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Abstract—Robot art presents an opportunity to both show-

case and advance state-of-the-art robotics through the chal-

lenging task of creating art. Creating large-scale artworks in

particular engages the public in a way that small-scale works

cannot, and the distinct qualities of brush strokes contribute to

an organic and human-like quality. Combining the large scale of

murals with the strokes of the brush medium presents an espe-

cially impactful result, but also introduces unique challenges in

maintaining precise, dextrous motion control of the brush across

such a large workspace. In this work, we present the first robot

to our knowledge that can paint architectural-scale murals with

a brush. We create a hybrid robot consisting of a cable-driven

parallel robot and 4 degree of freedom (DoF) serial manipulator

to paint a 27m by 3.7m mural on windows spanning 2-stories of

a building. We discuss our approach to achieving both the scale

and accuracy required for brush-painting a mural through a

combination of novel mechanical design elements, coordinated

planning and control, and on-site calibration algorithms with

experimental validations.

I. INTRODUCTION

Art, including visual arts, music, and dance, is a special
medium of communication that can engage and inspire the
public in a way that traditional robotics research often strug-
gles to do, while the challenge of robot art simultaneously
pushes forward the state-of-the-art in robotics. For example,
the Boston Dynamics robot dance video reached 30 million
viewers – likely more than any academic paper ever written.
For this work, we seek to create a large-scale mural which
draws-in audience members to witness live robot painting
and inspire learning about robotics for years to come.
A number of prior works have explored robotic painting

with brushes. The most common approach is to use painterly
rendering algorithms such as [1], [2] to generate brush stroke
placements which are then executed by a serial manipulator
[3]. Some more recent approaches build on the traditional
painterly rendering approach with learned brush models [3],
optimization [4], differentiable rendering [5], [6], and se-
mantic objective functions [7], [8] to generate higher quality
renderings. Other works apply generative models to generate
brush strokes directly [9], [10]. Robot-centric approaches
close the loop between the physical artwork and rendering
to produce better physical paintings [3], [11]. Nevertheless,
both stroke generation algorithms and robot platforms are
not conducive to large-scale paintings: the number of strokes
generally increases proportionally to the canvas area and
serial manipulators are difficult to scale to architectural sizes.
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Fig. 1. Polycentric Truthes [sic] is a 27m by 3.7m mural painted on the
windows of the Price Gilbert Library in Atlanta for the Library’s Artist-in-
Residence program with an audience of thousands of visitors. The mural
was designed by Tristan Al-Haddad and painted by our hybrid cable-driven
robot over the course of 7 days across 3 weeks.

Meanwhile, architectural-scale murals have been painted
by robots using other mediums. Graffiti spray-painted murals
have been painted using cable robots [12]–[14], UAVs [15],
[16], and gantry robots [17], but spray paint is not well-suited
for indoor environments and existing works have limited
capacities for varied stroke shapes, especially compared
to brush paintings. Marker-based graffiti murals have been
painted using (humanoid) mobile robots [18] and gantry
robots [19], but markers too lack the stroke variation of
brushes which give an organic element to the artwork.
In this work, we address the many challenges associated

with creating an architectural-scale, brush-painting mural
robot. Specifically, the flexibility of the brush tip requires
considerably more precision (especially in the out-of-plane
direction) and dexterity than existing large-scale graffiti
painting robots, while the large size of the mural makes ex-
isting brush painting robot systems impractical. While many
prior works have explored robotic painting of large-scale
murals and brush paintings independently, to our knowledge,
our work is the first to combine the two. Achieving this
combination of scale and precision requires novel insights
into mechanical design, control, and calibration.
Our novel contributions include an analysis of cable-driven

parallel robot (CDPR) cable routing solutions, the design
of a brush stabilizing mechanism, and a joint- and task-
space calibration algorithm for registering to absolute on-site
canvas locations. We also demonstrate our robot painting a
large-scale mural and share a variety of practical information
for robot mural painting.
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APPROACH

We discuss our system in 3 parts: robot hardware design,

software design, calibration/operation. In Sec. II: Robot
Hardware Design, we discuss how the mechanical and

electrical design of the robot was chosen to meet the require-

ments of the painting task. In Sec. III: Software Design, we

discuss how we control and coordinate the robot to follow a

painting trajectory. In Sec. IV: Calibration, Artwork Design,
and Operation, we discuss how the robot is calibrated,

painting trajectories are generated, and the robot is operated.

II. ROBOT HARDWARE DESIGN

Our choice of robot hardware design was motivated by

our mural’s requirements. The mural is large, at 27m x 3.7m,

planar, and to be painted with a paintbrush in multiple colors.

Furthermore, the mural must be painted without interrupting

the library’s normal operations, which means that the robot

must be able to safely paint in a public space.

We chose a hybrid CDPR + serial manipulator design

for our painting robot to combine the scalability of CDPRs

with the adaptability and dexterity of serial manipulators.

CDPRs, which consist of several winch-actuated cables that

pull on a moving platform to control its motion, are ideal for

large-scale painting applications since they are characterized

by their scalability and high payload capacities. However,

because cables have no ability to resist compression (or

bending), the moving platform often suffers from relatively

lower stiffness/rigidity. Fortunately, for the application of

painting on a planar surface, contact forces are low and the

painting surface can aid in stabilizing the moving platform,

together with appropriate internal tensioning of the cables.

Comparing to some alternative large-scale painting platforms

studied, cable robots tend to have taller workspaces than

mobile robots [18]; be cheaper and more portable than gantry

systems [19]; and posses greater payloads, easier control,

non-battery-limited mission durations, and superior safety

than UAVs [16]. Serial manipulators, on the other hand,

are often used in artistic painting robots for their ability to

carefully control the brush or marker [3], [4], [20]. Although

they do not scale to large sizes alone, they have been paired

with cable robots in the past to enable dexterity across large

workspaces [21].

A. CDPR Design

Our CDPR was designed around the mural’s setting, but

is flexible and extensible to other settings as well. We chose

a 4-cable planar CDPR 5.8m wide and 3.7m tall (Fig. 2)

and paint in sections, relocating the robot between each

section. 4 pulleys are located at the 4 corners of the robot,

rigidly mounted to the building’s structure with a custom

tetrahedral wooden clamp which clamps onto mullions with-

out damaging them (Fig. 4). The pulleys are located at 4

corners of a rectangle, and the mounting locations on the

moving platform are also at the 4 corners of a rectangle

(Fig. 3). Although this results in many singularities which

primarily manifest as an inability to control the orientation

of the moving platform, we find that the configuration is

Fig. 2. Our 4-cable planar CDPR is 5.8m wide by 3.7m tall.

Fig. 3. The 4-cable planar CDPR uses platform-mounted pulleys on the
top two cables to achieve a 2:1 mechanical force advantage. We perform
an analysis showing we do not lose estimation accuracy with this approach
compared to halving the winch radius.

more passively stable and therefore easier to manage than

one which requires feedback on the moving base orientation.

To support the heavy wooden platform with serial ma-

nipulator, we seek to achieve more cable tension while

minimizing cable length estimation error. We perform a

theoretical analysis to compare how the accuracy changes if

we add a pulley, half the winch radius, or add a motor gear

ratio. Surprisingly, we have not found such prior analysis in

the CDPR literature. Making the assumption that the majority

of the cable length estimation error comes from variations in

the effective winch radius, we model how the cable length

estimate changes with changes in diameter. The cable length

for the gearbox can be modeled as 1
2θd, so the derivative

with respect to winch diameter is 1
2θ, where θ is the output

shaft angle and d is the winch diameter. If we instead half

the winch radius, we have the derivative is still 1
2θ, but now

θ must be twice as large to elicit the same change robot

motion so accuracy halves. For the pulley, we have the same

expression 1
2θ and accuracy halves for the same reason. We

experimentally validate this conclusion in Sec. V-A.

For our setup, we opted for a pulley configuration because

the winch diameter was already very small at 10mm and

motor gearing would increase cost and complexity while

also introducing the potential for decreased backdrivability.
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Bolts apply 

clamping force

Fig. 4. The serial manipulator is mounted on the CDPR’s moving platform
(Left) controlled by 4 cables routed through pulleys rigidly mounted to the
window mullions with wooden clamps (Right).

Specifically, we employ a 2:1 pulley system for the top

two cables of the cable robot. Instead of mounting a top

cable directly to the moving platform, an additional pulley

is instead mounted to the moving platform and the cable

is routed through this pulley then affixed to the tetrahedral

clamp near the fixed-based-pulley as shown in Fig. 3.

To drive the winches, we use BLDC motors with anti-

cogging compensation, which enables smooth, precise con-

trol and accurate torque feedback.

B. Serial Manipulator Design

The serial manipulator is primarily designed around the

choice of brush painting as the artistic medium. The brush

is a versatile tool that can be used to create a wide variety of

strokes, textures, and effects, while also being a tool that is

familiar which we hope will make the mural more relatable

to the public. Finally, as opposed to a more “industrial”

design (e.g. with linear actuators and mechanical linkages),

the serial manipulator is designed to be able to manipulate

the brush in a way that is similar to how a human artist would

manipulate a brush, thereby contributing to the performative

aspect of the robot’s artistic expression.

To achieve the requisite dexterity to paint, we designed a

4-DoF serial manipulator with a 0.38m reach and measured

150g payload capacity (at the tip) to hold the 110g brush.

The manipulator is designed to be lightweight and affordable,

leading to the choice to use AX-12 Dynamixel servos.

Although for this mural we keep the brush perpendicular

to the canvas when painting, the 4-DoF serial manipulator

complements the CDPR’s 2 translational degrees of free-

dom theoretically enabling SE(3) brush motions. We use a

standard 2-DoF shoulder, 1-DoF elbow, 1-DoF wrist design

for the manipulator due to its effectiveness and ubiquity

as shown in Fig 5. The second degree of freedom in

the shoulder uses two synchronized servos to improve the

payload capability of the manipulator.

Due to the significant inaccuracy of the AX-12 servos,

we designed a stabilizing stand to keep the manipulator

rigid while painting (Fig. 5). During operation, we found

Tapered extensions
attached to brush

Mating holes in 
CDPR platform

Fig. 5. The brush stabilizer’s self-centering mates are engaged when the
brush is in the painting position.

Computer
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Fig. 6. The robot system components communicate with each other over
robust interfaces to manage both the CDPR and serial manipulator.

that AX-12 servos experience error due to both mechanical

backlash and controller degradation after prolonged con-

tinuous operation. As a result, brush positioning suffers

from poor accuracy and, more importantly, deflection, which

results in “cutting corners”. To mitigate this, we designed a

stabilizing mechanism whereby a pair of conical extensions

on the brush/manipulator end-effector creates tapered fits

with circular hole receptacles on the moving platform. The

mechanism is designed such that it is engaged (locks the

pose of the brush relative to the platform) when the brush

is in the painting position (in contact with the canvas) and

can be unengaged by simply pulling the brush back off the

canvas with the manipulator. The mate is designed with a

tapered, self-centering fit to be robust to positioning errors

as the serial manipulator pushes the brush forward to engage

the fit. The mechanism, engaged, is shown in Fig. 5.

Although the stabilizing stand means that the arm cannot

move while the painting, we find that this is necessary to

attain sufficient accuracy. We will further discuss in Sec.

III the tradeoff between producing coordinated motions (i.e.

CDPR and arm move together while drawing) vs fixing the

arm in place while the CDPR moves to paint strokes.

III. SOFTWARE DESIGN

To coordinate our hybrid robot, we implement low-level

controls for the CDPR and arm then tie them together with

higher level coordination logic. For the purposes of this

section, it is assumed that a time-stamped painting trajectory

is already provided, using the procedures in Sec. IV.
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Decoupled vs coordinated motion: We largely rely on
the CDPR to follow the painting trajectory and reserve the
serial manipulator just for moving the brush to make/break
contact with the canvas and handle other brush management
tasks (e.g. dipping to refill paint). The primary reason is the
aforementioned inaccuracy of the hobby-grade serial manip-
ulator which, when not held in place using our stabilizing
mechanism, deviates far too much from the desired trajectory
to outweigh the benefits of using it for trajectory following.
Furthermore, as the CDPR can smoothly reach the entire
canvas and we do not explicitly model how orientation affects
brush strokes, there is limited added benefit to moving the
manipulator together with the CDPR while painting aside
from the performative aspect.

A. CDPR Control
We implement an iLQG tracking controller based on [13],

which receives a desired trajectory and computes tensions
to apply to the cables to track the trajectory given cable
length and velocity measurements. The controller consists
of an offline stage in which we pre-compute time-varying
linear control gains and state estimation gains, and an online
stage in which we execute the time-varying, locally-optimal
linear state estimator and linear controller.
Offline, our algorithm takes as input a desired painting

trajectory and first solves for the optimal nominal trajectory.
The nominal trajectory is computed as the solution to a
QP with quadratic state error and control cost objectives,
a system model (equality constraints), and control limits
(inequality constraints). The QP has a banded structure and
is solved in linear time using iLQG, implemented using
GTSAM [22]. Then, the QP problem is linearized around
the nominal trajectory and the locally optimal, time-varying
linear control gains and Kalman estimation gains are com-
puted. In GTSAM, the time-varying LQR gains are computed
automatically during the last iLQG iteration [23] so they can
be directly retrieved, while the Kalman estimation gains are
computed using a backward-forward algorithm.
The resulting time-varying gains are uploaded to the

microcontroller (MCU) then executed in real-time as:

�x̂k = x
Kk�x̂k�1 +

z
Kkzk + kk (1)

uk = Kk�x̂k + u
⇤
k (2)

where �x̂k is the estimated deviation of the state from nom-
inal; zk is the measurement (cable lengths and velocities);
uk is the commanded cable tensions, x

Kk, z
Kk, and kk

are precomputed matrices/vectors for the time-varying linear
state estimator, and Kk and u

⇤
k are precomputed feedback

control gains and feedforward controls, respectively.
It may come as a surprise that the optimal state estimator

does not appear to follow the standard form of a Kalman
filter (while the control gains take the form of a typical
time-varying LQR controller). This is because knowing the
nominal trajectory in advance allows us to simplify the on-
line computation by pre-multiplying matrices. Although full
details of the derivation are provided in [13], the intuition is
that the covariances depend only on the system model (which

is fixed once we linearize around the nominal trajectory) and
not on the real-time measurements so we can pre-compute
and combine the predict and update steps into a single,
affine function of the previous state estimate and current
measurement per timestep.
Given the simplicity of the expressions in Eqs. (1) and (2),

the control loop runs at 1 kHz on the MCU.
Occasionally, we must manually control the robot live (i.e.

with a joystick) such as for setup and testing. In these cases,
the trajectory is not known in advance so the dual-space PID
controller from [24] is implemented. Although the accuracy
and dynamic performance of the iLQG controller is superior,
this manual mode is used primarily for visual alignment and
testing so its reduced performance is acceptable.

B. Serial Manipulator (Arm) Control
The primary arm functions we seek to implement are:
• rest/off
• painting (touching the canvas)
• refilling (dip the brush into the paint).

Accordingly, we can define a set of only 3 configurations and
the 3 (bidirectional) trajectories transitioning between them,
as shown in Fig. 7, to cover all the required arm functions.
The “prep” state is helpful since represents a configuration
where it is relatively easy to find collision-free trajectories
to any other configuration the arm needs to reach. Since the
prep state does not make contact with the canvas, we also
use it during travel motions.
To program the arm configurations, we take two ap-

proaches: manual “training” and analytical inverse kinemat-
ics. We find that a simple “training” procedure is often easier
given that there are only a few configurations required (in-
cluding collision-free intermediate waypoints) and the servo
inaccuracy makes it such that task-space target positions
would need to be tuned anyway. Specifically, the training
procedure consists of disabling the servos and manually
moving the arm to the desired configuration, then recording
the joint angles which are later used as target configurations.
We use this training procedure for the rest configuration
and refilling (paint dipping) trajectory. However, we use the
analytical inverse kinematics for the “prep” configuration
and “start/stop painting” trajectories because programming
the arm to successfully engage the stabilizing mechanism is
easier when adjustments are made in task space (e.g. move
2cm higher). Furthermore, described in Sec. II-B, the servo
accuracy degrades with prolonged operation so we compen-
sate by commanding progressively higher (1cm/hr) target
“paint” positions in task space as the painting progresses.

C. Coordination and State Management
The high-level coordination and state management be-

tween the CDPR and Arm is shown in Fig. 8, and we now
also discuss a few non-obvious details. For the “Paintbrush
dry” condition, we find that distance traveled along the
canvas is a good heuristic and we automatically re-dip the
brush for every 0.5m the brush has traveled along the canvas.
We also pause slightly (1s and 2s, respectively) just after
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Dip for 
paint

Painting 
start/stop

Power 
on/offRest Prep Paint

Fig. 7. Arm state machine consists of 3 states / configurations: rest (power-
off configuration), prep (“central” configuration not yet touching the canvas
but ready to paint), and painting (touching the canvas).

Arm
in position

CDPR & Arm
in position

Received 
trajectory

Legend
CDPR operation
Arm operation

Idle
Hold
➔ Rest

Traveling
Move to 
stroke start

➔ Prep

Start 
Painting
Hold

➔ Paint

Painting
Follow stroke 
trajectory

Refilling
Hold
➔prep 

➔dip➔prep
➔paint

Paintbrush 
dry

Pause 
Painting
load next 
stroke

➔ Prep

CDPR stroke 
trajectory 
donestroke==null

(Painting done)
stroke != null
(Painting not done)

Done 
Dipping

Fig. 8. The CDPR + arm pair is coordinated by this state machine to paint.

the transitions from “Traveling”!“Start Painting” and from
“Start Painting”!“Painting” to allow the CDPR’s motion
to arrest, since arm motions often cause slight out-of-plane
oscillations in the CDPR platform. We load each paint color
as a separate trajectory so that the robot returns to the “Idle”
state after each color, enabling us to switch paint colors.
For this work, we chose manual paint color switching over

automation for three key reasons. First, cleaning brushes
sufficiently to avoid color contamination is impractical –
even humans require 10-15 minutes, so we simply purchase
a separate brush for each color. Second, the drying time of
the paint is long and variable, so we intentionally plan the
trajectories to minimize color changes. Finally, the human
operators can switch the paint color in less than a minute
so the additional complexity of automatic color switching is
difficult to justify. Future works which use different brushes
and paints may find automatic paint switching more practical.

D. Safety Controls
In addition to standard safety measures such as E-Stop

buttons, actuator limits, and safety interlocks, we implement
a few additional safety features.
The serial manipulator’s hobby-grade servos frequently

overheat causing accuracy degradation and, if extreme, auto-
matic shut-down of the servo which may affect the painting
or drop objects onto passersby. In response, we continously
monitor servo temperatures and automatically pause painting
when the temperature reaches a threshold (65�C), wait for
the temperature to cool to a safe level, then resume painting.
The CDPR’s iLQR controller is also very reliable, but we

nonetheless implement safety stops in the event of anomalies
to prevent negatively affecting the painting and objects
falling onto passersby. In these cases, a soft limit enacts when
the CDPR is 10cm from its commanded position and a hard
limit enacts at 20cm. The soft limit pauses the trajectory but
holds the current position while the hard limit immediately
stops the trajectory and gently lets the platform down by
switching to a gravity compensation mode.

IV. CALIBRATION, ARTWORK DESIGN, AND OPERATION

In this section, we discuss the procedure necessary to
operate the robot on-site. Because the robot is designed
to paint 5.8m at a time before needing to be repositioned,
calibration is a critical step to ensure that adjacent sections
of the mural are painted seamlessly. We also discuss the
painting trajectory generation process and robot operation.

A. Calibration

A number of both proprioceptive and exteroceptive meth-
ods for calibration have been studied in the CDPR literature.
Proprioceptive methods leverage the over-actuated quality
of CDPRs together with kinematic and dynamic constraints
to derive calibration parameters. Meanwhile, exteroceptive
methods leverage external sensors to measure the robot’s
configuration which often beget more accurate calibration pa-
rameters. In this work, we use a combination of both methods
to calibrate the robot, in particular leveraging the architecture
of the site itself to provide exteroceptive information.
Our novel approach is to combine proprioceptive calibra-

tion for control parameters with exteroceptive calibration
for task-space corrections. Specifically, our proprioceptive
calibration involves measuring motor angles during an ex-
ploratory motion phase (which is relatively standard in the
literature). Meanwhile, our exteroceptive calibration lever-
ages operator feedback to manually position the robot at
known locations on the canvas, based on the site’s architec-
ture, to provide absolute task space calibration (for which
we apply a novel CDPR task-space warping algorithm).
1) Proprioceptive calibration: We perform the proprio-

ceptive calibration in two stages. In the first stage, the oper-
ator manually moves the robot to obtain a rough initialization
on parameters with which the robot can then use to move
itself to a broader set of configurations in the second stage.
This two-stage approach improves safety, since the robot
is not required to control itself without a good parameter
initialization, while also being quick, easy, and accurate.
Compared to auto-calibration approaches which initialize
using small perturbations around the power-on configuration
of the robot [25], we find that our approach is more robust
to the starting configuration of the robot since it is often
powered on very close to the bottom edge of the workspace
(due to the large height of the workspace) which results in
potentially dangerous conditions for robot actuation. Other
than the procedure used to collect data, the optimization
problem used to solve for the calibration parameters is the
same for both stages and standard in the literature [13], [26].
During the first proprioceptive calibration stage, the robot

is placed in a compliant state by commanding an equal and
relatively small tension in all cables allowing the operator
to manually move the robot across various configurations
reachable by the operator while recording motor angles. The
operator moves the robot to a diverse set of configurations
reachable by person for 3 minutes. The collected data is
then used to formulate a nonlinear least squares optimization
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problem to solve the geometric calibration parameters:

min
p,x

nX

k=1

���l(✓k; p)� l̂(A� (xk +B))
���
2

(3)

where l(✓k; p) computes the cable lengths given measured
winch rotations ✓k 2 R4 at time-step k and parameterized on
winch calibration parameters p; l̂(·) := k·k2 is the euclidean
distance function predicting the cable length; A 2 R4⇥2 is
the locations of the “base” pulleys (mounted to the window
mullions as in Fig 4-right) in the world coordinate frame;
Bi 2 R4⇥2 is the location of the platform mounting/pulley
location for cable i in the moving platform frame; and
xk 2 R2 is the platform position at time-step k (out of n

total time-steps) in the world frame. As discussed in Sec.
II-A, we chose a configuration with a relatively passively
stable platform orientation at the expense of not being able
to control or sense orientation well. Therefore, we assume
the orientation to always be the identity rotation so platform
pose can be expresed as a position, xk 2 R2, and can be
(broadcast) summed with B for the 4 cables to compute the
platform mounting/pulley locations in the world frame.
We choose a quadratic cable length vs winch rotation angle

model l(✓; p) = p0 + p1✓ + p2✓
2 with p 2 R3⇥4 for the

4 cables to account for the increasing winch radius as the
cable winds back on itself on the winch. Although we have
found the true function l to be almost perfectly piecewise
linear (each layer of cable winding represents a discrete
transition) on data collected with a motion capture system
from a smaller-scale test system, we find the quadratic model
to be much easier to optimize and still reasonably accurate.
When solving (3), we initialize p as p2 = 0, p1 by the

nominal winch radius, and p0 by measuring the initial cable
lengths. Both A and B are assumed to be known and fixed
according to the site architecture and platform design.
During the second proprioceptive calibration stage, the

winch parameters p obtained from the first stage are used
to actuate the robot in a grid pattern around the workspace.
The measured motor angles during this motion are then used
to solve (3) again to refine the calibration parameters.
2) Exteroceptive calibration: We perform the exterocep-

tive calibration by positioning the robot at known locations
on the canvas and computing task-space corrections needed
to reach these positions accurately. This is convenient in
many applications since the locations for which accuracy
is most critical are often also clearly marked. For example,
in a pick-and-place task, CDPR accuracy is typically most
critical at the pick and place locations (which often have
clear landmarks) and least critical during the move. In our
application, the window mullions represent the most impor-
tant locations at which accuracy is required both to prevent
damage to the building and to ensure proper alignment across
different sections of the mural, which is painting in sections
along mullion edges. Conveniently, the mullions also make
for easily accessible locations for the operator to measure.
We select 16 mullion intersection locations across the

canvas (see Fig. 9). Next, we have the operator use a joystick

CDPR
position estimates

True
canvas positions

Piecewise 
homography

Fig. 9. We apply a piecewise homography in the task space to correct
the proprioceptively calibrated cable robot’s motions to align with the true
canvas sections. Inaccuracy of CDPR estimates is exaggerated for effect.

to move the robot to each of these locations and record the
robot’s estimated task-space position. The true locations are
taken from the architectural measurements and verified with
a laser distance meter.
To perform calibration, we apply homography transforms1

in the task space to each of the rectangular segments of the
workspace defined by the calibrated positions. With the 16
points measured in our application, we form 8 rectangular
sections of the painting portion of the canvas (Fig. 9). For
each section, we compute a 3 ⇥ 3 homography matrix,
H , mapping the true position to the estimated cable robot
position using the 4 corner correspondences:

2

4
xcdpr

ycdpr

1

3

5 =
1

z
H

2

4
xtrue

ytrue

1

3

5 (4)

where (xcdpr, ycdpr) and (xtrue, ytrue) are the cable robot’s
estimated and the true canvas position, respectively; and z is
a scaling factor to normalize the homogeneous vectors.
When painting, we simply apply the appropriate homogra-

phy (based on which rectangular section we are in) to all the
commanded trajectories to obtain corresponding trajectories
in the CDPR’s “erroneous” coordinate frame which is used
in closed-loop control. Because adjacent rectangular sections
share edges, transitions between homographies are guaran-
teed to be continuous. As compared to applying the inverse
homography to the CDPR’s internal forward kinematics state
estimation inside the control loop, operating the control loop
on the non-homography-corrected state estimation and apply-
ing the homography to the commanded trajectories is simpler
to implement and does not exhibit reduced performance.
Our approach can generalize to arbitrary transformations

(not just homographies). Triangular mesh warping, for ex-
ample, may be more generalize-able to non-rectangular
workspaces. However, because our canvas is naturally rectan-
gular and we wish to reduce the number of segments where
possible, we choose to use homographies.

B. Artwork Design and Trajectory Generation
The artwork designed for the mural in Fig. 1 was designed

by Al-Haddad in Rhino, an architectural CAD software. It
was generated parametrically to create sets of ellipses as a

1For details on homographies (projective transforms in computer vision)
and how to compute them, see e.g. [27, Ch. 2.1.1 “Projective”].
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reference to deconstructing the texts of Galileo, translating
them to drawings then code before reconstructing them on
the face of the library2.
To convert the artwork to a painting trajectory, we create

infill paths in Rhino from the vector graphics with 15cm
stepover then retime them using [28] to ensure feasible
dynamics before applying the iLQG algorithm described
in Sec. III-A. In general, we find that converting artworks
into toolpaths using off-the-shelf CAM software, retiming
using [28], then running the trajectory with robot-specific
trajectory tracking controllers is a robust, efficient workflow
for painting tasks without complex brush models.

C. Operation

The overall painting process is as follows. Since, as
described in Sec. II-A, our robot is narrower than our canvas
and we paint in columnar sections, after each section we
remove and reinstall the tetrahedral clamps supporting the
pulleys in the next location. We then perform the calibration
procedure described in Sec. IV-A and prepare the brush and
paint for the robot to paint. Upon uploading the precomputed
iLQR gains, the robot first navigates to its starting location
using the “manual mode” dual-space PID controller before
proceeding to follow the state machine in Fig. 8. Upon
completion, the robot is place back into “manual mode” to
return the platform to the operator.

V. EXPERIMENTAL RESULTS

We evaluate our contributions of cable routing, brush
stabilizer, and calibration algorithms separately in addition to
evaluating the overall system through the completed mural.

A. Cable Routing

As discussed in Sec. II-A, we theoretically expect that
cable length estimation error should not change with winch
diameter for a fixed angle change ✓. To experimentally
validate this, we conduct a small-scale experiment with a
single winch and a single cable. For various winch diameters,
we measure the change in cable length for a fixed 25-rotation
change in motor angle, repeated 10 times. We find that the
repeatability in millimeters is consistent with our theoretical
analysis, showing no clear trend with the winch diameter.
The results are shown in Table I.

B. Brush Stabilizer

We evaluate the brush stabilizer’s ability to maintain the
brush’s orientation by measuring the deflection applying a
500g mass to the tip of the brush with and without the
stabilizer. We find that the stabilizer reduces the deflection
significantly from 165mm to 9mm. Although 500g is a
pessimistic estimate for the maximum lateral force the brush
will experience, we find that the stabilizer is effective at
reducing deflection.

TABLE I
REPEATABILITY OF CABLE LENGTH ESTIMATION

FOR VARIOUS WINCH DIAMETERS

Nominal winch
diameter (mm)

Cable length change for 25 rotations
mean (m) std (m) std (%)

11.5 1.0220 0.0025 0.244
14.5 1.2214 0.0033 0.273
18.0 1.4854 0.0014 0.091
20.0 1.6163 0.0024 0.147

The repeatability, as measured by the standard deviation of the cable
length measurement, is comparable in millimeters, but worse as a
percentage of cable length dispensed for smaller winch diameters.

Fig. 10. Tracking accuracy is significantly better when using our ho-
mography task-space calibration, even compared to including the same
exteroceptive task-space calibration data in a joint optimization routine. Dots
added for visual clarity of near-overlapping trajectories.

C. Calibration
We evaluate the 2-part calibration algorithm by measuring

the trajectory tracking accuracy with ablations on a smaller
scale (3m⇥2.4m) testing CDPR. Specifically, we evaluate the
tracking accuracy after applying only the proprioceptive cal-
ibration, after applying one single homography to the entire
workspace, and after applying a 2⇥2 piecewise homography
(4 sections, 9 grid points). Additionally, we also evaluate an
approach using a single, joint optimization problem for both
proprioceptive and exteroceptive measurements3 but find that
it performs worse than our approach and only slightly better
than the proprioceptive-only calibration. Fig. 10 shows the
trajectories for each of the controllers as measured using
AprilTag markers on the platform and robot frame, with
the piecewise homography improving average tracking error
(ATE) over proprioceptive-only from 301mm to 10mm.

2Additional details available online at https://library.gatech.edu/AIR
3We formulate the optimization problem as a weighted nonlinear least

squares problem with one term for the proprioceptive measurements as in
(3) and the other term using the exteroceptive measurements in place of xk
in (3). Various choices of weights were tried, but the results shown in this
paper use weights of 94% and 6% for the proprioceptive and exteroceptive
terms, respectively, normalized by number of elements. Attempting higher
weights for the exteroceptive term cause caused unsafe winch parameters.
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Fig. 11. Comparing the as-designed mural (top) to the completed, as-
painted mural (bottom) demonstrates the proficiency of our robot.

D. Mural

We evaluate our overall robot system by painting the mural
shown in Fig. 1. We find that the robot is able to paint the
mural with high accuracy and precision, and that the mural
is well-received by the public. Fig. 11 also compares the
desired mural with the finished mural.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, we created a robot system that can paint
large-scale murals with a brush. We combined the large
workspace of a CDPR with the precision and dexterity of
a serial manipulator to create a robot that can achieve the
precision needed for touching a brush to the canvas across
a large area. We discussed a number of features that were
required to attain sufficient accuracy, including novel ideas
for cable routing, brush stabilization, and calibration, with
experimental validation. Finally, we evaluated the robot by
publicly painting a large-scale 27m by 3.3m mural with
positive reception from the public. We believe that this work
is a significant step towards more widespread and immersive
robot art, and that it will inspire future work in this area.
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