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Abstract
We analyze an optical atomic clock using two-photon 5S1/2 → 4DJ transitions in rubidium. Four
one- and two-color excitation schemes to probe the 4D3/2 and 4D5/2 fine-structure states are
considered in detail. We compare key characteristics of Rb 4DJ and 5D5/2 two-photon clocks. The
4DJ clock features a high signal-to-noise ratio due to two-photon decay at favorable wavelengths,
low dc electric and magnetic susceptibilities, and minimal black-body shifts. Ac Stark shifts from
the clock interrogation lasers are compensated by two-color Rabi-frequency matching. We identify
a ‘magic’ wavelength near 1060 nm, which allows for in-trap, Doppler-free clock-transition
interrogation with lattice-trapped cold atoms. From our analysis of clock statistics and systematics,
we project a quantum-noise-limited relative clock stability at the 10−13/

√
τ(s)-level, with

integration time τ in seconds, and a relative accuracy of∼10−13. We describe a potential
architecture for implementing the proposed clock using a single telecom clock laser at 1550 nm,
which is conducive to optical communication and long-distance clock comparisons. Our work
could be of interest in efforts to realize small and portable Rb clocks and in high-precision
measurements of atomic properties of Rb 4DJ-states.

1. Introduction

Recent efforts have led optical atomic clocks to be the most precise timekeeping devices, with many directions
for further applications [1, 2]. These include but are not limited to: the redefinition of the second [3], tests of
fundamental physics [4, 5], gravitational wave detection [6] and searches for dark matter [7–10]. The
definition of the second [11] is currently realized with the highest accuracy using the microwave Cs hyperfine
transition measured in atomic fountain clocks [12, 13]. These clocks utilize laser-cooled atoms and reach a
fractional frequency stability below 10−15. Furthermore, the most precise optical atomic clocks can achieve
stabilities on the order of 10−16/

√
τ [14] (with τ being the integration time in seconds), allowing for direct

detection of gravitational red shifts with multiplexed atomic ensembles [15, 16] and evaluation of lattice-trap
light shifts with a fractional frequency uncertainty on the order of 10−19 [17]. Various atomic species, both
neutral and charged, are being actively investigated as candidates for novel atomic-clock systems [18–22].

Practical applications of atomic clocks, including geodesy and inertial navigation [23–25], will generally
benefit from a compact footprint, which is a challenge for the aforementioned best-performing atomic
clocks. Alkali atoms remain relevant for this endeavor as various efforts are underway to ‘package’ the
existing setups into portable devices [26–29]. Microwave clocks based on the transition between hyperfine
ground states in Rb are commonly utilized in commercial technology [30]. A relative stability reaching
4× 10−13/

√
τ(s) based on the optical two-photon 5S1/2 → 5D5/2 transition in Rb has been demonstrated in

the context of realizing a portable optical atomic clock [31]. The quadrupole transition in Cs, 6S1/2 → 5D5/2,
at 685 nm has been proposed for a similar purpose [32].

Here we analyze the optical two-photon 5S1/2 → 4DJ transitions of Rb as a candidate for a portable and
robust optical atomic clock. The 4DJ states in Rb are attractive for applications in modern quantum science
and technology because two-photon transitions to these states are relatively strong and can be driven by
readily available diode lasers with low to moderate output power [33–36]. Further, the transitions into the
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4DJ states via the Rb D1- and D2-lines involve telecom wavelengths for the upper stage (≈1476 nm and
≈1529 nm, respectively). These can be used in quantum communication protocols [37, 38], as well as to
network between distant optical atomic clocks for differential frequency comparisons [39–42]. Moreover, the
4DJ states can be utilized in Rydberg physics applications such as electric field sensing using high-angular-
momentum Rydberg states [43] and all-optical preparation of Rydberg molecules [44, 45] and circular
Rydberg atoms [46].

Our paper is structured as follows. In section 2 we discuss general aspects of the proposed Rb 4DJ clock.
Considerations on level structure, fluorescence decay channels, and line pulling from transitions with
non-vanishing first-order Zeeman shifts lead into our selection of four specific clock modes. In section 3 the
modes are discussed in detail and ranked by promise, with an emphasis on ac-shift cancellation, the number
of laser sources required and corresponding beam powers, and fluorescence detection efficiency. In sections 4
and 5 we evaluate statistical and systematic uncertainties of the clock frequency, respectively, and summarize
key systematics. In section 6 we discuss selected aspects, present a possible clock implementation and
conclude the paper.

2. General concepts

2.1. Overview
The clock schemes under consideration involve two-photon 5S1/2 → 4DJ transitions in 87Rb. We discuss
several schemes, depicted in figures 1 and 2, that primarily differ in the detunings relative to the intermediate
5PJ-states, the transition detection methods, the severity of ac level shifts caused by the excitation lasers, and
the Doppler shifts present. In the schemes in figures 1(a) and (b), the 4D3/2 state is utilized as the upper clock
state, the two-photon excitation proceeds relatively close to resonance through one of the two 5PJ states, and
the clock transition is monitored by detecting the fluorescence from decay through the other 5PJ state. In the
schemes in figures 2(a) and (b), we utilize far-off-resonant excitations into the 4D5/2 state and detection of
fluorescence from decay through the 5P3/2-state. We discuss the advantages and drawbacks of the schemes
and compare aspects of the 4DJ and the more commonly-used 5D5/2-clocks [31]. Throughout our paper, we
use the notation that hyperfine quantum numbers with no, one and two primes, that is, F, F′ and F′′ refer to
lower-, intermediate- and upper-state levels, respectively.

2.2. Line pulling due to first-order Zeeman effect
The atomic clock frequency is the sum of the frequencies of lower- and upper-transition lasers locked to the
desired 5S1/2 to 4DJ two-photon transition. For a relative clock uncertainty of 1× 10−13, the uncertainty of
the difference between the center values of the 5S1/2 and 4DJ energy levels must not exceed∼h× 60 Hz. This
necessitates near-complete elimination of the effects of first-order Zeeman shifts and suppression of the
remaining quadratic Zeeman shifts from a bias magnetic field, Bbias, which is applied to define a quantization
axis. Since the 4DJ decay rate is Γ4D ≈ 2π × 2 MHz, a bias magnetic field Bbias ≳ 5 G, would be necessary to
isolate a single Zeeman component of the clock transition with vanishing first-order Zeeman shift. Such a
large bias field is deemed prohibitive because of the incurred second-order Zeeman shifts (see section 5.3).
Here, we consider bias magnetic fields Bbias ≲ 100 mG. Magnetic shifts, as well as other systematic shifts, are
then due to unwanted, weak perturber lines that are hidden underneath the targeted clock-transition line
and slightly pull the line center.

We consider a set of i = 1, . . . , imax spectral lines with relative line strengths pi and detunings δi, with∑
i pi = 1. Typically, there is a desired, main Zeeman line with a near-zero δi0 and near-unity pi0. The main

line is pulled by weak Zeeman and other perturber lines that have δi ≪ Γ4D and small pi. Considering a
symmetric homogeneous line shape, which could be a Lorentzian, a saturated Lorentzian, etc it is easy to
show that the observed shift of the line center, δ, follows the intuitive equation

δ =
∑
i

δi pi . (1)

The Zeeman components of the
∣∣5S1/2,F〉→ |4DJ,F ′ ′⟩ clock line are characterized by Zeeman shifts

δi(mF,mF′ ′) that are dependent on the initial- and final-state magnetic quantum numbers,mF andmF′ ′ ,
atomic line strengthsW(mF,mF′ ′) that are dependent on invariable atomic electric-dipole matrix elements,
clock-laser polarizations, intermediate-state detunings, and initial-state probabilities P(mF) that reflect the
magnetization state of the atom sample in the 5S1/2 ground state. Then pi in equation (1) is given by
pi = P(mF)W(mF,mF′ ′), with proper normalization

∑
i pi = 1.

The assumed bias field Bbias ≲ 100 mG gives rise to δi(mF,mF′ ′)-values in the range of 2π×100 kHz.
For a relative clock uncertainty of 10−13, the line-pulling resultant from equation (1) must then satisfy
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Figure 1. Energy level diagrams for the considered 87Rb 4DJ clock designs using near-resonant schemes (not to scale). Both
schemes utilize the 4D3/2 state with two-photon two-color excitation via the D1 (a) and D2 (b) lines, respectively.

Figure 2. Energy level diagrams for the considered 87Rb 4DJ clock designs using far-off-resonant schemes (not to scale). Both
schemes utilize the 4D5/2 state. (a) and (b) show one- and two-color two-photon far-off-resonant clock drives, respectively. Most
of the hyperfine and magnetic sub-structure is omitted;mF = mF′ ′ = 0 also applies here. See text for details.

|δ|≲ 2π × 60 Hz. Practical solutions include unmagnetized atom samples with vanishing stray
magnetization and π-polarized clock lasers, or samples prepared by high-fidelity optical pumping into a
magnetic ground-state level withmF = 0. In the former case, it is P(mF)≈ 1/(2F+ 1) for allmF and∑

mF
P(mF)mF ≈ 0, i.e., the Zeeman lines are symmetric about the line center. In the latter case, it is

P(mF)≲ 1 formF = 0, P(mF)∼ 0 formF ̸= 0, and
∑

mF
P(mF)mF ≈ 0. Cases other than these two may fail

due to line pulling from asymmetrically-placed perturber lines with large linear Zeeman shifts.
For specificity, here we mostly consider clock schemes in which the upper and lower states have magnetic

quantum numbersmF =mF′ ′ = 0, eliminating linear Zeeman shifts of the clock transition and leaving
only a weak quadratic Zeeman shift to contend with. To drive two-photon transitions between states with
mF =mF′ ′ = 0, one may employ clock-drive lasers that are both π-polarized (∆m= 0), or that are
σ-polarized with opposite helicity (∆m=±1). We select π-polarized clock-drive lasers because linearly
polarized light is less susceptible to polarization errors than circularly polarized light. Polarization errors
must be minimized because they would result in weak∆m ̸= 0 perturber lines with linear Zeeman shifts,
which would likely cause line pulling |δ|> 2π × 60 Hz, as explained above. Even for clean π-polarizations,
the anomalous Zeeman effect results inmF-dependent linear Zeeman shifts of themF →mF′ ′ =mF clock
transitions. Anomalous Zeeman shifts range between 2π × 350 kHzG−1 and 2π × 1.26 MHzG−1 for the
clock modes in figures 1 and 2. To limit line pulling frommF ̸= 0 perturber lines, the optical pumping into
mF = 0 must be efficient, and spuriousmF ̸= 0 populations must be symmetrically distributed aboutmF = 0.
For Bbias ≲ 100 mG we expect to be able to meet the condition |δ|≲ 2π × 60 Hz with light-polarization and
optical-pumping inefficiencies in the sub-percent range.

Polarization errors must also be avoided because they would cause Rabi-frequency fluctuations of the
clock transitions. Such fluctuations would be detrimental to ac-shift cancellation via Rabi-frequency
matching between lower and upper clock transitions, which is employed to reduce clock-laser-induced
ac-shifts (see sections 2.6 and 3).

2.3. Line pulling from off-resonant 4DJ hyperfine levels
The hyperfine splittings of 4DJ are sub-100 MHz and are larger in 87Rb than in 85Rb by about a factor of
three. To minimize the effects of line pulling from off-resonant 4DJ hyperfine lines, we select the hyperfine
levels F ′ ′ = 3 of the 87Rb 4D3/2 state for the near-resonant clock schemes in figures 1(a) and (b), and the
level F ′ ′ = 4 of 87Rb 4D5/2 for the far-off-resonant clock schemes in figures 2(a) and (b). These hyperfine
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lines exhibit maximal separations from other 4DJ hyperfine lines. Maximizing the 4DJ hyperfine separation
also reduces second-order Zeeman shifts (see section 5.3).

2.4. Selection of specific clock transitions
To achieve a high signal-to-noise ratio (SNR) of the detected 4DJ-fluorescence, dichroic optics and spectral
filters must be employed to eliminate scattered drive-laser stray light from the fluorescence detector.
Two-photon excitation of the Rb 4DJ states proceeds via the intermediate 5PJ states, which also are the only
intermediate states through which the atoms decay back into the ground state. In two of the four schemes
discussed (see figure 1), the 4DJ-excitation is fairly close to resonance with one of the intermediate 5PJ-states.
The spectral filters transmit fluorescence from decays through the other 5PJ-state. This forces the use of
4D3/2 as the upper clock state in figures 1(a) and (b).

FormF =mF′ ′ = 0, the π-couplings follow the selection rules F ̸= F ′ and F ′ ̸= F ′ ′. This simplifies the
relations between Rabi frequencies, detunings, clock fluorescence rates and ac shifts because there is only one
intermediate level and only one intermediate detuning,∆. The near-resonant two-color excitation schemes
in figure 1 are

|5S1/2,F= 1,mF = 0⟩ λ1,L−−→ |5P1/2,F ′ = 2,mF′ = 0⟩ λ1,U−−→ |4D3/2,F
′ ′ = 3,mF′ ′ = 0⟩ (2a)

|5S1/2,F= 1,mF = 0⟩ λ2,L−−→ |5P3/2,F ′ = 2,mF′ = 0⟩ λ2,U−−→ |4D3/2,F
′ ′ = 3,mF′ ′ = 0⟩ , (2b)

respectively. Here, the transition wavelengths λ carry subscripts 1 and 2 for excitation via the D1 and D2

lines, and L and U for the respective lower and upper transitions. Optical pumping into the lower clock state
|5S1/2,F= 1,mF = 0⟩ is performed with an auxiliary π-polarized, low-power laser beam resonant with a
|5S1/2,F= 1⟩ → |5PJ,F ′ = 1⟩ transition. To counter-act population accumulation in the |5S1/2,F= 2⟩ level,
a weak clock re-pumper beam resonant on a |5S1/2,F= 2⟩ → |5PJ,F ′ = 2⟩ transition, with a linear
polarization transverse to ẑ, is added.

In figure 2 we show the two far-off-resonant drive schemes considered. For those, the lower excitation
wavelengths are sufficiently far away from both the D1 and D2 lines such that decays through both 5PJ-states
can be simultaneously detected. An efficient scheme utilizes two-photon π-polarized (∆m= 0) drives into
4D5/2,

|5S1/2,F= 2,mF = 0⟩ → |4D5/2,F
′ ′ = 4,mF′ ′ = 0⟩ (3)

in 87Rb. This transition is closed with regard to F and F′′. Optical pumping into the lowermF = 0 clock state
is performed by weak π-polarized laser beams resonant with a |5S1/2,F= 2⟩ → |5PJ,F ′ = 2⟩ transition, plus
a weak clock re-pumper beam on a |5S1/2,F= 1⟩ → |5PJ,F ′ = 2⟩ transition.

It is noted that the clock-laser wavelengths are ∈ [774 nm, 795 nm], near 1033.314 nm, or
∈ [1476 nm, 1550 nm]. The latter interval is in the S- and C-bands of telecommunications. Narrow-line
lasers at these wavelengths are readily available. In most cases, the powers required are in the range of tens to
a few hundred mW. For the near-resonant schemes in figure 1 two excitation lasers are required, while for the
far-off-resonant schemes in figure 2 only a single laser source is needed.

2.5. Fluorescence detection
The 4DJ-fluorescence has a yield of two photons per atom in two optical bands that both allow efficient
photo-detection, which is conducive to a high SNR of the measured clock fluorescence. The only four decay
wavelengths are about 795 nm, 780 nm, 1476 nm and 1529 nm, for which we can leverage a range of
well-developed and affordable photodetectors. Germanium and InGaAs photodiodes have good quantum
efficiencies≳70% and can be moderately cooled with one- or two-stage thermo-electric coolers to reduce
thermal background currents. Ge sensors could be preferable because they are available with large sensitive
areas, as required for large solid angles in fluorescence detection. To measure the 780 nm and 795 nm
fluorescence, large-area Si diodes may be used, which also offer high efficiency. In all cases, to achieve a high
SNR, dichroic optics and optical filters are employed to reduce optical noise caused by detection of ambient
background light and scattered light from the clock excitation lasers.

The described fluorescence measurement schemes for Rb 4DJ clocks compare favorably well with
fluorescence measurement in Rb 5DJ clocks. In the latter, fluorescence is typically measured on the 6PJ to
5S1/2 decay channel near 420 nm [31, 47]. This decay channel has a yield of only about one blue photon for
every four 5DJ-atoms. Moreover, blue-light photodetectors typically have quantum efficiencies≲35%.

4



Quantum Sci. Technol. 9 (2024) 045046 A Duspayev et al

2.6. Ac shift cancellation
Ac shifts from the lower and upper clock transitions are in the≳10 kHz range. Fortunately, lower and upper
clock states experience ac shifts in the same direction. If two separate laser beams are applied to drive the
lower and upper clock transitions, as in the schemes discussed in sections 3.1, 3.2 and 3.4, separate intensity
controls of the two beams allow for cancellation of the net clock-laser-induced ac shift of the clock transition.

Ac shift cancellation is not possible with single-color two-photon excitation. In single-color two-photon
Rb 4D5/2 and 5D5/2 [31, 48, 49] clocks, discussed in sections 3.3 and 3.5, the ac shift is typically on the order
of tens of kHz and cannot be cancelled, leaving intensity variations of the excitation laser as a limiting factor
in the clock uncertainty.

3. Detailed discussion of specific clock drive modes

3.1. Near-resonant 5S1/2− 5P1/2− 4D3/2 two-color drive
We first discuss the case of two π-polarized excitation fields at λ1,L = 794.96 nm and λ1,U = 1475.64 nm that
drive the |5S1/2,F= 1,mF = 0⟩ → |5P1/2,F ′ = 2,mF′ = 0⟩ and |5P1/2,F ′ = 2,mF′ = 0⟩ →
|4D3/2,F

′ ′ = 3,mF′ ′ = 0⟩ transitions of 87Rb (see figure 1(a)). The respective Rabi frequencies are denoted
ΩSP andΩPD. Since selection rules only allow the intermediate state F ′ = 2, the intermediate detuning∆ is
well-defined, and the decay rate out of the 4D3/2 level is, in the applicable case of low saturation,

γ4D =
Ω2

SD

Γ4D
=

Ω2
SPΩ

2
PD

4∆2Γ4D
, (4)

where the two-photon Rabi frequency ΩSD =ΩSPΩPD/(2∆) and the 4D3/2 natural decay rate
Γ4D = 2π × 1.92 MHz. By comparison, unwanted off-resonant photon scattering from the intermediate level
occurs at a rate of

γ5P =
Ω2

SPΓ5P

4∆2
, (5)

with the 5P1/2 natural decay rate Γ5P = 2π × 5.746 MHz. It is desired to minimize background scattering
and to avoid atom heating (see below). Hence, we are aiming for a large ratio of beneficial photon scattering
over unwanted one,

γ4D
γ5P

=
Ω2

PD

Γ5PΓ4D
. (6)

Note the∆-independence of this ratio. The only adjustable variable in this ratio is the upper-transition Rabi
frequencyΩPD, which one will want to choose sufficiently large.

The light shifts of the clock levels can be separated into near-resonant terms from the clock transitions
and terms from far-off-resonance atomic levels. For the case of near-resonant clocks, the former are highly
dominant and are given by Ω2

SP/(4∆) and Ω2
PD/(4∆) for the respective |5S1/2,F= 1,mF = 0⟩ and

|4D3/2,F
′ ′ = 3,mF′ ′ = 0⟩ clock levels. Here, we desire that the near-resonant ac shifts of the lower and upper

clock states are approximately matched so that the clock-laser-induced ac shift of the transition frequency is
approximately cancelled out. The cancellation is accomplished by adjusting the lower- and upper-transition
laser intensities so that |Ω2

SP −Ω2
PD|< ϵΩ2, with an experimental imbalance parameter ϵ≪ 1 and

Ω2 = (Ω2
SP +Ω2

PD)/2. The residual ac shift of the clock transition due to the near-resonant 5P1/2-state then is

|δωac| ≈
ϵΩ2

4∆
. (7)

For a meaningful comparison of clock drive modes, we set γ4D = 103 s−1 per atom in all drive modes
considered. This value suffices to reach the SNR of 104 as required in section 4. With given γ4D, it is then
found that the near-resonant ac shift of the clock-transition angular frequency follows

|δωac| ≈ ϵ
√
γ4DΓ4D/2 , (8)

where the result is in units of rad s−1, and the rates under the square root are entered in units of s−1 (as
provided above). The clock shift in equation (8) solely depends on the experimental imbalance parameter ε,
the desired 4D photon scattering rate γ4D, and the natural 4D3/2 decay rate, Γ4D, while∆ and the Rabi
frequencies ΩSP ≈ ΩPD drop out. This occurs under the provision that∆≫ Γ5P. There is, however, an
incentive to keep∆ below certain bounds because the intensities and powers of both drive beams increase
linearly in∆, and because the far-off-resonant light shifts increase linearly with the drive intensities.
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In the following example, we use γ4D = 103 s−1,∆= 2π × 1 GHz, and ϵ= 0.5%. From equation (4) one
finds matched lower and upper Rabi frequencies Ω≈ ΩSP ≈ ΩPD ≈ 2π × 5.91 MHz. The ratio in
equation (6) then is 3.17, which is fairly favorable. From the electric-dipole moments for the lower and upper
transitions,

⟨5S1/2,F= 1,mF = 0|eẑ|5P1/2,F ′ = 2,mF′ = 0⟩ = 1.72 ea0

⟨5P1/2,F ′ = 2,mF′ = 0|eẑ|4D3/2,F
′ ′ = 3,mF′ ′ = 0⟩ = 3.11 ea0 , (9)

one finds the respective laser electric fields, intensities, and beam powers for given beam sizes. For instance,
for Gaussian beams with equal beam waist parameters w0 = 1 mm one finds lower- and upper-transition
beam powers of only about 150 µW and 50 µW. For ϵ= 0.5%, equations (7) and (8) yield an imbalance of
ac-shifts due to the 5P1/2-state of about 2π× 40 Hz, which is below the limit of 2π× 60 Hz set in section 2.

In order to analyze the background ac shift from far-off-resonant atomic states, we compute off-resonant
polarizabilities as described in [50, 51]. For electric-dipole matrix elements of transitions between
lower-lying atomic states we use values provided in [52, 53]. Matrix elements for transitions into
higher-lying states are computed with our own codes [54], which utilize model potentials from [55]. For the
case in this section, the background ac shifts are computed by summing over all electric-dipole-coupled
perturbing states, but excluding the shift from the separately-treated near-resonant state 5P1/2. The
far-off-resonant polarizabilities are, in atomic units, 5512 and 428 for |5S1/2,∗⟩ in laser fields of
λ1,L = 794.96 nm and λ1,U = 1475.64 nm wavelengths, respectively, and 982 and 4140 for
|4D3/2,F

′ ′ = 3,mF′ ′ = 0⟩ in the same respective fields. The polarizability uncertainties are estimated at 1%,
based on uncertainties of the matrix elements used. The resultant ac shift of the clock transition due to
far-off-resonant atomic states is about 2π× 3 Hz, which is well below the limit of 2π× 60 Hz set in section 2.
In the presented model,∆ has an allowable upper limit because, under the constraint of a fixed γ4D, upper-
and lower-transition intensities scale linearly in∆. This follows from equation (4), the fact that ΩSP ≈ ΩPD

for ac-shift cancellation, and the fact that Rabi-frequency squares are proportional to laser intensity. In the
present case, an increase in∆ from 2π× 1 GHz to about 2π× 20 GHz would result in a clock-transition shift
due to far-off-resonant states of∼2π× 60 Hz, the limit set in section 2.

For convenience, the computed ac polarizabilities at the relevant wavelengths for this and the other three
4DJ-clock cases discussed can be found in table 2 of the appendix. For readers interested in the details of the
ac polarizability calculations, for the 4DJ-clock case discussed in section 3.4, which we will deem the most
promising, the leading ac-shift contributions by perturber states are listed in the appendix in table 3.

We lastly consider the detection of 4D3/2 clock fluorescence for the 5S1/2-5P1/2-4D3/2 drive mode. The
branching ratio of the 4D3/2 decay is about 16% through 5P3/2 versus 84% through 5P1/2. We assume that
both excitation wavelengths, and with it any 4D3/2 clock fluorescence through the D1 line, will have to be
filtered out before photo-detection. Hence, only about 1 out of 6 decays can potentially be detected. We
therefore consider the near-resonant 5S1/2 − 5P1/2 − 4D3/2 clock drive mode to be less competitive than the
drive modes discussed next.

3.2. Near-resonant 5S1/2-5P3/2-4D3/2 two-color drive
Here, we discuss the case of two π-polarized excitation fields at λ2,L = 780.241 nm and λ2,U = 1529.26 nm
that drive the |5S1/2,F= 1,mF = 0⟩ → |5P3/2,F ′ = 2,mF′ = 0⟩ and |5P3/2,F ′ = 2,mF′ = 0⟩ →
|4D3/2,F

′ ′ = 3,mF′ ′ = 0⟩ transitions (see figure 1(b)). The analysis given in section 3.1 carries over, with the
replacement

⟨5S1/2,F= 1,mF = 0|eẑ|5P3/2,F ′ = 2,mF′ = 0⟩ = 1.73 ea0

⟨5P3/2,F ′ = 2,mF′ = 0|eẑ|4D3/2,F
′ ′ = 3,mF′ ′ = 0⟩ = 0.628 ea0 . (10)

For same parameters as in section 3.1, namely γ4D = 103 s−1,∆= 2π × 1 GHz, and ϵ= 0.5%, the laser
electric field, intensity and beam power for the upper transition are larger due to the smaller
upper-transition matrix element in equation (10). For instance, for Gaussian beams with w0 = 1 mm one
finds lower- and upper-transition beam powers of about 150 µW and 1 mW. The near-resonant ac-shift
imbalance from equations (7) and (8) remains at about 2π× 40 Hz.

The far-off-resonant ac polarizabilities from perturbing states excluding 5P3/2, calculated as described in
section 3.1, are, in atomic units,−2714 and 417 for |5S1/2,∗⟩ in fields of λ2,L = 780.241 nm and
λ2,U = 1529.26 nm wavelengths, respectively, and−368 and−6316 for |4D3/2,F

′ ′ = 3,mF′ ′ = 0⟩ in the same
respective fields. The magnitude of the net ac shift of the clock transition due to far-off-resonant atomic states
is about 2π× 24 Hz, which is below the limit of 2π× 60 Hz set in section 2. However, as a result of the larger
upper-transition intensity,∆ has a lower allowed upper limit than in section 3.1, namely about 2π× 2 GHz.
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For a clock drive through the D2 line, the ratio in equation (6) is 3.04, which is still fairly favorable. In the
fluorescence detection, we filter out decays through 5P3/2 and only detect decays through 5P1/2. Since the
branching ratio of the 4D3/2 decay favors decay through 5P1/2 over decay through 5P3/2 by about a factor of
5, in this clock drive mode 5 out of 6 decays are detectable. We therefore consider the near-resonant
5S1/2-5P3/2-4D3/2 clock mode to be quite competitive.

3.3. Far-off-resonant 5S1/2-4D5/2 Doppler-free single-color two-photon drive
The concept of Doppler-free, single-color two-photon spectroscopy with counter-propagating beams can be
extended from the Rb 5D5/2 clock [31] to Rb 4D5/2 [56]. While the laser wavelength of λ3,∗ = 1033.314 nm
(see figure 2(a)) is quite far-off-resonant from the intermediate 5P3/2 state, the absence of any other
intermediate states between 5S1/2 and 4D5/2 as well as the dominant size of the transition matrix elements
through 5P3/2 [52, 53] make some of the equations from section 3.1 applicable to this clock mode. The main
difference relies in the fact that the transition Rabi frequenciesΩSP andΩPD cannot be matched because the
Doppler-free two-photon method employs laser beams of exactly the same frequency for lower and upper
clock transitions. The Rabi-frequency ratio equals that of the dipole matrix elements,

⟨5S1/2,F= 2,mF = 0|eẑ|5P3/2,F ′ = 3,mF′ = 0⟩ = 2.32 ea0

⟨5P3/2,F ′ = 3,mF′ = 0|eẑ|4D5/2,F
′ ′ = 4,mF′ ′ = 0⟩ = 3.36 ea0 . (11)

As a result, the ac shifts from the drive beams cannot be cancelled. Favorable characteristics of this clock
mode include that it can be applied in Rb vapor cells [56], due to its Doppler-free character. Further, drive
and fluorescence wavelengths are well-separated, the drive is on a cycling transition with regard to the
relevant F and F′′-values, and there is a yield of two detectable photons for each 4D5/2 atom.

The value of∆ is fixed at∆=−2π × 9.41× 104 GHz. Requiring the same γ4D = 103 s−1 as in
sections 3.1 and 3.2 and using equation (4) (forΩSP andΩPD that are not equal but fixed in ratio using
values in equation (11)), one finds a very high drive-laser intensity of 3.3× 106 Wm−2. This results in
uncomfortably high beam powers. For Gaussian beams with waist parameter w0 = 1 mm, one would require
5.2 W per beam. Due to the large value of |∆|, the ratio γ4D/γ5P = 4.3× 105. Since γ4D is assumed to be
103 s−1, the aforementioned ratio indicates that the unwanted photon scattering rate from the intermediate
5PJ state, γ5P, is below 10−2 s−1 for the clock drive scheme under consideration. Such a condition is favorable.

Since this clock mode is far-off-resonant from any intermediate levels, there is no advantage in
distinguishing between near-resonant and far-off-resonant ac shifts. The ac polarizabilities of |5S1/2,∗⟩ and
|4D5/2,F

′ ′ = 4,mF′ ′ = 0⟩ at λ3,∗ = 1033.314 nm, summed over all coupled intermediate states (including
5P3/2), are 726 and 1745 in atomic units, respectively. For the drive-laser intensity stated in the previous
paragraph, one finds respective ac shifts of−2π × 11.3 kHz and−2π × 27.0 kHz. The differential shift for
the clock transition of−2π × 15.7 kHz exceeds the magnitude-limit of 2π × 60 Hz set in section 2 by a
factor of about 250. In laboratory experiments aimed at measuring hyperfine structures [56] and other
atomic properties, the ac-shift problem may be ameliorated by extrapolating the line positions to zero drive
power [36]. However, in a clock application one would have to compromise between ac clock shifts and clock
scattering rates γ4D, forcing a low γ4D. A low γ4D results, in turn, in a low clock interrogation bandwidth and
SNR.

Overall, we believe that the 1033.314 nm far-off-resonant 5S1/2-4D5/2 clock is less competitive than other
schemes because of uncompensated ac shifts, the high laser-power requirement, and low bandwidth and
SNR.

3.4. Far-off-resonant 5S1/2-4D5/2 two-color two-photon drive
The intermediate state 5P3/2 splits the energy gap between the 5S1/2 and 4D5/2 clock states into two segments
with a ratio of about 2–1. Hence, a single laser source at λ4,U = 1549.971 nm and its second harmonic at
λ4,L = 774.985 nm can be used to realize a single-laser, two-color, far-off-resonant 5S1/2-4D5/2 clock with∆
in a comfortable range (see figure 2(b)). While both drive beams are derived from the same laser source, they
are physically different at the location of the atoms, allowing ac-shift cancellation via separate intensity
controls (as in sections 3.1 and 3.2).

For this clock mode, the intermediate-state detuning is∆/(2π) = 2.6× 103 GHz. The ac polarizabilities
are, in atomic units,−16 852 and 413 for |5S1/2,∗⟩ at λ4,L = 774.985 nm and λ4,U = 1549.971 nm,
respectively, and−5 and−26 080 for |4D5/2,F

′ ′ = 4,mF′ ′ = 0⟩ at the same wavelengths. These
polarizabilities are from sums over all electric-dipole-coupled perturbing states, including 5P3/2. The
polarizabilities yield a fixed Rabi-frequency ratio ΩPD/ΩSP for which the clock-transition ac shift cancels.
Requiring the same γ4D = 103 s−1 as in sections 3.1–3.3, equation (4) then yields valuesΩSP = 2π× 275 MHz
and ΩPD = 2π× 319 MHz. For beams with w0 = 1 mm, the respective beam powers are 180 mW and
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115 mW. These powers appear quite feasible for the required 775 nm/1550 nm wavelength combination. The
individual clock-level ac shifts are both near 2π × 8.92 kHz. To achieve the limit of 2π × 60 Hz for the
clock-transition shift, set in section 2, the clock drive-beam intensities have to be controlled to within an
imbalance of ϵ≈ 0.7%, which is similar to the ε-value assumed for the clock modes in sections 3.1 and 3.2.

Importantly, the 775 nm/1550 nm far-off-resonant 5S1/2-4D5/2 clock mode requires only a single laser
source at 1550 nm; the 775 nm beam is generated with a frequency doubler. This leaves the 1550 nm laser as
the only laser that must be tuned, which greatly simplifies the clock-laser architecture. Yet, with two beams of
different colors being applied to the atoms, the method allows ac-shift cancellation. It also operates on a
cycling transition regarding the relevant F and F′′-values. Further, both fluorescence wavelengths differ from
both drive wavelengths by at least 5 nm, which suffices for high-contrast spectral filtering. The fluorescence
wavelengths are both in spectral ranges for which excellent photodetectors exist (see section 2.5).

Due to the advantages pointed out, the 775 nm/1550 nm far-off-resonant 5S1/2-4D5/2 clock mode is
considered to be the most competitive among the four 4DJ clock modes discussed.

3.5. Far-off-resonant 5S1/2-5D5/2 Doppler-free single-color two-photon drive
We include a comparison with the ubiquitous Rb 5S1/2-5D5/2 Doppler-free two-photon clock. This clock has
a more complex intermediate-level scheme with 7 fine-structure states between the clock states. One typically
measures the fluorescence cascade through the 6P3/2 level, which provides 420 nm fluorescence that can be
filtered well from the infrared drive fields near 778 nm [31, 47]. For the two-photon 5D5/2-clock, the
intermediate-state detuning is∆/(2π) = 1.06× 103 GHz. Requiring γ5D = 103 s−1, in analogy with the
value for γ4D in the previous sections, we find a laser power requirement of 161 mW for beams with
w0 = 1 mm, and the ac shift of the clock transition is−2π × 17.2 kHz, corresponding to a relative ac shift of
the 5D5/2 clock’s transition frequency of−2.2× 10−13 (mWmm−2)−1, which is close to the result of a
rigorous calculation in [47]. This ac shift is rather large and cannot be compensated in the Doppler-free
one-color, two-photon configuration, making it one of the main drawbacks of the 5D5/2 clock. Additional
notable disadvantages include a large black-body shift at 300 K of about−2π× 150 Hz, which is due to
perturbing transitions in the 10 µm range, as well as second-order Zeeman and dc quadratic Stark shifts that
are larger than for the 4DJ clocks (see section 5).

The lifetime of the 5D5/2 state exceeds that of the 4D5/2 state by about a factor of 2.6 [53, 57, 58], and the
(total) clock frequency of the 5D5/2-clock is about a factor of 1.33 higher than that of the 4D5/2-clock. These
facts amount to a clock-stability advantage for the 5D5/2-clock by a factor of 3.5, according to equation (12)
in the next section. However, the SNR for 5D5/2 decay is worse than for 4D5/2 decay because the 420 nm
decay branch of 5D5/2 has a probability of only 30% and yields only one detectable photon (instead of two
for 4D5/2-decay), and the quantum efficiency of photodetectors for 420 nm is only about half of that of
detectors for ~780 nm and ~1500 nm. Those facts worsen the clock stability of the 5D5/2-clock by a factor of
about

√
0.3× 0.5× 0.5≈ 0.27 relative to that of the 4D5/2-clock. Hence, under the outlined assumptions the

net stability advantage of the 5D5/2 over the 4D5/2 two-photon clock is about 0.9, i.e., the 4D5/2 clock would
actually be marginally better. While this result is only an estimation, it stands to reason that stability
disadvantages of the 4D5/2-clock due to larger linewidth and lower transition energy are compensated by
advantages in the SNR. More details on clock stability are discussed in the next section.

We note that multi-color and relatively near-resonant implementations of Rb 5D5/2 clocks have been
studied in [48, 49, 59]. Such implementations allow one to address clock-laser-induced ac shifts via
differential intensity control.

4. Statistical analysis

The Allan deviation of the relative clock frequency, commonly used to estimate the quantum-noise-limited
relative clock stability, is often expressed as [1, 60, 61]

σ (τ) =
1

ξ S

∆νc
νc

√
Tm

τ
, (12)

where S is the SNR achieved in a single clock cycle, and∆νc is the full-width-at-half-maximum linewidth of
the clock-transition angular frequency in s−1. Further, νc is the angular-frequency sum of the 5S1/2 → 4DJ

excitation lasers, Tm is the measurement time for a single clock cycle, and τ is the total integration time. For
clock lasers locked on a fringe of a Ramsey spectrum [62], a case that is often considered, the linewidth∆νc
is the full width at half maximum of the periodicity of the Ramsey spectrum in Hz. Quantum-projection
noise [63] then yields an ideally lock-point-independent σ(τ) with ξ = π in equation (12).

In our case,∆νc is the inverse of the radiative lifetime of the upper clock state, equivalent to the
low-saturation full width at half maximum of the clock transition in angular frequency (units s−1). The
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lifetime was recently determined to be 83 ns for 4D3/2 and 89 ns for 4D5/2, with less than 1 ns variation [52,
64]. Hence,∆νc = 2π × 1.92 MHz and∆νc = 2π × 1.78 MHz for 4D3/2 and 4D5/2, respectively. The value
of ξ in equation (12) varies depending on what model is adopted for the exact line shape. For a Gaussian
with a peak quantum-state probability of 1 in the excited state, a somewhat un-physical case, we have found
ξ≈ 3.33. For a mildly saturated Lorentzian that peaks at a quantum-state probability of 0.5 in the excited
state, which is physically quite reasonable, we find ξ≈ 1.41. For any line shape model adopted, ξ will depend
on the detuning from the clock transition’s line center, and it will typically become optimal at a detuning for
which the excited-state probability is about one-half of its on-resonance peak value. Physical
implementations of clock-laser locks will require a careful derivation of the factor ξ in equation (12). For
simplicity, in the following estimates we will use the commonly-used factor ξ = π in equation (12). This
means we assume that one can find a clock-laser lock scheme that performs as well as a
quantum-projection-noise-limited lock to a fringe of the Ramsey spectrum of the clock transition.

For an estimate, we assume a flux FA = 107 s−1 of cold atoms passing through a clock probe region of
5 mm in length at a speed of 5 cm s−1. The measurement time for a clock cycle equals the atom-field
interaction time, Tm = 0.1 s. At the single-atom clock scattering rate of γ4D ∼ 103 s−1 from section 3, each
atom provides 100 decays, the total rate of decays is 109 s−1, and the number of decays per Tm is 108. With an
estimate of η = 10% for the decay detection efficiency, the quantum-projection-limited SNR is
S= 1/

√
ηNP = 107/2. From equation (12) one then finds σ(τ)≈ 1.0× 10−13/

√
τ(s). This is somewhat

better than the demonstrated stability of the Rb 5D optical clock [31].
It is noted that equation (12) in terms of the given practical parameters becomes

σ (τ) =
1

ξ
√
ηFAγ4DTmτ

∆νc
νc

.

It is advantageous that the Rb 4DJ fluorescence delivers two photons per decay at wavelengths for which Si
and Ge photodiodes with near-peak efficiencies of≳70% and with large areas exist. While still challenging,
this will help achieving a decay detection efficiency of η = 10%.

5. Detailed discussion of systematic shifts

5.1. Doppler effect
With the exception of the single-color, two-photon Doppler-free clocks in sections 3.3 and 3.5, the Doppler
effect limits clock performance, a fact that has also been noted, to a lesser extent, in two-color
5D5/2-clocks [48, 49]. For counter-propagating excitation lasers with wavelengths as shown in figures 1(a),
(b) and 2(b), it is seen that the stability requirement of 2π × 60 Hz set in section 2 corresponds with an
uncertainty of v̄∼ 0.1 mm s−1 for the average velocity of the atom sample along the clock laser beam
direction. At the same time, the velocity distribution can be∼1 m s−1 wide without substantially broadening
the 4DJ-clock lines, or about ten times the Doppler limit in Rb [65]. It is, however, challenging to laser-cool
atom samples into velocity distributions with v̄≲ 0.1 mm s−1. For instance, radiation-pressure imbalance or
magnetic fields in the laser-cooling region can cause v̄> 0.1 mm s−1. Also, radiation pressure from the clock
lasers themselves must be avoided, as the recoil velocity for counter-propagating clock beams with
wavelengths as in sections 3.2 and 3.4 is≈3 mm s−1.

To solve this problem, here we consider a stream of cold atoms that moves along optical guiding
channels. The guiding channels are about 2π × 1 MHz deep and are implemented by a two-dimensional
(2D) optical lattice at a ‘magic’ wavelength (1060 nm; see section 5.2). Atoms cooled to several tens of µK in
a moving optical molasses [65] are adiabatically injected into the lattice channels, in which they travel at a
mean forward speed of about 5 cm s−1 at a direction transverse to the lattice beams. The clock interrogation
region is defined by the overlap between the clock laser beams and the 2D-lattice channels. We envision
clock-laser beams with w0-waists in the range of∼1–5 mm, corresponding to probing times Tm ≲ 0.1 s. To
meet the condition |kc · v̄/kc|≲ 0.1 mm s−1, with the clock wavevector kc = kU − kL being the difference
between upper- and lower-transition wavevectors, the 2D-lattice and the counter-propagating pairs of
clock-laser beams are aligned in a plane with a precision of about 1 mrad.

Along the kc-direction, the atoms are trapped in optical-lattice potential wells. For the aforementioned
trap depth and wavelength, the center-of-mass (COM) angular oscillation frequency of the atoms in the wells
is fosc ≈ 2π × 100 kHz, or about 500 times the targeted clock scattering rate, γ4D. For the cases of sections 3.2
and 3.4 it is kc ≈ 2π/(1550 nm). In the harmonic approximation and in the Lamb–Dicke regime, kcx0 ≪ 1
with x0 =

√
h/(2mfosc)/(2π), the in-trap clock spectrum consists of a Doppler-free carrier line and two

motional side bands at frequency detunings±fosc. The lower and upper side-band strengths relative to the
carrier are≈ (kcx0)2 n and≈ (kcx0)2 (n+ 1), respectively, with COM quantum number n. The side bands are
not resolved because Γ4D ≫ fosc, and the line-pulling expression in equation (1) applies instead. One finds a
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Figure 3. Calculated ac polarizabilities, α, for the
∣∣5S1/2〉 and ∣∣4D3/2,F= 3,mF

〉
states in 87Rb. The region with ‘magic’

wavelength values is indicated. Resonances from the 4D3/2 state to the 5F and 7P states are indicated as well.

fixed in-trap shift of the clock transition of Erec/h̄≈ 2π × 955 Hz, with the clock recoil energy
Erec = (h̄kc)2/(2m). Also, the atom heating rate is h× 955 Hz per clock excitation, or about 1% of h̄fosc. We
therefore believe that in-trap probing will effectively eliminate the Doppler effect in Rb 4DJ clocks.

Each atom is expected to undergo∼100 photon-scattering events during the clock-transition
interrogation. As a precaution against radiation-pressure effects on the fluorescence from any un-trapped
atoms, the clock beams and other relevant beams should be introduced in a radiation-pressure-neutral
configuration. We envision sets of counter-propagating, intensity-matched pairs of beams for each color.
This task will be eased by employing moderate-finesse linear optical cavities that provide both mode- and
intensity-matched conditions, as in figure 4 below.

5.2. Lattice-trapping laser
To probe the clock transition with the optical lattice left on, as assumed in section 5.1, the lower and upper
clock states must have the same ac polarizability at the trapping wavelength to avoid clock-line shift due to
the differential optical-lattice potential. To determine the ‘magic’ trapping wavelength, we obtain the ac
polarizabilities, α, using the same methods as in section 3. The curves for α for the 5S1/2 and 4DJ states
intersect within the region λ ∈ [1020, 1070] nm, as shown in figure 3 for the case of the 4D3/2 state. At the
level of precision considered, the ‘magic’ wavelengths and polarizabilities for |5S1/2,∗⟩,
|4D3/2,F= 3,mF = 0⟩, and |4D5/2,F= 4,mF = 0⟩ are λM = 1060.1 nm and αM = 680, respectively
(polarizability in atomic units). At the ‘magic’ wavelength, the polarizabilities for the next-higher |mF|-states,
|4D5/2,F= 4,mF = 1⟩ and |4D3/2,F= 3,mF = 1⟩, differ from that formF = 0 by 39 and 56, respectively, or
about 6% and 8% of the lattice-induced shift. Since we estimate the accuracy of our polarizability values at
≲1%, the exact value of λM may differ by≲1 nm from the value given. We expect that the exact value of λM

will have to be determined through precision measurement.
For an optical lattice formed by counter-propagating beams with a peak trap depth of 2π × 1 MHz, from

the ‘magic’ polarizability, αM = 680, one finds a single-beam intensity of I1 = 78 Wmm−2. Assuming that
an optical resonator with a moderate finesse of F ∼ 300 will be employed, for a Gaussian beam waist
w0 =1 mm the laser power injected into the resonator would be≲2 W. Since at λM ≈ 1060 nm high-power,
narrow-band and tunable lasers are widely available, this power requirement appears reasonable. If necessary,
one may increase F or reduce w0 to reduce the injected lattice power.

Frequency fluctuations for the trap laser,∆νtrap, result in a variation of the differential polarizability
between upper and lower clock states, and thus a variation of the clock transition frequency,∆νc. For a full
lattice depth of V0 it is

∆νc =
V0

hc

λ2
M

αM

∣∣∣∣∣dα4D

dλ
− dα5S

dλ

∣∣∣∣∣
λM

∆νtrap . (13)

There, the derivatives of the clock-transition polarizabilities at λM are−19.1/nm and−20.2/nm for the
4D3/2 and 4D5/2 clocks in section 3. Requiring |∆νc|< 2π×60 Hz, the condition set in section 2 to reach a
10−13 relative clock uncertainty, for a lattice depth of V0 = h× 1 MHz one finds from equation (13) a
maximum allowed trap-laser angular-frequency variation of about 2π× 500 MHz from the ‘magic’-lattice
condition. This number easily scales to other conditions, as it is inversely proportional to trap depth V0 and
proportional to the desired relative clock uncertainty.
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5.3. Second-order Zeeman shifts
Next we consider the second-order Zeeman shifts (in units of Hz) in the bias field Bbias ≲100 mG, which is
applied to maintain a well-defined quantization axis, ẑ. The second-order Zeeman effects of the clock
transition range from−52.6 kHzG−2 for 5D5/2 (section 3.5) to−24.0 kHzG−2 for 4D5/2 (sections 3.3
and 3.4) and 7.7 kHzG−2 for 4D3/2 (sections 3.1 and 3.2), and are therefore comparatively benign. While the
second-order Zeeman effect sets a slightly tighter limit for 5D- than for 4D-clocks due to the smaller
hyperfine splittings of the 5D-states, magnetic-field control at a level of about 10 mG, or≲0.1Bbias is
sufficient to keep second-order Zeeman shifts below 60 Hz, the limit set in section 2.

5.4. Black-body radiation
Next, we consider clock-transition shifts (in units of Hz) induced by black-body radiation (BBR). Such shifts
are important in a variety of optical atomic clocks [68], including a design based on the 5D state in Rb [47].
In our BBR-shift estimate, we use methods from [69] to find BBR shifts of Rb 5S1/2 and 4D3/2 at 300 K of
≈− 4.3 and≈− 2.7 Hz, respectively, leading to a differential BBR shift on the clock transition of
δc,BBR ≈−1.7 Hz. Thus, the clock discussed here should be robust against BBR effects and will not require
additional infrastructure to compensate for them. For comparison, we obtain a differential shift for the
5S1/2 → 5D5/2 transition of≈− 155 Hz, in agreement with [47]. The large BBR shift of 5D5/2 is due to a
number of long-wavelength transitions into various P and F states (notably, 6P through 9P and 4F through
7F), which overlap with the BBR spectrum at 300 K. The 4DJ-states in Rb, in contrast, have no
electric-dipole-allowed transitions at wavelengths longer than 2.3 µm.

5.5. Optical pumping
The presented schemes require optical pumping into the lowermF = 0 clock state using weak on-resonant F
to F ′ = F laser light, where F is the hyperfine quantum number of the lower clock state. This
mF = 0-repumper must have a linear polarization parallel to ẑ. The pumping rate of themF = 0-repumper
must be much larger than the clock scattering rate to maintain a dominant population in themF = 0 clock
state. We envision a pumping rate of themF = 0-repumper of about 104 s−1. A clock re-pumping beam may
also be necessary. Clock repumper beams between states of equal hyperfine quantum numbers must have a
linear polarization transverse to ẑ to avoid trapping in the non-clockmF = 0 state. The clock repumper
should have a pumping rate similar to that of themF = 0-repumper. Note that the clock repumper does not
affect the clock linewidth. In any future experimental design, modeling of the optical pumping in a 17 or
15-level rate-equation simulation will be necessary. Optical pumping by the clock transition itself naturally is
slowest, but should be included in the simulation.

Following the discussion in section 2.2 and assuming clock lasers with linear polarizations parallel to the
quantization axis ẑ, the clock line center is stable against non-ideal optical pumping as long as P(mF) is
symmetric (i.e., if P(mF) only depends on |mF|). To avoid line pulling due to a non-symmetric P(mF), it is
important that the optical-pumping lasers have clean linear polarizations. To avoid line pulling on the clock
transition itself, it is equally important that the π-polarized clock lasers be free of circular impurities (see,
also, [31, 47]). Circular imperfections of the optical-pumping lasers or the clock lasers would cause a
line-pulling effect proportional to Bbias.

5.6. Stray dc electric fields and collisions
For completeness, we estimate the fractional stability coefficients for the quadratic dc Stark effect. These are,
using dc polarizabilities from [67],≈6.8×10−17 (V cm−1)−2 and≈5.9×10−15 (V cm−1)−2 for 4D5/2 and
5D5/2 clocks, respectively, and the dc electric-field limits required for a fractional clock stability of 10−13 are
40 V cm−1 and 4 V cm−1. Hence, the dc Stark effect caused by stray electric fields is not expected to be a
limiting factor for the low-lying states used in any of the proposed clock schemes. Stability limitations due to
static electric fields may have to be assessed for clock implementations in miniature cells or vacuum systems,
which may have significant contact or patch potentials.

Shifts due to cold collisions in 87Rb are about a few Hz and, therefore, are not expected to be significant at
the anticipated level of clock precision [70, 71].

5.7. Summary of key systematics
In table 1 we summarize several key systematics for Rb 4D and 5D clocks. For the Doppler shift, we list the
in-trap photon recoil shift in two-color cold-atom 4DJ lattice clocks, as described in sections 3.1, 3.2 and 3.4,
and the second-order Doppler shift in Doppler-free 5D5/2 vapor-cell clocks from section 3.5. The in-trap
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Table 1. Estimated systematic shifts for the proposed 4DJ clock schemes and a comparison with the 5D5/2 clock [31, 47].

Source 5S1/2 − 4D3/2 5S1/2 − 4D5/2 5S1/2 − 5D5/2

ac Stark shift due to excitation lasersa <60 Hzb <60 Hz/−15.7 kHzc −17.2 kHz
Second-order Zeeman shift (kHzG−2)d 8 −24 −53
Doppler shift (Hz) 955e 955e 123f

BBR shift at 300 K (Hz)g −2 −2 <−150
dc Stark shift (µHz (Vm−1)−2)h −4 −3 −228

a Assuming a constant photon scattering rate γnD = 103 s−1 and the respective laser-beam parameters discussed in section 3.
b For both two-color excitation schemes in sections 3.1 and 3.2.
c Two/one-color excitation scheme in section 3.4 / section 3.3.
d Hyperfine constants of the respective excited states are from [33, 34, 66].
e Recoil clock shift in lattice, fixed.
f 2nd-order Doppler shift at 300 K.
g Using our own calculations and information from [47].
h dc polarizabilities are from [67].

photon recoil is a fixed angular-frequency offset of 2π × 955 Hz. The second-order Doppler shift in vapor
cells is temperature-dependent.

6. Discussion

6.1. Sample architecture
We finally outline a possible implementation of a Rb 4DJ clock in figure 4, which is in-line with the estimates
in section 4. Since atom heating in the lattice would likely cause clock shifts due to a departure from the
Lamb–Dicke regime, we aim for a well-defined, limited clock interrogation time by shuttling the atoms in a
moving optical lattice. This way, atoms are moved out relatively quickly from the clock region, and no atoms
linger and heat up. For a high atom flux, to provide the required low atom temperature, and to avoid atom
heating, the moving lattice overlaps with a moving molasses (MMOL) that moves at the same velocity as the
lattice. This allows for an adiabatic injection of the atoms into the lowest energy states of the lattice. The
MMOL, in turn, is loaded with an atomic-beam magneto-optical trap (MOT). Our sample architecture
allows for continuous operation, which is important for eliminating the Dick effect and may increase the
time-averaged atom flux, improving the SNR. We note that other, potentially less complex architectures may
be possible.

In our sample architecture, a 2D+ [72] or pyramidal [73] MOT supplies a cold atomic beam with a mean
velocity of a few m s−1 along the z-direction and an average flux≳108 s−1. The atomic beam passes through
a magnetic shield into a moving, red- or blue-detuned optical molasses [65], which has a capture velocity
sufficiently high to capture the majority of the cold atomic beam. Both sets of molasses beams in the xy-plane
have identical frequency differences of about 100 kHz to maintain a flow of atoms along the x-direction (see
figure 4). The atoms are transferred into a∼1 MHz deep 1D optical lattice operating at the magic wavelength
of about 1060.1 nm. The 1D lattice has a relative lattice-beam detuning such that the molasses and the
1D-lattice are co-moving at 5 cm s−1 along the x-direction, allowing for a seamless atom transfer into the
moving 1D-lattice. 1D-lattice and molasses beams form angles of 45◦. The efficiency of the atom transfer is
increased by dark-state extraction, where the re-pumper laser beam has a sharp drop-off realized by a
knife-edge [74]. The atoms transferred into the 1D-lattice are shuttled out of the molasses region while being
in the lower hyperfine state F= 1, in which they do not scatter molasses light. Hence, the extraction proceeds
without adverse radiation-pressure effects from the erratic fringe regions of the six moving-molasses laser
beams. We may expect a flux of FA ≳ 107 s−1 atoms in the moving 1D-lattice at a temperature∼10 µK. The
extracted atoms pass through a light baffle, which blocks molasses light from reaching the clock region.

In the clock region, the atoms trapped in the moving 1D-lattice are passed through the waist of a clock
interrogation cavity. A set of four transverse optical-lattice beams operating near 1060.1 nm
wavelength—denoted yz-OL in figure 4—form a static 2D-lattice of atom guiding tubes. The lattice-trapped
atoms propagate with a forward speed of 5 cm s−1 along these tubes through the clock probe region. The
2D-lattice beams and the clock-drive beams are carefully aligned in a plane with about 1 mrad tolerance for a
Doppler-free clock drive, as discussed in section 5.1.

The lattice interrogation cavity allows for clock drive-field enhancement, mode cleanup, and
radiation-pressure-neutral clock operation (see figure 4). The clock cavity extends along the y-direction, and
has a finesse of several 100 and a length of about 5 cm. For the beam waist we assume w0 ∼ 5 mm. A pair of
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Figure 4. Architecture outline. (a) A cold atomic beam from a 2D+MOT propagates along z and passes through a magnetic shield
into a moving optical molasses (MMOL). Note that the beam pairs xy-MMOL-1 and xy-MMOL-2 are not parallel to the x and y
axes, as can be better seen in (b). They also have a frequency difference that promotes an atom flow along x with an average speed
of 5 cm s−1. (b) Atoms are trapped in a 1D 1060 nm conveyor optical lattice (x-OL) with a beam diameter of ~1 mm. The x-OL
moves at a speed of 5 cm s−1 along x (the same as the atom flow in the MMOL in (a)) through a light baffle. The bias field Bbias

points along z. (c) The x-OL intersects with the clock cavity (CC), which contains clock-drive laser beams of diameter∼1 mm,
and 4 beams of a static 1060 nm optical lattice (yz-OL). Atoms on the x-OL conveyor are adiabatically introduced into the grid of
OL-tubes, which have a spatial period of 530 nm, and are shuttled in the resultant moving 3D-lattice-trap through the CC, where
the clock transition is interrogated. Clock fluorescence is collected through light-condensing mirrors (LCM) onto photodiodes
(PD). The clock signal is used to lock the laser to the clock line. The two clock-laser beams are the fundamental and the second
harmonic of a single narrow-band 1550 nm laser, which generates the fiber-coupled clock output. Optical pumping not shown.

Gaussian cavity modes at λ4,L ≈ 775 nm and λ4,U = 2λ4,L drive the clock transition as described in
section 3.4. The cavity has no resonant transverse modes that would degrade the intensity- and
mode-matched profile of the counter-propagating clock drive fields applied to the atoms. The cavity is
fine-aligned using in-vacuum piezo-electric actuators [75], which allow one to tune cavity modes, which
have∼10 MHz linewidth, into the 4D5/2 clock resonance. The clock may be operated at a reduced clock
scattering rate γ4D without the clock cavity in place, using plain laser beams for the clock drive.

The bias magnetic field, Bbias, points along the z-axis and is applied by a pair of Helmholtz coils placed
behind the magnetic shield.

In the clock interrogation region, the probed atoms decay out of the 4D5/2 state with a rate of γ4D per
atom. A pair of light-condensing mirrors concentrate the clock scattering light, which constitutes the clock
signal to be measured, onto Si and Ge photodiodes. In advanced implementations, the mirrors are dichroic,
with one mirror transmitting 780 nm and reflecting 1529 nm, and the other doing the opposite. The Si
diodes are placed behind the 780 nm-transmitting condenser mirror, and the Ge diodes behind the 1529
nm-transmitting one. In this way, a maximum solid angle for bichromatic photon detection is achieved. The
photodiodes are fitted with interference filters that block lattice, clock-drive, and other unwanted stray light.

An important characteristic of the method in section 3.4 is that the lower clock-drive beam is the second
harmonic of the upper, as shown in figure 4. In this way, a single laser operating near 1550 nm suffices to
drive the clock. Among other advantages, in this scheme it is not necessary to stabilize two lasers in order to
probe the 4D5//2 clock resonance. In addition to a greatly simplified overall clock-drive laser scheme, the
single-laser design allows clock operation without the need for expensive testing equipment, such as
high-finesse cavities or a frequency comb with phase-locked clock lasers. It is sufficient to lock the (only)
1550 nm clock laser to the Rb 4D5//2 clock resonance using a single laser lock. The evaluation of the stability
and drift of the locked Rb 4D5/2 clock laser will then require an ultra-stable reference laser near
λ4,U = 1549.971 nm, which is commercially available.

6.2. Conclusion
Considering clock stability according to equation (12) and favorable systematics afforded by ac-shift
cancellation, reduced black-body shifts, and reduced second-order dc-field shifts, we believe that the
single-laser 4D5/2 775 nm/1550 nm clock presents a good complement to the more widely employed 5D5/2

clock.
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In view of the fundamental physics properties described in our paper, Rb 4DJ clocks may serve well as
stand-alone clocks in applications with moderate requirements (relative clock stability∼10−13/

√
τ(s) and

accuracy∼10−13), or as a flywheel clock for ultra-high precision optical or nuclear clocks. Specific examples
include the realization of frequency standards for navigation using a satellite network [76], the deployment
of optical atomic clocks for the naval industry [77], and the investigation of both short- and long-term
effects of optical atomic clocks on the ground and in a microgravity environment [78].

All clock-excitation, laser-cooling, and ‘magic’-lattice trapping lasers are readily available with the
required power and laser linewidth specifications. Especially, the fundamental-color Rb 4DJ clock lasers are
in the telecom S- and C-bands (1460–1530 nm). This fact could be exploited in long-distance clock linkage
and quantum-networking applications. The clock-fluorescence photon yield of up to two photons per
decaying atom, as well as the fluorescence colors, which are all in favored spectral ranges for which excellent
photodetectors exist, are conducive to high clock bandwidth and SNR. Finally, with ongoing and rapid
progress that is being made in low-SWaP and low-cost cold-atom techniques (see, e.g., [26–29, 79, 80]), we
believe that the need for laser-cooled Rb atoms will become an increasingly less detrimental factor in future
implementations of Rb 4DJ clocks. Components of the atom preparation, optical-lattice transfer, and
2D-lattice atom-guiding architecture presented in section 6.1 may be applicable to other ‘magic’-lattice
clocks, such as Sr and Yb clocks [1].

The discussed methods for high-precision spectroscopy of Rb 4DJ transitions at the 100 Hz level are also
of interest in fundamental research on the properties of low-lying excited states. This includes
hyperfine-coupling constants [33, 36], lifetimes [58], and ac polarizabilities [50, 51] of the 4DJ states.
Possible manifestations of quantum-interference effects [51, 81] not discussed here could be considered and
investigated in future spectroscopic studies. Futhermore, the proposed Rb 4DJ optical-lattice clocks will
require exact data on the ‘magic’ wavelengths of Rb 5S1/2 and 4DJ hyperfine states. High-precision
measurements and ‘magic’ wavelengths will be of interest in comparisons with advanced atomic-structure
calculations [53, 82].
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Appendix. Ac polarizabilities of the proposed clock states at the relevant wavelengths

For the most promising case considered here (see section 3.4), in table 3 we identify the twenty leading
perturber states and their associated contributions to the total ac polarizability at 774.985 nm and
1549.971 nm for the states |5S1/2,∗⟩ and |4D5/2,F

′ ′ = 4,mF′ ′ = 0⟩. From the table, one sees that for all but
one of the ac polarizabilities fewer than 10 terms are needed to reach an error of<1%. The ac polarizability
of |4D5/2,F

′ ′ = 4,mF′ ′ = 0⟩ in a 774.985 nm field is an interesting case because it occurs near a ‘tune-out’
condition where the leading terms in the sum almost perfectly cancel, leaving contributions from
comparatively high-lying states as quite decisive for determining where the exact tune-out wavelength will
be. This topic may deserve an experimental study, which could be relevant to high-precision atomic theory
because of the high importance of partial ac polarizabilities from Rydberg perturbers.
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Table 2. Ac polarizabilities (expressed in atomic units) of the clock states at the relevant wavelengths utilized in each of the discussed
schemes. For the near-resonant D1 and D2-line drives, we show the background ac polarizabilities (i.e., the near-resonant terms are
excluded). For the two-photon drives, we show standard ac polarizabilities. See section 3 for details.

4D3/2 D1 drive, figure 1(a)

794.96 nm 1475.64 nm

|5S1/2,∗⟩ 5512 428
|4D3/2,F

′ ′ = 3,mF′ ′ = 0⟩ 982 4140

4D3/2 D2 drive, figure 1(b)

780.241 nm 1529.26 nm

|5S1/2,∗⟩ −2714 417
|4D3/2,F

′ ′ = 3,mF′ ′ = 0⟩ −368 6316

4D5/2 one-color two-photon drive, figure 2(a)

1033.314 nm

|5S1/2,∗⟩ 726
|4D5/2,F

′ ′ = 4,mF′ ′ = 0⟩ 1745

4D5/2 two-color two-photon drive, figure 2(b)

774.985 nm 1549.971 nm

|5S1/2,∗⟩ −16 852 413
|4D5/2,F

′ ′ = 4,mF′ ′ = 0⟩ −5 −26 080

Table 3. The twenty leading perturber states (presented in descending order and with quantum numbers indicated) and their
corresponding contributions (in atomic units) at 1549.971 nm and 774.985 nm to the total ac polarizability of the states |5S1/2,∗⟩ and
|4D5/2,F

′ ′ = 4,mF′ ′ = 0⟩ involved in the clock scheme in figure 2(b).

|5S1/2,∗⟩ |4D5/2,F
′ ′ = 4,mF′ ′ = 0⟩ |5S1/2,∗⟩ |4D5/2,F

′ ′ = 4,mF′ ′ = 0⟩
1549.971 nm 1549.971 nm 774.985 nm 774.985 nm

n ℓ j Contribution n ℓ j Contribution n ℓ j Contribution n ℓ j Contribution

5 1 3/2 271.12 5 1 3/2 −28 702 5 1 3/2 −14 871 9 3 7/2 458.95
5 1 1/2 140.54 4 3 7/2 2626.0 5 1 1/2 −1981.6 4 3 7/2 −323.13
6 1 3/2 0.908 6 1 3/2 −323.46 6 1 3/2 1.191 5 1 3/2 261.91
6 1 1/2 0.349 5 3 7/2 162.70 6 1 1/2 0.459 8 3 7/2 −168.86
7 1 3/2 0.113 6 3 7/2 46.058 7 1 3/2 0.136 5 3 7/2 −135.90
7 1 1/2 0.037 7 1 3/2 24.759 7 1 1/2 0.044 7 3 7/2 −106.55
8 1 3/2 0.032 7 3 7/2 20.823 8 1 3/2 0.037 6 3 7/2 −99.827
9 1 3/2 0.013 4 3 5/2 19.213 9 1 3/2 0.015 10 3 7/2 69.279
8 1 1/2 0.009 8 3 7/2 10.600 8 1 1/2 0.011 6 1 3/2 −48.327
10 1 3/2 0.007 9 3 7/2 6.809 10 1 3/2 0.008 11 3 7/2 31.641
13 1 3/2 0.005 10 3 7/2 4.493 13 1 3/2 0.005 12 3 7/2 18.472
11 1 3/2 0.004 8 1 3/2 3.582 11 1 3/2 0.004 13 3 7/2 12.124
9 1 1/2 0.003 11 3 7/2 3.140 9 1 1/2 0.004 11 1 3/2 −10.193
14 1 3/2 0.003 12 3 7/2 2.292 14 1 3/2 0.004 14 3 7/2 8.541
12 1 3/2 0.003 13 3 7/2 1.729 12 1 3/2 0.003 7 1 3/2 −8.134
15 1 3/2 0.003 14 3 7/2 1.340 15 1 3/2 0.003 15 3 7/2 6.312
16 1 3/2 0.002 5 3 5/2 1.191 16 1 3/2 0.002 12 1 3/2 5.290
10 1 1/2 0.002 9 1 3/2 1.144 10 1 1/2 0.002 16 3 7/2 4.833
17 1 3/2 0.002 15 3 7/2 1.061 17 1 3/2 0.002 8 1 3/2 −4.366
13 1 1/2 0.001 16 3 7/2 0.856 13 1 1/2 0.002 10 1 3/2 −3.929

Partial sum: 413.157 Partial sum:−26 087.745 Partial sum:−16 850.800 Partial sum:−31.856
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