indices. This would give us a 19 x 47 matrix of
original data from Sawyer. Then we proceeded to normalize
all the data to make them computation ready. Part of the
normalized data is shown in Table III .

TABLE III: TCCs Data

v X X1 | X2 | X3 | X4 X25 X47
Y1 07108 |08]051]08]|--- |05 <o 0.3
Y2 03105 (03]071]02]|--- |06 - 0.5
Y3 04 |08 [ 03]03]03]|--- |04 <o | 04
Y4 04 06 |07]051]04 |- --- |05 - | 0.6
Y5 04 03|06 |03]04 |- --- |03 <o 03
Y6 05103 |08]071]04 ]| --- |03 <o 08
Y7 09108 05]05]08 |- --- |03 - 0.6
Y8 02106 |04]07 1|04 | --- |02 <o 0.5
Y9 02102 |04]04]06 |- --- |07 - 0.2
Y10 [ 02|02 |05 |08 |05 --- |03 - 0.5
Y1l | 08 | 03 | 04 | 04 | 03 | --- | 0.7 <o 0.6
Y12 | 0207 |08 |07 ]05]--- |03 - | 0.4
Y13 | 0308 | 07 | 06 | 03 | --- | 0.7 <o 0.5
Y14 | 02| 03 | 03 |06 | 02 | --- | 02 <o 0.3
Y15 | 01 | 03 | 04 | 04|06 | --- | 04 <o 0.3
Y16 | 0.8 | 04 | 04 | 05 | 0.7 | --- | 0.3 <o 0.3
Y17 | 0.1 | 0.8 | 03 | 06 | 0.7 | --- | 0.5 - | 0.4
Y18 | 0.8 | 03 | 04 | 05 | 06 | --- | 0.7 <o 0.3
Y19 | 0503 ]02|07]03]--- |05 - 0.7

B. Computation and Results

Plug the normalized data into equation (1) for global Pear-
son correlation coefficients, equation (2) for local Pearson
correlation coefficients, where M and K are 19 and 47,
respectively. Use equation (3) for the influential indicators.
The calculation results are in the form of 19 x 47 correlation
matrices. We have visualized them in Fig. 4. and Fig 5. where
they are the local Pearson correlation coefficients and the
influential indicators, respectively. There are some noticeable
observations:

o All six line charts present mild fluctuation in the plot
lines. This means that the 19 technical parameters
have consistent impacts on the 47 performance indices.
Namely, there are very few parameters that have a huge
impact on one index but have a small impact on others.

o Fig 4(b) shows that almost all 19 technical parameters
have a large negative impact on index X 11, which
represents "Human intentions understanding”.

o Fig 4(d) shows that almost all 19 technical parameters
have a large negative impact on index X32, which
represents "Real-time obstacle avoidance”

o Fig 4(f) shows that almost all 19 technical parameters
have a large positive impact on index X41 and index
X 44 which represent "Speed and distance monitoring”
and ”Active compliance control”, respectively.

Recall that an influential indicator is defined as each

technical parameter’s level of impact on each performance

index. By visualizing our influential indicators, one could
easily tell which technical parameter has the highest impact
on the performance indices, therefore potentially improve
the cobot’s performance in a more time-efficient fashion
for future studies. Taking our case as an example, Fig. 5
(b) shows that X 37 is outstanding. This observation can be
interpreted as, “the arm span of robot” has a relatively high
impact on “rigid and flexible intelligent switching control”.

Due to space limitations, please refer to [13] for more
detailed descriptions of specific test tasks, scoring criteria,
and calculation results.
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the optimization of cobot performance. Future work should
also include applying this methodology in various industrial
scenes and with different types of robotic systems.
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VI. CONCLUSION

We proposed a statistical method to optimize cobot per-
formance by analyzing the relationship between technical
parameters and performance indices using Pearson’s correla-
tion analysis. Our method is accessible to those with limited
statistical expertise due to its simplicity, interpretability, and
practicality. We defined local Pearson correlation coefficients
and influential indicators to evaluate the impact of technical
parameters on performance indices. Our results confirmed
the feasibility and effectiveness of this method in providing
a comprehensive assessment of cobot capabilities, addressing
a significant gap in the literature that often focuses on
individual performance aspects. The case study on Sawyer in
Section V validates our theoretical framework and demon-
strates the practical applicability of our method.

Future research should extend this methodology to com-
plex and non-linear relationships between technical param-
eters and performance indices by applying non-linear trans-
formations like polynomial transformations or exponential
transformations to the data. Furthermore, integrating this
method with advanced machine learning algorithms could
enhance predictive power and provide deeper insights into
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