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CO-UNIVERSALITY AND CONTROLLED MAPS ON PRODUCT SYSTEMS

OVER RIGHT LCM-SEMIGROUPS

EVGENIOS T.A. KAKARIADIS, ELIAS G. KATSOULIS, MARCELO LACA, AND XIN LI

Abstract. We study the structure of C*-algebras associated with compactly aligned product
systems over group embeddable right LCM-semigroups. Towards this end we employ controlled
maps and a controlled elimination method that associates the original cores to those of the
controlling pair, and we combine with applications of the C*-envelope theory for cosystems
of nonselfadjoint operator algebras recently produced. We derive several applications of these
methods that generalize results on single C*-correspondences.

First we show that if the controlling group is exact then the co-universal C*-algebra of
the product system coincides with the quotient of the Fock C*-algebra by the ideal of strong
covariance relations. We show that if the controlling group is amenable then the product system
is amenable. In particular if the controlling group is abelian then the co-universal C*-algebra
is the C*-envelope of the tensor algebra.

Secondly we give necessary and sufficient conditions for the Fock C*-algebra to be nuclear
and exact. When the controlling group is amenable we completely characterize nuclearity and
exactness of any equivariant injective Nica-covariant representation of the product system.

Thirdly we consider controlled maps that enjoy a saturation property. In this case we in-
duce a compactly aligned product system over the controlling pair that shares the same Fock
representation, and preserves injectivity. By using co-universality, we show that they share the
same reduced covariance algebras. If in addition the controlling pair is a total order then the
fixed point algebra of the controlling group induces a super-product system that has the same
reduced covariance algebra and is moreover reversible.

1. Introduction

1.1. Framework. In the present project we study further the effect of nonselfadjoint operator
algebras and boundary theory of group coactions on the C*-algebras theory recently initiated
in [14]. We work in the class of algebras of a compactly aligned product system X over a
right LCM-semigroup P in a group G with coefficients in a C*-algebra A (for brevity we will
say that such a pair pG,P q is a weak right LCM-inclusion). Continuous product systems of
Hilbert spaces were coined by Arveson [3] for R`, and their discrete counterparts were studied
by Dinh [13]. Motivated by Pimsner’s seminal work [39], Fowler [19] studied product systems
of correspondences over quasi-lattices. Since then discrete product systems have been studied
by many authors (far too many to list here) and constitute an active area of research in their
own right. Recently there has been a growing interest in passing from quasi-lattices to right
LCM-semigroups. Kwaśniewski and Larsen [30] studied the Toeplitz-Nica-Pimsner C*-algebra
NT pXq for right LCM-semigroups proving Toeplitz-Cuntz-Krieger-type uniqueness theorems.
Here we turn our focus to equivariant quotients with an eye towards Cuntz-type covariant
realizations.

One of the main questions in this direction has been to identify the appropriate quotient
of NT pXq so that faithful representations of A lift to faithful representations of the quotient.
This cannot be expected to hold unconditionally. The next best hope is thus to locate the
quotient of NT pXq so that faithful representations of A lift to faithful representations of its fixed
point algebra. Sehnem [42] has provided a full answer by introducing the strongly covariant
representations. This generalizes the study of Cuntz-Nica-Pimsner relations, initiated by Sims
and Yeend [43], and later continued by Carlsen-Larsen-Sims-Vittadello [7]. A second aim of
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[7] was to use these relations and provide a co-universal object by passing to an appropriate
reduced quotient. This was achieved under extra conditions on the product system (such as
injectivity or directness of the quasi-lattice).

Co-universality and boundary representations arise naturally in the context of nonselfadjoint
operator algebras and their C*-envelope in the sense of Arveson. With Dor-On, in [14] we intro-
duced a coaction variant of the C*-envelope and used it to fully answer the problem of Carlsen-
Larsen-Sims-Vittadello [7] without any assumptions on the product system X. Even more, the
results of [14] apply to weak right LCM-inclusions pG,P q rather than just quasi-lattices; more
specifically, the C*-envelope C˚

envpTλpXq`, G, δGq of the Fock tensor algebra TλpXq` with its
normal coaction is co-universal for equivariant injective Nica-covariant representations of X.
Seeing Sehnem’s covariance algebra AˆX P as the universal C*-algebra of an induced Fell bun-
dle we further showed that C˚

envpTλpXq`, G, δq coincides with the reduced C*-algebra of this Fell
bundle, here denoted by A ˆX,λ P .

The algebraic structure of C˚
envpTλpXq`, G, δGq was studied in [14]. Pivotal in this endeavour

was the remark that the strong covariance relations of Sehnem are actually filtered through the
Fock representation. Following [42] we will denote by A ˆX P the universal C*-algebra with
respect to the strongly covariant representations of X. We further consider the induced quotient
qscpTλpXqq of TλpXq by the strong covariance relations. In [14] it is shown that the canonical
map

(1.1) qscpTλpXqq ÝÑ C˚
envpTλpXq`, G, δq » A ˆX,λ P

is faithful if and only if the normal coaction of TλpXq descends to a normal coaction on
qscpTλpXqq, e.g., when G is exact.

The motivation for the present work is two-fold. On one hand we wish to explore further
general settings that entail normality of the coaction of qscpTλpXqq and thus identify the algebraic
structure of the co-universal object. Our main theorem here is that this happens when pG,P q is
controlled by another weak right LCM-inclusion pG,Pq with G is exact. When G is abelian we
can further induce dual actions on the C*-algebras. This has the remarkable consequence that
the canonical ˚-epimorphism

(1.2) C˚
envpTλpXq`, G, δq ÝÑ C˚

envpTλpXq`q

is faithful. On the other hand we wish to use the co-universal property in such a context and
apply it in the identification of C*-algebras. The quotient by the strong covariance relations is
used as a model in several constructions and this line of reasoning allows to show functoriality
without checking a long list of C*-properties. This is quite pleasing in particular because reduced
C*-algebras do not enjoy a priori universal properties. In fact we follow the reverse route of
using the identification of reduced objects and then lift them to ˚-isomorphisms of the universal
ones.

1.2. Main results. Controlled maps ϑ : pG,P q Ñ pG,Pq between quasi lattice ordered groups
were introduced by Laca-Raeburn [31] with the purpose of extending the range of application of
the faithfulness and uniqueness theorems for Toeplitz algebras of quasi lattice ordered groups.
The key idea is that pG,P q is amenable in the sense of Nica [36] provided that G is an amenable
group. A similar notion of controlled map was formulated simultaneously and independently by
Crisp to prove that some Artin monoids inject in their groups [10]. The combination of these
two sets of ideas led to the amenability and nonamenability results for Artin monoids in [11].
Similar results can be derived for the Fock algebra TλpXq of a product system over P , as it has
a P-core that can be expressed as a direct sum of matrix algebras (see for example the proof
of Theorem 6.4). As a consequence one obtains for example that compactly aligned product
systems over the free semigroup F

n
` are amenable, although the group F

n is not, the reason
being that the pair pFn,Fn

`q is controlled by its abelianization or by its length map on pZ,Z`q.
However this type of argument is no longer valid for equivariant quotients as these relations

live in the diagonal of the P -core (and thus in the P-core). An elimination method was recently
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developed in [24] when pG,Pq “ pZn,Zn
`q with the purpose of studying nuclearity and exact-

ness properties. By building further on these techniques, in Subsection 5.1 we give a controlled
elimination method for passing from the P-cores to the P -cores of injective Nica-covariant repre-
sentations. Essentially the method asserts that any relation in a P-core must live at the diagonal
and thus in a P -core. We then use this to lift all properties from the realm of the P -fixed point
algebras to the P-fixed point algebras. For example this applies to the fixed-point-algebra prop-
erty of Sehnem’s algebra [42] (Corollary 5.8). In particular exactness of G impacts on the maps
appearing in (1.1).

Theorem A. [Theorem 6.1]. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between weak right
LCM-inclusions and let X be a compactly aligned product system over P with coefficients in A.
Let the canonical ˚-epimorphisms

(1.3) qscpTλpXqq ÝÑ A ˆX,λ P » C˚
envpTλpXq`, G, δGq ÝÑ C˚

envpTλpXq`q.

If G is exact then the left map is faithful. If in addition G is abelian then the right map is also
faithful.

Theorem A implies that the coaction on qscpTλpXqq is normal when G is exact. As pointed
out in [14] this implies that the reduced Hao-Ng problem over discrete group actions has a
positive answer (Remark 6.3). A similar method applies whenever the C*-envelope functor is
stable under crossed products, e.g., for dynamics over abelian locally compact groups or when
the tensor algebra is hyperrigid [27, 28], and we leave this to the interested reader. A further
consequence of Theorem A is that amenability of G implies amenability of the product system
and thus universality of the reduced constructions (Theorem 6.4). The case of abelian G directly
generalizes the results of [15]. There is further potential for Takai duality results even when
pG,P q does not admit a dual. A further consequence of Theorem A provides a generalization
of the Extension Theorem of [28], which recognizes a Fock tensor algebra by the presence of a
coaction (Corollary 6.7).

Another application of the controlled elimination method concerns nuclearity/exactness re-
sults. It has been observed by Katsura [29] that nuclearity of a Cuntz-Pimsner algebra is equiv-
alent to the coefficient algebra being nuclearly embedded in the fixed point algebra. Kakariadis
[24] produced similar results for Z

n
`. In Theorem 6.11 we first give an equivalent character-

ization for nuclearity of TλpXq for right LCM-semigroups. Although our original goal was to
exploit A ˆX P , we tackle any equivariant quotient of NT pXq that is injective on A.

Theorem B. [Theorem 6.12, Theorem 6.13]. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between
weak right LCM-inclusions with G amenable and let X be a compactly aligned product system
over P with coefficients in A. Let pπ, tq be an equivariant injective Nica-covariant representation
of X. Then:

(i) A is exact if and only if C˚pπ, tq is exact.
(ii) A ãÑ C˚pπ, tq is nuclear if and only if C˚pπ, tq is nuclear.

We emphasize that the controlled elimination process occurs at the level of representations.
One might be intrigued to introduce a product system Y over P that would share the same
algebras with X over P . However it is not clear that such a procedure gives a compactly aligned
product system. For this reason we introduce the notion of saturation for controlled maps, which
preserves inclusions of ideals in the semigroups. Under this condition we do get a super-product
system on the same coefficient algebra that does the job.

Theorem C. [Theorem 7.7]. Let ϑ : pG,P q Ñ pG,Pq be a saturated controlled map between
weak right LCM-inclusions. Let X be a (resp. injective) compactly aligned product system over
P with coefficients in A and let

Yh :“
ÿ

‘

pPϑ´1phq

Xp for h P P.
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Then the collection Y “ tYhuhPP is a (resp. injective) compactly aligned product system over P

with coefficients in A such that TλpXq` » TλpY q` with

TλpXq » TλpY q and A ˆX,λ P » A ˆY,λ P,

by ˚-isomorphisms that preserve the inclusions Xp ÞÑ Yϑppq for all p P P . These ˚-isomorphisms
further lift to ˚-isomorphisms

NT pXq » NT pY q and A ˆX P » A ˆY P,

that preserve the inclusions Xp ãÑ Yϑppq for all p P P .

Our method here is to show that the ˚-isomorphism TλpXq » TλpY q is canonical on the tensor
algebras and then apply the C*-envelope machinery to induce the ˚-isomorphism A ˆX,λ P »
A ˆY,λ P. The saturation property can be induced by free products of abelian total orders,
and is preserved by semi-direct products. As a notable application of this method we deduce
that Sehnem’s covariance algebra of a product system over F`

n is nothing more than the Cuntz-
Pimsner algebra of a single C*-correspondence, in a similar way that the Nica-Cuntz-Pimsner
algebra of F`

n coincides with On (Corollary 7.8).
We then take a closer look at total orders. To further motivate these results, recall that the

Cuntz algebra On may be viewed as the Cuntz-Pimsner algebra of a Hilbert bimodule over the
n8-hyperfinite C*-algebra. In spite of the coefficient algebra of the latter being much larger,
Hilbert bimodules are better behaved than other types of C*-correspondences and they allow
for a rich theory, including versions of Takai duality. Here we will show that the situation
with On generalizes to product systems that are controlled by exact total orders. Towards this
end we consider reversible product systems for which the image of every fiber in A ˆX,λ P is a
Hilbert bimodule. We then show that reversible product systems produce all possible covariance
algebras for weak right LCM-inclusions that are controlled by total orders in a saturated way.
The construction relies on using the fixed point algebra and generalizes results of Pimsner [39],
Abadie, Eilers and Exel [1], Schweizer [41], Kakariadis and Katsoulis [25], and Meyer and
Sehnem [35]. However our proof uses the C*-envelope machinery and thus avoids categorical
arguments.

Theorem D. [Theorem 7.15]. Let ϑ : pG,P q Ñ pG,Pq be a saturated controlled map between
weak right LCM-inclusions and suppose that pG,Pq is a total order. Let X be a (resp. injective)
product system over P with coefficients in A. Then there exists a (resp. injective) reversible
product system Z over P with coefficients in a C*-algebra B such that

(1.4) A Ď B and Xp Ď Zϑppq for all p P P,

that satisfies

(1.5) A ˆX P » B ˆZ P and A ˆX,λ P » B ˆZ,λ P,

by ˚-isomorphisms that preserve the inclusions Xp ãÑ Zϑppq for all p P P .

Semigroup C*-algebras have been an important source of inspiration for this study. Our
results have a direct application to C*-algebras of right LCM-semigroups whereXp “ C for every
p P P . In this case the Nica-Toeplitz C*-algebra is denoted by C˚

s pP q for the Nica-covariant
representations of P and Theorem A (and in particular Theorem 6.4) is a direct generalization
of [12, Theorem 4.7]. Faithfulness of the maps of Theorem A has been further investigated in
[26] for (not-necessarily right LCM) semigroups that embed in exact groups. Theorem B asserts
that every quotient of C˚

s pP q is nuclear and aligns with [33, Corollary 8.3] for quasi-lattices.
Under the saturation property, Theorem C asserts that the operator algebras of P coincide with

those of a product system Y over P with Yh “ C
|ϑ´1phq| for h P P. This follows a recurring idea

of obtaining realizations of the same C*-algebra in different classes. It has been shown in [34]
that CˆC,λP can be realized as the partial crossed product of the smallest G-invariant subspace
of the fixed point algebra of C˚

s pPq by G. Theorem D provides a similar (augmented) realization
when ϑ is saturated and pG,Pq is a total order.
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Let us close with a remark on controlled maps. It has been known that controlled maps
cannot handle HNN extensions of quasi-lattices as the height map does not have a trivial kernel
on the semigroup. In order to resolve this, recently an Huef, Nucinkis, Sehnem and Yang [22]
introduced a more general definition of controlled maps for weak quasi-lattices that allows infinite
descending chains and thus produces direct limits of matrix algebras. The controlled elimination
arguments we provide here should be compatible with this general definition, as they refer to
ideals of representations, which are compatible with direct limits.

1.3. Structure of the paper. In Section 2 we review the boundary theory and the theory
of the cosystems from [14]. In Sections 3 and 4 we review the main elements of the product
systems theory, and we see how they are enriched under the presence of a controlled map. We
have included more details from [14] in order to set the ground for the next sections, and also
prove additional results that are not covered in [14]. In Section 5 we present the controlled
elimination method. Section 6 contains the applications to Sehnem’s covariance algebra, the
structure of the co-universal C*-algebra, amenable product systems, nuclearity/exactness, and
the reduced Hao-Ng problem. In Section 7 we give the product system re-parametrizations
under the saturation property with applications to reversible product systems.

Acknowledgements. Evgenios Kakariadis was partially supported by EPSRC (Grant No.
EP/T02576X/1) and LMS (Grant No. 41908). Marcelo Laca was partially supported by NSERC
Discovery Grant RGPIN-2017-04052. Xin Li has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 817597).

2. Operator algebras and their coactions

2.1. Operator algebras. The reader may refer to [4, 38] for the general theory of nonselfad-
joint operator algebras and dilations of their representations.

Let A be an operator algebra, which in this paper means a subalgebra of BpHq for a Hilbert
space H. We say that pC, ιq is a C*-cover of A if ι : A Ñ C is a completely isometric repre-
sentation with C “ C˚pιpAqq. The C*-envelope C˚

envpAq of A is a C*-cover pC˚
envpAq, ιq with

the following co-universal property: if pC 1, ι1q is a C*-cover of A then there exists a (necessarily
unique) ˚-epimorphism Φ: C 1 Ñ C˚

envpAq such that Φpι1paqq “ ιpaq for all a P A. Arveson
defined the C*-envelope in [2] and computed it for a variety of operator algebras, predicting its
existence in general. Ten years later Hamana [21] confirmed Arveson’s prediction by proving the
existence of injective envelopes for the unital case. The C*-envelope is the C*-algebra generated
in the injective envelope of A once this is endowed with the Choi-Effros C*-structure.

Dritschel-McCullough [16] provided an alternative proof based on maximal dilations for the
unital case. A dilation of a representation φ : A Ñ BpHq is a representation φ1 : A Ñ BpH 1q such
that H Ď H 1 and φpaq “ PHφ1paq|H for all a P A. A completely contractive map φ : A Ñ BpHq
is called maximal if every dilation φ1 : A Ñ BpH 1q is trivial, i.e., PHφ1paq “ φpaq “ φ1paq|H for
all a P A. It follows that the C*-envelope is the C*-algebra generated by a maximal completely
isometric representation.

It does not hold in general that if π : C˚
envpAq Ñ BpHq is a ˚-representation then it is the

unique ccp extension of π|A. The algebra A is called hyperrigid if this is the case for any
representation π of C˚

envpAq. An operator algebra A is said to be Dirichlet if

C˚
envpAq “ A ` A˚.

Equivalently, A is Dirichlet if there exists a C*-cover pC, ιq of A such that C “ ιpAq ` ιpAq˚, in
which case C “ C˚

envpAq. It follows that Dirichlet algebras are automatically hyperrigid.

2.2. Co-actions on operator algebras. If X and Y are subspaces of some BpHq then we
write rXYs :“ spantxy | x P X , y P Yu. All groups and semigroups we consider are discrete and
unital. We denote the spatial tensor product by b.
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For a discrete group G we write ug for the unitary generator associated with g P G in the
full group C*-algebra C˚pGq. We write λg for the generators of the left regular representation
C˚
λpGq. We write λ : C˚pGq Ñ C˚

λpGq for the canonical ˚-epimorphism. Recall that C˚pGq
admits a faithful ˚-homomorphism

∆: C˚pGq ÝÑ C˚pGq b C˚pGq such that ∆pugq “ ug b ug,

given by the universal property of C˚pGq, and with left inverse given by idbχ for the character
χ of C˚pGq. We will require some preliminaries from [14] on coactions on operator algebras.

Definition 2.1. [14, Definition 3.1] Let A be an operator algebra. A coaction of G on A is a
completely isometric representation δ : A Ñ AbC˚pGq such that the linear span of the induced
subspaces

Ag :“ ta P A | δpaq “ a b ugu

is norm-dense in A, in which case δ satisfies the coaction identity

pδ b idC˚pGqqδ “ pidA b ∆qδ.

If, in addition, the map pid b λqδ is injective then the coaction δ is called normal.
If A is an operator algebra and δ : A Ñ A b C˚pGq is a coaction on A, then we will refer

to the triple pA, G, δq as a cosystem. A map φ : A Ñ A1 between two cosystems pA, G, δq and
pA1, G, δ1q is said to be G-equivariant, or simply equivariant, if δ1φ “ pφ b idqδ.

If pA, G, δq is a cosystem then Ar ¨ As Ď Ars for all r, s P G, since δ is a homomorphism.

Remark 2.2. [14] Suppose that pA, G, δq is a cosystem and that δ extends to a ˚-homomorphism
δ : C˚pAq Ñ C˚pAq b C˚pGq that satisfies the coaction identity

pδ b idqδpcq “ pid b ∆qδpcq for all c P C˚pAq.

Then δ is automatically non-degenerate on C˚pAq in the sense that
“
δpC˚pAqqC˚pAq b C˚pGq

‰
“ C˚pAq b C˚pGq.

Moreover Definition 2.1 covers that of full coactions of Quigg [40] when A is a C*-algebra. In
this case δ is a faithful ˚-homomorphism and we have that

pAgq˚ “ ta˚ P A | δpa˚q “ a˚ b ug´1u “ Ag´1 .

Due to the Fell absorption principle, the existence of a “reduced” coaction implies that of a
normal coaction.

Proposition 2.3. [14, Proposition 3.4] Let A be an operator algebra. Suppose there is a group G

that induces a grading on A, i.e., there are subspaces tAgugPG such that
ř

gPGAg is norm-dense
in A, and a completely isometric homomorphism

δλ : A ÝÑ A b C˚
λpGq,

such that
δλpagq “ ag b λg for all ag P Ag, for all g P G.

Then A admits a normal coaction δ of G such that δλ “ pid b λqδ.

Example 2.4. The reduced group C*-algebra C˚
λpGq admits a faithful ˚-homomophism

∆λ : C
˚
λpGq ÝÑ C˚

λpGq b C˚
λpGq such that ∆λpλgq “ λg b λg.

Thus C˚
λpGq admits a normal coaction δ of G such that ∆λ “ pid b λqδ.

Definition 2.5. [14, Definition 3.6] Let pA, G, δq be a cosystem. A triple pC, ι, δC q is called a
C*-cover for pA, G, δq if pC, ιq is a C*-cover of A and δC : C Ñ C b C˚pGq is a coaction on C

such that the following diagram

A
ι //

δ
��

C

δC
��

A b C˚pGq
ιbid

// C b C˚pGq



C*-ALGEBRAS OF PRODUCT SYSTEMS AND CONTROLLED MAPS 7

commutes. When the coaction is understood we will say that C is a C*-cover for A over G.

Definition 2.6. [14, Definition 3.7] Let pA, G, δq be a cosystem. The C*-envelope of pA, G, δq
is a C*-cover pC˚

envpA, G, δq, ι, δenvq such that: for every C*-cover pC 1, ι1, δ1q of pA, G, δq there
exists a ˚-epimorphism Φ: C 1 Ñ C˚

envpA, G, δq that fixes A and intertwines the coactions, i.e.,
the diagram

ι1pAq
δ1

//

Φ
��

C 1 b C˚pGq

Φbid

��

ιpAq
δenv // C˚

envpA, G, δq b C˚pGq

is commutative on A, and thus is commutative on C 1.

The existence of the C*-envelope of a cosystem was proved in [14] by a direct computation
that uses the C*-envelope of the ambient operator algebra. In order to state the result explicitly
we need to make some preliminary remarks and establish the notation. Suppose pA, G, δq is a
cosystem, let i : A Ñ C˚

envpAq be the C*-envelope of A, and recall that the spatial tensor product
of completely isometric maps is completely isometric. Then the representation of A obtained
via the composition

A
δ // A b C˚pGq

ibid
//// C˚

envpAq b C˚pGq

is completely isometric, and the C*-algebra

C˚ppi b idqδpAqq :“ C˚pipagq b ug | g P Gq

becomes a C*-cover of A. This C*-cover is special because it admits a coaction id b ∆, such
that the triple

pC˚pipagq b ug | g P Gq, pi b idqδ, id b ∆q

is a C*-cover for pA, G, δq. The following theorem summarizes fundamental results about exis-
tence and representations of C*-envelopes for cosystems.

Theorem 2.7. [14, Theorem 3.8, Corollary 3.9 and Corollary 3.10] Let pA, G, δq be a cosystem
and let i : A Ñ C˚

envpAq be the inclusion map. Then

pC˚
envpA, G, δq, ι, δenvq » pC˚pipagq b ug | g P Gq, pi b idqδ, id b ∆q.

If in addition δ is normal on A then δenv is normal on C˚
envpA, G, δq.

Moreover if Φ: C˚
envpA, G, δq Ñ B is a ˚-homomorphism that is completely isometric on A

then it is faithful on the fixed point algebra of C˚
envpA, G, δq.

Remark 2.8. A co-action of an abelian group G is equivalent to point-norm continuous actions

tβγu
γP pG of the dual group pG. Since every βγ is a completely isometric automorphism it extends

to the C*-envelope. Hence the C*-envelope of a cosystem coincides with the usual C*-envelope
of the ambient operator algebra when G is abelian. Equivalently, every coaction of an abelian
group on an operator algebra lifts to a coaction on its C*-envelope. As pointed out in [14], it is
unknown if this is the case for general amenable groups.

Group homomorphisms implement coactions. Note that the following proposition for G “ teGu
says nothing more than that every C*-cover of a cosystem is a C*-cover of the ambient operator
algebra.

Proposition 2.9. Let pA, G, δGq be a (resp. normal) cosystem and let ϑ : G Ñ G be a group
homomorphism. Then G induces a (resp. normal) coaction δG on A. Thus every C*-cover of A
over G is also a C*-cover of A over G.

Proof. By the universal property of C˚pGq we have a ˚-homomorphism

rϑ : C˚pGq ÝÑ C˚pGq;ug ÞÑ uϑpgq.
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We then have the canonical completely contractive homomorphism

δG : A
δG // A b C˚pGq

idbrϑ
// A b C˚pGq

which has id b χ as a completely contractive left inverse. By definition we have that

Ah :“ ta P A | δGpaq “ a b uhu Ě ta P Ag | ϑpgq “ hu

and thus

A “
ÿ

gPG

Ag Ď
ÿ

hPG

Ah Ď A.

Hence pid b rϑqδG defines a coaction of G on A.
Next suppose that δG is normal and let δG,λ “ pid b λqδG. Let δG be the coaction induced

by δG. By Fell’s absorption principle we have that the map λg ÞÑ λg b λϑpgq gives a faithful
˚-homomorphism of C˚

λpGq and thus we get the induced completely isometric representation

A
δG,λ

//

δG,λ

��

algtag b λg | g P Gu

��

algtag b λϑpgq | g P Gu algtag b λg b λϑpgq | g P Gu
δ´1

G,λ
bid

oo

which induces a faithful ˚-homomorphism δG,λ. It follows that δG,λ “ pid b λqδG and thus δG is
a normal coaction of G on A.

Let us close this section with some remarks on topological gradings from [17, 18]. Recall
that a topological grading tBgugPG of a C*-algebra B consists of linearly independent subspaces
that span a dense subspace of B and are compatible with the group G, i.e., B˚

g “ Bg´1 and
Bg ¨ Bh Ď Bgh. By [17, Theorem 3.3] the linear independence condition can be substituted by
the existence of a conditional expectation on Be. The maximal C*-algebra C˚pBq of B is defined
as universal with respect to the representations of B. The reduced C*-algebra C˚

λpBq of B is
defined by the left regular representation of B on ℓ2pBq.

Definition 2.10. Let B “ tBgugPG be a topological grading over a group G in a C*-algebra
C˚pBq that it generates, with completely contractive Fourier maps Eg : C

˚pBq Ñ Bg, i.e.,

Egpbq “ δg,hb for all b P Bh and g, h P G.

An ideal I ⊳ C˚pBq is called induced if I “ xI X Bey. An ideal I ⊳ C˚pBq is called Fourier if
Egpfq Ď I for every f P I.

Remark 2.11. It follows that an ideal I ⊳ C˚pBq is Fourier if and only if Eepf˚fq P I for all
f P I. Every induced ideal is a Fourier ideal. The converse holds if G is exact and Ee is a
faithful conditional expectation. These can be found at [18, Proposition 23.9].

A topological grading defines a Fell bundle and once a representation of a Fell bundle is
established the two notions are the same. In a loose sense a Fell bundle B over a discrete
group G is a collection of Banach spaces tBgugPG, often called the fibers of B, that satisfy
canonical algebraic properties and the C*-norm properties; see [18, Definition 16.1]. So we will
alternate freely between Fell bundles and topologically graded C*-algebras. Spectral subspaces
of coactions on C*-algebras are an important source of topological gradings.

Definition 2.12. Let δ be a coaction of G on a C*-algebra C and let I ⊳ C be an ideal of C.
We say that the quotient map is G-equivariant, or that the quotient C{I is G-equivariant if δ
descends to a coaction of G on C{I.

Remark 2.13. If δ : C Ñ CbC˚pGq is a coaction and I⊳C is an induced ideal then δ descends
to a faithful coaction of G on C{I, see for example [7, Proposition A.1]. The same holds for the
normal actions when G is exact, see for example [7, Proposition A.5].
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3. Operator algebras of product systems

3.1. C*-correspondences. A C*-correspondence X over A is a right Hilbert module over A

with a left action given by a ˚-homomorphism ϕX : A Ñ LX. We write LX and KX for the
adjointable operators and the compact operators of X, respectively. For two C*-corresponden-
ces X,Y over the same A we write X bA Y for the balanced tensor product over A. We say
that X is unitarily equivalent to Y (symb. X » Y ) if there is a surjective adjointable operator
U P LpX,Y q such that xUξ,Uηy “ xξ, ηy and Upaξbq “ aUpξqb for all ξ, η P X and a, b P A. A
C*-correspondence is called injective if the left action is injective.

A representation pπ, tq of a C*-correspondence is a left module map that preserves the inner
product. Then pπ, tq is automatically a bimodule map. Moreover there exists a ˚-homomorphism
ψ on KX such that ψpθξ,ηq “ tpξqtpηq˚ for all θξ,η P KX. When π is injective, then both t and
ψ are isometric. A representation pπ, tq is called covariant if it satisfies πpaq “ ψpϕX paqq for all
a in Katsura’s ideal JX :“ kerϕK

X

Ş
ϕ´1
X pKXq.

3.2. Toeplitz algebras. Let P be a unital subsemigroup of a group G. We will write P ˚ for the
set of elements in P that are invertible in P . A product system X over P is a family tXp | p P P u
of C*-correspondences over the same C*-algebra A such that:

(i) Xe “ A.
(ii) There are multiplication rules Xp bA Xq »up,q Xpq for every p, q P P zteu.
(iii) There are multiplication rules AbAXp »ue,p rA ¨Xps and Xp bAA »up,e rXp ¨As “ Xp

for all p P P .
(iv) The multiplication rules are associative in the sense that

upq,rpup,q b idXrq “ up,qrpidXp b uq,rq for all p, q, r P P.

We say that X is injective if every Xp is injective. If x P P ˚ then the multiplication rules impose
that

Xx bA Xx´1 » A » Xx´1 bA Xx.

In particular every such Xx is non-degenerate since

A bA Xx » Xx bA Xx´1 bA Xx » Xx bA A “ Xx.

Throughout this work we will be assuming that all left actions are non-degenerate. We do this
in order to be able to use freely the results from [14, 42]. Nevertheless it is possible that this
assumption can be removed.

Henceforth we will suppress the use of symbols for the multiplication rules. Thus we write
ξpξq for the image of ξp b ξq under up,q, and so

ϕpqpaqpξpξqq “ pϕppaqξpqξq for all a P A and ξp P Xp, ξq P Xq.

The product system structure gives maps

ipqp : LXp ÝÑ LXpq such that ipqp pSqpξpξqq “ pSξpqξq.

If x P P ˚ then irxr : LXr Ñ LXrx is a ˚-isomorphism with inverse irxx
´1

rx : LXrx Ñ LXr.

Definition 3.1. Let P be a unital subsemigroup of a group G andX be a product system over P
with coefficients in A. A Toeplitz representation pπ, tq of X consists of a family of representations
pπ, tpq of Xp over A such that

tppξpqtqpξqq “ tpqpξpξqq for all ξp P Xp, ξq P Xq.

The Toeplitz algebra T pXq of X is the universal C*-algebra generated by A and X with respect
to the representations of X. The Toeplitz tensor algebra T pXq` of X is the subalgebra of T pXq
generated by A and X.

If pπ, tq is a Toeplitz representation then we write ψp for the induced representation on
KXp. We obtain a bimodule triple pψr, ψr,s, ψsq on the bimodule pKXr,KpXs,Xrq,KXsq so
that ψr,spθξr ,ξsq “ trpξrqtspξsq˚. We will often interpret π as te or ψe to simplify our notation
henceforth.
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Proposition 3.2. [14, Proposition 2.4] Let X be a product system over P with coefficients in
A. Let pπ, tq be a Toeplitz representation of X. If x P P ˚ then

txpXxq˚ “ tx´1pXx´1q.

If w P P and x P P ˚ then

iwx
w pkwq P KXwx and ψwxpiwx

w pkwqq “ ψwpkwq for all kw P KXw.

Suppose that T pXq is faithfully represented by prπ,rtq. By the universal property of T pXq
there is a canonical ˚-homomorphism

rδ : T pXq ÝÑ T pXq b C˚pGq;rtpξpq ÞÑ rtpξpq b up.

Sehnem [42, Lemma 2.2] has shown that rδ is a non-degenerate and faithful coaction of T pXq
whenX is non-degenerate, with each spectral space T pXqg, with g P G, be given by the products

rtp1pξp1qrtp2pξp2q˚ ¨ ¨ ¨ rtpnpξpnq˚ for p1p
´1
2 ¨ ¨ ¨ p´1

n “ g.

We will do a little bit more for semigroup homomorphisms.

Definition 3.3. Let P (resp. P) be a unital subsemigroup of a group G (resp. G). If ϑ : G Ñ G

is a group homomorphism such that ϑpP q Ď P, we write ϑ : pG,P q Ñ pG,Pq and say that ϑ is
a semigroup preserving homomorphism.

Proposition 3.4. Let P be a unital subsemigroup of a group G and X be a product system over
P with coefficients in A. Let ϑ : pG,P q Ñ pG,Pq be a semigroup preserving homomorphism and
suppose that prπ,rtq is a faithful representation of T pXq. Then there is a coaction of G on T pXq
such that

rδ : T pXq ÝÑ T pXq b C˚pGq;rtpξpq ÞÑ rtpξpq b uϑppq.

Moreover each spectral space T pXqh with h P G is given by the products of the form

rtp1pξp1qrtp2pξp2q˚ ¨ ¨ ¨ rtpnpξpnq˚ for ϑpp1qϑpp2q´1 ¨ ¨ ¨ϑppnq´1 “ h,

where we impose that rtpipξpiq “ I when pi “ eP and h ‰ eP .

Proof. The universal property induces a ˚-homomorphism rδ : T pXq Ñ T pXq b C˚pGq. More-

over rδ is injective with left inverse given by id b χ. By construction the fibers rT pXqsg contain
the generators of T pXq. By Remark 2.2 and the definition of T pXq`, this gives the coaction of
G. Proposition 2.9 provides the coaction of G.

Remark 3.5. The Fock space representation of Fowler [20] ensures that A, and thus X, embeds
isometrically in T pXq. In short, let FpXq “

ř‘
qPP Xq and for a P A and ξp P Xp define pπ, tpq

by
πpaqξq “ ϕqpaqξq and tppξpqξq “ ξpξq for all ξq P Xq.

Then every pπ, tpq defines a representation of Xp and hence it induces a representation of T pXq.
By taking the compression at the pe, eq-entry we see that π, and thus tp, is injective.

Definition 3.6. Let P be a unital subsemigroup of a group G and X be a product system
over P with coefficients in A. The Fock algebra TλpXq is the C*-algebra generated by the Fock
representation pπ, tq. The Fock tensor algebra TλpXq` of X is the subalgebra of TλpXq generated
by A and X.

It is shown in [14, Proposition 4.1] that the Fock algebra admits an analogous normal coaction.
Proposition 2.9 yields the next proposition.

Proposition 3.7. Let P be a unital subsemigroup of a group G and X be a product system
over P with coefficients in A, and let TλpXq “ C˚pπ, tq be its associated Fock algebra. If
ϑ : pG,P q Ñ pG,Pq is a semigroup preserving homomorphism then there is a normal coaction of
G on TλpXq such that

δG : TλpXq ÝÑ TλpXq b C˚pGq; tpξpq ÞÑ tpξpq b uϑppq.
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Moreover for each h P G the spectral space TλpXqh is the closed linear span of the products of
the form

tp1pξp1qtp2pξp2q˚ ¨ ¨ ¨ tpn´1
pξpn´1

qtpnpξpnq˚ for ϑpp1qϑpp2q´1 ¨ ¨ ¨ϑppnq´1 “ h,

where we impose that tpipξpiq “ I when pi “ eP and h ‰ eP .

In turn the coaction of G induces a faithful conditional expectation of the following form.

Proposition 3.8. Let P be a unital subsemigroup of a group G and X be a product system over
P with coefficients in A. Let ϑ : pG,P q Ñ pG,Pq be a semigroup preserving homomorphism.
Then TλpXq admits a faithful conditional expectation EP such that

EPpψr,spkr,sqq “ δϑprq,ϑpsqψr,spkr,sq for all kr,s P KpXs,Xrq.

Proof. Let δG : TλpXq Ñ TλpXq b C˚pGq be the normal coaction and let ωe,e be the faithful
conditional expectation on C˚

λpGq. Then TλpXq admits the faithful conditional expectation

EP :“ pid b ωe,eqpid b λqδG.

On the other hand for h P P let Yh :“
ř‘

ϑppq“hXh and let the projections Qh : FpXq Ñ Yh. We

will show that

EPp¨q “
ÿ

hPP

Qh ¨ Qh.

It suffices to apply on the spanning elements of the form

f :“ tp1pξp1qtp2pξp2q˚ ¨ ¨ ¨ tpn´1
pξpn´1

qtpnpξpnq˚

where we impose that tpipξpiq “ I when pi “ eP . For p P P we directly compute

EPpfq “

#
fξp if ϑpp´1

1 p2 ¨ ¨ ¨ p´1
n´1pnq “ eG ,

0 otherwise.

If fξp ‰ 0 then it is in some Xr with r “ p´1
1 p2 ¨ ¨ ¨ p´1

n´1pnp which gives ϑprq “ ϑppq. On the
other hand we have that

˜
ÿ

hPP

QhfQh

¸
ξp “

#
fξp if ϑpp´1

1 p2 ¨ ¨ ¨ p´1
n´1pnpq “ ϑppq,

0 otherwise.

We have that ϑpp´1
1 p2 ¨ ¨ ¨ p´1

n´1pnpq “ ϑppq if and only if ϑpp´1
1 p2 ¨ ¨ ¨ p´1

n´1pnq “ eG and so

EPpfq “
ÿ

hPP

QhfQh.

For the second part let r, s P P and ξp P Yh so that ϑppq “ h. Then we directly compute

EPpψr,spkr,sqqξp “ Qhψr,spkr,sqξp “

#
ψr,spkr,sqξp if p “ ss1, ϑppq “ ϑprs1q,

0 otherwise,

“ δϑprq,ϑpsqψr,spkr,sqξp,

where we used that ϑ is a group homomorphism and so ϑpsqϑps1q “ ϑppq “ ϑprqϑps1q. As p P P

is arbitrary the proof is complete.

3.3. Covariance algebras and Cuntz-Nica-Pimsner algebras. Let us review Sehnem’s
strong covariance relations from [42]. We will be using a description presented in [14]. Let P
be a unital subsemigroup of a group G. For a finite set F Ď G let

KF :“
č

gPF

gP.
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For r P P and g P F define the ideal of A given by

Ir´1Ktr,gu
:“

$
&
%

Ş
tPKtr,gu

kerϕr´1t if Ktr,gu ‰ H and r R Ktr,gu,

A otherwise.

Then let
Ir´1pr_F q :“

č

gPF

Ir´1Ktr,gu
,

and let the C*-correspondences

XF :“ ‘rPPXrIr´1pr_F q and X`
F

:“ ‘gPGXgF .

For every p P P define the representation pπF , tF,pq to X`
F given by

tF,ppξpqpηrq “ up,rpξp b ηrq P XprIpprq´1ppr_pF q, for all ηr P XrIr´1pr_F q.

It is well-defined as Ir´1pr_F q “ Ipprq´1ppr_pF q for all r P P , and Ir´1pr_F q “ Ips´1rq´1ps´1r_s´1F q

for all r P sP . This provides a representation pπF , tF q of X on LpX`
F q that integrates to a

representation
ΦF : T pXq ÝÑ LpX`

F q.

Now let the projections Qg,F : X`
F Ñ XgF and define

}f}F :“ }Qe,FΦF pfqQe,F } for all f P rT pXqse .

In particular we have that

tF,ppξpqQg,F “ Qpg,F tF,ppξpq and tF,ppξpq˚Qg,F “ Qp´1g,F tF,ppξpq˚.

and so Qe,F is reducing for the fixed point algebra rT pXqse under ΦF .

Definition 3.9. [42, Definition 3.2] A Toeplitz representation is called strongly covariant if it
vanishes on the ideal Ie ⊳ rT pXqse given by

Ie :“ tf P rT pXqse | lim
F

}f}F “ 0u

where the limit is taken with respect to the partial order induced by inclusion on finite sets of P .
The universal C*-algebra with respect to the strongly covariant representations of X is denoted
by A ˆX P .

That is AˆXP is the quotient T pXq{I8 for the ideal I8⊳T pXq of strong covariance relations
generated by Ie. One of the important points of Sehnem’s theory is that A ãÑ AˆX P faithfully.
As a quotient by an induced ideal of T pXq, the C*-algebra A ˆX P inherits the coaction of G.
The following is the main theorem of [42].

Theorem 3.10. [42, Theorem 3.10] Let P be a unital subsemigroup of a group G and X be a
product system over P with coefficients in A. Then a ˚-homomorphism of AˆX P is faithful on
A if and only if it is faithful on the fixed point algebra rA ˆX P se.

Due to the grading A ˆX P is the maximal C*-algebra of a Fell bundle over G. We consider
two reduced versions.

Definition 3.11. Let P be a unital subsemigroup of a group G and X be a product system
over P with coefficients in A. We write A ˆX,λ P for the reduced C*-algebra of the Fell bundle
in A ˆX P . If q : T pXq Ñ TλpXq is the canonical ˚-epimorphism, then we write qscpTλpXqq for
the quotient of TλpXq by the ideal qpI8q.

Remark 3.12. The notation SCX is used in [14] to denote the G-Fell bundle inside A ˆG
X P .

Therefore we have two ways of writing the related C*-algebras in the sense that

A ˆX P “ C˚pSCXq and A ˆX,λ P “ C˚
λpSCXq.

Sehnem shows in [42, Lemma 3.9] that the strong covariance relations do not depend on the
group embedding in the following sense. Suppose that P admits two group embeddings iG : P Ñ
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G and iH : P Ñ H and write C˚
maxpSCGXq “ C˚pπG, tGq and C˚

maxpSCHXq “ C˚pπH , tHq. Then
there exists a ˚-isomoprihsm

C˚
maxpSCGXq ÝÑ C˚

maxpSCHXq; tGiGppqpξiGppqq ÞÑ tHiH ppqpξiH ppqq.

The ˚-isomorphism between C˚
maxpSCGXq and C˚

maxpSCHXq descends to a ˚-isomorphism
that fixes X at the reduced level, as well, and thus A ˆX,λ P does not depend on the group
embedding either. Indeed suppose that G is the enveloping group of P and thus there exists
a group homomoprhism γ : G Ñ H that is injective on P . We then have that there is a
˚-homomorphism between the maximal C*-algebras induced by the G-Fell bundle and the H-
Fell bundle on Sehnem’s covariance algebra. Sehnem’s result [42, Lemma 3.9] is that this
˚-homomorphism is faithful. By Fell bundle theory we then get a canonical ˚-epimorphism

C˚
λpSCGXq ÝÑ C˚

λpSCHXq

that fixes X. Hence by construction it intertwines the normal faithful conditional expectations.
Their fixed point algebras are ˚-isomorphic to the fixed point algebras in the maximal C*-
algebras and these are ˚-isomorphic by [42, Lemma 3.9]. Thus the ˚-epimorphism on the
reduced models is faithful.

We see that the representations ΦF used to define the strong covariance relations are sub-
representations of δG,λ : TλpXq Ñ TλpXq b C˚

λpGq for δG,λ “ pid b λqδG where δG is the normal
coaction on the Fock representation. Indeed we can identify

X`
F “ ‘gPG ‘rPP XrIr´1pr_gF q

with a submodule of FX b ℓ2pGq through the isometry given by

XrIr´1pr_gF q Q ηr ÞÑ ηr b δg P Xr b ℓ2pGq.

Recall here that FX b ℓ2pGq is the exterior tensor product of two modules (seeing ℓ2pGq as a
module over C), and there is a faithful ˚-homomorphism

TλpXq b C˚
λpGq Ď LpFXq b Bpℓ2pGqq ãÑ LpFX b ℓ2pGqq.

We then see that

tF,ppξpq “ ptppξpq b λpq|X`
F

“ δG,λptppξpqq|X`
F

for all p P P,

and likewise for their adjoints. Thus X`
F is reducing under δG,λpTλpXqq. Recall also that XF is

reducing for rT pXqse as the range of the projection Qe,F and so we obtain the representation
à

fin FĎG

ΦF p¨q|XF
: rT pXqse ÝÑ rTλpXqse ÝÑ

ź

fin FĎG

LpXF q.

In particular, by definition we have for an f P T pXq that

f P Ie if and only if
à

fin FĎG

ΦF pfq|XF
P c0pLpXF q | fin F Ď Gq.

By definition we then get that the following diagram

rT pXqse

��

// rTλpXqse //

qsc

��

ś
fin FĎG

LpXF q

��

rA ˆX P se // rqscpTλpXqqse //
ś

fin FĎG

LpXF q
L
c0pLpXF q | fin F Ď Gq

is commutative. Consequently the e-graded ˚-algebraic relations in TλpXq and A ˆX P induce
relations in qscpTλpXqq. In particular, since by [42, Proposition 3.5] A is represented faithfully
in the bottom right corner of the above diagram, we obtain the following corollary.
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Corollary 3.13. [14, Corollary 5.5] Let P be a unital subsemigroup of a group G and X

be a product system over P with coefficients in A. Then A ãÑ qscpTλpXqq. Moreover a ˚-
homomorphism of qscpTλpXqq is faithful on A if and only if it is faithful on rqscpTλpXqqse. Like-
wise for the reduced C*-algebra A ˆX,λ P .

4. Compactly aligned product systems over weak right LCM-inclusions

4.1. Weak right LCM-inclusions. A semigroup P is said to be a right LCM-semigroup if it
is left-cancellative and satisfies Clifford’s condition [32, 37]:

for every p, q P P with pP X qP ‰ H there exists a w P P such that pP X qP “ wP .

In other words, if p, q P P have a right common multiple then they have a right Least Common
Multiple. As we always see a semigroup P inside a group G, it follows that P is by default
cancellative, and we will refer to pG,P q simply as a weak right LCM-inclusion. We use the
adjective “weak” here to emphasize that we do not assume that the Least Common Multiple
property holds for all elements in G.

It is clear that w is a right Least Common Multiple for p, q if and only if wx is a right
LCM of p, q for every x P P ˚. A weak quasi-lattice pG,P q is a weak right LCM-inclusion with
P X P´1 “ teu, i.e., when least common multiples are unique (whenever they exist).

Definition 4.1. Let pG,P q be a right weak LCM-inclusion. A finite set F is said to be _-closed
if for any p, q P F with pP X qP ‰ H there exists a unique w P F such that pP X qP “ wP .

Equivalently, a finite F Ď P is _-closed if and only if the familiar relation

p ď q ô q´1p P P

defines a partial order on F . In particular, if F is _-closed, then pP ‰ qP for any p, q P F with
p ‰ q. Furthermore, any _-closed set admits maximal and minimal elements. Our terminology
here regarding _-closed sets extends the familiar one from the case where pG,P q is a weak
quasi-lattice order. There is an alternative way for describing _-closed sets in the context of
weak right LCM-inclusions. Given a finite subset F Ď P we write

IpF q :“ tpP | p P F u

for the set of principal ideals defined by F . It then follows that F is _-closed if and only if IpF q
is closed under intersections and the partial order defined on IpF q by set theoretic inclusion lifts
to a partial order on F .

Let F Ď P be a finite set so that IpF q is closed under intersections. From such a set F we can
produce a _-closed subset F_ such that IpF q “ IpF_q by choosing a minimal set of distinct
representatives for the principal ideals. This process does not produce a unique F_ in general.

4.2. Nica-covariant representations. Following Fowler’s work [20], Brownlowe, Larsen and
Stammeier [5], and Kwaśniewski and Larsen [30] considered product systems of right LCM-
semigroups.

Definition 4.2. A product system X over a weak right LCM-semigroup P with coefficients in
A is called compactly aligned if for p, q P P with pP X qP “ wP we have that

iwp pSqiwq pT q P KXw whenever S P KXp, T P KXq.

A note is in order for clarifying that this is independent of the choice of w. Recall that if
w1 is a right LCM of p, q then w1 “ wx for some x P P ˚. Since LXw » LXwx we have that
iwp pSqiwq pT q P KXw if and only if iwx

p pSqiwx
q pT q “ iwx

w piwp pSqiwq pT qq P KXwx for all x P P ˚.

Definition 4.3. Let X be a compactly aligned product system over a right LCM-semigroup P

with coefficients in A. A Nica-covariant representation pπ, tq is a Toeplitz representation of A
that in addition satisfies the Nica-covariance condition: for S P KXp and T P KXq we have that

ψppSqψqpT q “

#
ψwpiwp pSqiwq pT qq if pP X qP “ wP,

0 otherwise.
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The Toeplitz-Nica-Pimsner algebra NT pXq of X is the universal C*-algebra generated by A and
X with respect to the representations of X. The Toeplitz-Nica-Pimsner tensor algebra NT pXq`

of X is the subalgebra of T pXq generated by A and X.

Remark 4.4. As noted in [14], the definition of Nica-covariance requires that the right hand
side is independent of the choice of the least common multiple, i.e., if pP XqP “ wP and x P P ˚

then

ψwpiwp pSqiwq pT qq “ ψwxpiwx
p pSqiwx

q pT qq for all S P KXp, T P KXq.

This is verified in [14, Proposition 2.4] (see Proposition 3.2 herein) and completes the definition
of Nica-covariance in [30].

Remark 4.5. By definition NT pXq is a quotient of T pXq by an ideal generated by a subspace
of rT pXqse. Even though NT pXq “ T pXq when P “ Z`, this is not the case even when
P “ Z

n
`. Dor-On and Katsoulis provide a counterexample to this effect in [15, Example 5.2].

The same example further shows that T pXq` is not completely isometric to NT pXq`.

Under the assumption of compact alignment, one can check that the Fock representation is
automatically Nica-covariant. Thus NT pXq is non-trivial. As NT pXq is a quotient of T pXq
by an induced ideal, by [7, Proposition A.1] the non-degenerate and faithful coaction of T pXq
descends canonically to one on NT pXq. Alternatively one may use the arguments of the proof
of Proposition 3.4 for the Toeplitz-Nica-Pimsner tensor algebra to deduce the following.

Proposition 4.6. Let pG,P q be a weak right LCM-inclusion and X be a compactly aligned
product system over P with coefficients in A. Suppose that ppπ,ptq is a faithful representation of
NT pXq. Then the canonical ˚-homomorphism

pδ : NT pXq ÝÑ NT pXq b C˚pGq;ptpξpq ÞÑ ptpξpq b up

defines a coaction of G on NT pXq.

We have refrained from describing the spectral spaces for the coaction on NT pXq because of
the following additional property of Nica-covariant representations. Let pπ, tq be a Nica-covariant
representation of X. We compute

tppXpq˚tppXpq ¨ tppξpq˚tqpξqq ¨ tqpXqq˚tqpXqq Ď
“
tppXpq˚ψppKXpqψqpKXqqtqpXqq

‰
.

Next take a limit by c.a.i.’s in
“
tppXpq˚tppXpq

‰
and in

“
tqpXqq˚tqpXqq

‰
, and derive that

tppξpq˚tqpξqq P
“
tp1pXp1qtq1 pXq1q˚

‰
for wP “ pP X qP, p1 “ p´1w, q1 “ q´1w,

and

tppξpq˚tqpξqq “ 0 for pP X qP “ H.

Hence the C*-algebra C˚pπ, tq generated by πpAq and tppXpq admits a Wick ordering in the
sense that

C˚pπ, tq “ spanttppξpqtqpξqq˚ | ξp P Xp, ξq P Xq and p, q P P u.

In particular if NT pXq “ C˚ppπ,ptq then the spectral spaces that only matter are of the form

NT pXqpq´1 “ spantptppξpqptqpξqq˚ | ξp P Xp, ξq P Xqu,

that is, only for g P G of the form g “ pq´1 for some p, q P P .
The following proposition gives a direct criterion to check compact alignment.

Proposition 4.7. Let pG,P q be a weak right LCM-inclusion and let X “ tXpupPP be a product
system over Xe “ A. Let pπ, tq be an injective representation X. Then X is compactly aligned,
if and only if for all p, q P P we have that

tppXpq˚tqpXqq Ď rtp´1wpXp´1wqtq´1wpXq´1wq˚s for wP “ pP X qP,

if and only if for all p, q P P we have that

tppXpqtppXpq˚tqpXqqtqpXqq˚ Ď rtwpXwqtwpXwq˚s “ ψwpKXwq for wp “ pP X qP,
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with the understanding that the left hand sides are the zero space when p and q have no right
common multiple.

Proof. The first equivalence follows in the same way with [27, Proposition 3.2] and it is omitted.
By using that XpX

˚
pXp is dense in Xp for every p P P , we get the second equivalence.

Let us now pass to the analysis of the cores of a Nica-covariant representation pπ, tq of X.
For a finite F Ď P that is _-closed we write

BF :“ spantψppkpq | kp P KXp, p P F u.

Since F is _-closed, Nica-covariance implies that BF is a ˚-subalgebra of C˚pπ, tq. In [14,
Proposition 2.10] we show that every BF is actually a C*-subalgebra. Moreover for such an F

we write
BF ¨P :“ spantψqpkqq | kq P KXq, q P F ¨ P u.

Likewise this is also a (closed) ˚-subalgebra. Finally we write

BP zteu :“ spantψppkpq | kp P KXp, e ‰ p P P u and BP :“ πpAq ` BP zteu.

We see that BP zteu is an ideal in BP and thus the sum πpAq ` BP zteu is indeed closed. We refer
to these sets as the cores of the representation pπ, tq. In [14, Proposition 2.11] we showed that
we can exhaust the cores by using finite _-closed sets, in the sense that

BP “
ď

tBF | F Ď P finite and _-closedu.

We denote by BF the cores of TλpXq “ C˚pπ, tq. Recall that TλpXq admits the faithful
conditional expectation

EP : TλpXq ÝÑ BP ; tppξpqtqpξqq˚ “ δp,qtppξpqtqpξqq

given by the sum of compressions to the pr, rq-entries in LpFXq (see Proposition 3.8).
The Toeplitz-Nica-Pimsner algebra models the Fock algebra in this context. A compactly

aligned product system X over P with coefficients in A is called amenable if the Fock represen-
tation is faithful on NT pXq. Let us give some equivalent condition for this to happen.

Theorem 4.8. Let pG,P q be a weak right LCM-inclusion and X be a compactly aligned product
system over P with coefficients in A. The following are equivalent:

(i) The coaction of G on NT pXq is normal.
(ii) The conditional expectation on NT pXq is faithful.
(iii) The Fock representation is faithful on NT pXq.
(iv) The representation NT pXq Ñ C˚pπ, tq bC˚

λpP q;rtppξpq ÞÑ tppξpq bVp is faithful for any
injective Nica-covariant pair pπ, tq.

Proof. By the universal property there exists a canonical ˚-representation

NT pXq ÝÑ NT pXq b C˚
λpGq

that intertwines the conditional expectations. Thus items (i) and (ii) are equivalent. For the
same reason items (ii) and (iii) are equivalent.

Assuming item (iii) we have to show that the representation NT pXq Ñ C˚pπ, tq b C˚
λpP q is

faithful on the fixed point algebra. It suffices to show injectivity on the F -boxes for arbitrary
_-closed F Ď P . To this end suppose that

ÿ

pPF

ψppkpq “ 0

for some kp P KXp and let p0 be minimal so that kp0 ‰ 0. Injectivity of π then induces that
ψp0pkp0q ‰ 0 as well. However, if Qp0 : ℓ

2pP q Ñ Cep0 is the canonical projection, minimality of
p0 yields

ψp0pkp0q “ I b Qp0

˜
ÿ

pPF

ψppkpq

¸
I b Qp0 “ 0,
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which is a contradiction. This shows that item (iii) implies item (iv).
Since the ˚-representation NT pXq Ñ C˚pπ, tq b C˚

λpP q intertwines the conditional expecta-
tions, we finally have that item (iv) implies item (i), and the proof is complete.

On the other hand strongly covariant representations are Nica-covariant (which is expected
as Nica-covariance is an e-graded relation in rTλpXqse). It is proven by Sehnem in [42, Propo-
sition 4.2] for quasi-lattices, but the same proof passes to right LCM-semigroups as well [14,
Proposition 5.4]. Hence A ˆX P is a quotient of NT pXq.

Proposition 4.9. [14, Proposition 5.4] [42, Proposition 4.2] Let X be a compactly aligned
product system over a right LCM-semigroup P with coefficients in A. Let ψF,p : KXp Ñ LpX`

F q
be the induced representations from pπF , tF,pq. A representation pπ, tq of X is strongly covariant
if and only if it is Nica-covariant and it satisfies

ÿ

pPF

ψF,ppkpq|XF
“ 0 ùñ

ÿ

pPF

ψppkpq “ 0

for any finite F Ď P and kp P KXp.

Carlsen-Larsen-Sims-Vittadello [7] explored the idea of finding the co-universal C*-algebra
with respect to injective equivariant Nica-covariant representations of X. By using the C*-
envelope machinery we can prove that this object always exists, thus completing the co-universal
aspect of their programme at the more general context of right weak LCM-inclusions.

Definition 4.10. Let pG,P q be a weak right LCM-inclusion and X be a compactly aligned
product system over P with coefficients in A. We say that a representation pπ, tq of X is
co-universal for NT pXq if

(i) π is faithful.
(ii) C˚pπ, tq is an equivariant quotient of NT pXq.
(iii) pπ, tq factors through any other equivariant quotient of NT pXq that is injective on A.

Of course the C*-algebras of co-universal representations are automatically ˚-isomorphic by
an equivariant homomorphism. In [14] we proved that the equivariant representation

NT pXq ÝÑ C˚
envpTλpXq`, G, δGq

that is given by the diagram

NT pXq //

%%❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

C˚
envpTλpXq`, G, δGq

TλpXq

66♠♠♠♠♠♠♠♠♠♠♠♠♠

is co-universal. Let us review the main arguments and see what more we can obtain.

Proposition 4.11. [14, Proposition 4.4] Let pG,P q be a weak right LCM-inclusion and X be
a compactly aligned product system over P with coefficients in A. Let Φ: TλpXq Ñ B be a
˚-representation such that Φ|πpAq is faithful. Then there exists a faithful ˚-homomorphism

TλpXq ÝÑ B b C˚
λpP q; tppξpq ÞÑ Φtppξpq b Vp.

As a consequence the injective equivariant representations on product systems generate C*-
covers for the cosystem pTλpXq`, G, δGq.

Proposition 4.12. [14, Proposition 4.5] Let pG,P q be a weak right LCM-inclusion and X be
a compactly aligned product system over P with coefficients in A. Let Φ: TλpXq Ñ B be an
equivariant ˚-epimorphism such that Φ|πpAq is faithful. Then B is a C*-cover for the cosystem

pTλpXq`, G, δGq.

Another consequence of Proposition 4.11 provides a generalization of the Extension Theorem
of [28]. It essentially allows us to recognize a Fock tensor algebra by the presence of a coaction.
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Theorem 4.13 (Extension Theorem). Let pG,P q be a weak right LCM-inclusion and X be
a compactly aligned product system over P with coefficients in A. Let Φ: TλpXq Ñ B be a
representation of X and set

A :“ algtΦπpAq,ΦtppXpq | p P P u.

Then the following are equivalent:

(i) Φ|TλpXq` is completely isometric.
(ii) There exists a completely contractive map

A ÝÑ B b C˚pGq; Φtppξpq ÞÑ Φtppξpq b up.

(iii) There exists a completely contractive map

A ÝÑ B b C˚
λpGq; Φtppξpq ÞÑ Φtppξpq b λp.

(iv) There exists a completely contractive map

A ÝÑ B b C˚
λpP q; Φtppξpq ÞÑ Φtppξpq b Vp.

Proof. In Figure 1 we have a diagram of completely contractive representations induced by
Proposition 4.11 and Proposition 4.12. If any of the items holds then it makes the representation
of TλpXq` to A completely isometric and the proof is complete.

TλpXq`

»

��
++❲❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲

algtΦtppξpq b up | ξp P Xp, p P P u

��

A

algtΦtppξpq b λp | ξp P Xp, p P P u

��

algtΦtppξpq b Vp | ξp P Xp, p P P u

»

��
TλpXq`

Figure 1: Diagram of completely positive maps fixing the nonselfadjoint part

We now come to the last part of [14] that connects reduced C*-algebras with the C*-envelope.
By Corollary 3.13 and Proposition 4.12 we get a canonical ˚-epimorphism

qscpTλpXqq ÝÑ A ˆX,λ P » C˚
envpTλpXq`, G, δGq.

The reader is also reminded here of the notation used here and in [14] as explained in Remark
3.12. The same remark asserts that the C*-envelope of the cosystem is independent of the group
embedding in this setting.

Theorem 4.14. [14, Theorem 4.9, Theorem 5.3 and Corollary 5.6] Let pG,P q be a weak right
LCM-inclusion and X be a compactly aligned product system over P with coefficients in A. Then
the equivariant ˚-epimorphism

NT pXq ÝÑ C˚
envpTλpXq`, G, δGq

is co-universal. Moreover we have an equivariant ˚-isomorphism

C˚
envpTλpXq`, G, δGq » A ˆX,λ P.
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The equivariant ˚-epimorphism

qscpTλpXqq ÝÑ A ˆX,λ P » C˚
envpTλpXq`, G, δGq

is faithful if and only if the coaction of G on qscpTλpXqq is normal.

5. Controlled maps

Let ϑ : pG,P q Ñ pG,Pq be a semigroup preserving homomorphism between weak right LCM-
inclusions and let X be a compactly aligned product system over P with coefficients in A. By
Proposition 2.9 the Toeplitz algebra admits a G-grading that contains the G-grading, and the
same is true for the fixed point algebras. Of course this may be useless; for example the ϑ-fixed
point algebra for the map for ϑ : G Ñ teu is the entire C*-algebra. Nevertheless more can be
obtained for weak right LCM-inclusions as long as we impose axioms that control the map. The
following extends the controlled maps on quasi-lattice ordered groups from [31], see also [20]
and [12], to the context of weak right LCM-inclusions.

Definition 5.1. A controlled map ϑ : pG,P q Ñ pG,Pq between weak right LCM-inclusions is a
semigroup preserving homomorphism such that:

(A1) If pP X qP ‰ H then ϑppqP X ϑpqqP “ ϑppP X qP qP.
(A2) If pP X qP ‰ H and ϑppq “ ϑpqq then p “ q.

It is worth pointing out that in the case where P “ G then there is only one right ideal
(generated by the identity). Therefore a controlled map in this case is simply an injective group
homomorphism due to (A2).

Remark 5.2. It is clear that (A1) is equivalent to having ϑppqP X ϑpqqP “ ϑpwqP whenever
pP X qP “ wP . Moreover, because of (A2) we have that ϑ´1peGq X P “ teGu. Indeed as ϑ is a
group homomorphism we have that ϑpeGq “ eG . Now if ϑppq “ eG for some p P P , then since
pP X eGP “ pP ‰ H we get by (A1) that p “ eG. This extra generality is crucial when we wish
to consider, the generalized length function given by abelianization on the free monoid F

`
n [31],

and, more generally, on Artin monoids of rectangular type [11].

Remark 5.3. A similar type of maps appear in [10] and [5, Section 3]. However the maps
therein satisfy the stronger requirement that ϑppqP X ϑpqqP “ ϑppP X qP qP for all p, q P P .
This means that p, q P P have a right LCM if and only if so do ϑppq, ϑpqq P P. In our Definition
5.1, the condition (A1) allows the possibility that ϑppq, ϑpqq have a right LCM in P even when
pP X qP “ H.

We will investigate the impact of the existence of a controlled map on Nica-covariant rep-
resentations. Henceforth fix a controlled map ϑ : pG,P q Ñ pG,Pq between two weak right
LCM-inclusions. Suppose that pπ, tq is a Nica-covariant representation of a compactly aligned
product system X over P with coefficients in A. If p, q P P with ϑppq “ ϑpqq then by (A2) either
p “ q or pP X qP “ H; thus Nica-covariance yields the orthogonality

tppξpq˚tqpξqq “ δp,qπpxξp, ξqyq.

Hence the C*-algebra

Bϑ´1phq :“ spantψp,qpkp,qq | kp,q P KpXq,Xpq, ϑppq “ h “ ϑpqqu

is a matrix C*-algebra. For a _-closed F Ď P we define

Bϑ´1pFq :“ spantBϑ´1phq | h P Fu.

By conditions (A1) and (A2) of Definition 5.1 we get that ϑ´1pFq is also _-closed (and thus
the above space is a C*-algebra). Therefore every Bϑ´1pFq is the inductive limit of the matrix
C*-subalgebras

spantψp,qpkp,qq | kp,q P KpXq,Xpq, p, q P F, ϑppq “ ϑpqqu for finite _-closed F Ď ϑ´1pFq.
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Taking the closure of the union we obtain the ϑ-fixed point algebra

Bϑ´1pPq :“ spantψp,qpkp,qq | kp,q P KpXq,Xpq, ϑppq “ ϑpqqu.

It follows that

BP “ spantψppKXpq | p P P u Ď Bϑ´1pPq.

It is clear that the faithful conditional expectation EP on C˚pπ, tq “ TλpXq of Proposition 3.8
is onto Bϑ´1pPq. We already commented on the effect of semigroup preserving homomorphisms
ϑ : pG,P q Ñ pG,Pq on T pXq and TλpXq. We give some basic facts about the effect of controlled
maps on TλpXq.

Proposition 5.4. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between weak right LCM-
inclusions and let X be a compactly aligned product system over P with coefficients in A. Let
Φ: TλpXq Ñ B be a ˚-representation such that Φ|πpAq is faithful. Then there exists a faithful
˚-homomorphism

TλpXq ÝÑ B b C˚
λpPq; tppξpq ÞÑ Φtppξpq b Vϑppq.

Proof. The proof follows the same lines with Proposition 4.11 with the observation that Bϑ´1phq

for h P G is a matrix algebra.

As an immediate consequence we have the following corollary which extends Theorem 4.13
to the controlled setting.

Corollary 5.5. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between weak right LCM-inclusions
and let X be a compactly aligned product system over P with coefficients in A. Let Φ: TλpXq Ñ B

be a ˚-representation and set

A :“ algtΦπpAq,ΦtppXpq | p P P u.

Then the following are equivalent:

(i) Φ|TλpXq` is completely isometric.
(ii) There exists a completely contractive map

A ÝÑ B b C˚pGq; Φtppξpq ÞÑ Φtppξpq b uϑppq.

(iii) There exists a completely contractive map

A ÝÑ B b C˚
λpGq; Φtppξpq ÞÑ Φtppξpq b λϑppq.

(iv) There exists a completely contractive map

A ÝÑ B b C˚
λpPq; Φtppξpq ÞÑ Φtppξpq b Vϑppq.

Proof. The proof follows as in Theorem 4.13, modulo Proposition 3.7 and Proposition 5.4.

5.1. Controlled elimination. We will require the following lemma for solving polynomial
equations in the ϑ-fixed point algebra.

Lemma 5.6. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between weak right LCM-inclusions
and let X be a compactly aligned product system over P with coefficients in A. Let pπ, tq be an
injective Nica-covariant representation of X.
(i) Let p, q be distinct in ϑ´1phq. For r, s P ϑ´1phq with pr, sq ‰ pp, qq we get

tppXpq˚ψr,spkr,sqtqpXqq “ p0q for all kr,s P KpXs,Xrq.

(ii) Let F Ď P be _-closed and F Ď ϑ´1pFq be finite and _-closed. Let pr, sq P F ˆ F with
ϑprq “ ϑpsq and kr,s P KpXs,Xrq such that

ÿ

r,sPF,ϑprq“ϑpsq

ψr,spkr,sq “ 0,
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and suppose that h ‰ eG is minimal in F so that kp,q ‰ 0 for distinct p, q P ϑ´1phq. Then there
exists a _-closed F 1 Ď P and a finite _-closed F 1 Ď ϑ´1pF 1q with eG R F 1 and |F 1| ď |F | ´ 1
such that

tppXpq˚ψp,qpkp,qqtqpXqq Ď BF 1 .

Proof. (i) First we note that condition (A2) of Definition 5.1 yields pP X qP “ H. By Nica-
covariance we have that tppXpq˚ψr,spkr,sqtqpXqq “ p0q unless:

(5.1) Dw, z, v P P such that pP X rP “ wP, qP X sP “ zP and r´1wP X s´1zP “ vP.

If pr, sq ‰ pp, qq and ϑprq “ h “ ϑpsq, then condition (A2) of Definition 5.1 implies that
pP X rP “ H or qP X sP “ H in which case

tppXpq˚ψr,spkr,sqtqpXqq “ p0q.

(ii) Minimality of h in F forces minimality of p, q in F . If (5.1) holds, then Nica-covariance
yields

tppξpq˚ψr,spkr,sqtqpξqq P ψp´1rv,q´1svpKpXq´1sv,Xp´1rvqq,

otherwise the product is zero. If r “ s and v exists then there are p1, q1, x, x1, y, y1 P P such that

pp1 “ rx, qq1 “ ry and xx1 “ yy1.

But then

pp1x1 “ rxx1 “ ryy1 “ qq1y,

giving the contradiction that pP XqP ‰ H. Hence in this case the product is zero. We will show
that the product is zero also when ϑpp´1rvq “ eG “ ϑpq´1svq for r ‰ s unless pr, sq “ pp, qq. If
ϑpp´1rvq “ eG then condition (A2) of Definition 5.1 yields p P rP . Likewise q P sP . Minimality
of p, q in F forces that either pp, qq “ pr, sq or that kr,s “ 0. Set

F 1 :“ th´1g | g P F , g ą hu and F 1 :“ tu´1v | u, v P F, ϑpuq “ h, u ą vu Ď ϑ´1pF 1q.

We see that F 1 is _-closed with |F 1| ď |F | ´ 1 and so F 1 is _-closed with

|F 1| ď |F ztp, qu| “ |F | ´ 2.

Moreover we see that p´1rv, q´1sv P F 1 whenever v exists. Hence for every ξp P Xp and ξq P Xq

there are suitable k1
r1,s1 with non-trivial r1, s1 P F 1 so that

0 “
ÿ

r,s

tppξpq˚ψr,spkr,sqtqpξqq “ tppξpq˚ψp,qpkp,qqtqpξqq `
ÿ

r1,s1

ψr1,s1pk1
r1,s1q,

and the proof is complete.

In the next proposition we show that we can eliminate elements of the form ψr,spkr,sq for r ‰ s

with ϑprq “ ϑpsq, from a polynomial equation in the ϑ-fixed point algebra. Such arguments
for the left-regular representation appear in [13, Proposition 2.10] and [31, Lemma 4.1] for
semigroups over quasi-lattices, i.e., when Xp “ C for every p P P and pG,P q is a quasi-lattice.
Here we need to move in three directions: (a) beyond one-dimensional fibers, (b) beyond quasi-
lattices, and (c) beyond just the left regular representation. A step towards this direction is
done in [24] for quasi-lattices that are controlled by pZn,Zn

`q, and here we expand further on
this approach.

Proposition 5.7. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between weak right LCM-
inclusions and let X be a compactly aligned product system over P with coefficients in A. Let
pπ, tq and pπ1, t1q be injective Nica-covariant representations such that there exists a canonical
˚-epimorphism

Φ: C˚pπ1, t1q ÝÑ C˚pπ, tq with Φpπ1paqq “ πpaq,Φpt1
ppξpqq “ tppξpq.

Then Φ is injective on B1
P if and only if it is injective on B1

ϑ´1pPq.
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Proof. As B1
P Ď B1

ϑ´1pPq we need to show just one direction. To this end suppose that Φ is

injective on the C*-subalgebras of the form

B1
F “ spantψ1

ppKXpq | p P F u,

for every finite _-closed F Ď P . We will show that Φ is injective on every

B1
ϑ´1pFq “ spantψ1

r,spkr,sq | ϑprq “ ϑpsq P Fu,

for all _-closed F Ď P. Our strategy is to show the implication
ÿ

r,sPF,ϑprq“ϑpsqPF

ψ1
r,spkr,sq P ker Φ ùñ kr,s “ 0 whenever r ‰ s,

for every finite _-closed F Ď ϑ´1pFq. Then injectivity of Φ in the smaller cores yields
ÿ

rPF

ψrpkrq “
ÿ

r,sPF,ϑprq“ϑpsqPF

ψr,spkr,sq “ 0 ùñ
ÿ

rPF

ψ1
rpkrq “ 0,

and so ÿ

r,sPF,ϑprq“ϑpsqPF

ψ1
r,spkr,sq “

ÿ

rPF

ψ1
rpkrq “ 0.

Since F is arbitrary this proves injectivity of Φ on B1
ϑ´1pFq. We proceed by induction on the

size of F .

Case 1. Assume that F “ thu and let F be a finite _-closed subset of ϑ´1pFq. Suppose that
ÿ

r,sPF,ϑprq“ϑpsq“h

ψr,spkr,sq “ 0,

and fix p, q P ϑ´1phq. Then condition (A2) of Definition 5.1 implies that

ψppKXpqψp,qpkp,qqψqpKXqq “ ψppKXpq

¨
˝ ÿ

r,sPF,ϑprq“ϑpsq“h

ψr,spkr,sq

˛
‚ψqpKXqq “ p0q.

Using an approximate identity on both sides gives that ψp,qpkp,qq “ 0 and injectivity of ψ implies
that kp,q “ 0. As pp, qq was arbitrary we have that kr,s “ 0 for all r, s P ϑ´1phq and so

ÿ

r,sPF,ϑprq“ϑpsq“h

ψ1
r,spkr,sq “ 0.

Hence Φ is injective on B1
ϑ´1pFq whenever |F | “ 1.

Case 2. Assume that F “ teG , hu and let F be a finite _-closed subset of ϑ´1pFq. Suppose
that ÿ

r,sPF,ϑprq“ϑpsq

ψr,spkr,sq “ 0.

By condition (A1) of Definition 5.1 we have that if p ‰ q with ϑppq “ ϑpqq P F then p, q P ϑ´1phq.
As before and by using item (i) of Lemma 5.6 on p, q we get that

ψppKXpqψp,qpkp,qqψqpKXqq “ ψppKXpq

¨
˝ ÿ

r,sPF,ϑprq“ϑpsq

ψr,spkr,sq

˛
‚ψqpKXqq “ p0q.

Using an approximate identity eventually gives that kp,q “ 0 whenever p ‰ q. Hence kr,s “ 0
whenever r ‰ s in F and injectivity of Φ on B1

F gives that
ÿ

r,sPF,ϑprq“ϑpsq

ψ1
r,spkr,sq “ 0.

Hence Φ is injective on B1
ϑ´1pFq whenever F “ te, hu.
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Case 3. Assume that F “ th1, h2u and let F be a finite _-closed subset of ϑ´1pFq. Suppose
that ÿ

r,sPF,ϑprq“ϑpsqPth1,h2u

ψ1
r,spkr,sq P kerΦ.

Without loss of generality assume that it is written with the understanding that for every
ψ1
r,spkr,sq we have that either ψ1

r,spkr,sq “ 0 or that

ψ1
r,spkr,sq R B1

ϑ´1pϑprqPq.

Choose h P F be minimal such that ψ1
p,qpkp,qq ‰ 0 for distinct p, q P ϑ´1phq. Hence kp,q ‰ 0 and

so
0 ‰ ψ1

p,qpkp,qq R B1
ϑ´1phPq.

By using Lemma 5.6 item (ii) we have that

tppXpq˚ψp,qpkp,qqtqpXqq Ď Bϑ´1pF 1q for |F 1| ď 1,

with eG R F 1. By using injectivity of Case 2 we then derive that

ψ1
ppKXpqψ1

p,qpkp,qqψ1
qpKXqq Ď B1

ϑ´1phPq.

By using approximate identities on both sides we get the contradiction

ψ1
p,qpkp,qq P B1

ϑ´1phPq.

Hence Φ is injective on B1
ϑ´1pFq whenever |F | ď 2.

Case 4. Let F Ď P be _-closed with |F | “ n ` 1 and assume that Φ is injective on B1
ϑ´1pF 1q

for all F 1 Ď P with |F 1| ď n. We will show that it is injective on B1
ϑ´1pFq. To this end let F be

a finite _-closed subset of ϑ´1pFq and suppose that
ÿ

r,sPF,ϑprq“ϑpsqPF

ψ1
r,spkr,sq P kerΦ,

with the understanding that for every ψ1
r,spkr,sq we have that either ψ1

r,spkr,sq “ 0 or that

ψ1
r,spkr,sq R B1

ϑ´1pϑprqPq.

Choose h P F be minimal such that ψ1
p,qpkp,qq ‰ 0 for distinct p, q P ϑ´1phq. Hence kp,q ‰ 0 and

so
0 ‰ ψ1

p,qpkp,qq R B1
ϑ´1phPq.

By using Lemma 5.6 item (ii) we then have that

tppXpq˚ψp,qpkp,qqtqpXqq Ď Bϑ´1pF 1q for |F 1| ď |F | ´ 1 “ n.

By using the induction hypothesis we then derive that

ψ1
ppKXpqψ1

p,qpkp,qqψ1
qpKXqq Ď Bϑ´1pF 1q Ď B1

ϑ´1phPq.

By using approximate identities on both sides we have the contradiction

ψ1
p,qpkp,qq P B1

ϑ´1phPq.

This concludes the proof of the proposition.

Combining with [42, Theorem 3.10] we get the following corollary.

Corollary 5.8. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between weak right LCM-inclusions
and let X be a compactly aligned product system over P with coefficients in A. Then the following
are equivalent for a strongly covariant representation pπ, tq of A ˆX P :

(i) The ˚-representation π is faithful on A.
(ii) The induced ˚-representation is faithful on the fixed point algebra BP of A ˆX P .
(iii) The induced ˚-representation is faithful on the ϑ-fixed point algebra Bϑ´1pPq of AˆX P .

In particular this holds for the ˚-representations of qscpTλpXqq and A ˆX,λ P .
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A second application of the controlled elimination allows to pass in-between the C*-envelopes
induced by G and G.

Proposition 5.9. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between weak right LCM-
inclusions, and let X be a compactly aligned product system over P with coefficients in A.
Let δG be the induced coaction of G on TλpXq and TλpXq`. Then C˚

envpTλpXq`, G, δGq inherits
a normal coaction of G and there exists a G-equivariant ˚-isomorphism

C˚
envpTλpXq`, G, δGq » C˚

envpTλpXq`,G, δGq

that fixes TλpXq`.

Proof. By Theorem 2.7, Proposition 2.9 and Proposition 3.7, we get that C˚
envpTλpXq`, G, δGq

admits a normal coaction of G and therefore there exists a G-equivariant ˚-epimorphism

Φ: C˚
envpTλpXq`, G, δGq ÝÑ C˚

envpTλpXq`,G, δGq

that fixes TλpXq`. By construction Φ is G-equivariant, and so it intertwines the faithful condi-
tional expectations induced by G. On the other hand, by Theorem 2.7 the map Φ is faithful on
the G-fixed point algebra of C˚

envpTλpXq`, G, δGq. By Proposition 5.7 the map Φ is faithful on
the G-fixed point algebra of C˚

envpTλpXq`, G, δGq. Consequently Φ is injective.

6. Applications

6.1. Co-universality of Sehnem’s covariance algebra. We will consider weak right LCM-
inclusions that are controlled by exact groups. In this case we get normality of the coaction of
G on qscpTλpXqq, and thus the latter coincides with A ˆX,λ P , and by [14, Theorem 5.3] with

C˚
envpTλpXq`, G, δGq. This provides another algebraic description of C˚

envpTλpXq`, G, δGq by the
strong covariance relations in the Fock space representation.

Theorem 6.1. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between weak right LCM-inclusions
and let X be a compactly aligned product system over P with coefficients in A. Consider the
canonical ˚-epimorphisms

qscpTλpXqq ÝÑ A ˆX,λ P » C˚
envpTλpXq`, G, δGq ÝÑ C˚

envpTλpXq`q.

If G is exact then the left map is faithful. If in addition G is abelian then the right map is also
faithful.

Proof. First we show that the ideal of the strong covariance relations is G-induced. Let Iλ be
the image of the strong covariance relations in TλpXq so that TλpXq{Iλ “ qscpTλpXqq. Let us
denote by BF the cores of the Fock representation pπ, tq and let qIλ : TλpXq Ñ qscpTλpXqq be
the canonical ˚-epimorphism. Proposition 5.7 implies that

Iλ X Bϑ´1pPq “
ď

finite, _-closed FĎP

ker qIλ X Bϑ´1pFq

“
ď

finite, _-closed FĎP

ker qIλ X BF “ Iλ X BP .

Therefore we get that

Iλ “
@
Iλ X BP

D
“

@
Iλ X Bϑ´1pPq

D
,

showing that Iλ is indeed G-induced.
Consequently, by exactness of G we derive that the normal coaction of G on TλpXq descends to

a normal coaction on the quotient qscpTλpXqq. Thus by Proposition 4.12 we have that qscpTλpXqq
is a C*-cover for pTλpXq`,G, δGq. Therefore there exists a G-equivariant ˚-epimorphism

Φ: qscpTλpXqq ÝÑ C˚
envpTλpXq`,G, δGq

that fixes TλpXq`. The ˚-epimorphism Φ intertwines the coactions (and thus the faithful con-
ditional expectations implemented by normality and exactness of G), and it is faithful on the
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G-fixed point algebra rqscpTλpXqqse by Corollary 3.13. Hence we derive that Φ is faithful by
Corollary 5.8. By Proposition 5.9 we conclude that

qscpTλpXqq » C˚
envpTλpXq`,G, δGq » C˚

envpTλpXq`, G, δGq.

Now if in addition G is abelian then C˚
envpTλpXq`q inherits the coaction of G by the dual

gauge action pG. Due to co-universality we thus derive

C˚
envpTλpXq`, G, δGq » C˚

envpTλpXq`,G, δGq » C˚
envpTλpXq`q

and the proof is complete.

Combining with Proposition 2.9 and Proposition 4.12 we get the following corollary.

Corollary 6.2. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between weak right LCM-inclusions
such that G is exact, and let X be a compactly aligned product system over P with coefficients in
A. Then qscpTλpXqq is co-universal with respect to G-equivariant and to G-equivariant quotients
of TλpXq that are faithful on A.

Remark 6.3. As an immediate consequence of Theorem 6.1 we get that the coaction of G

on qscpTλpXqq is normal. Therefore one can use the results of [14] to derive that the reduced
Hao-Ng Problem for discrete group actions on A ˆX,λ P has a positive answer when pG,P q is
controlled by pG,Pq with G exact. A similar method applies whenever the C*-envelope functor
is stable under crossed products, e.g., for dynamics over abelian locally compact groups or when
the tensor algebra is hyperrigid [27, 28], and we leave this to the interested reader.

Next we consider amenably controlled weak right LCM-inclusions, i.e., the range of the con-
trolled map is inside an amenable group. In this case the reduced C*-algebras become universal
with respect to classes of representations. First we consider NT pXq. (A variant of) the following
has been obtained by Fowler [20] for non-degenerate product systems over quasi-lattices. Here
we extend it to the weak right LCM-inclusions framework with a different approach that does
not require non-degeneracy of X.

Theorem 6.4. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between weak right LCM-inclusions
with G amenable and let X be a compactly aligned product system over P with coefficients in A.
Then the Fock representation is faithful on NT pXq.

Conversely, suppose that pπ, tq is an injective G-equivariant Nica-covariant representation of
X and for every _-closed F Ď P we have linear independence in the ϑ-cores in the sense that

Bϑ´1pFq “
ÿ

‘

hPF

Bϑ´1phq.

Then pπ, tq integrates to a faithful representation of NT pXq.
In particular a Nica-covariant pair pπ, tq defines a faithful representation of NT pXq if and

only if the associated representation is G-equivariant and satisfies the condition:
ÿ

pPF

ψppkpq “ 0 ùñ kp “ 0 for all p P F,

for every _-closed F Ď P and every finite _-closed F Ď ϑ´1pFq.

Proof. Let ppπ,ptq be a faithful representation of NT pXq and let the canonical ˚-epimorphism

Φ: NT pXq “ C˚ppπ,ptq ÝÑ TλpXq “ C˚pπ, tq.

Let EG be the faithful conditional expectation induced by Proposition 3.8 on TλpXq. Let pEG be

the faithful conditional expectation on NT pXq induced by the amenable G. Since Φ pEG “ EGΦ

it suffices to show injectivity of Φ on pBF for every _-closed F Ď P. To this end fix a finite
_-closed F Ď ϑ´1pFq and suppose that

f :“
ÿ

t pψr1,r2pkr1,r2q | kr1,r2 P KpXr2 ,Xr1q, r1, r2 P F, ϑpr1q “ ϑpr2qu P ker Φ.
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Let h be minimal in F such that kq1,q2 ‰ 0 with ϑpq1q “ ϑpq2q “ h. By using condition (A2) of
Definition 5.1 and the Fock space representation we have that

kq1,q2 “ Qq1ΦpfqQq2 “ 0

for the projections Qp : FX Ñ Xp, which gives the required contradiction. Thus the Fock
representation is injective and also we have linear independence of the cores. The converse
follows with a similar proof.

For the last part it is clear that the condition with F “ teGu and F “ teGu implies that π is
injective. Moreover the condition shows that the canonical ˚-epimorphism Φ is injective on the
C*-subalgebras

pBF “ spant pψrpkrq | r P F u

for every finite _-closed F Ď P , and so Φ is injective on pBP . Thus by Proposition 5.7 the map

Φ is injective on pBϑ´1pPq and hence on NT pXq.

Next we consider the universal covariance algebra A ˆX P .

Theorem 6.5. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between weak right LCM-inclusions
with G amenable and let X be a compactly aligned product system over P with coefficients in A.
Then a strongly covariant representation of X integrates to a faithful representation of AˆX P ,
if and only if it is injective and G-equivariant, if and only if it is injective and G-equivariant.

Proof. By Theorem 6.4 we have that A ˆX P coincides with qscpTλpXqq and A ˆX,λ P . Thus
the result follows from Corollary 6.2.

Remark 6.6. When pG,P q is amenably controlled then we have a wider selection for a coaction
that implements the Extension Theorem. Figure 2 depicts those. We denote restrictions of ˚-
homomorphisms by solid arrows, and we have used Proposition 4.11 for the upper and lower
completely isometric maps. Recall that if G is amenable then C˚pGq » C˚

λpGq is nuclear, and by
[33] C˚

λpPq is also nuclear.

Corollary 6.7. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between weak right LCM-inclusions
with G amenable. Suppose that A,Xp Ď BpHq for p P P define a compactly aligned product
system X “ tXpupPP and set

A :“ algtA,Xp | p P P u.

Then the following are equivalent:

(i) There is a completely isometric isomorphism

A ÝÑ TλpXq`; ξp ÞÑ tpξpq.

(ii) There is a completely contractive map

A ÝÑ TλpXq` b C˚pGq; ξp ÞÑ tpξpq b up.

(iii) There is a completely contractive map

A ÝÑ TλpXq` b C˚
λpGq; ξp ÞÑ tpξpq b λp.

(iv) There is a completely contractive map

A ÝÑ TλpXq` b C˚
λpP q; ξp ÞÑ tpξpq b Vp.

(v) There is a completely contractive map

A ÝÑ TλpXq` b C˚pGq; ξp ÞÑ tpξpq b uϑppq.

(vi) There is a completely contractive map

A ÝÑ TλpXq` b C˚
λpPq; ξp ÞÑ tpξpq b Vϑppq.

Proof. The proof follows by the system of maps in Figure 2, where the solid arrows denote the
maps that arise from restrictions of ˚-homomorphisms from the appropriate C*-algebras to the
required subalgebras.
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NT pXq`

»

��

++❲❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲

algttppξpq b up | ξp P Xp, p P P u
NT pXqbC

˚pGq

��

A

algttppξpq b up | ξp P Xp, p P P u
C

˚pπ,tqbC
˚pGq

�� ++❲❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲

algttppξpq b λp | ξp P Xp, p P P u
C

˚pπ,tqbC
˚

λ
pGq

��

algttppξpq b λϑppq | ξp P Xp, p P P u
C

˚pπ,tqbC
˚pGq

��

algttppξpq b Vp | ξp P Xp, p P P u
C

˚pπ,tqbC
˚

λ
pP q

»

��

algttppξpq b Vϑppq | ξp P Xp, p P P u
C

˚pπ,tqbC
˚

λ
pPq

»

ss❣❣❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣

NT pXq`

Figure 2: Diagram of completely positive maps fixing the nonselfadjoint part

6.2. Exactness and nuclearity. We will require some results about nuclearity which we record
here for convenience.

Lemma 6.8. [29, Proposition B.8] Let pπ, tq be a representation of a C*-correspondence X over
A such that πpAq Ď B and tpXq Ď Y for a second C*-correspondence X over B. If π : A Ñ B

is nuclear then the induced map ψ : KX Ñ KY is nuclear.

Lemma 6.9. [24, Proposition 3.1] Let A,A1 be C*-algebras and let the ideals I⊳A and I 1
⊳A1.

Suppose we have the following commutative diagram of short exact sequences

0 // I //

ϕ0

��

A //

ϕ

��

A{I //

rϕ
��

0

0 // I 1 // A1 // A1{I 1 // 0

where ϕ : A Ñ A1 is an injective ˚-homomorphism that satisfies ϕpIq Ď I 1, rϕ : A{I Ñ A1{I 1 is
the induced map and ϕ0 :“ ϕ|I . If ϕ : A Ñ A1 is nuclear, then ϕ0 and rϕ are both nuclear.

Lemma 6.10. [24, Proposition 3.3] Let A,A1 be C*-algebras and let the ideals I⊳A and I 1
⊳A1.

Suppose we have the following commutative diagram of short exact sequences

0 // I //

ϕ0

��

A //

ϕ

��

A{I //

rϕ
��

0

0 // I 1 // A1 // A1{I 1 // 0

where ϕ : A Ñ A1 is an injective ˚-homomorphism that satisfies ϕpIq Ď I 1, rϕ : A{I Ñ A1{I 1 is
the induced map and ϕ0 :“ ϕ|I . Suppose further that there exists a c.a.i. peiq of I 1 such that
ϕpaqei P ϕ0pIq for all a P A. If ϕ0 and rϕ are nuclear, then so is ϕ.
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First we provide a nuclearity/exactness result for TλpXq.

Theorem 6.11. Let pG,P q be a weak right LCM-inclusion and X be a compactly aligned prod-
uct system over P with coefficients in A. Let EP : TλpXq Ñ BP be the faithful conditional
expectation that arises by compressing to the diagonal. Then the following are equivalent:

(i) A is nuclear (resp. exact) and EP bmax idD is a faithful conditional expectation on
TλpXq bmax D for all C*-algebras D.

(ii) TλpXq is nuclear (resp. exact).

Proof. We will show nuclearity; exactness follows in the same way. Notice that for any C*-
algebra D we have the following commutative diagram

C˚pπ, tq bmax D //

EP bmaxid

��

C˚pπ, tq b D

EP bid

��

BP bmax D // BP b D

and recall that EP b id is faithful on C˚pπ, tq b D.
Suppose first that C˚pπ, tq is nuclear. Then trivially EP bmax id is faithful on C˚pπ, tqbmaxD.

Since A is the corner of C˚pπ, tq at the pe, eq-place we have that A is nuclear, as the compression
of a nuclear C*-algebra.

For the converse, the diagram above implies that it suffices to show that BP is nuclear.
Equivalently it suffices to show that BF is nuclear for every finite _-closed F Ď P . To this end
let F “ tp1, . . . , pnu. We choose the enumeration so that it covers the partial order in F in the
sense that if pm ą pm1 then m ă m1. We will use induction on n.

For the first step we have that ψp1
pKXp1q is nuclear as A is nuclear by [29, Proposition B.7].

For the inductive step suppose that BFk
is nuclear for Fk “ tp1, . . . , pku (which is _-closed by

the choice of the enumeration). We will show that so is BFk`1
for Fk`1 “ tp1, . . . , pk, pk`1u.

The enumeration shows that pk`1 is minimal in Fk`1 and hence

BFk`1
“ BFk

‘ ψpk`1
pKXpk`1

q.

Indeed let kpi P KXpi such that
k`1ÿ

i“1

ψpi
pkpiq “ 0.

Due to minimality of pk`1 in Fk`1 we have that

kpk`1
“ Qpk`1

˜
k`1ÿ

i“1

ψpi
pkpiq

¸
Qpk`1

“ 0,

for the projection Qpk`1
: FX Ñ Xpk`1

. Minimality of pk`1 also gives that BFk
is an ideal in

BFk`1
, and we thus derive the following short exact sequence

0 // BFk
// BFk`1

// ψpk`1
pKXpk`1

q // 0.

Since BFk
is nuclear by the inductive hypothesis and ψpk`1

pKXpk`1
q is nuclear by the base case

we have that BFk`1
is nuclear. Inducing on k gives that BF “ BFn is nuclear.

In the amenably controlled case, and by combining with Theorem 6.4, we can deduce nu-
clearity/exactness of NT pXq from nuclearity/exactness of A, and conversely. The exactness
equivalence passes to A ˆX P , however this fails for nuclearity even for P “ Z` due to a coun-
terexample of Ozawa in [29]. In [24] it is shown that A ˆX P is nuclear if and only if the
embedding A ãÑ A ˆX P is nuclear when pG,P q is a quasi-lattice controlled by pZn,Zn

`q that
satisfies a minimality condition. In fact this holds for any quotient in-between the Toeplitz-Nica-
Pimsner and the covariance algebra. Here we generalize to controlled maps by amenable weak
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right LCM-inclusions. Recall that in the amenably controlled case the reduced C*-algebras are
universal.

Theorem 6.12. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between weak right LCM-inclusions
with G amenable and let X be a compactly aligned product system over P with coefficients in A.
Let pπ, tq be an equivariant injective Nica-covariant representation of X. Then A is exact if and
only if C˚pπ, tq is exact.

Proof. We are going to introduce new product systems from X. Therefore in order to make

a distinction we will write E
X
P for the faithful conditional expectation on the Fock C*-algebra

TλpXq of X.
If C˚pπ, tq is exact then so is A, since exactness passes to C*-subalgebras. For the converse

by Theorem 6.4 we have that X is amenable and thus C˚pπ, tq is a quotient of TλpXq. Hence it

suffices to show that TλpXq is exact. In view of Theorem 6.11 it suffices to show that E
X
P bmaxidD

is faithful on TλpXq bmax D for all C*-algebras D.
Towards this end let the product system Y “ tYpupPP be defined by

Yp :“ tppXpq d D
bmax

Ď TλpXq bmax D.

That Y is a product system follows by that X is so. Since X is compactly aligned we have that

YpY
˚
p YqY

˚
q Ď ψppKXpqψqpKXqq d D

bmax

“ ψwpKXwq d D
bmax

“ rYwY
˚
w s

for wP “ pP XqP , with the understanding that YpY
˚
p YqY

˚
q “ p0q when p and q have no common

right common multiple. Thus by Proposition 4.7 we get that Y is a compactly aligned product
system over P with coefficients in A.

Again by Theorem 6.4 we have that Y is amenable. Our goal is to show that the identity
representation on Y is faithful on NT pY q » TλpY q, and thus we have that

NT pY q » TλpY q » TλpXq bmax D.

We then derive that the faithful conditional expectation E
Y
P on TλpY q coincides with E

X
P bmaxidD

and the proof will be completed. We will invoke Theorem 6.4.
First we see that the identity representation is G-equivariant. Indeed we have that pπ, tq

admits a coaction δG of G and thus we have an equivariant ˚-homomorphism

δG bmax idD : TλpXq bmax D ÝÑ pTλpXq b C˚pGqq bmax D.

By amenability of G and associativity of the maximal tensor product we get that

pTλpXq b C˚pGqq bmax D » TλpXq bmax C
˚pGq bmax D

» pTλpXq bmax Dq bmax C
˚pGq » pTλpXq bmax Dq b C˚pGq

and thus we deduce that δG bmax idD is a coaction of G on TλpXq bmax D. By construction
δG bmax idD satisfies the coaction identity with aligned fibers in the sense that

rTλpXq bmax Dsg “ rTλpXqsg d D
bmax

.

Secondly let F Ď P be _-closed finite set and let k1
p P KYp such that

ř
pPF idpk1

pq “ 0. For

every state φ P SpDq we have the completely contractive map

id bmax φ : rYpY
˚
p s bmax D ÝÑ ψppKXpq;ψppkpq b d ÞÑ φpdqψppkpq.

Therefore we derive ÿ

pPF

pid bmax φqpk1
pq “ pid bmax φqp

ÿ

pPF

k1
pq “ 0.

Note here that this is a relation in TλpXq with every pid bmax φqpk1
pq P ψppKXpq. Thus if p0 is

a minimal element in F such that pid bmax φqpk1
p0

q ‰ 0 then we get

Pp0pid bmax φqpk1
p0

qPp0 “ Pp0pid bmax φqp
ÿ

pPF

k1
pqPp0 “ 0,
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where Pp0 : FX Ñ Xp0 is the canonical projection. However the compression to Xp0 is a faithful

˚-representation on ψp0
pKXp0q, and thus we get the contradiction that pid bmax φqpk1

p0
q “ 0.

Continuing inductively we deduce that pid bmax φqpk1
pq “ 0 for all p P F (one by one for fixed

φ). As this holds for all φ and the family tid bmax φuφPSpDq separates rYpY
˚
p s bmax D we get

that k1
p “ 0 for all p P F . Hence the assumptions of Theorem 6.4 hold for Y and the proof is

completed.

Theorem 6.13. Let ϑ : pG,P q Ñ pG,Pq be a controlled map between weak right LCM-inclusions
with G amenable and let X be a compactly aligned product system over P with coefficients in A.
Let pπ, tq be an equivariant injective Nica-covariant representation of X. Then A ãÑ C˚pπ, tq is
nuclear if and only if C˚pπ, tq is nuclear.

Proof. It is clear that if C˚pπ, tq is nuclear then A ãÑ C˚pπ, tq is nuclear. Let us prove the
converse. By Theorem 6.4 we have that TλpXq » NT pXq and so pπ, tq promotes to a ˚-
representation of TλpXq. Due to amenability C˚pGq “ C˚

λpGq is nuclear (and so the minimal
and the maximal tensor product coincide). Let δ : C˚pπ, tq Ñ C˚pπ, tq b C˚

λpGq be the coaction
of G and let E “ pid b EGqδ be the faithful conditional expectation induced on C˚pπ, tq by the
faithful conditional expectation EG of C˚

λpGq. Let D be any C*-algebra. Associativity of bmax

and nuclearity of C˚
λpGq yields

D bmax C
˚pπ, tq bmax C

˚
λpGq » pD bmax C

˚pπ, tqq b C˚
λpGq

and so idD bmax id bmax EG “ pidD bmax idq b EG is faithful on D bmax C
˚pπ, tq bmax C

˚
λpGq.

Hence

idD bmax E :“ pidD bmax id bmax EGqpidD bmax δq

is a faithful conditional expectation of D bmax C
˚pπ, tq on D bmax BP . Therefore we have the

following commutative diagram

C˚pπ, tq bmax D //

��

C˚pπ, tq b D

��
BP bmax D // BP b D

where the vertical arrows are faithful conditional expectations. Hence it suffices to show that
if π : A Ñ BP is nuclear then the fixed point algebra BP is nuclear. As the latter is an induc-
tive limit, it suffices to show that nuclearity of π in BP induces nuclearity of the embedding
Bϑ´1pF q ãÑ Bϑ´1pPq for every finite _-closed F Ď P. We will actually show nuclearity of the
embedding

Bϑ´1pFq ãÑ Bϑ´1pF ¨Pq Ď Bϑ´1pPq,

where we write

ϑ´1pF ¨ Pq “ tpP | ϑppq P Fu.

First we remark that BF contains a c.a.i. for BF ¨P . Indeed let peiq be a c.a.i. for BF so
that limi eiψppkpq “ ψppkpq for every p P ϑ´1pFq. Consequently limi eitppξpq “ tppξpq for every
p P ϑ´1pFq and thus

lim
i
eitppξpqtrpξrqtspξsq˚ “ tppξpqtrpξrqtspξsq˚ for all r, s P P.

Thus limi eiψp,qpkp,qq “ ψp,qpkp,qq for every p, q P ϑ´1pF ¨ P q.
Now fix a finite _-closed F . By using maximal elements we can write F in levels, i.e.,

F “ th11, ¨ ¨ ¨ , h1n1
, h21, ¨ ¨ ¨ , h2n2

, ¨ ¨ ¨ , hm1, ¨ ¨ ¨ , hmnmu,

such that every

Fi :“ thi1, . . . , hini
u with i P t1, . . . mu,

consists of the maximal elements of Fz Yi´1
j“1 Fj and F1 consists of the maximal elements of F .
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We now proceed by induction. For the base case let h P P and consider the space

Yh :“
ÿ

pPϑ´1phq

tppXpq.

By using condition (A2) of Definition 5.1 we can equip Yh with the A-valued bilinear map defined
by @

yh, y
1
h

D
:“ y˚

hy
1
h P πpAq for all yh, y

1
h P Yh.

Then each Yh becomes a C*-correspondence over A, since π is faithful. The embedding Yh ãÑ“
YhBϑ´1pPq

‰
and nuclearity of πpAq ãÑ Bϑ´1pPq imply nuclearity of the embedding

Bϑ´1phq “ rYhY
˚
h s ãÑ

“
YhBϑ´1pPqY

˚
h

‰
“ Bϑ´1phPq, for all h P P,

by [29, Proposition B.8]. Maximality of the h1j in F yields that the h1jP are minimal in
thP | h P Fu with respect to inclusions. As F is _-closed we have that h1jP X h1j1P “ H for
j ‰ j1. Hence the C*-algebras Bϑ´1ph1jq are orthogonal and thus the embedding

BF1
“

n1ÿ
‘

j“1

Bϑ´1ph1jq ãÑ
n1ÿ

j“1

Bϑ´1ph1jPq Ď Bϑ´1pF1¨Pq

is nuclear. For the inductive hypothesis suppose that we have shown that the embedding
Bϑ´1pF 1q ãÑ Bϑ´1pF 1¨Pq is nuclear for

F 1 “ th11, ¨ ¨ ¨ , h1n1
, ¨ ¨ ¨ hi1, ¨ ¨ ¨ , hiju

for some j P t1, . . . , niu. If j ă ni then set h :“ hipj`1q; if j “ ni then set h “ hpi`1q1. We will
show that the embedding

Bϑ´1pF2q ãÑ Bϑ´1pF2¨Pq for F2 :“ F 1 Y thu

is nuclear. By construction Bϑ´1pF 1q is an ideal in Bϑ´1pF2q and Bϑ´1pF 2q “ Bϑ´1phq ` Bϑ´1pF 1q;
thus

Bϑ´1pF2q

M
Bϑ´1pF 1q » Bϑ´1phq

M
Bϑ´1phq X Bϑ´1pF 1q .

Likewise Bϑ´1pF 1¨Pq is an ideal of Bϑ´1pF2¨Pq. From the base case we have nuclearity of the map

Bϑ´1phq ãÑ Bϑ´1phPq Ď Bϑ´1pF2¨Pq.

By applying Lemma 6.9 on the commutative diagram of short exact sequences

0 // Bϑ´1phq

M
Bϑ´1pF 1q

//

��

Bϑ´1phq
//

��

Bϑ´1phq

M
Bϑ´1phq X Bϑ´1pF 1q

//

��

0

0 // Bϑ´1pF 1¨P q
// Bϑ´1pF2¨Pq

// Bϑ´1pF2¨Pq

M
Bϑ´1pF 1¨Pq

// 0

we get that the right vertical arrow is nuclear, i.e., the map

Bϑ´1pF2q

M
Bϑ´1pF 1q » Bϑ´1phq

M
Bϑ´1phq X Bϑ´1pF 1q ÝÑ Bϑ´1pF2¨Pq

M
Bϑ´1pF 1¨Pq

is nuclear. Let peiq Ď Bϑ´1pF 1q be a c.a.i. for Bϑ´1pF 1¨Pq, and note that

Bϑ´1pF2q ¨ ei Ď Bϑ´1pF2q ¨ Bϑ´1pF 1q “ Bϑ´1pF 1q.

Using the inductive hypothesis and Lemma 6.10 on the commutative diagram of short exact
sequences

0 // Bϑ´1pF 1q
//

��

Bϑ´1pF2q
//

��

Bϑ´1pF2q

M
Bϑ´1pF 1q

//

��

0

0 // Bϑ´1pF 1¨Pq
// Bϑ´1pF2¨Pq

// Bϑ´1pF2¨Pq

M
Bϑ´1pF 1¨Pq

// 0
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we derive that the middle vertical arrow is nuclear, as required. This concludes the inductive
step. Now by using induction we derive that Bϑ´1pFq ãÑ Bϑ´1pF ¨Pq is nuclear, and the proof is
complete.

7. Saturated controlled maps

7.1. A product system re-parametrization. Let ϑ : pG,P q Ñ pG,Pq be a controlled map
between weak right LCM-inclusions and let X be a compactly aligned product system over P

with coefficients in A. We can then define the C*-correspondence

Yh :“
ÿ

‘

pPϑ´1phq

Xp for all h P P.

One is tempted to consider the family Y “ tYhuhPP and associate its C*-algebras with those of
X. However it is not clear that Y is in general a product system (let alone compactly aligned).
Nevertheless this happens for controlled maps that satisfy one extra condition.

Definition 7.1. Let ϑ : pG,P q Ñ pG,Pq be a controlled map of weak right LCM-inclusions. We
say that ϑ is saturated if for any h P P and t P ϑ´1phPq there exists an s P P with ϑpsqP “ hP

and t P sP .

Remark 7.2. In particular, saturated maps satisfy the following property:

(A3) If z P P˚ then there exists an x P P ˚ such that ϑpxq “ z.

Indeed, we apply the saturation property for z P P˚ and t “ eG P ϑ´1pzPq to obtain an x P P

with eG P xP . Hence we get that P “ xP giving that x P P ˚.

The following provides a good supply of saturated controlled maps. Recall that a pair pG,P q
is a total order if G “ P´1 YP and P´1 XP “ teGu. It is clear that total orders, being lattices,
form weak right LCM-inclusions.

Proposition 7.3. Let pG,P q be an abelian total order. For n P N Y t8u consider the free
product p˚

n
i“1G,˚

n
i“1P q of n copies of pG,P q. Then the map

ϑ : p˚
n
i“1G,˚

n
i“1P q ÝÑ pG,P q; pg1qi1pg2qi2 . . . pgkqik ÞÑ g1 ` g2 ` ¨ ¨ ¨ ` gk

is a saturated controlled map.

Proof. For condition (A1) of Definition 5.1, if p, q P ˚
n
i“1P with pp˚

n
i“1P q

Ş
qp˚

n
i“1P q ‰ H

then the freeness construction implies that either p ď q or q ď p.
For condition (A2) of Definition 5.1 suppose that p, q have a right LCM and they satisfy

ϑppq “ ϑpqq. Without loss of generality assume that r “ p´1q P ˚
n
i“1P . Then ϑprq “ 0. If

r “ pr1qi1 ¨ ¨ ¨ prkqik then r1 ` ¨ ¨ ¨ ` rk “ 0 giving that rk P ´P X P “ t0u. Inductively we get
that r1 “ ¨ ¨ ¨ “ rk “ 0 and so p “ q.

Next we verify that ϑ is saturated. To this end let

p “ pp1qi1pp2qi2 . . . ppkqik ,

and let h P P with

h ď ϑppq “ p1 ` p2 ` ¨ ¨ ¨ ` pk.

Let ℓ P t1, . . . , ku be the smallest index so that h ď p1 ` p2 ` ¨ ¨ ¨ ` pℓ. Set

h1 “

#
h if ℓ “ 1,

h ´ pp1 ` p2 ` ¨ ¨ ¨ ` pℓ´1q otherwise,

and notice that h1 P P with h1 ď pℓ. Let

q “

#
ph1qi1 if ℓ “ 1,

pp1qi1pp2qi2 ¨ ¨ ¨ ppℓ´1qiℓ´1
ph1qiℓ otherwise.

Then q ď p and ϑpqq “ h, as desired.
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Example 7.4. A second example comes from types of semi-direct products. Let pG,P q and
pH,Sq be quasi-lattice ordered groups and let an action α : H Ñ AutpGq such that α|S : S Ñ
AutpP q restricts to automorphisms of P . Then we can form the semi-direct products G¸αH and
P¸αS with respect to the relations αhpgqh “ hg. The condition on α makes P ¨S a subsemigroup
of the semi-direct product, and in [24] it is shown that the pair pG¸αH,P ¸αSq is quasi-lattice
ordered. Now suppose that pG,P q admits an abelian controlled map ϑ1 in pG1,P1q and pH,Sq
admits an abelian controlled map ϑ2 in pG2, P2q. In order for the semi-direct product to inherit
the obvious controlled map on pG1 ‘ G2,P1 ‘ P2q it is necessary that α is ϑ1-invariant in the
sense that ϑ1αh “ ϑ1 for all h P H. We can then define the homomorphism

ϑ : pG ¸α H,P ¸α Sq ÝÑ pG1 ‘ G2,P1 ‘ P2q such that ϑpghq “ pϑ1pgq, ϑ2phqq.

We claim that if ϑ1 and ϑ2 are saturated, then so is ϑ. Suppose that ϑpghq “ pϑ1pgq, ϑ2phqq ě
pm, ℓq. Then there are s1, r1 P G and s2, r2 P H such that

g “ s1r1, ϑ1ps1q “ m and h “ s2r2, ϑps2q “ ℓ.

It follows that ϑps1s2q “ pm, ℓq and gh “ s1s2α
´1
s2

pr1qr2.

The following examples show that surjectivity is not enough to render a controlled map
saturated.

Example 7.5. Take the free quasi-lattice on two symbols a, b and take ϑ be its abelianization
map. Then for ab and p0, 1q P Z

2 we have that ϑpabq “ p1, 1q ě p0, 1q. However tbu “ ϑ´1pp0, 1qq
and ab ğ b. (Although, Proposition 7.3 induces a saturated map on free quasi-lattices.)

Example 7.6. Consider the Baumslag-Solitar group Bp3, 3q “
@
a, b | a3b “ ba3

D
. Recall that

every element x P Bp3, 3q admits a unique normal form

x “ ap1bε1ap2 ¨ ¨ ¨ apkbεkapk`1 with p1, . . . , pk P t0, 1, 2u, pk`1 P Z, k P Z`.

Let B`p3, 3q be its sub-semigroup generated by a, b. It follows that if x is in its normal form as
above then

x “ ap1bε1ap2 ¨ ¨ ¨ apkbεkapk`1 P B`p3, 3q if and only if ε1, . . . , εk “ 1, pk`1 ě 0.

By [44, Theorem 2.11] we have that the pair pBp3, 3q, B`p3, 3qq is a quasi-lattice ordered group.
In [24] it is shown that the abelianization gives a surjective controlled map

ϑ : pBp3, 3q, B`p3, 3qq ÝÑ pZ2,Z2
`q; ap1bap2b ¨ ¨ ¨ apkbapk`1 ÞÑ pp1 ` ¨ ¨ ¨ ` pk`1, kq.

However this map is not saturated. Take t “ a2b and h “ p1, 1q so that

ϑptq “ p2, 1q P p1, 1q ` Z
2
`.

We have that ϑ´1p1, 1q “ tab, bau and thus these are the only choices for a possible s with
ϑpsq “ p1, 1q and s ď t. However we see that

pabq´1t “ b´1ab R B`p3, 3q and pbaq´1t “ a´1b´1a2b R B`p3, 3q.

Theorem 7.7. Let ϑ : pG,P q Ñ pG,Pq be a saturated controlled map between weak right LCM-
inclusions. Let X be a (resp. injective) compactly aligned product system over P with coefficients
in A and let

Yh :“
ÿ

‘

pPϑ´1phq

Xp for h P P.

Then the collection Y “ tYhuhPP is a (resp. injective) compactly aligned product system over P

with coefficients in A such that TλpXq` » TλpY q` with

TλpXq » TλpY q and A ˆX,λ P » A ˆY,λ P,

by ˚-homomorphisms that preserve the inclusions Xp ÞÑ Yϑppq for all p P P . These ˚-isomor-
phisms further lift to ˚-isomorphisms

NT pXq » NT pY q and A ˆX P » A ˆY P,

that preserve the inclusions Xp ãÑ Yϑppq for all p P P .
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Proof. Let A act on both the left and right of each Yh with h P P via the usual multiplication of
operators. By using condition (A2) of Definition 5.1 we can equip Yh with the A-valued bilinear
map defined by @

yh, y
1
h

D
:“ y˚

hy
1
h P A Ď TλpXq for all yh, y

1
h P Yh.

Then each Yh becomes a C*-correspondence over A. Since kerϕYh
“

Ş
pPϑ´1phq kerϕXp we have

that every Yh is injective when every Xp is so.
We now show that Y :“ tYhuhPP is a product system. Since rYhYgs » Yh bA Yg we have to

show that

rYhYgs “ Yhg for all h, g P P.

As pπ, tq is a Toeplitz representation we have that YhYg Ď Yhg for all h, g P P. For the reverse
inclusion, let p P P with ϑppq “ hg and we will show that tppXpq P rYhYgs. Since ϑ is saturated
there are q, q1 P P such that

p “ qq1 and ϑpqqP “ hP.

We can write ϑpqq “ hz for some z P P˚ and let w P P ˚ with ϑpwq “ z by condition (A3) of
the saturation property. Since ϑpqqϑpq1q “ ϑppq “ hg it follows that ϑpq1q “ z´1g. We thus
conclude that

ϑpqw´1q “ h and ϑpwq1q “ g.

Recall that Xw satisfies rtw´1pXw´1qtwpXwqs “ πpAq. By taking elementary vectors we get the
required

tppXpq “ rtqpXqqtq1pXq1 qs “ rtqpXqqπpAqtq1pXq1 qs

“ rtqpXqqtw´1pXw´1qtwpXwqtq1pXq1 qs

Ď rtqw´1pXqw´1qtwq1pXwq1qs Ď rYϑpqqϑpw´1qYϑpwqϑpq1qs “ rYhYgs.

Next we show that Y is compactly aligned. Let h, h1 P P and take p P ϑ´1phq and q P ϑ´1ph1q.
If h _ h1 “ 8 then p _ q “ 8 as well for all p P ϑ´1phq and q P ϑ´1ph1q, and so

Y ˚
h Yh1 “

ÿ

pPϑ´1phq,qPϑ´1ph1q

tppXpq˚tqpXqq “ p0q.

On the other hand, if h _ h1 ă 8 and p _ q ă 8 for p P ϑ´1phq and q P ϑ´1ph1q, then

tppXpq˚tqpXqq Ď rtp´1wpXp´1wqtq´1wpXq´1wq˚s.

Since w “ px “ qy we have that ϑpp´1wq “ h´1ϑpwq “ ph1q´1ϑpwq “ ϑpq´1wq and also
ϑpwq “ h _ h1. Hence

Y ˚
h Yh1 “

ÿ

pPϑ´1phq,qPϑ´1ph1q,p_qă8

tppXpq˚tqpXqq Ď rYh´1ph_h1qYh1ph_h1qs.

Thus Proposition 4.7 gives that Y is compactly aligned.
By definition we have that FX » FY (by grouping together summands with the same ϑ-

image), and therefore we have that TλpXq » TλpY q and that TλpXq` » TλpY q`. Notice that
these identifications are G-compatible. By applying Proposition 5.9 and Theorem 4.14 we then
get

A ˆX,λ P » C˚
envpTλpXq`, G, δGq » C˚

envpTλpXq`,G, δGq » C˚
envpTλpY q`,G, δGq » A ˆY,λ P.

The second part of the proof is treated likewise. First note that any representation of X lifts
to a representation of Y in a unique way, as every fiber of Y is spanned independently by the
corresponding fibers of X. Applying similar arguments as above for a representation pπ, tq in
the place of the Fock representation we see that this correspondence preserves Nica-covariant
representations. Hence we get that NT pXq » NT pY q.

Finally the ˚-isomorphisms A ˆX,λ P » A ˆY,λ P gives an injective map

rA ˆX P spq´1 » rA ˆX,λ P spq´1 ãÑ rA ˆY,λ Psϑppq´1q » rA ˆY Psϑppq´1q.
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Therefore we get a commutative diagram

NT pXq
Φ //

qX

��

NT pY q

qY

��
A ˆX P

Ψ // A ˆY P

where the upper horizontal arrow is a ˚-isomorphism. Since the ideals of strong covariance
relations are induced, it suffices to show that

ker ΦqY
č

rNT pXqseG Ď ker qX .

Equivalently that Ψ is faithful on the G-fixed point algebra defined on A ˆX P . However this
follows by Corollary 5.8 as Ψ is by definition faithful on A.

Theorem 7.7 gives a very clear picture for the covariance algebras of a product system over
a free product order of the form p˚

n
i“1G,˚

n
i“1P q for an abelian total order pG,P q. It is well-

known that the Cuntz C*-algebra On, n P N, can be viewed as either the Nica-Cuntz-Pimsner
C*-algebra of the trivial product system over the free semigroup on n generators or as the
Cuntz-Pimsner C*-algebra of the C*-correspondence pCn,Cq. Our next result generalizes this
fact to arbitrary product systems over the free semigroup.

Corollary 7.8. Let X be a compactly aligned product system over the free semigroup F
`
n “

xi1, . . . , iny. Then A ˆX F
`
n » OY for the C*-correspondence Y “

ř ‘

j“1,...,n

Xij .

7.2. Reversible product systems and total orders. An application of Burns-Hale Theorem
[6] asserts that G admits a total order if and only if for every non-trivial finitely-generated
subgroup H of G there exists a totally ordered L and a non-trivial homomorphism H Ñ L. If
L “ Z then the group is called left indicable. There are plenty of abelian total orders. Examples
include R

2 with the lexicographical order and Z
2 with the semigroup given by the half-plane

defined by any line through the origin with irrational slope. Conrad’s Theorem asserts that if
pG,P q is a total order and G is Archimedean then G embeds in R so that P embeds in R

` [9].
Here we say that G is Archimedean if whenever eG ă x ă y, there exists an n P N such that
y ă xn. We refer the reader to [8] for an exposition of these results.

There are not many ways for a total order to be controlled by an abelian total order.

Proposition 7.9. Let pG,P q be a total order and let ϑab : pG,P q Ñ pGab, Pabq be the abelian-
ization map. Then the following are equivalent:

(i) There is a controlled map ϑ : pG,P q Ñ pG,Pq where pG,Pq is an abelian total order.
(ii) ϑ´1

ab p0q X P “ teGu.
(iii) The abelianization map is a controlled map and pGab, Pabq is a total order.

If any (and thus all) of the above holds then the abelianization is a saturated controlled map.

Proof. If item (i) holds then ϑ factors through the abelianization. Since ϑ´1peGq X P “ teGu
being a controlled map, then ϑ´1

ab p0q X P “ teGu as well.
Assume that item (ii) holds and we will show that pGab, Pabq is a total order. First we clearly

have that

´Pab Y Pab “ ϑabpP´1 Y P q “ Gab.

Next suppose that ´Pab X Pab ‰ t0u so that there are h, g P Pab with h ` g “ 0. As the
abelianization map is surjective there are p, q P P with pq “ eG with ϑppq “ h and ϑpqq “ g. As
pG,P q is a total order we derive that p “ q “ eG and thus h “ g “ 0. Next we show that ϑab

satisfies conditions (A1) and (A2) of Definition 5.1. Let p, q P P . Then either p ď q or q ď p

and condition (A1) follows. For condition (A2) suppose without loss of generality that p ď q

with ϑabppq “ ϑabpqq. Then q “ ps for s P P X ϑ´1
ab p0q. Then s “ eG and so p “ q.

If item (iii) holds then clearly item (i) holds, concluding the equivalences between all items.
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For the saturation property let a t P P and an h P Pab such that ϑabptq “ h ` h1. Take an
s P ϑ´1

ab phq since the abelianization map is surjective. Then either s ď t or s ą t. But if s ą t

then h “ ϑabpsq ą ϑabptq which is a contradiction. Thus we must have that s ď t.

Remark 7.10. There are exact total orders for which the abelianization map is not controlled.
An example is given by the Klein bottle group

K :“ xx, y | x´1yx “ y´1y “ xx, y | x “ yxyy

with the total order induced by the semigroup K
` generated by x, y in K. It is not hard to see

that K
` induces a total order on K, being left indicable (or since K is the extension Z ¸ Z).

Alternatively one can see that every element in K is written (uniquely) in the form xmyn for
m,n P Z and we take cases: if m,n ě 0 then xmyn P K; if m ě 1 and n ď 0 then have that
xmyn “ xm´1y´nx P K

`; if m “ 0 and n ď 0 then xmyn “ yn P pK`q´1. By symmetry
these cover all cases. We see that ϑabpyxyq “ ϑabpxq and so eK ‰ y2 P K

` X ϑ´1
ab p0q. In fact

we have that Kab “ Z ˆ Z2 and K
`
ab “ Z

` ˆ Z2 and thus it does not define a total order as

´K
`
ab X K

`
ab “ Z2.

Definition 7.11. Let pG,P q be a total order and let X be a product system over P with
coefficients in A. We say that X is a reversible product system if every Xp is a Hilbert bimodule
in A ˆX,λ P , i.e., if A ˆX,λ P “ C˚pπ, tq then tppXpqtppXpq˚ Ď A for all p P P .

It follows that reversible product systems consist of Hilbert bimodules. The converse holds
also for injective product systems, as in this case every strongly covariant representation is
Katsura-covariant fiberwise.

Proposition 7.12. Let pG,P q be a total order and let X be a product system over P with coef-
ficients in A. Suppose that every Xp is injective. If pπ, tq is a strongly covariant representation
of X then pπ, tpq is a covariant representation of Xp, in the sense of Katsura, for every p P P .

Therefore an injective product system X is reversible if and only if every Xp is a Hilbert
bimodule.

Proof. Fix p P P and a P A such that ϕppaq “ kp P KXp. In view of strong covariance of
Proposition 4.9 and Katsura covariance we have to show that

rπF paq ` ψp,F pkpqs
XF

“ 0 for F “ te, pu,

where

XF “ ‘rPPXrIr´1pr_F q.

Let r P P with r “ ps for some s P P . Then for every ξr “ ξpξs P Xr and b P Ir´1pr_F q we have
that

πF paqξrb “ pϕppaqξpqξsb “ pkpξpqξsb “ ψF,ppkpqξrb.

Now suppose that r ă p. Then by construction ψF,ppkpqξrb “ 0 and we have to show that
πF paqξrb “ 0 as well. To this end it suffices to show that

Ir´1pr_F q :“ Ir´1Ktr,eu

č
Ir´1Ktr,pu

“ p0q.

Since r ă p we have that r R Ktr,pu Ď pP while p P Ktr,pu. Therefore r´1p ‰ eG and so

Ir´1Ktr,pu
“

č

tPKtr,pu

kerϕr´1t Ď kerϕr´1p “ p0q,

and the proof is complete.

In the case of pG,P q “ pZ,Z`q, the following result was established in [23].

Proposition 7.13. Let pG,P q be a total order and let X be a product system over P with
coefficients in A. Then X is a reversible product system if and only if the tensor algebra TλpXq`

is Dirichlet in A ˆX,λ P .
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Proof. Fix pπ, tq be a faithful representation of A ˆX,λ P . Suppose first that X is a reversible
product system so that tppXpqtppXpq˚ Ď πpAq for all p P P . We will show that

A ˆX,λ P “ spanttspXsq ` trpXrq˚ | s, r P P u.

Let s, r P P . If rs´1 P P then we have that

tspXsqtrpXrq˚ Ď
“
tspXsqtspXsq˚trs´1pXrs´1q˚

‰
Ď

“
πpAqtrs´1pXrs´1q˚

‰
“ trs´1pXrs´1q˚.

If sr´1 P P then we have that

tspXsqtrpXrq˚ Ď
“
tsr´1pXsr´1qtrpXrqtrpXrq˚

‰
Ď

“
tsr´1pXsr´1qπpAq

‰
“ tsr´1pXsr´1q.

Hence

A ˆX,λ P “ spanttspXsqtrpXrq˚ | s, r P P u Ď spanttspXsq ` trpXrq˚ | s, r P P u Ď A ˆX,λ P,

and so TλpXq` is Dirichlet in A ˆX,λ P .
Conversely, assume that TλpXq` is Dirichlet in AˆX,λ P and let E be the conditional expec-

tation induced by the coaction of G on A ˆX,λ P . Then EpTλpXq`q “ πpAq and

EpA ˆX,λ P q “ EpTλpXq` ` pTλpXq`q˚q “ πpAq.

Thus for each p P P we have that tppXpqtppXpq˚ Ď EpA ˆX,λ P q “ πpAq as desired.

The next corollary squares with the fact that Popescu’s non-commutative disc algebra is not
Dirichlet. Recall that for abelian coactions the C*-envelope of a cosystem coincides with the
usual C*-envelope of the ambient operator algebra.

Corollary 7.14. Let ϑ : pG,P q Ñ pG,Pq be a saturated controlled map between weak right LCM-
inclusions and suppose that pG,Pq is an abelian total order. Let X be an injective product system
over P with coefficients in A. Then TλpXq` is Dirichlet if and only if every strongly covariant
representation pπ, tq of X satisfies tppXpqtqpXqq˚ Ď A whenever ϑppq “ ϑpqq.

Proof. By Theorem 6.1, and since the controlling pair is abelian, the C*-envelope of TλpXq`

is A ˆX P . For the injective X, let Y be the injective product system over P with coefficients
in A constructed in Theorem 7.7. By construction we see that Yh with h P P is a Hilbert
bimodule if and only if tppXpqtqpXqq˚ Ď A for all p, q P ϑ´1phq. By applying Remark 2.8,
Theorem 6.1, Theorem 7.7, Proposition 7.12, and Proposition 7.13 we have that the Fock tensor
algebra TλpXq` is Dirichlet in AˆX P , if and only if TλpY q` is Dirichlet in AˆY P, if and only
if every Yh with h P P is a Hilbert bimodule, if and only if tppXpqtqpXqq˚ Ď πpAq whenever
ϑppq “ ϑpqq “ h for all h P P.

The next theorem shows that, for weak right LCM-inclusions that are controlled by total
orders in a saturated way, reversible product systems produce all possible covariance algebras.

Theorem 7.15. Let ϑ : pG,P q Ñ pG,Pq be a saturated controlled map between weak right LCM-
inclusions and suppose that pG,Pq is a total order. Let X be a (resp. injective) product system
over P with coefficients in A. Then there exists a (resp. injective) reversible product system Z

over P with coefficients in a C*-algebra B such that

(7.1) A Ď B and Xp Ď Zϑppq for all p P P,

that satisfies

(7.2) A ˆX P » B ˆZ P and A ˆX,λ P » B ˆZ,λ P,

by ˚-homomorphisms that preserve the inclusions Xp ãÑ Zϑppq for all p P P .

Proof. By Theorem 7.7 we can assume that pG,P q “ pG,Pq. Fix pπ, tq be a faithful represen-
tation of A ˆX,λ P and let

B :“ BP “ C˚pttspXsqtspXsq˚ | s P P u and Zp :“ rtppXpqBs for all p P P zteu.

The trivial C*-correspondence structure on AˆX,λP descends to a C*-correspondence structure
on each Zp over B. Notice here that since pG,P q is totally ordered we automatically have that
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the product system Z “ tZpupPP is compactly aligned. Also C˚pB,Zq “ C˚pπ, tq admits a
coaction of G from A ˆX,λ P . Hence by Theorem 4.13 we have that

algtB,Zp | p P P u » TλpZq`.

By construction

A ˆX,λ P “ TλpZq` ` pTλpZq`q˚,

thus the cosystem of TλpZq` over G is Dirichlet in a C*-cover. This gives at the same time
that this C*-cover A ˆX,λ P is the C*-envelope of the cosystem TλpZq` over G, and that Z is
reversible by Proposition 7.13. Theorem 4.14 then concludes that

B ˆZ,λ P » C˚
envpTλpZq`, G, δGq » A ˆX,λ P.

For the case of the universal C*-algebras we proceed as in Theorem 7.7. That is first we
notice that the ˚-isomorphism between the reduced C*-algebras implies an embedding of the
Fell bundles

rA ˆX P spq´1 » rA ˆX,λ P spq´1 ãÑ rB ˆZ,λ Pspq´1 » rB ˆZ P spq´1

which lifts to a ˚-epimorphism Ψ: AˆXP Ñ BˆZP . SinceX Ď Z we also have a ˚-epimorphism
at the level of the Nica-Toeplitz-Pimsner algebras and thus the following diagram

NT pXq
Φ //

qX

��

NT pZq

qZ

��
A ˆX P

Ψ // B ˆZ P

is commutative, and fixes X. Since the ideals of strong covariance relations are induced, it
suffices to show that

ker ΦqZ
č

rNT pXqse Ď ker qX .

Equivalently that Ψ is faithful on the G-fixed point algebra defined on A ˆX P , which by
definition is B. However this follows by the property of A ˆX P as Ψ|A is by construction
faithful.

It is left to show that injective of X implies injective of Z. By Theorem 7.7 we can still assume
that pG,P q “ pG,Pq. To this end let p P P and f P kerϕZ

p . We need to show that f “ 0.
As BpP is an ideal in B we have that B “ Btsăpu ` BpP , and let f1 P Btsăpu and f2 P BpP

such that f “ f1 ` f2. Let peiq be a c.a.i. of ψppKXpq so that

0 “ fei “ f1ei ` f2ei.

However peiq is also a c.a.i. for BpP and so

lim
i
f1ei “ ´ lim

λ
f2ei “ f2.

By Nica-covariance f1ei P Bp for all i, and so we have that f2 P Bp. Thus we can assume without
loss of generality that f P Btsďpu. As Btsďpu is the inductive limit of BF for F “ tp1 ă p2 ă
¨ ¨ ¨ ă pn “ pu we may assume that

f “
nÿ

i“1

ψpipkpiq with kpi P KXpi and p1 ă p2 ă ¨ ¨ ¨ ă pn “ p.

Recall the representation pπF , tF q on XF “ ‘rPPXrI
X
r´1pr_F q and we will show that

nÿ

i“1

ψF,pipkpiq|XF
“ 0.
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As pπ, tq is strongly covariant this will give that f “ 0 by Proposition 4.9. For r ě p we have
that f P kerϕZ

p Ď kerϕZ
r , and for every ηr P XrI

X
r´1pr_F q we have that trpηrq P trpXrq Ď Zr.

Hence

trp
nÿ

i“1

irpipkpiqpηrqq “
nÿ

i“1

ψpipkpiqtrpηrq “ ftrpηrq “ 0.

As t is isometric we obtain

(7.3)
nÿ

i“1

ψF,pipkpiq|XrI
X

r´1pr_F q
“

nÿ

i“1

irpipkpiq “ 0, for r ě p.

On the other hand for r ă p we have that r´1p ‰ eG and so

IXr´1pr_F q Ď IXr´1Ktr,pu
Ď kerϕX

r´1p “ p0q.

Hence trivially

(7.4)
nÿ

i“1

ψF,pipkpiq|XrIX
r´1pr_F q

“ 0, for r ă p.

By equations (7.3) and (7.4) we have that
řn

i“1 ψpi,F pkpiq|XF
“ 0, and the proof is complete.
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