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ABSTRACT. Let A and B be operator algebras with co-isomorphic diagonals and let
denote the compact operators. We show that if A ® K and B ® K are isometrically
isomorphic, then A and B are isometrically isomorphic. If the algebras A and B satisfy
an extra analyticity condition a similar result holds with I being replaced by any
operator algebra containing the compact operators. For non-selfadjoint graph algebras
this implies that the graph is a complete invariant for various types of isomorphisms,
including stable isomorphisms, thus strengthening a recent result of Dor-On, Eilers
and Geffen. Similar results are proven for algebras whose diagonals satisfy cancellation
and have Ky-groups isomorphic to Z. This has implications in the study of stable
isomorphisms between various semicrossed products.

1. INTRODUCTION

There are two lines of inquiry that motivate the present work. Initial motivation comes
from recent results of Dor-On, Eilers and Geffen [7] that address the hierarchy of various
types of isomorphisms between (selfadjoint and non-selfadjoint) operator algebras, with
an eye on non-selfadjoint graph algebras and their stable isomorphisms (a previously
intractable problem, as the authors comment in the introduction of their paper). In
[7, Theorem 6.4] they show that for row-finite graphs, a stable isomorphism between
their tensor algebras implies that the corresponding graphs are isomorphic. The proof of
this result involves significant K-theoretic considerations, an earlier result of the second-
named author and Kribs [13] and relies strongly on the row-finiteness of the graphs
involved. Indeed, in [7, Example 6.5], the authors show that the selfadjoint considerations
in their proof of [7, Theorem 6.4] are not valid for graphs which are not row-finite, thus
rendering obsolete the technique of their proof for such graphs. Nevertheless this does
not exclude the possibility that the “non-selfadjoint” statement of [7, Theorem 6.4] is
indeed valid with a different proof, thus raising the question whether a stable isomorphism
between tensor algebras of arbitrary graphs implies that the graphs are isomorphic.

The other source of motivation originates in the work of the second-named author and
Ramsey on non-selfadjoint crossed products [15]. Let X be a locally compact Hausdorff
space and let o : X — X be a homeomorphism. Let K denote the compact operators on
a separable Hilbert space and let KT denote the upper triangular compact operators with
respect to a Z-ordered orthonormal basis. One can form now a non-selfadjoint crossed
product algebra

(11) (C(X)@K:Jr) XNo@Ad A Z,

where A denotes the left regular representation of Z. This natural class of non-selfadjoint
crossed products begs to be classified and in [15] the first step was taken by showing
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that
(1.2) (C(X)@KT) Xogadr Z ~ (C(X) ®, ZT) @ K,

where C(X)®,Z* denotes the semicrossed product of Arveson [1] and Peters [18]. (The
equation (1.2) follows from the last line in the proof of [15, Theorem 2.12].) Therefore
the classification of the crossed products in (1.1) becomes a problem in the classification
theory of semicrossed products up to stable isomorphism. This brings a new perspec-
tive to the classification problem for stable isomorphisms between operator algebras and
reinforces its study.

Both of the above lines of inquiry are accommodated in this note. First we show that
the non-selfadjoint part of Theorem 6.4 of Dor-On, Eilers and Geffen [7] is indeed valid
beyond row-finite graphs. This comes as a corollary of a more general result that shows
that if A and B are operator algebras with diagonals isomorphic to ¢y so that A ® K
and B® K are isometrically isomorphic, then A and B are isometrically isomorphic. The
proof is elementary and does not require the use of K-theory'. If the algebras A and B
satisfy an extra analyticity condition (Definition 2.8), a similar result holds with I being
replaced by any operator algebra containing the compact operators. The proof of this
result is more involved and we consider it as the central result of this line of research.

We also address the stable isomorphism problem for semicrossed products, with an
eye on the classification of the crossed products in (1.1). In Theorem 3.1 we consider
unital operator algebras 4 and B whose diagonals have cancellation, their Ky-groups
are isomorphic to Z and their units belong to the same Kjy-class, as elements of the
diagonal. For such algebras we show that A ® K and B ® K are completely isometrically
isomorphic if and only if A and B are completely isometrically isomorphic. If X is a
contractible compact Hausdorff space then C'(X) satisfies cancellation, Ko(C'(X)) ~ Z
and 1 € C(X) belongs to the class of the positive generator of Ko(C(X)). This allows
us to use Theorem 3.1 in order to classify the crossed products of (1.1), provided that
X is a contractible, compact Hausdorff space (see Corollary 3.5). Actually, for algebras
whose diagonals are of the form C(X), with X contractible, compact Hausdorff space,
we obtain a more general result in Theorem 3.4, whose proof does not involve the use of
K-theory.

In this paper we assume that all of our operator algebras, including C*-algebras, are
non-degenerately represented on a Hilbert space. In order to avoid set theoretic compli-
cations and achieve a smooth presentation, we fix a separable Hilbert space H and we
denote by K the compact operators acting on H; these will be always referred to as “the
compact operators”. Furthermore when we say that an operator algebra “contains the
compact operators”, we mean that the algebra is acting on that separable Hilbert space
‘H and contains K.

All operator algebras in this paper are approximately unital, i.e., they posses a contrac-
tive approximate unit. If A is an operator algebra, then diag A will denote its diagonal,
i.e., diag A := AN A*. Note that the diagonal does not depend on the particular isomet-
ric representation of A and it is therefore well-defined. (See the first paragraph of the
proof of Lemma 2.1 below.) If A happens to be a C*-algebra, then M(.A) will denote its
multiplier algebra. The symbol ® is reserved for the spatial tensor product of operator
algebras, i.e., if A;, i = 1,2, are (completely isometrically represented) operator algebras

LAs we shall see shortly, K-theoretic considerations do enter in our study of stable isomorphisms, thus
vindicating the intuition of [7].
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on Hilbert spaces H;, i = 1,2, then A; ® As will denote the norm closed subalgebra
of B(H1 ® Ha) generated by elementary tensors of the form a1 ® ag, a; € A;, i = 1,2.
As with the case of C*-algebras, the spatial tensor product product of operator algebras
does not depend on the specific (completely isometric) representations used to define it.
The strong closure of A; ® Ay C B(H1 ® Hs) will be denoted by A;®.A4s.

2. ALGEBRAS WITH SMALL DIAGONALS

We start with two results which in one form or another are known. We include proofs
for completeness.

Lemma 2.1. Let A, B be operator algebras and let ¢: A — B be an isometric isomor-
phism. Then ¢(diag A) = diag B and the restriction of ¢ on diag A is a *-isomorphism
onto diag B.

Proof. Recall that in a unital operator algebra A, the unitary elements in the diagonal
of A coincide with the invertible contractions whose inverses are also a contractions and
contained in A. Furthermore, these elements generate the diagonal as a vector space.

Let A= A& C and B = B& C be the unitizations of A and B respectively Lh\z}t/ leave
the original algebras as proper ideals in the unitization. Note that diagj( = diag A and
similarly for B

If qS A — B is the unitization of ¢, then Meyer’s Theorem [4, Corollary 2.1. 15] shows
that qb is also an isometry. Hence, the first paragraph of the proof implies that gzb preserves
unitary elements and their adjoints. Therefore qb(dlag .A) diag B and the restriction of
qﬁ on diag Ais a #- isomorphism onto dlagB The conclusion now follows by restricting ¢
on diag A. [

Lemma 2.2. If A be an operator algebra, then
diag(A ® K) = (diag A) @ K.

Proof. Let {e;}icny be an orthonormal basis for  and let e;; denote the rank-one oper-
ator defined by e;;(z) = (z,e;)e;, 7,5 € N.

Assume first that A is unital and let a € diag (A® K). Clearly 1®e;; € diag (A®K)
for all 7,5 € N and so

aij ® e = (1® e3)a(l ® ej;) € diag (A® K).

Since {1®e;j; }ien is an approximate unit for diag (A®IC), we are to show that a;; € diag A,
for all 7,5 € N.

Consider finite families {bg:”)} sty $,t €N, n €N, in A so that
a = lim Z(bg))* ® egt.
s,t

Then,
Qij & €55 = (1 X 62'2')@(1 & ejj)
= lim(1® eii) (Y (6)" @ eat) (1 @ ¢55)

st

= 11m (b(n)) ® e;j
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and so a;; = lim,, (bgl))* € A*, as desired.

If A is not unital, then one replaces 1 € A with an approximate unit for the C*-algebra
diag A consisting of selfadjoint operators and then repeats the same arguments as above
by taking limits. ]

If A is an operator algebra, then Z(.A) will denote its center. Recall that if C is a
C* algebra which is (non-degenerately) represented on a Hilbert space He, then we may
identify the multiplier algebra M(C) with the idealizer of C

{T € B(H¢) | Tc € C and ¢T € C, for all ¢ € C}.
In particular, M(C) C C”. See Section I1.7.3 of [3] for more details.

Lemma 2.3. Let C be a C*-algebra and let M(C) denote its multiplier algebra. Then
(2.1) Z(M(C)) = Z(C")y N M(C).

Proof. We are identifying M(C) with the idealizer of C so that the intersection on the
right side of (2.1) is meaningful. Now Z(C") = C'NC" and Z(M(C)) is clearly contained
in both sets appearing in this intersection. Hence Z(M(C)) C Z(C") N M(C).

Conversely, if S € Z(C") N M(C), then Sc = ¢S for all ¢ € C and since C is strictly
dense in M(C), we have ST =TS for all T' € M(C), i.e., S € Z(M(C)). [

Proposition 2.4. Let C and R be C*-algebras and assume that R contains the compact
operators. Then
ZM(C ® R)) =Z(M(C)) ® CI.
Proof. Since (C® &) =C' @ CI and (C ® R)” = C"®B(H), we have
(2.2) Z(CoR) Y =CoR)'NCoR)"=C"NC"Y®CI=17(C")® CI.
Using a minimal projection p € &, one can verify that
(2.3) (Z(C"Y @ CI)NM(C ® R) C (Z(C")NnM(C)) ® CI.
Indeed, let S € Z(C") so that S ® I € M(C ® K). Then for any ¢ € C we have
(S@I)(c@p),(cop)(S®I)eCo i
and so
Sc@p,cS@pe (I @p)(C@R)(I@p)=CoCp,
from which we deduce that Sec,cS € C, i.e., S € M(C), as desired.
Now by using (2.2), we may replace Z(C"”) ® CI in (2.3) with Z((C ® K)") to obtain
Z(C®R))YNM(EC ® K) C (Z(C")NM(C)) ® CI,
which with the aid of Lemma 2.3 transforms to
ZM(C ® R)) CZ(M(C)) ® CI.
In order to prove the reverse inclusion, note that if S € Z(M(C)), then clearly S ® I €
M(C ® R). Furthermore, if c® k € C ® K then
(2.4) (S(cxk)=(crk)(S®I),

because S commutes with every element in M(C) and thus with every element in C. Now
C ® R is strictly dense in M(C ® f). Therefore (2.4) implies that S ® I € Z(M(C ® R))
and we are done. m
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For the rest of the paper we make the blanket assumption that all operator algebras
are approximately unital with a contractive approximate unit contained in the diagonal.

We say that an operator algebra A has a cg-isomorphic diagonal if there exists a
perhaps finite set I' so that diag A ~ ¢o(T"). Due to our blanket assumption, we see that
an operator algebra A with cp-isomorphic diagonal necessarily contains an approximate
identity consisting of commuting selfadjoint operators.?

Theorem 2.5. Let A and B be operator algebras with co-isomorphic diagonals. If AR K
and B® K are isometrically isomorphic, then A and B are isometrically isomorphic.

Proof. Assume that A ® K and B ® K are isometrically isomorphic via a map
p: AQK — B K.

We are to prove that A and B are isomorphic. Let {p;}icr, and {g;};er, be families of
mutually orthogonal projections so that

diag A = C*({p; | i € T4}) and diag B = C*({g; | j € I'5}).

By our blanket assumption, the nets of finite sums from {p;}ier, and {g;}jer, form
approximate units for A and B respectively. By Lemma 2.2, we have that diag(A® K) =
C*({pi}i) ® K and the restriction of ¢ on C*({p;};) ® K is a *-isomorphism onto the
diagonal C*({¢;};) ® K of B® K. This isomorphism extends to a *-isomorphism

¢+ M(C*({pi}i) ® K) — M(C*({g;};) ® K)
between the corresponding multiplier algebras. Now by Proposition 2.4, we have
Z(M(C*({pi}i) © K)) = C*({pi}:)" ® CI
and so ¢ maps {p; ® 1}er ,, i.e., the minimal projections in Z(M(C*({pl}l) ® IC)), onto

{gj ®1}icry since these are the minimal projections in Z(M(C*({g;},) ® K)). Therefore,
by relabelling I'g if necessary, we may assume that I' 4 = ' =1 and

(2.5) d(pi®I)=q®I, foralliel
By using Lemma 2.2, we obtain
¢(pi @ K) = d(pi @ I))d(C*({pn}ny) ® K)
d(pi ®1))¢(diag(A®K))

= (i ® )(C*({gn}22)) © K)
=q K,

for all 4 € I. This allows us to view the restriction of ¢ on p; ® K as an automorphism
of K and so Corollary 3 of [2, Theorem 1.4.4] implies that for every i € I there exists a
unitary u; € B(H) so that

o(pi @ x) = ¢; @ u;zu;, for all x € K.
Consider the unitary U := SOT — ) ;1 ¢; ® u;. Note that on a dense subset of B we have
Uspan{q;Bq; ® K | i,j € [}JU* = span{¢;Bq; ® K | i,j € 1},

2Many algebras of current interest, including various tensor algebras of non-degenerate product systems
[8, 9], satisfy this requirement.
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and so conjugation by U determines an automorphism of B&. Therefore by conjugating
¢ with U if necessary, we may assume that

o(pi @x) =¢q @z, for all z € K.
Let e € K be a rank-one projection and let 7, j € I. Notice that
P(piAp; ®e) = ¢((pi ® e) (AR K)(pj ® e))

= (@ ®e)(BeK)(g®e)
= q;Bgj ®e.

Therefore for each pair 4, j € I and any a € A, there exists a unique element ¢;;(p;ap;) €
qiBq; satisfying ¢(p;ap; ® €) = ¢;;(piapj) ® e, thus obtaining a surjective linear map

®ij: piAp; — ¢iByg;.
Putting all the ¢;; together, we obtain a map
b: span{p;Ap; | i,j € I} — span{¢;Bq; | i,j € I}.
satisfying
(2.6) dla) = Y ij(piap),
ijeF

provided that a = ZijeF piap; € A, F C I finite. Notice that with such an a € A we
have

I6(a)ll =1l D> dij(piapy)ll = | D dij(piap;) © el

LIER i,jEF
=Y dpiap; @ )| = [6( Y piap; @ ¢)|
(2.7) iz =,
= || > piapj@el = D piap|
LjEF i,jEF
= |lafl,

i.e., ¢ is an isometry. Since finite sums from {p; }ier and {gj};er form approximate units
for A and B respectively, ¢ extends to a linear isometry from A onto B, denoted again

- %nally for any a,a’ € A and 1, j,s,t € I, we have,
d(piap;)p(psa'py) @ e = (@(Piapj) ®e) (@(Psalpt) ®e)
= (¢4 (piap;) @ €) (¢st(psa'pt) @ €)
(piap; ® €)p(psa’p @ e)
(piapjpsa’py @ e)
= é(pz‘apjpsa/pt) ® e,

© S

which implies that ¢ is multiplicative and therefore A and B are isometrically isomorphic
via ¢. [ |
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Corollary 2.6. Let A and B be operator algebras with co-isomorphic diagonals. Then
AR K and B® K are completely isometrically isomorphic if and only if A and B are
completely isometrically isomorphic.

Proof. If two operator algebras A and B are completely isometrically isomorphic, then
the same is true for A ® K and B ® K.

Conversely assume that A ® K and B ® K are isometrically isomorphic via a map
¢o: AQK — B® K. Arguing as in the proof of the previous Theorem, we may assume
that ¢(p;®@x) = ¢; @, for all z € K, and therefore define a multiplicative map b: A B
asin (2.6). The complete isometricity of ¢ follows from the matricial analogue of (2.7). m

If G is a countable directed graph, then 7 (G) denotes the tensor algebra of G, i.e., the
non-selfadjoint subalgebra of the Toeplitz-Cuntz-Krieger C*-algebra T(G) generated by
the isometries and projections satisfying the defining relations of 7(G). (See [12, 17] for
more information.) The following strengthens [7, Theorem 6.4] by posing no restrictions
on the graphs involved.

Corollary 2.7. If G and G’ are countable directed graphs, then the following are equiv-
alent:
(i) G and G’ are isomorphic graphs;
(i) 77(G) and T*(G') are bicontinuously isomorphic;
(iii) 77(9) @ K and TH(G') ® K are isometrically isomorphic.

Proof. The equivalence of (i) and (ii) follows from [12, Theorem 2.11].

Clearly (i) implies that 7(G) and T (G’) are *-isomorphic and so 7(G) ® K and T(G")®
IC are canonically x-isomorphic. From this it follows that the non-selfadjoint algebras
TH(G) ® K and TT(G') ® K are isometrically isomorphic, i.e., (iii) holds.

Finally, the diagonal of the tensor algebra of a countable graph is isomorphic to ¢y and
so (iii) implies (ii) by Theorem 2.5. [

We are interested in strengthening the previous results by replacing the compact op-
erators K with more general operator algebras. We begin by providing a substitute for
Lemma 2.2. For this purpose we focus on a special class of operator algebras.

Let (G, P) be a discrete, ordered abelian group, i.e., G is a discrete abelian group and
P C G is a cone, ie., P+ P C P and PN (—P) = {e}, where e € G denotes the unit
element. Let C be a C*-algebra and let a: G — Aut(C) be a strongly continuous action
of the Pontryagin dual of G. This allows us to define the Fourier coefficients for any ¢ € C
by

é(s) = /éozv(c)v(s)d'y, seqG.

In particular the Fourier coefficient corresponding to the unit e € G determines a faithful
expectation

Ey(c): C — C;c— é(e).
In this way, given any ¢ € C we have a formal Fourier series expansion ¢ ~ Y _~ ¢(s)
which converges to ¢ in a Cesaro-type summation. In particular every element of C is
uniquely determined by its Fourier coeflicients.

Definition 2.8. An operator algebra A is said to be analytic if there exists a discrete,
abelian ordered group (G, P) and a strongly continuous action a: G — Aut(C*(A)) of
the dual group leaving A invariant, so that:
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(i) AC{a e C*(A)|a(s) =0, for all s ¢ P},

(ii) diag A = Eq(A).
If A satisfies only condition (i), then A is said to be quasi-analytic; in that case it is easy
to see that we only have diag A C E,(A).

The tensor algebra of any product system over an abelian lattice order (G, P) [8] is
easily seen to be an analytic algebra via the gauge action of G.

Lemma 2.9. Let A be an analytic operator algebra with abelian diagonal and let B be
any operator algebra. Then

diag(A ® B) = (diag A) ® (diag B).

Proof. Let a: G — C*(A) be the strongly continuous action of G that determines the
analyticity of A so that diag(A) = E,(A). Now notice that A ® B is quasi-analytic via
the action R
a®id: G — AutC*(A® B)
and so
diag(A ® B) C Eugid(A ® B) N Eygia(A® B)*
= (B, ®id)(A® B)N (£, ®id)(A® B)*
= ((diag A) ® B) N ((diag A) @ B)*.
Now diag A is abelian and so diag.A ~ Cy(X) for some locally compact Hausdorff space
X. Therefore,
(diag A) ® C*(B) ~ Cy(X,C*(B))
and under that identification (diag A) ® B ~ Cy(X, B) and ((diag A) @ B)* ~ Cyo(X, B*).
But then under the above identification we have that
((diag A) ® B) N ((diag A) ® B)* =~ Co(X, BN B*)
~ (diag A) ® (diag B)
and the conclusion follows. ]
Note that the proof of Lemma 2.9 establishes something stronger than the isomorphism
of two operator algebras. If the algebras A and B act on Hilbert spaces H4 and Hp
respectively, then Lemma 2.9 shows that when we consider A ® B as a subalgebra of
B(H4 ® Hp), then
AB)NAB)"=(ANA") @ (BNBY)

as sets.

Corollary 2.10. Let A be an analytic operator algebra with co-isomorphic diagonal and
let R be any operator algebra containing the compact operators. Then

Z(M(diag(A ® R))) = (diag. A)” @ CI.
Proof. By Lemma 2.9, we have that diag(A ® &) = (diag.A) ® (diag&). Since diag &
contains the compact operators as well, Proposition 2.4 implies that
Z(M((diag A) ® (diag 8))) = Z(M(diag A)) @ CI

and so
Z(M(diag(A ® R))) = Z(M(diag A)) ® CI.
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If diag A = C*({p; | i € N}) for some family {p;};en of mutually orthogonal projections
spanning the identity, then it is easy to see that M(diag .A) = (diag.4)” and the conclusion
follows. [

Lemma 2.11. Let hq, ho,...,h, be mutually orthogonal unit vectors in H and let
1, fo, ..., fn be unit vectors in H satisfying Z#j |(fi, f;)| < 1. Consider the linear
operator

(2.8) T :span{hq, ho,..., hy} — span{ fi, fo,..., fn}

defined by Th; = f;, i =1,2,...,n. Then,

(2.9) (U= D21 )Rl < ITHI < (1 3T 1 £3)1) )
i#j i#]

for any h € span{hi, ha, ..., hy}.

Proof. Since in general |||T'|h|| = ||Th|, it is enough to prove the result for |T'| instead
of T.
Notice that for any 1 < 4,5 < n, we have
(IThi, hj) = (Thi, Thy) = (fi, f;)
and so the matrix of |T|? with respect to the basis hy, ha, ..., hy is ((f;, fi))i;. Hence
(2.10) NTHZ = NTPI < 1+ TP =) < T+ 1K fi £l
i#]
On the other hand
=T <Y1 )l < 1,
i#]
and so |T'|? is invertible and
_ _ -1
(2.11) T2 = 7120 < (=D W £
i#]
Putting (2.10) and (2.11) together we have
1/2 1/2
(L= D2 s £ 2B < TR < (D21 ) R
i#] i#]
as desired. -

We have arrived to the main result of this section.

Theorem 2.12. Let A and B be analytic operator algebras with co-isomorphic, separable
diagonals and let R4 and Kg be operator algebras containing the compact operators.
If AR R4 and B ® R are isometrically isomorphic, then diag R4 and diag K are *-
isomorphic and the algebras A and B are bicontinuously isomorphic.

Proof. Assume that
P ARRL — B® K3
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is an isometric isomorphism. Let {p;}icn and {g;};en be families of mutually orthogonal
projections® so that
diag A = C*({p; | i € N}) and diag B = C*({¢; | i € N}).
By Lemma 2.2 we have that ¢ preserves diagonals and so it extends to an isomorphism
¢: M(diag(A® £a)) — M(diag(B® 8z)).

Since ¢ is an isomorphism, it maps the minimal projections of the center of M (diag(A®
R A)) onto the minimal projections of the center M (diag(B ® ﬁg)). Lemma 2.10 implies
now that, perhaps after relabeling, we have

(2.12) dp;I)=¢q;®1, for all i € N.

By using Lemma 2.9, we obtain
¢(pi @ diag 8a) = ¢(pi @ I))d(C*({pn}2y) ® diag 84)
= ¢(pi ® 1))¢( diag(A @ Ka))
= (¢ @ I)(C*({an}n21) ® diag 83)
= ¢; ® diag 83,
for all 7+ € N. Hence for each i € N we may view the restriction of ¢ on p; ® diag K4
as an isometric, hence *-isomorphism from diag R4 onto diag K. Furthermore such an

isomorphism is spatially (actually unitarily) implemented by [5, Theorem 17.7] and so
the restriction of ¢ on p; ® diag K 4 maps rank-one operators to rank-one operators.

Assume now that diag A is infinite dimensional and so diag B is infinite dimensional
as well by (2.12).

Claim 1. There ezists an orthonormal set {e;};°, and a collection { f;}32, of unit vectors
in H so that ¢(p; @ eii) = ¢; @ fii, i € N and
(2.13) DI i)l < 1/4,
i#]
(Here, for vectors g;,g; € H, we write g;; for the rank one operator g;;(x) = (x,g;)9,
xeH.)
Proof of Claim 1. We proceed inductively. Indeed, let {h;}°, be an orthonormal set

in H. Choose a unit vector f; € H so that ¢(p1 ® h11) = ¢1 ® fi1.
Assume now that vectors

hl, th, ceey hjn—l and fl, fg, e fn—l

have already been chosen. Choose mutually orthogonal unit vectors {f/}°; so that

Since the vectors {f/}°, are mutually orthogonal, choose index 4, large enough so that

1

max{[(fi, fi,)[ 11 =1,2,..n =1} € ooy

3We allow for the possibility that some of these projections may be zero in order to cover the case
where the diagonal is finite dimensional.
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Set fn := f; and continue inductively. At the end, relabel the resulting sequence {h;, }¢;
as {e;}°.
Clearly we have ¢(p; ® e;;) = ¢ ® fii, @ € N, and an easy calculation with sums
establishes (2.13). This completes the proof of the claim.

Now

P(piAp; ® €ij) = ¢((pi ® €53) (A @ Ra)(pj ® €j5))
= (¢ ® fu)(B® 85)(q; @ fjj)
= qiBq; @ fij

and so for each pair i,7 € N we have a surjective linear map
¢ij: piApP; — qiBg;

satisfying ¢(pi;ap; ®ei;) = ¢ij(piapj) ® fij, for any a € A. By putting all the ¢;; together,
we obtain once again a map

b: span{p;Ap; | i,j € N} — span{¢;Bq; | i,j € N},

satisfying

dla) = > dij(piap)),

1,j=1

provided that

n
(2.14) a= Z piap; € A, n € N.
ij=1

Claim 2. Ifa € A is as in (2.14), then
1/3la]l < [|¢(a)]| < 2]|all.

Proof of Claim 2. Indeed let H, be any n-dimensional subspace of H containing the
first n vectors vectors { f;}1; of Claim 1. Let {h;}} ; be an orthonormal basis of #,, and
let T'€ B(H,) be a linear operator satisfying Th; = f;, i« = 1,2,...,n. This is precisely
the operator T" appearing in Lemma 2.11 and note that T satisfies

V3/2||z|| < ||Tz|| < V5/2||z|, = € span{hi,ha,...h,},
because of (2.9) and (2.13). Now the map

n n
span{giBq; | 1 <i,j <n}> > qibyg;— Y ¢ibija; @ hyj,
=1 ij=1
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is an injective *-homomorphism and so an isometry. Hence

(@)l =11 > dij(piap)ll = 11 Y ij(piap;) ® hij|

i,j=1 ,j=1

=11 ) dii(piap;) © T~ fi(T~)|

i,j=1

=TT ¢ij(piap;) ® fi) I @ (T7H))]|

ij=1

n
<IT7HP) Y dlpiap; @ ey)|

ij=1

2\2, ,, w 3
< (\ﬁ> H¢(’Z piap; ® eij)|| < 2|| Z piap; ® cij|

4,j=1 ,j=1

n
=2 Y piap;| = 2llall.

1,j=1

(2.15)

Using arguments similar to that of (2.15), we also have

lall = l¢( > piap; ® ei))]|

ij=1
(2.16) =T @T)( Y ¢ij(piap;) © hij)(I @ T*)|
ij=1
< (V5/2)] Z i (piap;) ® hij|| < 3||d(a)]
1,7=1

and so the proof of Claim 2 is complete.

Claim 2 implies that ¢ extends to a bicontinuous liner map from A onto B. It remains
to verify multiplicativity. If a,a’ € A and 1 <14, j,k < n, then

d(piap;)d(pia'pr) @ fir = (G(piap;) ® fi3) (d(pia'pr) @ fi)

= (dij(piap;) @ fij) (dk(pia'pr) @ fik)
p(piap; @ eij)(psa'pe @ eji)
¢(Piapj@/pk ® eik)

(2.17)

= b(piap;pja'pr) ® fir,
On the other hand, if a,a’ € A and 1 < 14,7, k, 1 < n with j # k, then
d(piap;)d(pra'pr) = d(piapjpra’pr) = 0

and so we have multiplicativity in that case as well. This completes the proof of the
theorem in the case where diag.A is infinite dimensional.
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Assume now that diag.A is finite dimensional and so
dim(diag . A) = dim(diag B) = n € N

by (2.12). In that case, choose any orthonormal set {e;}!" ; in H and let {f;}7 ; be unit
vectors so that ¢(p; ® ;1) = ¢; @ fii, 1 < i < n. Arguing as in the previous case,

d(piAp; @ ei5) = qiBBq; ® fij
and so for each pair 1 <4, j < n we have surjective linear isometries ¢;;: p;Ap; — ¢;:Bg;
satisfying ¢(piap; ® eij) = ¢ij(piap;) ® fi;, for any a € A. So by putting all the ¢;;
together, we obtain once again a bicontinuous map
b: A= span{p;Ap; | 1 <i,j < n} — span{¢;Bq; | 1 <i,j <n} =B,
satisfying

Qg(a) = Z ¢ij(piapj) with a = Z piap; € A.

i,j=1 t,j=1

Arguing as in (2.17) one can verify that ¢ is multiplicative and the conclusion follows. m

As an illustrative application of the previous result, we obtain the following variation
of Corollary 2.7.

Corollary 2.13. Let G and G' be countable directed graphs and let T, denote the Cuntz-
Toeplitz C*-algebra generated by n-isometries with orthogonal ranges, 1 < n < oco . The
following are equivalent:
(i) G and G’ are isomorphic graphs;
(i) T7T(G) and T*(G') are bicontinuously isomorphic;
(iii) 7H(G) @ T, and T(G") ® Ty, are isometrically isomorphic.

Proof. The proof is identical to that of Corollary 2.7 by replacing K with 7, and using
Theorem 2.12 instead of Theorem 2.5. [

Does the statement of the above Corollary remain true if we replace 7, with the Cuntz
C*-algebra O,,, 1 <n < o0?

3. ALGEBRAS WITH RICHER DIAGONALS

We begin by reviewing some basic facts from the K-theory of C*-algebras. We adopt
the terminology and notation of [20], which we also use as reference, together with [3].
We say that a C*-algebra C has cancellation if the semigroup D(g) (see Definition
2.3.3 in [20]) has cancellation. As Blackadar comments in [3, V.2.4.13], cancellation for

C implies cancellation for C ® K. Hence both unitizations C and C ® K are stably finite
and so their Ky-groups, equipped with their positive cones, form ordered abelian groups
[20, Proposition 5.1.5].

Assume that the C*-algebras C; have cancellation and furthermore
Ko(C;) ~7Z,i=1,2. Since Ky (C;) N (—Ky (C;)) = {0}, we may assume that Ko(C;)* C
Z*. Therefore any *-isomorphism ¢ : C; — Co induces a positive isomorphism Ko(¢)
of Ky-groups and so it is the identity map on Z. Finally recall that if e € K is a
minimal projection, then the map C 5 ¢ — c¢® e € C ® K induces a positive isomor-
phism at the Kjy-level and therefore the identity map on Z. In particular, if C is unital,

M koc) = [1 ® e]gycak)-
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Theorem 3.1. Let A and B be unital operator algebras. Assume that both diag A and
diag B have cancellation and furthermore assume that

Ky(diag A) ~ Ky(diag B) ~ Z

with [1]g(diagA) = [Uko(diagB)y- Then A®@ K and B ® K are completely isometrically
isomorphic if and only if A and B are completely isometrically isomorphic.

Proof. Assume that we have a completely isometric isomorphism
p: ARK — B K.

By Lemma 2.1, the restriction of ¢ on diag(A® K) = (diag.A) ® K becomes an isomor-
phism onto diag(B ® K), which is the identity map on Z at the Kjy-level, in accordance
to our earlier identifications. Let e € K be a minimal projection. Then as elements of Z,

[1 ® el ko ((iag Byok) = [Uko(diag B) = [ Ko(diag A))
= [1 ® €]k ((diag A)2k)
=[p(1® 6)}K0((diag B)®K)

Therefore p(1®e) € [1®e]k,((diag B)ok) and since (diag B) @ K has cancellation, 1®e and
#(1 ® e) are Murray-von Neumann equivalent projections. By [20, Proposition 2.2.8],

there exists a unitary u € Ms(diag(B ® K)) so that

p(l®e) 0) . (1l®e O
“ < o 0o/"~\L o o)
Hence by conjugating the completely isometric isomorphism

¢? : My(A® K) — My(B®K)

by u, we obtain a completely isometric isomorphism
Y My(A®K) — My(B® K)
with ¢((1$¢0)) = (1§3). Combined with the fact that
(19 MA@ ) (15°8) = (A5°°8) = A,
the conclusion follows by restricting v to the algebra above. [ |

Remark 3.2. The condition [1]x(diag(4)) = [1]Ko(diag(8)) cannot be dropped from the
statement of Theorem 3.1. Indeed, M,,(C) and M, (C), m # n, have cancellation and
are stably isomorphic but they are not isomorphic.

A fundamental class of C*-algebras C with cancellation, that satisfy K((C) ~ Z, con-
sists of all C*-algebras of the form C ~ C(X), with X a contractible compact space.
For operator algebras with such diagonals we can offer a much stronger version of Theo-
rem 3.1.

Lemma 3.3. Let X be a contractible, compact Hausdorff space and let 8 be any C*-
algebra. Then any projection-valued function in C(X) ® R is equivalent to a constant
function via a unitary in the multiplier algebra.
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Proof. Let f € C(X,R) ~ C(X)®RK be such a projection-valued function. We claim that
there exists a point g € X and a unitary u € C(X, B(H)) such that u(x)f(z)u*(z) =
f(zp), for all z € X.

Since X is contractible, there exists a continuous map h : X x [0,1] — X and a point
xo € X so that h(z,0) = z and h(z,1) = zo, for all z € X. Let fs(x) := f o h(s,x),
z € X. Then the map

[0,1] 3 s — fs € C(X, R)
establishes a homotopy between f and the constant projection valued function f; €
C(X, R). The conclusion now follows from [20, Proposition 2.2.6]. [

Theorem 3.4. Let A and B be analytic operator algebras whose diagonals are isomorphic
to the continuous functions on (perhaps distinct) compact, contractible Hausdor(f spaces.
Let R4 and R be operator algebras containing the compact operators. If A ® K4 and
B ® Rp are isometrically isomorphic, then A and B are isometrically isomorphic.

Proof. Assume that ¢ : A ® R4 — B ® R is an isometric isomorphism and let ¢ € K
be a rank-one projection. Since isometric isomorphisms map diagonals to diagonals,
Lemma 3.3 implies that perhaps after conjugating ¢ with a unitary, we have

p(lee) =1/,
for some projection f € K. Notice now that by Lemma 2.9

(1®e)diag(A® R4)((1 ®e) = (diag.A) ® e(diag R 4)e
= (diag A) ® Ce,

which is abelian. Hence

(diag B) @ (fKf) € (1® f)diag(B® Rp)(1 ® [)
=¢((1®e)diag(A® £4)(1 ®e))

which is the image of an abelian algebra. This forces f to have rank one and so the
restriction of ¢ on

(Iee) (AR )(1®e) 2 A Ce~ A
is an isomorphism onto (1 ® f)(B® &5)(1 ® f) ~ B and the conclusion follows. [

As an immediate application we have the following result that provides a classification
scheme for a large class of non-selfadjoint crossed products.

Corollary 3.5. Let X be a contractible, compact Hausdorff space and let o; : X — X,
i = 1,2, be homeomorphisms. Then the following are equivalent:
(i) the algebras C(X) X,, ZT, i = 1,2, are isometrically isomorphic;
(ii) the algebras (C(X) %, ZT) @ K, i = 1,2, are isometrically isomorphic;
(iii) the algebras (C(X) @ K1) Xg,9adA Z, i = 1,2, are isometrically isomorphic;
(iv) o1 is conjugate to os.

Proof. The equivalence of (i) and (iv) follows from [10, Corollary 3.7]. The equivalence
of (ii) and (iii) was discussed in the introduction of this paper. Theorem 3.4 shows that
(ii) implies (i). Finally, if (iv) holds then the crossed product C* algebras C(X) %, Z,
i = 1,2, are canonically isomorphic and from this (ii) folows. [
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Let A be a C*-algebra and « a x-automorphism of A. Let
it AQK — (AXaZ)®K

be the embedding of ARK in (Ax,Z)®K induced by the canonical map A < Ax,Z, that
maps elementary tensors to elementary tensors and let U denote the universal unitary in
A X, Z. Tt is easy to see that the pair (i, U ® I) forms a covariant representation for the
dynamical system (A ® K, @ ® id) that admits a gauge action which fixes i(A ® K) and
“twists” U ® I. Hence (i, U ® I) integrates to a faithful representation of (A® K) X 4gid Z
and therefore we obtain a canonical isomorphism

(3.1) ot (AXaZ) @K — (A®K) Xagia Z

satisfying o,(aU" @ K) = (a@ K)(U® )", a € A, K € K, n € N. In particular o,
acts as the identity map on A ® K. This shows that the study of stable isomorphisms
between crossed or semicrossed products reduces to the study of the usual isomorphism
problem between such algebras.

For semicrossed products of unital C*-algebras by *-automorphisms, Davidson and
the first-named author [6] have completely solved the (isometric) isomorphism problem.
The more general isomorphism problem for semicrossed products of unital C*-algebras
by *-endomorphisms was recently resolved by the second-named author and Ramsey
in [14]. Unfortunately, the arguments in these papers seem to depend heavily on the
unitality of the C*-algebras involved and so these works cannot be combined with the
reduction of the previous paragraph in order to solve the stable isomorphism problem,
since algebras of the form A ® K are never unital. We therefore conclude the paper
with asking for a solution of the isomorphism problem for the semicrossed products of
non-unital C*-algebras.
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