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Abstract

1. Individual body size distributions (ISD) within communities are remarkably con-

sistent across habitats and spatiotemporal scales and can be represented by size
spectra, which are described by a power law. The focus of size spectra analysis
is to estimate the exponent (1) of the power law. A common application of size

spectra studies is to detect anthropogenic pressures.

. Many methods have been proposed for estimating A most of which involve bin-

ning the data, counting the abundance within bins, and then fitting an ordinary
least squares regression in log-log space. However, recent work has shown that
binning procedures return biased estimates of 4 compared to procedures that
directly estimate A using maximum likelihood estimation (MLE). While it is clear
that MLE produces less biased estimates of site-specific A's, it is less clear how this
bias affects the ability to test for changes in 4 across space and time, a common

question in the ecological literature.

. Here, we used simulation to compare the ability of two normalised binning meth-

ods (equal logarithmic and log, bins) and MLE to (1) recapture known values of
4, and (2) recapture parameters in a linear regression measuring the change in 1
across a hypothetical environmental gradient. We also compared the methods
using two previously published body size datasets across a natural temperature

gradient and an anthropogenic pollution gradient.

. Maximum likelihood methods always performed better than common binning

methods, which demonstrated consistent bias depending on the simulated values
of A. This bias carried over to the regressions, which were more accurate when A
was estimated using MLE compared to the binning procedures. Additionally, the
variance in estimates using MLE methods is markedly reduced when compared to

binning methods.

. The error induced by binning methods can be of similar magnitudes as the varia-

tion previously published in experimental and observational studies, bringing into
question the effect sizes of previously published results. However, while the meth-
ods produced different regression slope estimates, they were in qualitative agree-

ment on the sign of those slopes (i.e. all negative or all positive). Our results provide
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1 | INTRODUCTION

Body size distributions are a fundamental characteristic of communi-
ties. In general, abundance declines with increasing body size, and this
is thought to be a consequence of simple size-dependent metabolic
constraints on organisms' energy use predicted by the metabolic theory
of ecology (Brown et al., 2004; Nee et al., 1991). The remarkable consis-
tency of these relationships across spatiotemporal scales and ecosystems
has led them to be recommended as a “universal” indicator of ecological
status (Petchey & Belgrano, 2010). Variation in size-abundance relation-
ships have been documented through space (Pomeranz et al., 2022),
time (Evans et al., 2022; McGarvey & Kirk, 2018) and in response to
human activities (Jennings & Blanchard, 2004; Martinez et al., 2016;
Pomeranz et al., 2018). Likewise, variation in size-abundance relation-
ships have been used to explain fundamental differences in how com-
munities are organised. For example, external resource subsidies “bend
the rules” and allow higher abundances of large body sizes than would
be expected based on metabolic theory (Perkins et al., 2018, 2021).
However, recent research has shown that these results may be an arte-
fact of how the data were treated. Edwards et al. (2020) analysed a time
series of marine fisheries data and found that the parameter explain-
ing the relationship was either invariant, or that it changed consistently
through time depending on the methodology used.

Individual size distributions (ISD sensu White et al., 2007), also re-
ferred to as abundance size spectra, are one of the size-abundance
relationships commonly used. Generally, there is a negative relation-
ship between individual body size (m, measured in mass) on the x-axis
and abundance (N) on the y-axis. Theoretical and empirical data sup-
port this relationship being described as a simple power law with ex-
ponent A in the form of

N ~ m? (1)

(Andersen & Beyer, 2006; Sheldon & Kerr, 1972). ISDs represent
frequency distributions of body sizes within a community.
Specifically, let m be a random variable of body sizes described by
the probability density function:

f(m) = lev Mpin <M < Moy (2)

where

A+1
— s j#-1
mmaxAJrl _mmin/Hl (3)

A=-1

C=

—_—
IOgmmax - IOgmmin

and where m is body mass in milligrams, 4 is the exponent describing
the power law distribution bounded by the minimum (m_. ) and maxi-

body sizes in the data (Edwards et al., 2017).

min)

mum (m__)

further support for the direct estimation of 1 and its relative variation across envi-

ronmental gradients using MLE over the more common methods of binning.

body size-abundance relationships, community biomass distributions, individual size distributions,
logarithmic binning methods, maximum likelihood, size spectra, statistical methods

The primary goal of ISD analyses is to estimate 4, and ecologists
have devised multiple methods for doing so. Commonly, N; is the
count of body sizes in bins i, where bin i has midpoint m;4;, and 4 is
estimated as the slope from ordinary least squares (OLS) regressions

in log-log space (commonly log,) as:
log1oN; = fo + Alog1oMpyig; + € (4)

where N; is the count in bin i, m is the mid-point of bin i, 1 is the

mid,i
parameter describing the decline in abundance (estimate of the power
law exponent), 4, is the intercept, and ¢ is the error term.

Myriad binning methods have been proposed, including different
bin widths on linear and logarithmic scales. Likewise, some methods
rely on the absolute counts in the bins (referred to here as “abun-
dance spectra”) and others use normalization techniques (referred to
here as “normalized abundance spectra”) such as dividing the count
by the bin width. To further complicate matters, the total biomass
in a body size bin can be summed to estimate the biomass spec-
trum or the normalised (when the total biomass is divided by the
bin width) biomass spectrum. The common feature that ties binning
methods together is data reduction, in which all the variation in indi-
vidual sizes within bins is removed by assigning each individual to a
single body size (like the midpoint of a bin between 10 and 100 mg).
As an alternative to binning methods, 1 can be estimated directly
on un-binned data using maximum likelihood estimation (MLE; see
Sprules & Barth, 2016 for a review on size spectra methods). The
major advantage of using MLE is that it does not require any binning
and hence no abundance estimates. Instead, it uses only the indi-
vidual body sizes provided in the data, consistent with theoretical
expectations of ISD (Edwards et al., 2017).

Previous work has shown that the estimates of A differ between
MLE and size-binned OLS techniques (Edwards et al., 2017, 2020;
White et al., 2008). Size-binned OLS methods are particularly sensitive
to decisions made in the binning process including the number, width,
and beginning and ending “edges of the bins” (Edwards et al., 2020;
White et al., 2008). Simulation studies have shown that MLE offers
consistently more accurate estimates of A (Edwards et al., 2017,
2020; White et al., 2008), and reanalysis of empirical data also indi-
cates that the conclusions are dependent on the method used (White
et al., 2008). For example, White et al. (2008) reanalyzed the data of
Enquist and Niklas (2001) and Meehan (2006) using MLE methods.
The original publications supported theoretically expected quantities,
whereas the less biased MLE methods produced estimates which de-
viated from those expected by theory. Likewise, Edwards et al. (2020)
analysed a time-series of individual body sizes of demersal fish from
the North Sea using different methods. Depending on the method
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used, they either found a decrease (steepening) of 1 or invariance of
A through time (fig. 1 in Edwards et al., 2020). Although not explicitly
discussed in either White et al. (2008) or Edwards et al. (2020), it is
not known what the “true” relationship of the empirical dataset was.
For instance, the differences detected between the methods in the
marine fish community through time could have drastic implications
for what future management recommendations may be made. Steeper
size-abundance relationships imply that the abundance of large fish
is declining (or the abundance of small fish is increasing). If this were
the conclusion reached, it seems reasonable that managers might rec-
ommend reductions in fish catch quotas to allow the community to
recover. Alternatively, if the size-abundance relationship is invariant
through time, it would seem reasonable to not make any changes to
fisheries decisions based solely on the size-abundance relationship.
Furthermore, it may imply that the biological communities organise
themselves to have a consistent size-abundance relationship, even
when human impacts (i.e. fishing) is present. This is particularly intrigu-
ing given that seminal analyses of marine fish communities have had
profound impacts on the establishment, development, application and
interpretation of size-abundance relationships in ecology (Jennings &
Blanchard, 2004).

While there is a growing consensus that MLE methods offer
more reliable estimates of 1 than binning methods, it remains un-
clear if these biases are consistent and systematic or stochastic, and
whether the relative change in ISD parameters is consistent across
space and time. In other words, if the data within a study are all
treated the same, does a relative change of size-binned OLS slope of
0.1 coincide with a relative change of MLE 1 estimates of 0.1?

We had three primary objectives in this study: (1) to compare
how well different methods estimate site-specific A's, (2) recapture
parameters in a linear regression measuring the change in 1 across
a hypothetical environmental gradient and (3) to see if the conclu-
sion reached on empirical datasets were dependent on the different
methods used. Objective 1 extends work by Edwards et al. (2017,
2022) and compares MLE methods to two common logarithmic
binning methods for constructing normalised abundance spectra.
Objective 2 is a novel simulation exercise to make recommendations
for detecting differences in ISD relationships in future studies. We
find that MLE provides more accurate estimates of site-specific 4
values, as well as recapturing relative changes in 1 values across a
hypothetical gradient. We recommend that future work uses MLE
methods to fit size-abundance relationships.

2 | METHODS
2.1 | Datasimulation

To investigate the performance of commonly used methods, we
simulate body size observations from a bounded power law dis-
tribution using the rPLB () function in the sizeSpectra pack-
age (Edwards, 2020) for the R statistical language (version 4.0.3,
R Core Team, 2020), as described in (Edwards et al., 2017). Given
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known values of 2, m_. and m the rPLB () function generates

min max’
random body sizes (m) as described in Edwards et al. (2017). For all
simulations, we set m,;, = 0.0026 and m,,,,, = 1.2 % 10°. These values
were based on empirical body sizes of stream benthic communi-
ties reported in (Pomeranz et al., 2022). In a review of size spec-
trum methods, Sprules and Barth (2016) indicate that the results of
analyses may depend on the range of body sizes present in the data
(i.e. partial community, such as zooplankton or fish, compared with
a community including body sizes from zooplankton to fish). Our re-
sults were not dependent on the range of body sizes (Supporting

Information). No ethical approval was required for this study.

2.2 | Experiment 1: Site-specific 1 estimates

Using the procedure above, we independently sampled n=999
body sizes from nine different 's: (-0.50, -0.75, -1.00, -1.25, -1.50,
-1.75, -2.00, -2.25, -2.50). The values of 4 describe how quickly
the abundance of large body sizes decline within a community. For
example, a value of -0.5 means there would be a relatively high
number of large body sizes (shallow decline) whereas a value of -2.5
means there would be relatively very few large body sizes (steep
decline). For each value of 4, we repeated the process 1000 times
(reps), resulting in 9000 (9 A's * 1000 reps) estimates.

2.3 | Estimation of ISD parameter 1

After simulating data, we used three different methods (described
below) to estimate the value of 1 (maximum likelihood, equal log-
arithmic bins normalised [ELBn] and log, bins normalised [L2n])
and plotted the distribution of estimated values obtained for each

method against the known value of 1.

2.4 | Maximum likelihood estimation

The MLE is a method for estimating parameters of an assumed
probability function directly by maximizing a likelihood function.
MLE directly estimates A by finding the value of 1 which maxim-
ises the likelihood function based on the specific data analysed (see
Edwards et al., 2017). Edwards et al. (2020) provided an R pack-
age called sizeSpectra which has MLE methods and tutorials on
how to apply them to datasets. Here, we modified MLE functions
from the sizeSpectra package for the R language to estimate 1
(Edwards, 2020). Throughout the manuscript, these estimates are
referred to as MLE.

2.5 | Equallogarithmic bins normalised: ELBn

For the first binning method, we created six equal logarithmic bins
coveringtherange of body sizes. This method (without normalization)
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has been used extensively in previous studies (Table 1). It is impor-
tant to note that the number of bins is set a priori, and the widths
of the bins is determined based on the range of the body sizes
present in the data. For example, with six equal logarithmic bins,
if the data ranged from 1 to 100g the first bin would be from 1.0
to 2.3g, and the final bin would be from 64.5 to 100g, whereas if
the data ranged from 1 to 1000g the first bin would be from 1.0
to 3.2g and the final bin would be from 341.5 to 1096 g (Figure S1
in supplemental information). Here, we set the body size range to
be the same for all simulations, so the widths of the bins do not
vary. The count in each bin was normalised by dividing by the bin
width to account for the unequal bin sizes. Normalization corrects
for the distortion caused by logarithmic bins and generally improves
the linear fits of OLS (Sprules & Barth, 2016; White et al., 2008).
Although previous publications using this method generally do not
use normalization, the process of normalizing shifts the OLS esti-
mate of 1 by -1. In other words, an un-normalised OLS estimate
of —=0.75 would result in an OLS estimate of -1.75 when normal-
izing the data (Edwards et al., 2017; Pomeranz et al., 2022; Sprules
& Barth, 2016). Throughout the manuscript, the normalised equal
logarithmic binning method will be referred to as ELBn which was
not tested in Edwards et al. (2017).

2.6 | Log,bins normalised: L2n

The second binning method was similar to ELBn but bins of equal
with on a log2 scale were used, where the width of each bin is
twice that of the previous one. When working with empirical data
with different size ranges, this can alter the number of bins per site

White et al., 2008). However, since the data here were simulated
from a known size range, the number of bins for each site is identi-
cal. Essentially, the ELBn method sets the number of bins and the
width varies based on the data, whereas the L2n method sets the
bin widths and the number of bins varies based on the data. The
count in each bin is normalised in the same way as described above
for the ELBn approach. Log, bins have been used extensively in
the literature to construct biomass and abundance spectrum, both
normalised and un-normalised (Table 1). The L2n method is like the
LBNbiom method in Edwards et al., 2017 except in the present study
the count in each bin is used as opposed to the sum of the total bio-
mass in each bin.

As mentioned above, normalization consistently shifts the OLS
estimate of 1-1 when compared with OLS estimates from un-
normalised counts. It is also worth noting the relationship between
abundance (the focus of the present study) and biomass spectrum
(commonly used in studies of marine systems). OLS estimates of the
size spectra exponent when using un-normalised data is actually
estimating 1+ 1 (hence, it is necessary to subtract 1 from the OLS
estimate to calculate 4; Edwards et al., 2017; Sprules & Barth, 2016;
White et al., 2008), whereas OLS using normalized abundance
spectrum is estimating 1. Likewise, OLS estimates of the exponent
when using biomass are actually estimating 1+ 2, and when using
normalised biomass are estimating A+ 1. Although we do not test
the biomass spectrum here directly, our conclusions apply to studies
of biomass spectra after accounting for the shift in estimates from
abundance to biomass relationships and accounting for normaliza-
tion (if applicable). After processing the simulated data through the
ELBn and L2n binning procedures, A was estimated using simple OLS
regression (Equation 4), which is directly comparable with the MLE

which is known to alter parameter estimates (Sprules & Barth, 2016; estimates.
TABLE 1 Selected citations
gty demonstrating the use of the two binnin
Authors (Year) biomass(B) Bin size Normalised? J . g
methods (or variations) assessed here.
Maxwell and Jennings (2006) B log, No ELB refers to equal logarithmic bins, and
Jennings and Blanchard (2004) B log, No the number of bins used in the study is
indicated in parentheses. The studies
J i t al. (2002 B | N
ennings etal. { ) ©8; ° are organised by whether they used
Gaedke et al. (2004) B* log, Yes abundance (N, count of individuals in
Mehner et al. (2018) B? log, Yes a bin) or biomass (B, sum of individuals
Mazurkiewicz et al. (2020) B? log Yes in a bin), and whether the results were
. b 2 normalised (sum or count in a bin
McGarvey and Kirk (2018) N log, Yes divided by bin width) or presented un-
Fraley et al. (2018) N log, No normalised (raw count or sum in a bin).
Pomeranz et al. (2019a) N log, Yes See the main text for a discussion on
Chang et al. (2014) N log, Yes converting estlmated. exponent values
i from abundance to biomass, and from un-
Martinez et al. (2016) N ELB (bin N=6) No normalised to normalised.
Yvon-Durocher et al. (2011) N ELB (bin N=10) No
Perkins et al. (2018) N ELB (bin N=6) No
Dossena et al. (2012) N ELB (bin N=6) No
Perkins et al. (2021) N ELB (bin N=6) No

*These references use the LBNbiom method as described in Edwards et al., 2017.

PMcGarvey and Kirk present the results as D~M, where D is the number of individuals per m™.

od ‘€ ‘FT0T ‘9S9TSIET

/:sdny wouy

ASUADI SUOWWO)) 2ANEAI) a[qearidde ayy £q pauISA0S Ie SA[ONIE YO SN JO SA[NI J0J ATRIQI] SUIUQ AJ[IA, UO (SUONIPUOI-PUB-SULIA)/WOD" AIM  ATRIQIUT[U0//:sd1N) SUONIPUOY) puk SWI L, 91 298 *[S707/€0/87] U0 AIeIqIT QuIfuQ AS[IA “BIONB( INOS JO ANSIATUN AQ HH0+]9S9Z-SOC /1111 01/10p/wod" K[imA:



POMERANZ ET AL.

2.7 | Experiment 2: Variation in A across a
hypothetical environmental gradient

A common application of size spectra analyses is to test for changes
in A across some sort of gradient (i.e. anthropogenic pollution,
Pomeranz et al., 2019a; resource subsides, Perkins et al., 2018;
time Edwards et al., 2020; environmental temperature, Pomeranz
et al., 2022). However, it is unknown how biases in site-specific es-
timates of 1 “scale-up” and potentially alter the conclusions reached
for changes in A across gradients. The focus of experiment 2 was
to investigate the ability of the three methods to recapture known
changes in 1 across a hypothetical environmental gradient (Figure 1).
To do this, we set 1 to vary at a known rate () across a hypotheti-
cal gradient (x) and then sampled body sizes from bounded power
laws described by 1. We then used the three methods (ELBn, L2n,
and MLE) to estimate site-specific 4 at each point across the gradi-
ent, and then performed OLS regressions to estimate g. We con-
ducted this process 1000 times (replicates) to get a distribution of
estimated f's and compared this distribution to the known value of
S (see Figure 1).

Experiment 2 had two parts: (2.1) Assessing how the bias of

site-specific 4 estimates influences our estimates of  (the change

(@) A (points) varies across a
hypothetical environmental

(b) Sample simulated body
sizes, m (n =999) based on

Journal of Animal Ecology E:lﬁ%w e

in A across a hypothetical environment) depending on where A falls
in parameter space (4 from -2.5 to -0.5); (2.2) How does the mag-
nitude of g (0, 0.25, 0.5) across the gradient influence our esti-

mates of 5?

2.8 | Experiment2.1: 1 “scenarios”

To test how variation in site-specific 1 “scale-up” across gradients,
we performed OLS regression analysis based on simulations accord-
ing to the following equation:

At = Pogt + BenviXj + €n (5)

where 4, is the estimated parameter from site j, replicate k and method
I, x. is the environmental value at site j, /)’O,k, and ﬂenv‘k, are the regres-
sion intercept and slope coefficients, for replicate k, and method |, re-

spectively, and ¢, is the error term. The distribution of 4, , estimates

nv,k
across simulation were then plotted against the known value of 3, .

For each replicate (k=1, ..., 1000), we had five sites (j) uniformly
spaced across a hypothetical environment (x) with values of x be-
tween -1 and 1 (i.e. values of X; were-1.0, -0.5, 0, 0.5, 1.0). This

can be compared to standardizing values of an environmental value

©) Use three methods
(colors) to estimate A (points)

variable, x, with a known known A
relationship, g (dashed line)
m
0.01
——) (0] —) -
~ 0.01

Environmental
Variable, x

(d) Use OLS to estimate
B (colored lines)
according to: A = BXx

Environmental
Variable, x

(¢) Repeat process 1000 times
and extract p estimate for
each replicate

)
——
——

Environmental
Variable, x

() Compare distribution of g

estimates (colors) to known

value (dashed vertical line)
| |

Density

Distribution of B..,

FIGURE 1 Conceptual figure of the simulation procedure used in experiment 2. (a) we set 4 (points) to vary at a known relationship (,
dashed line). (b) Using known values of 4, we sampled 999 body sizes for each site. (c) We estimated site-specific A using the three methods
(ELbn, L2n, MLE, see main text) and plotted them across the hypothetical environmental gradient (points, coloured by method). (d) We then
estimated g using OLS regressions for each method separately (coloured lines). (e) We repeated a-d 1000 times to get a distribution of
estimates. (f) We compared the distribution of g estimates (coloured density plots) with the known values of g (dashed vertical line).
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TABLE 2 Variables for experiment 2.1 The environmental value,
x are the values for the hypothetical environmental gradient. The
subsequent columns represent the corresponding 4 values across
three different “scenarios”. For each scenario 4, =0.5.

Environmental value, x Steep A Medium A4 Shallow 4
-1 -2.5 -2 -1.5

-0.5 -2.25 -1.75 -1.25

0 -2 -1.5 -1

0.5 -1.75 -1.25 -0.75

1 -1.5 -1 -0.5

(i.e. temperature) across a gradient with z-scores. Each site (xj) had
a corresponding value of 1 based on the 1 scenario (steep, medium
and shallow, Table 2). In the “steep” scenario 1 ranged from -2.5 to
-1.5, compared to -2.0 to -1 in the “medium” scenario and from -1.5
to -0.5 in the “shallow” scenario. For all scenarios in experiment 2.1,
the relationship of 1 across the environment, x, was set as #=0.5.

For each site j, and replicate k we independently sampled 999
body-size observations from a bounded power law distribution de-
scribed by 4 and with m_;, and m__ set as in experiment 1. Within
each simulation, we estimated the value of 1 for each data set using
the three methods (I, = L2n, ELBn, and MLE) as described above. We
then fit an OLS regression separately for each replicate k using each
method according to equation 5:

For experiment 2.1, we performed a total of 15,000 simulations
(5 sites * 3 scenarios * 1000 replicates). The main results presented
here were not dependent on the range of x-values or the number of

sites (Supporting Information).

2.9 | Experiment 2.2: Varying the effect size of the
known relationship

In the previous process, the g, had an effect size (i.e. slope) of
-0.5, and the intercept was varied to be equal to -2, -1.5, and -1
(i.e. shifting the window in parameter space). We wanted to test the
robustness of our results by varying the effect size. We repeated
the process with 4 centred at -1.5, but varied the values of 1 across
the hypothetical gradient to have a relationship of g.,,=-0.25 or O
(Table 3).

TABLE 3 Variables for experiment 2.2. The environmental value,
X; are the x-values for the hypothetical environmental gradient. The
subsequent columns represent the corresponding 4 values across

three different values of 4, .

Environmental value, x; Bery=0.5 Bery=0-25 Bery=0
-1 -1.5 -1.25 -1.5
-0.5 -1.25 -1.375 =3
0 -1 -1.5 -1.5
0.5 -0.75 -1.625 =3
1 -0.5 -1.75 -1.5

2.10 | Empirical data

We re-analysed two data sets of benthic macroinvertebrate com-
munities from stream habitats across two different gradients. In the
first, quantitative macroinvertebrate samples were collected from
streams across an acid mine drainage (AMD) stress gradient. Details
of the sample collection and processing can be found in (Pomeranz
etal., 2019a). Briefly, all individuals from each sample were identified
to the lowest practical taxonomic unit and body lengths were meas-
ured using Adobe Acrobat 9 Pro (San Jose, California, USA) photos
taken with a Leica DFC295 digital camera mounted to a Leica model
M125 microscope. Body mass was estimated using taxon-specific
published length-weight regressions.

The second dataset was from the wadeable stream sites of
National Ecological Observatory Network (NEON) (2022). NEON
stream sites are located across a wide temperature gradient in the
United States, from Puerto Rico to Alaska. Quantitative macroinver-
tebrate samples were collected using the most appropriate method
based on the local habitat. All individuals were identified and had
their body lengths measured, and body mass was estimated using
taxon-specific published length-weight regressions. This data has
been analysed for ISD relationships previously using methods de-
scribed in Pomeranz et al. (2022). Detailed methods of the sample
collection and initial data QA/QC processing can be found in the
macroinvertebrate data product information documents found on
the NEON website https://data.neonscience.org/data-products/
DP1.20120.001.

Estimates of the slope coefficient (famp, and Sy respectively)
+1 SD, were compared across methods. This allowed us to deter-
mine whether the main results published previously differed de-

pending on the method used.

211 | Performance metrics

We compared performance of each procedure (L2n, ELBn, MLE) by
first plotting the distribution of site-specific 4 estimates from experi-
ment 1, and the distribution of

oy €stimates from experiment 2 from

the three methods against the known values. For each procedure we
estimated the width of the 95% Cl's to compare uncertainty, as well
as calculated bias for the procedures overall as the median absolute
difference (averaged across all simulations) between the known val-
ues and the modelled estimates. Finally, we recorded the proportion

of model estimated 95% Cl's which contained the known value.

3 | RESULTS
3.1 | Experiment 1: A estimates
There was considerable variation in the A estimate across meth-

ods (Figure 2). The distribution of estimates from the MLE
method was always symmetrical and centred at the known value
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of A (Figure 2). The distribution of estimates from the binning
methods were generally wider and occasionally asymmetrical (i.e.
long right-tails for L2n and ELBn when 1=-2.25, Figure S3), or
bimodal (i.e. ELBn method for 1=-1.5). We also compared the
proportion of 95% Cl's which contained the known value of 4 for
each method. The proportion of Cl's produced by MLE estimates
which had the known value of 1 was exactly 95%, as expected.
However, only 93% of the Cl's from the ELBn method contained
the known value of 4. The L2n method performed the worse, with
only 70% of the Cl's containing the known value. On average, the
Cl's for the 4 estimates produced by the L2n and ELBn methods
were ~two times wider than those produced by MLE (Table 4),
indicating greater consistency of estimates from MLE. Similarly,
estimates of A deviated from the true value by an average of
0.035 or 0.045 absolute units for the L2n and ELBn methods, up
to four times higher than the deviation (0.012) observed for the
MLE (Table 4).

Interestingly, the two binning methods systematically over-
estimated 1 when the simulated relationships were steeper (i.e.
distributions of estimates for the binning methods are to the
right when A=~-2.5 to -1.5, Figure 2) and slightly underesti-
mated 4 when the simulated relationships were shallower (dis-
tributions of estimates to the left when 1> ~-1.25). This finding
was more pronounced in the L2n method compared with the
ELBn method.

I
-1.0 -1.0 -1.0 -1.0

L
-0.8 -08 -0.7 -0.6 -0.6 -0.5 -0.4

Lambda estimate

3.2 | Relationship across hypothetical
environmental gradients

3.21 | Experiment 2.1: 1 “scenarios”

We wanted to assess the ability of the three methods in recapturing
parameters describing a known change in 1 across gradients (i.e. a
known relationship of g.,, = — 0.5). However, the binning methods
provide inaccurate estimates of site-specific 4, and these inaccura-
cies were not equivalent across the range of 1 values tested. The
magnitude of the deviations of 4 estimates for the binning methods
increased with more negative (i.e. steeper) values of 1. Because of
the different performance of the two binning methods at steep and
shallow values of A, we performed simulations for three separate
scenarios across the 1 parameter space. The three scenarios were
steep (1 varies from -2.5, -1.5), medium (1 varies from -2, -1) and
shallow (4 varies from -1.5, -0.5).

The MLE method (Figure 3, blue) recaptured the known slope
value in each of the scenarios, with a median absolute difference
of ~0.008units between the modelled and known values (Table 4).
By contrast, the binning methods systematically overestimated the
known slope (Figure 3), with median absolute differences three to
four times greater than the MLE. Similarly, uncertainty in the slope
estimates derived from binning methods was twice that of the un-
certainty in the MLE method (Table 4).
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TABLE 4 Summary of three methods in recapturing the known values of site-specific 4 values or the regression slopes (4

POMERANZ ET AL.

L) simulated in

this study. Performance is determined by comparing the uncertainty (range of 95% Cl's) and the absolute distance of the model estimates
from the known values (median and SD of the difference). We also report the proportion of 95% Cl's which contained the target value.

Values are summarised across all n=9000 or 6000 simulated data sets. See figures for more specific comparisons.

Median range of Median absolute SD absolute Proportion of 95%
Target Method n 95% CI deviation deviation Cl containing
i MLE 9000 0.0659 0.0119 0.0194 95%
A L2n 9000 0.1315 0.0450 0.0959 70%
i ELBn 8587 0.1699 0.0351 0.0677 93%
Benv MLE 6000 0.0377 0.0084 0.0094 82%
Pen L2n 6000 0.0805 0.0507 0.0424 38%
Benv ELBn 6000 0.0905 0.0299 0.0326 67%
Steep
[}
1
L2n - - ———
1
1
ELBn 1 T
1
MLE - —A
1
1
Medium
1
1
L2n - e Model
2 : B o
20 ELBn 4 —:—.—— ELBn
‘ B e
MLE
1
1
Shallow
1
1
A
L2n+
1
| FIGURE 3 Distribution of relationship
ELBn 1 e estimates (f,,,) in three different
‘ “scenarios” of lambda values; steep:
MLE A=-2.5to -1.5; medium: A=-2.0 to
1
| | | | -1.0; steep: A=-1.5 to -0.5. The dashed
-0.6 -0.5 -0.4 -0.3 vertical line is the known relationship
Relationship estimate value of -0.5.
3.3 | Experiment 2.2: Varying the effect size of the 3.4 | Empirical data

known relationship

All methods recaptured the correct sign of the slopes, yielding
qualitative consistency (Figure 4). However, the binning meth-
ods systematically underestimated the true value of the slope by
~0.05units (Figure 5). Likewise, uncertainty in the slope estimates
was always greater in the binning methods, with the width of the
distributions increasing with stronger relationships across a hypo-
thetical gradient. By comparison, the MLE showed no evidence of
bias and was always centred at the known value with relatively nar-

row variation.

The empirical dataset contained 4 estimates that spanned the range
observed across diverse ecosystems (-2.28 to 0.02, depending on
the data set and method). Both empirical data sets yielded similar
patterns to those observed in the simulated data. There was quali-
tative agreement in that the direction of the coefficients (i.e. f,p,
Pueons coefficients) were the same among methods, with positive
slopes across the pollution gradient (Figure 6a) and negative slopes
across the temperature gradient. However, the magnitude of change
differed between methods. The AMD slopes ranged from ~0.062
with MLE to ~0.078 with L2n (Figure 6b), while temperature slopes
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ranged from -0.0058 with MLE to -0.0019 with ELBn (Figure 6d).
As with simulated data, slope uncertainty (+1 SD) was larger in
the binning methods, particularly the ELBn method (Figure 5b).
Likewise, the ISD relationship parameters consistently decrease (be-
come steeper) with increasing temperature across the NEON sites

(Figure 6¢).

4 | DISCUSSION

The relationship between body size and abundance has been exten-
sively studied in a wide range of taxa inhabiting both terrestrial and
aquatic ecosystems (reviewed by Brown, 1995; White et al., 2007).
Empirical data shows generally consistent patterns and can be ex-
plained by the metabolic theory of ecology (Brown et al., 2004).
Measuring parameters describing the decline in abundance with
increasing body size in communities is being done with increasing
frequency across ecology. Previous work has investigated the ac-
curacy and inherent biases associated with different estimation
methods (Edwards et al., 2017, 2020; White et al., 2007). However,
the extent to which these inaccuracies and biases compound across
environmental gradients remains uncertain, making it difficult to
detect variation in size-abundance relationships across environ-
mental gradients with confidence. The most important outcome of
our work is that binning methods not only generate biased A val-
ues for individual datasets but that bias carries over to affect the

Hypothetical environemntal gradient

parameters of subsequent regressions that use those 1's as response
variables. This makes it challenging to understand how A varies in
response to environmental gradients if binning is used to estimate
ISD exponents.

Binning methods are easy to use and interpret, which most likely
accounts for their wide use in ecological studies (Collyer et al., 2023;
Martinez et al., 2016; Perkins et al., 2018). However, aggregating in-
dividuals into logarithmic bins removes a large amount of information
within the data by collapsing body size variation into a single value
within each bin. This is particularly true when using logarithmic bins.
For example, all individuals placed into a bin that ranges from 2to 4 g
of mass are all treated as having a mass of 3g, the midpoint of that
bin. Likewise, a single abundance value is taken for each bin, despite
that fact that there is almost certainly variation in the abundance
of individuals that weigh ~2, ~3 or ~4g. Moreover, the number of
logarithmic-sized bins that can be produced by any dataset is limited.
For the ELBn method, the number of bins is set a priori. However, a
higher number of bins increases the chances of having empty bins
and can lead to poorer OLS fits. This is why the number of bins using
this method is often n=6 data points, as this is a reasonable number
of data points for a regression, but minimses the chances of hav-
ing empty bins (Dossena et al., 2012; Martinez et al., 2016; Perkins
et al., 2018). If the range of body sizes is sufficient, using log, bins
can increase the number of bins available, but this is sensitive to
the underlying data. Finally, linear bins could be used (i.e. 1-2, 2-3,
3-4g, etc.) to increase the number of data points. However, White
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et al. (2008) showed that linear bins perform poorly under nearly any
circumstance, and this is generally not recommended.

Regardless of the method used, binning data treats all individuals
within a bin as identical, even though there are likely 100's or 1000's
of individual body sizes available in each bin. By contrast, the MLE
uses all the individual body size data to directly estimate 4, mean-
ing that it not only produces more accurate estimates, but does so
with less uncertainty than binning, even when the underlying data
sets are identical. Likewise, MLE produces less variable and more
accurate estimates of changes in 4 across gradients, making it the
preferred method for assessing change in 1 across spatiotemporal
and environmental gradients. Even when the underlying data (i.e.
vectors of individual body sizes) are not available, there is a method
for estimating the exponent of size-abundance relationships using
maximum likelihood, the MLEbin () method from the sizeSpec-
tra package (Edwards, 2020), which solves the same issues we dis-
cuss here. In other words, any future analyses of size spectra could
use MLE estimates of 1, even if the data are only available in binned
form.

At first glance, the variation in 1 produced by different methods
may seem trivial. For example, when the true 1 was -2, the three
methods gave values of -2 (MLE), - 1.96 (ELBn), and -1.87 (L2n).
By themselves, all the methods appear reasonably close to the true
value. However, the small differences imply very different food
web structures because A represents an emergent property gov-
erned by three ecological parameters: trophic transfer efficiency (t),

predator-prey mass ratio (r), and the reciprocal of the metabolism-
mass scaling exponent (b), such that

log,ot
%= g10

= Togyr +b-1 (6)

Typical starting values assume that b=3/4, t~0.1, and r~10*
(Brown et al., 2004), and these result in a 4 value of -2. To get
a A value of -1.96 (the ELBn estimate) requires a change in at
least one of the three parameters. For example, keeping all else
the same, we can only get A1=-1.96 if t=0.14. In other words, a
2% change in 1 (-1.96 vs. -2) reflects a 140% change in t (0.14
vs. 0.1). More strikingly, to get A=-1.87 implies a change in tro-
phic transfer efficiency of 340% (0.34 vs. 0.1, or compensating
changes in r, b or both). These two examples become even more
concerning in the context of environmental gradients. As shown
in Figure 5, the L2n method erroneously estimates a regression
slope between 4 and the environmental variable of ~-0.19, when
the true slope is -0.25. In other words, the two slopes diverge by
0.06 for every unit increase in the environmental variable. If we
assume that the average 1 bias between L2n and MLE is -0.13,
then just two units of increase in the predictor variable would
nearly double the size of the difference (0.13+2*0.06=0.25),
predicting drastically different food web structures despite the
same underlying data (individual body sizes). The fact that small
changes in 1 imply large changes in food web structure empha-
sizes the importance of estimating A properly, particularly when
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FIGURE 6 Estimates of change in exponent for size-abundance relationships across gradients from empirical data estimates. Panels (a)
and (c) show the individual 4 estimates for each site and the line shows the estimated relationship based on method (colour) for the natural
pollution and temperature gradients, respectively. Panels (b) and (d) show the mean estimated relationship coefficient (8, point) + 1 standard
deviation (error bars) from the OLS model for both empirical data sets. All the methods estimate the same sign of the relationship, but the
estimates from the binning methods are generally larger than the MLE estimates.

the changes are used to assess environmental impacts such as
temperature (Pomeranz et al., 2022) or overfishing (Jennings &
Blanchard, 2004).

Although there were differences in the value of the empirical
relationship parameters, they were in a consistent direction and
of a similar magnitude. This suggests that previously reported
changes in size-abundance relationships across environmen-

tal gradients and in experimental manipulations are plausible.

However, the biases and inconsistencies in the estimates of both
A and environmental response parameters presented here suggest
that it may be difficult if not impossible to directly compare the
relative changes across different published studies which use dif-
ferent methods.

The publication of individual body size data with future stud-
ies of size-abundance relationships would greatly aid in our ability
to generalize changes to this fundamental aspect of community
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FIGURE 7 Decision tree to aid researchers in choosing an analytical framework for estimating individual size distributions. Major pros

and cons of each framework are included.

organization across spatiotemporal scales and in response to envi-
ronmental conditions.

5 | CONCLUSIONS

The MLE method outperformed binning methods under nearly
any measure. With the publication of the sizeSpectra package
(Edwards et al., 2020), and modifications available in other publicly
available repositories (i.e. Pomeranz et al., 2022 GitHub repository:
https://github.com/Jpomz/Pomeranz-Junker-Wesner), producing
MLE estimates of size spectra parameters is a relatively easy task.
Therefore, we recommend using it in all future studies of size-
abundance relationships rather than binning. There are some cir-
cumstances where data are only available in binned formats, and
individual sizes are not recorded (for example many fishery data sets
group body sizes into size class bins and count the occurrence). In
these situations, we recommend using the MLEbin () function from
the sizeSpectra package (Edwards et al., 2020), which specifically
accounts for the uncertainty of placing individuals into a size class bin.
One issue with MLE analysis of ISD relationships is that it is inherently
a two step process, where site-specific A's are estimated, and then a
separate analysis needs to be performed on the 4 estimates across
a predictor variable. However, computational techniques could be
developed which will allow for the simultaneous estimation of 1 and
the effects of predictor variables across gradients (for example, see
Wesner et al., 2023 for a hierarchical Bayesian modelling framework).
Likewise, there may be other situations that we have not covered di-
rectly in this study and we provide a decision tree (Figure 7) to help

guide future analyses of size-abundance relationships.

We reiterate the recommendations of White et al. (2007), Sprules
and Barth (2016) and Edwards et al. (2017) to estimate ISD's using
MLE methods due to their superior performance in nearly every con-
text. Size spectra are an emergent property and depend on a number
of internal processes. Even slight deviations in estimates of 4 could
have profound implications for interpretations of food web struc-
ture and patterns of community biomass distributions. Using MLE
methods to estimate ISD parameters of communities will improve
our understanding of these processes as well as aid in ecologists'
ability to describe and predict the structure and organization of nat-
ural food webs and communities, as well as those which are affected
by human activities. Furthermore, we strongly encourage authors
to publish individual size data whenever possible. This will allow for
the consistent re-analysis of existing data sets as methods develop
and improve and will aid in the ability to synthesize results between

research groups and across scales.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Figure S1. The edges of the first 4 bins are shown when the body
sizes range from O to 100 (bottom line) and 0-1000 (top line).
Figure S2. The edges of all bins for the L2n method are shown
when body sizes range from O to 100 (bottom line) and 0-1000
(top line).

Figure S3. The variation in the distributions of A estimates for “steep”
values in Figure 2 in the main text makes it difficult to compare them
with the “shallower” distirbutions.

Figure S4. Absolute deviation in estimate from known value of A.
Figure S5. We varied the number of replicates (n=10, 50, 100, 200,
250, 500, 750, 1000) and plotted the distribution of g estimates
across the three A scenarios.

Figure Sé6. Cl's and 4 estimates. Cl's are colored if they contain the
true value (blue) or if they do not (red). Only the first 500 replicates
are displayed for visualization purposes.

Figure S7. Cl's and g estimates when varying the known value of g.
Figure S8. Cl's and g estimates when varying the scenario of 4
parameter space.

Table S1. Deviation of estimates across methods for different sample
sizes of body size values.

Table S2. Deviation of estimates across methods when the values
of the hypothetical gradient (large x) and the range of body sizes
(small m) are changed compared with the results presented in the
manuscript (main).

Table S3. Deviation of estimates across methods when the number

of sites was changed.
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