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Abstract—Most impedance-based walking controllers for pow-
ered knee–ankle prostheses use a finite state machine with dozens
of user-specific parameters that require manual tuning by technical
experts. These parameters are only appropriate near the task (e.g.,
walking speed and incline) at which they were tuned, necessitating
many different parameter sets for variable-task walking. In con-
trast, this article presents a data-driven, phase-based controller for
variable-task walking that uses continuously variable impedance
control during stance and kinematic control during swing to enable
biomimetic locomotion. After generating a data-driven model of
variable joint impedance with convex optimization, we implement a
novel task-invariant phase variable and real-time estimates of speed
and incline to enable autonomous task adaptation. Experiments
with above-knee amputee participants (N = 2) show that our
data-driven controller 1) features highly linear phase estimates
and accurate task estimates, 2) produces biomimetic kinematic
and kinetic trends as task varies, leading to low errors relative to
able-bodied references, and 3) produces biomimetic joint work and
cadence trends as task varies. We show that the presented controller
meets and often exceeds the performance of a benchmark finite
state machine controller for our two participants, without requiring
manual impedance tuning.

Index Terms—Impedance control, optimization, prostheses.

I. INTRODUCTION

T
O PERFORM activities that require net-positive energy,

such as ascending ramps and stairs, passive prosthesis
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users must supply supplemental power from intact joints [1],

leading to secondary complications including increased energy

expenditure [2], osteoarthritis [3], [4], and lower back pain [5].

While powered prostheses can help avoid these complications

by performing net-positive work [1], [6], [7], [8], [9], designing

prosthetic control systems for diverse environments remains a

challenge.

Impedance control is a common strategy in lower limb wear-

able robotics because of its simplicity and ability to produce be-

haviors that are similar to human biology, such as a compliantly

controlled interaction with the ground [10] and dynamics similar

to what has been observed in skeletal muscles [11]. Further,

empirical studies have shown that ankle joint dynamics during

walking are well described with an impedance controller [12],

[13], [14]. A standard impedance controller calculates joint

torque τ based on a joint angle θ and joint velocity θ̇ as

τ = −K(θ − θeq)−Bθ̇, (1)

whereK,B, and θeq are parameters defining the joint’s stiffness,

damping, and equilibrium angle, respectively.

Traditional methods of impedance control for lower limb

prostheses involve segmenting the gait cycle into discrete sub-

phases, where each subphase has its own constant values of K,

B, and θeq. Researchers manually tune the impedance parame-

ters in each subphase until the observed gait is satisfactory [6],

[15], [16], [17], [18], [19]. Switching between subphases is

controlled by a finite state machine (FSM) with transition criteria

based on sensor readings (e.g., elapsed time, leg loading, joint

angles, etc.). Like the impedance parameters, these transition

criteria are often experimentally tuned for an individual’s gait

by a technical expert. More elaborate impedance value repre-

sentations have been suggested [19], [20], [21], [22], but these

methods still required manual, expert tuning.

Joint kinematics and kinetics vary based on the ground incline

and walking speed [23], [24] (together termed the user’s task).

Therefore, the necessary impedance parameters and state ma-

chine transition criteria also vary. For a standard FSM impedance

controller to operate over a wide array of tasks, many tunable pa-

rameters are required. For example, one multimodal impedance

controller required a total of 140 tunable parameters for five

ambulation modes [20]. While only a portion of these parameters

were considered necessary to tune, the device’s configuration

and tuning still required the researchers up to five hours to

complete.
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In contrast to the standard FSM-based impedance control

paradigm, some authors have suggested using continuous func-

tions to define the impedance parameters and how they evolve

over the gait cycle [25], [26], [27], [28]. In general, controllers

that continually vary a robot’s output mechanical impedance

with time are known as variable impedance controllers [29].

Biomechanical principles suggest that human joints behave like

variable impedance controllers [30] and empirical studies have

observed this behavior at the ankle joint during walking [12],

[13], [14]. Therefore, variable impedance control may offer a

biomimetic solution for controlling powered prosthetic legs.

However, how to appropriately define the variable impedance

functions to realize walking gaits remains an open question.

A variable impedance controller was suggested in [26] using

linear functions for stiffness and damping during stance. The

linear functions were hand-tuned and held constant regardless

of task. The variable impedance control method in [25] elim-

inated tuning altogether by using able-bodied kinematic data

to generate continuous impedance parameter functions of gait

phase. However, this method was limited to the knee joint,

did not consider joint kinetics, and was never experimentally

validated. Recently, Kumar et al. [27] proposed a similar vari-

able impedance controller, where ankle stiffness and damping

were defined as polynomials in gait phase, and the coefficients

defining the polynomials were identified using constrained least

squares with an able-bodied kinematic and kinetic dataset.

The authors utilized piecewise-constant equilibrium angles and

demonstrated continuous stiffness and damping expressions that

produced satisfactory gait with a postoptimization tuning pro-

tocol. This work was later extended to include variable inclines

and a phase variable parameterization of stiffness and damping

based on the phase portrait of the thigh angle and its integral [28].

However, this phase variable is known to have challenges with

nonsteady walking [31], and changes in impedance associated

with walking speed were not considered. The authors of [28] also

note that their method of identifying the impedance parameters

is nonconvex, which does not guarantee a globally optimal

solution [32] for their controller.

This article addresses these limitations by presenting a new

phase-based, task-adaptive walking controller built on a hybrid

combination of continuously variable impedance control during

stance and kinematic control during swing (Fig. 1). First, we

present a convex, data-driven framework to calculate stance

phase joint stiffness, damping, and equilibrium angle as contin-

uous functions of gait phase, walking speed, and incline from an

able-bodied dataset [24] (Section III). Paired with an analogous

model of swing joint kinematics [23], our hybrid controller

adapts behavior across varying tasks based on real-time phase,

speed, and incline estimates (Section IV). Next, we present an

improved phase variable that avoids kinematic singularities and

is robust to the diverse family of thigh trajectories associated

with variable-task walking. Then, we perform validation ex-

periments with two above-knee amputee (AKA) participants,

demonstrating that the adaptive controller produces biomimetic

trends in joint kinematics, kinetics, work, and cadence across

varying tasks (Section V). Finally, we show that our presented

controller meets or exceeds the performance of a hand-tuned

benchmark FSM impedance controller in most tested met-

rics, suggesting that our optimized kinematic and impedance

Fig. 1. A block diagram of the hybrid kinematic impedance controller pre-
sented in this work. Real-time estimates of gait phase ŝ and task χ̂ define desired
joint impedance parameters K,B, θeq, and joint angles θd using data-driven
models. Depending on if the user is in stance or swing, the torque commands
τ are calculated using either an impedance controller or a position controller,
respectively.

models sufficiently capture the key biomechanics of variable-

task walking.

II. RELATED WORK

Many researchers have attempted to lessen the manual tuning

burden of FSM impedance controllers in previous work. One

common approach is to limit impedance control to the stance

phase of gait and use kinematic control in swing phase, similar

to our proposed architecture. Though many have used this hybrid

architecture without a phase variable [6], [33], [34], [35], [36],

[37], [38], [39], [40], relatively few have used it with one [28],

[41]. Phase variable parameterization can be helpful because it

allows continuous regulation of the dynamic interaction between

the user and the ground during stance and provides the user with

indirect volitional control over foot position during swing [31].

Additionally, some researchers have used biological quasi-

stiffness curves calculated from able-bodied data [33], [37], [38],

[41], [42] in lieu of hand-tuned impedance parameters. While the

work in [33], [37], [38], and [42] enabled variable-speed walking

and the work in [38] enabled obstacle crossing, these approaches

were limited to level ground and relied on an FSM to switch

between regions of the nonlinear quasi-stiffness curve during

stance. Similarly, a quasi-passive ankle prosthesis presented

in [43] enabled variable-incline walking with limited tuning

by implementing a constant external quasi-stiffness relationship

between the global shank angle and ankle torque. This external

quasi-stiffness relationship was shown to be invariant across in-

clines during midstance, obviating the need for real-time incline

estimation. However, this invariant relationship was limited to

midstance and the controller relied on an FSM with manually

tuned behavior for the remainder of the gait cycle. Further, as the

control approach was developed for a passive prosthesis, it did

not provide a method to increase net ankle work with increasing

incline, which is an important characteristic of able-bodied walk-

ing [24]. Finally, this method was limited to ankle prostheses,

and it is unclear whether the analogous external quasi-stiffness

relationship for the knee during midstance is similarly invariant.

Other researchers have used reinforcement learning (RL) to

automatically tune the impedance parameters online while a user

walks, thus reducing the need for manual expert tuning [44],
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[45], [46]. Reward functions have been built on knee kinematic

similarity to predefined trajectories or the observed contralateral

knee’s trajectories. However, these approaches were limited to

the knee joint only and can require several minutes of walking

before the optimal impedance parameters are identified. Further,

the RL algorithms focused on kinematic features; the resulting

kinetics and overall biomechanics were not investigated.

Non-impedance-based tuning-free controllers have also been

developed. In [31], [47], [48], able-bodied kinematic profiles pa-

rameterized by a phase variable (i.e., virtual constraints) enabled

tuning-free walking. This approach was extended for variable

speed and incline walking in [49]. A similar controller was

suggested for stair ascent [50]. However, the purely kinematic

control paradigm tended to display nonbiomimetic joint torques

during stance. In addition, the tuning-free knee–ankle prosthesis

controller presented in [22] used an electromyography signal

from the biceps femoris to control knee torque. The ankle

impedance controller used a constant stiffness and damping

with an equilibrium angle calculated from the knee angle. This

controller enabled walking, sitting, squatting, and lunging, but

was not demonstrated on different slopes.

Finally, our work is most closely related to the phase-varying

impedance controller derived from able-bodied data in [28], as

discussed in Section I. However, our approach is distinct in

multiple important ways. First, our convex optimization for-

mulation provides an approximation of the globally optimal

impedance parameter functions. In addition to global optimality,

our convex formulation can be solved in polynomial time [32]

to facilitate future work on real-time optimization using user

data or clinician preference (e.g., [51]). Second, our variable

impedance model includes a continuous function for equilibrium

angle, mirroring the continuous progression of biological joint

dynamics [12], [13], [14]. Third, our variable impedance model

is further parameterized by walking speed, which is critical to

reproducing normative gait energetics [48]. Fourth, we estimate

the task variables in real time, making the system fully au-

tonomous. Fifth, we use a phase variable that is more robust

to variable speed and incline behavior than prior phase variable

definitions [28], [31], [48], [49]. And sixth, we demonstrate that

our approach produces biomimetic trends in joint kinematics,

kinetics, work, and cadence for two novel AKA participants

over a range of tasks without any manual impedance tuning.

III. VARIABLE IMPEDANCE MODEL FOR STANCE

A. Model Framework

To use impedance control for the stance phase of the gait cycle

in a continuous, phase-based control framework, we require a

model analogous to the kinematic model developed in [23] that

describes how the impedance parameters (K,B, and θeq) should

evolve. Specifically, we require the impedance parameter model

to be continuously parameterized by both gait phase s and task

χ = (ν, γ), where task is defined by the current walking speed

ν and ground incline γ over the ranges 0.8 ≤ ν ≤ 1.2 m/s and

−10 ≤ γ ≤ 10 deg.

A model that meets these criteria can be constructed from

a linear combination of phase-varying polynomials, where the

linear combination weights vary with the task. Polynomial

functions of phase are useful to model parameter progression

during stance because they are simply parameterized and can

represent arbitrary aperiodic signals. We use fourth-order poly-

nomials (d = 4), as they allow sufficient flexibility to model the

parameter behavior without overfitting. Once the appropriate

polynomial functions are identified for individual tasks in a

dataset, bilinear interpolation can be used to create a unified,

continuous model with task and phase inputs.

First, we define task-specific polynomial functions that rep-

resent how the parameters vary during stance for a set of

fixed tasks. For convenience, let sst be the stance phase (i.e.,

sst = s/sTO, where sTO is the phase at toe-off (TO)). Then, the

impedance parameters for the pth fixed task χp are

Kχp
=

d
∑

i=0

kips
i
st, Bχp

=

d
∑

i=0

bips
i
st, θeq,χp

=

d
∑

i=0

eips
i
st,

(2)

where κχp
= {(kip, bip, eip) | i ∈ {0, . . . , d}} is a set of con-

stant coefficients. Then, the coefficients κνγ defining the

impedance parameter trajectories for an arbitrary task (ν, γ)
are calculated through bilinear interpolation of its four nearest

neighboring tasks κνn,γn
, where νn ∈ {ν1, ν2}, γn ∈ {γ1, γ2}.

For all j elements in κνγ , this interpolation is

κj
νγ =

[

ν2 − ν ν − ν1

]

(ν2 − ν1)(γ2 − γ1)

[

κj
ν1γ1

κj
ν1γ2

κj
ν2γ1

κj
ν2γ2

][

γ2 − γ

γ − γ1

]

. (3)

Finally, using κνγ and (2) evaluated at the current stance phase

sst, the impedance parameters are calculated. Therefore, the

model is fully defined once each task-specific set of coefficients

κχp
is calculated.

B. Model Fitting

We use an optimization-based approach to fit the model

to a dataset of able-bodied walking [24]. The dataset

contains kinematic and kinetic joint trajectories recorded

from ten participants walking at steady state at 15 distinct

points in the task space (i.e., γ ∈ {−10,−5, 0, 5, 10} deg, ν ∈
{0.8, 1.0, 1.2} m/s). Therefore, for each taskχp, we construct an

optimization problem to identify the set of impedance parameter

coefficients κ∗
χp

that, when used in (1) and (2), best reproduced

the mass-normalized joint torques τ in the dataset, given the

dataset kinematics (θ, θ̇) over all n data points at χp:

κ∗
χp

= arg min
1

n
||τ − τ̂ ||22,

where τ̂ = Kχp

(

θeq,χp
− θ

)

−Bχp
θ̇. (4)

1) Solution Approximation: As written, (4) is difficult to

solve, as the product Kχp
θeq,χp

is nonlinear in the unknown

parameters, and the overall objective function is nonconvex. To

avoid this issue, we solve a similar, convex problem and use its

solution to approximate a solution to (4). First, we combine the

product of Kχp
and θeq,χp

into a new, higher order polynomial

δχp
with independent coefficients δip:

Kχp
θeq,χp

=
d

∑

i=0

kips
i
st

d
∑

i=0

eips
i
st =

2d
∑

i=0

δips
i
st = δχp

. (5)
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By treating the δip terms as independent from the kip terms,

the impedance equation for τ̂ becomes linear in the unknown

parameters kip, bip, and δip. We can then write the modified

optimization problem as a standard quadratic program (QP),

defining a new argument vector x ∈ R
4d+3×1 as

x = [k0p, . . . , kdp, b0p, . . . , bdp, δ0p, . . . , δ2dp]
� . (6)

Let αj ∈ R
4d+3×1 be defined for each data point j as

αj =
[

−θjs
0
j , . . . ,−θjs

d
j ,−θ̇js

0
j , . . . ,−θ̇js

d
j , s

0
j . . . , s

2d
j

]�

.

(7)

Then, the objective function L(κχp
) from (4) becomes

L(κχp
) =

1

n
||τ − τ̂ ||22 =

1

n

n
∑

j=1

τ2j − f�x+
1

2
x�Hx, (8)

where

H =
2

n

n
∑

j=1

αjα
�
j , f =

2

n

n
∑

j=1

τjαj . (9)

2) Constraints and Regularization: To prevent overfitting,

we added a diagonal regularization matrix R = diag(λ) ∈
R

4d+3×4d+3 toH to penalize theL2 norm ofx. Thenth diagonal

entries in R corresponding to the regularization weights on ki
and bi were λn = 1e−5 while λn = 1e−2 for the δi terms. These

hyperparameters were chosen prior to the experiments in order to

produce a smooth model that captured general behavior instead

of overfitting to the training dataset.

Next, we added a constraint matrix A to ensure that Kχp
(s)

and Bχp
(s) remained within ranges that were both physiologi-

cally realistic and feasible for the prosthesis to render in a stable

manner. Namely, Kχp
(s) was constrained above 1.5 Nm/rad/kg

and Bχp
(s) was constrained between 0.01 and 1.0 Nms/rad/kg.

In addition, AKA participants in preliminary experiments noted

that a low stiffness at heelstrike (HS) was unsettling, as they

were accustomed to a locked knee during early stance with

their take-home prostheses. Therefore, a minimum HS stiffness

constraint of 3.0 Nm/rad/kg was added to increase participants’

confidence that the prosthesis was ready for weight acceptance

at HS.

To enforce these constraints, we discretized stance phase into

nj points in the range [0,1]. We constructed a constraint matrix

A ∈ R
3nj×4d+3 from submatrices As ∈ R

nj×d+1 as

As =

£

¤

¤

¥

s01 . . . sd1
...

. . .
...

s0nj
. . . sdnj

¦

§

§

¨

, A =

£

¤

¥

−As 0 0

0 −As 0

0 As 0

¦

§

¨
. (10)

A column vector b ∈ R
3nj×1 contained nj copies of the mini-

mum stiffness and damping and maximum damping values, with

the first term modified for the HS constraint:

b = − [3.0, 1.5, . . . , 1.5, 0.01, . . . , 0.01,−1.0, . . . ,−1.0]� .
(11)

Finally, we arrived at the full QP, with the positive offset torque

(sum-of-squares) in (8) neglected without loss of generality:

minimize
x

1

2
x�(H +R)x− f�x

subject to Ax ≤ b.
(12)

We solved this QP for each subject and task χp combina-

tion in the dataset (N = 150) using the MATLAB Optimiza-

tion Toolbox (R2021b, MathWorks, Natick, MA, USA). Then,

we approximated the solution to the original problem (4) by

projecting the rational function δχp
(sst)/Kχp

(sst) = θeq,χp
(sst)

onto a dth-order polynomial. We assumed the polynomial or-

der was sufficiently high to approximate the rational function

δχp
(sst)/Kχp

(sst) without significant information loss. This

assumption was validated by the model’s low reconstruction

error, detailed in the next section. Then, for each task χp, the

intersubject mean set of coefficients κ̄χp
was calculated for

use as the final model. Trials that did not well represent the

data, measured by a variance accounted for below 75%, were

discarded as outliers prior to averaging.

C. Modeling Results

Fig. 2 shows the calculated impedance parameter model pro-

jected onto a speed of 1 m/s, which was produced by evaluating

(2) and (3) with κ̄χp
. To quantify the impedance parameter

model’s reconstruction error, we calculated τ̂ for the knee and

ankle over each trial in the dataset using the model:

τ̂ = K(sst, γ, ν) (θeq(sst, γ, ν)− θ)−B(sst, γ, ν)θ̇. (13)

Then, we calculated the root mean squared error (RMSE) in joint

torque over all subjects for each task χp in the dataset and nor-

malized by the dataset torque’s standard deviation for χp. This

dimensionless metric, which we call normalized reconstruction

error Ē, describes how many standard deviations τ̂ is from

the mean dataset torque trajectories, on average. Normalized

reconstruction errors below 1.0 indicate that the model is able to

predict joint torque to accuracy levels similar to able-bodied

intersubject variation. Averaged over all tasks, the knee and

ankle normalized reconstruction errors were Ēk = 0.78± 0.11
and Ēa = 0.58± 0.09, respectively.

IV. HYBRID KINEMATIC IMPEDANCE CONTROLLER

The proposed hybrid kinematic impedance controller (HKIC,

Fig. 1) is an evolution of the purely kinematic controller pre-

sented in [49]. In the HKIC, real-time phase and task estimates

provide inputs to the impedance model developed in Section III

during stance and the kinematic model developed in [23] during

swing to provide reference joint behavior. Impedance and posi-

tion controllers enforce the respective model outputs, described

below. Once configured with the user’s mass and leg segment

lengths, the controller operates autonomously, requiring neither

manual impedance tuning nor external knowledge of the terrain.

The following sections discuss each component of the HKIC in

turn.

A. Task-Invariant Phase Estimation

An estimate of the user’s progression through the gait cycle

is required in order to synchronize the control outputs with the

user’s gait. An ideal version of this estimate (termed a phase

variable) increases from 0 to 1 at a constant rate between each

HS [52]. Similar to [31] and [49], the HKIC’s phase variable ŝ is

calculated using a piecewise-linear mapping of the user’s global

thigh angle θth, which has a roughly sinusoidal trajectory (see
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Fig. 2. Plots of the calculated impedance parameter functions, stiffness K(sst, γ, ν), damping B(sst, γ, ν), and equilibrium angle θeq(sst, γ, ν), for the knee
and ankle, projected onto a speed of ν = 1 m/s. These surfaces show the approximated solution to the original optimization problem (4).

Fig. 3(a)). This angle is measured directly using an Inertial Mea-

surement Unit (IMU, 3DM-CX5-25, LORD Microstrain, Willis-

ton, VT, USA) mounted on the proximal end of the prosthesis’s

knee joint. Mounting the IMU on the prosthesis instead of the

person ensures a rigid connection to prevent slipping and vibra-

tion, which are commonly associated with soft tissue connec-

tions. Proper alignment of the prosthesis by a prosthetist ensures

correct alignment of the IMU. The θth-based method of phase

estimation is preferable because it allows the user to start and

stop the gait cycle at will and enables nonrhythmic behavior [31].

However, previous iterations of the θth-based phase variable

did not work well for variable-task locomotion because of

assumptions made about the shape of the θth trajectory.

For example, [31] and [49] assumed that the θth trajectory

could be divided into two monotonic sections. While this

assumption holds fairly well for level-ground and incline

walking, it is invalid for steep declines [24] (Fig. 3(a)). Previous

methods produced inaccurate, saturated phase estimates for such

cases [49]. Further, previous methods did not account for periods

of low thigh angular velocity (i.e., when the hip joint is most

extended or most flexed), leading to pauses in the phase estimate

and subsequent problems in the controller behavior [41], [49].

Therefore, in this work, we relax previous assumptions and

add flexibility to the phase variable to better parameterize

the gait cycle based on the diverse θth trajectories observed

in variable-task locomotion. First, we introduce short periods

of feedforward phase progression that allow ŝ to maintain a

constant positive rate even when the thigh angular velocity is

low, which enables a powerful and biomimetic push-off. Second,

we add states to account for thigh trajectories that have more

than two monotonic sections (especially common during ramp

descent) to prevent excessive phase saturation and gait desyn-

chronization. Third, we introduce a technique to improve the

linearity of ŝ, correcting for previous steady-state nonlinearities

and thus making it closer to an ideal phase estimate. For brevity,

the mathematical details for these improvements are presented in

Appendix A.

To illustrate the benefits of the new phase variable over its

predecessor [31], [49], we conducted a simulation using thigh

kinematic data from [24] (Fig. 3(a)). For each trial of treadmill

walking in the dataset, we calculated the phase variable using

both the new method (Appendix A) and the previous method

described in [49]. For each incline, we averaged the phase

trajectories over all strides, participants, and walking speeds,

shown in Fig. 3(b) and (c). Notably, the new phase variable

eliminated the phase estimate pause associated with maximum

hip extension that was observed with the previous phase variable.

The new method also reduced the early saturation seen in the

previous phase variable, which was particularly prominent at

steep ramp declines. Finally, the new method demonstrated

improved linearity, particularly during midstance. Compared to

an ideal linear phase trajectory, the new method showed 6.25%

RMSE with R2 = 0.990 while the previous method showed

7.48% RMSE and R2 = 0.976 over all tasks.

B. Task Estimation

In addition to the phase estimate, the HKIC requires an

estimate of the user’s current task χ̂, which is calculated at

each TO during steady walking. The estimation methods below

are based on [49], with modifications to improve performance.

Both estimates update once per stride and are filtered with a

moving average over three strides to account for stride-to-stride

variation. Although filtering introduces a time delay in the task

estimates, experiments in [49] demonstrated that this limitation

does not prevent the user from continuing to walk while the

estimates converge.

1) Walking Speed: The user’s speed is estimated using a

three-link leg model, comprising thigh, shank, and foot links,

similar to [33], [53], [54], [55], and [49]. Using forward kine-

matics and inputs from the joint encoders and the thigh IMU,

we calculate the Cartesian locations of the heel and toe relative

to the hip joint, respectively, given by xheel and xtoe. At each TO

event, the forward progression of the hip relative to the foot’s
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Fig. 3. (a) Plots of the mean able-bodied thigh trajectories reported in [24], where positive angles correspond to hip joint flexion, and (b) and (c) the resulting
phase variable trajectories at different inclines. (b) Plot shows the trajectories calculated the previous method described in [49]. (c) Plot shows the trajectories
calculated using the new phase variable presented in this work. The new method shows no phase pause near push-off and improved linearity, especially at the point
of maximum hip extension.

point of contact with the ground during the previous stance phase

is calculated as

dst = ||xtoe − xHS−
heel ||2, (14)

where xHS−
heel is the value of xheel from the previous HS. Similarly,

by assuming a symmetric gait, the forward progression of the

hip relative to the contralateral foot’s ground contact point over

a swing phase is approximated at each HS as

dsw = ||xheel − xTO−
toe ||2, (15)

where xTO−
toe likewise is xtoe from the previous TO. Then, we

calculate the total forward progression over the gait cycle as

dst + dsw + 
foot, where 
foot is a constant accounting for the

length of the prosthetic foot. Finally, walking speed is estimated

by dividing forward progression by stride time.

2) Incline: The ground inclination is estimated by the global

angle of the foot θf when the foot was flat on the ground, similar

to the methods presented in [16], [49], [54], [55], [56]. As it is un-

desirable to add an extra inertial sensor to the foot, we calculate

this angle from the thigh IMU using forward kinematics, along

with a correction for foot bending. Prosthetic feet are designed

to deflect for energy storage [57], so foot deflection significantly

impacts the incline estimate. Offline testing with our prosthesis’s

foot [39] (Lo Rider, 1E57, Ottobock, Duderstadt, Germany)

showed that deflection was correlated with the bending moment

in the sagittal planemy . An on-board six-axis load cell (M3564F,

Sunrise Instruments, Nanning, China), located at the distal end

of the ankle joint, measures this moment directly. Then, θf is

calculated as

θf = θth − θk + θa + θ0f + kfmy, (16)

where kf is the linear bending coefficient, θk is the relative knee

angle, and θa is the relative ankle angle. All joint angles are

measured positive in flexion and are zero when the user stands

upright. The constant offset term θ0f accounts for the angular

difference between the prosthetic foot, the cosmesis, and the

sole of the shoe.

To determine when the foot was flat on the ground, the center

of pressure in the foot reference frame 
cop is calculated using

the load cell, similar to [49]. We consider the foot to be flat when

7.5 ≤ 
cop ≤ 12 cm from the ankle joint, which corresponds to

the ground reaction force acting between the middle and the

ball of the foot. During this period, θf is averaged to produce the

incline estimate for the stride.

C. Impedance and Kinematic Controllers

1) Stance Impedance Controller: During stance, a variable

impedance controller is used to calculate joint torques. First, the

stance phase estimate ŝst is calculated by

ŝst = ŝ/¯̂sTO, (17)

where ¯̂sTO is the expected value of the phase variable at TO

(see Appendix A for details). Using ŝst and χ̂, joint stiffness K,

damping B, and equilibrium angle θeq are calculated using (2)

and (3) and the model developed in Section III. Then, the joint

torque during stance is calculated with the following impedance

control law, scaled by user mass m:

τst = m
(

K(ŝst, χ̂)(θeq(ŝst, χ̂)− θ)−B(ŝst, χ̂)θ̇
)

. (18)

2) Swing Kinematic Controller: A proportional derivative

(PD) controller uses constant gains kp and kd to directly track

desired joint angle trajectories. This is in contrast to the equi-

librium angles of the impedance controller, which do not nec-

essarily align with the normative joint angles. A continuous

model of able-bodied joint kinematics [23], generated using data

from [24], provides the desired trajectories defined as

θd(s, χ) =

N
∑

i=1

bk(s)ck(χ), (19)

where bk(s) are Fourier series and ck(χ) are Bernstein basis

polynomials. Similar to the impedance model, (19) is evaluated

in real time using ŝ and χ̂. Then, the PD torque command during

swing, τsw, is given by

τsw = kp(θd − θ) + kd(θ̇d − θ̇). (20)

3) Stance to Swing Transition Smoothing: A time-varying

weight wsw ensures a smooth transition from impedance control

to position control. Because impedance control may allow the

joint angles to vary from their nominal trajectories depending

on how the user loads the prosthesis, this smoothing is critical

to avoid discrete changes in joint torque. At TO, wsw increases

from 0 to 1 over 0.25 s for the knee and 0.05 s for the ankle. The

ankle smoothing is faster because close tracking of the ankle
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Fig. 4. Photos of AKA participants P1 and P2 performing various tasks with the HKIC during the experiments.

kinematics during early swing is important for avoiding toe-

stubbing. The actual output to the joint motors is given by

τ =

{

τst during stance,

wswτsw during swing.
(21)

Because the equilibrium angles at HS are close to the kinematic

references at the end of the gait cycle, no smoothing is necessary

for the swing to stance transition.

Close examination of (21) shows that for a brief period just

following TO, minimal control action is applied to the joints.

This is acceptable because the low-impedance actuators used in

our prosthesis [39] allow the joints to continue moving along

their current trajectories according to their passive dynamics

without control input. Passive early swing knee and ankle dy-

namics have been shown to produce human-like gait [58], [59],

and these passive dynamics may contribute to the biomimetic

behavior of the controller.

V. AMPUTEE PARTICIPANT EXPERIMENTS

Experiments with two AKA participants were performed to

investigate the ability of the HKIC to produce biomimetic gaits

over variable tasks. To benchmark the HKIC’s performance

against another well-known controller, we also implemented

a standard, piecewise-constant FSM impedance controller and

tuned it for each participant. The participants completed the

experimental protocol once with each controller, detailed below.

Photos of the experiment are shown in Fig. 4, and video

recordings are available online as supplemental media.

A. Benchmark FSM Impedance Controller

A benchmark finite state machine controller (FSMC) was de-

signed based on the variable-incline FSM impedance controller

presented in [16], with an additional stance state and modified

transition criteria to improve performance (see Appendix B for

details). This controller was chosen as a benchmark because

of its simple construction, widespread usage [1], and ability to

create biomimetic walking gaits when appropriately tuned [16].

While more sophisticated variants of the FSM impedance con-

trol paradigm have shown stronger results, such as those that

modulate the impedance parameters based on joint angles or

prosthesis axial force [6], [20], [21], [60], [61], the original

version from [16] provides a valuable benchmark for comparing

novel controllers because its performance and limitations are

TABLE I
PARTICIPANT ATTRIBUTES

widely understood [1], [9]. Further, many modern controllers

still use FSM impedance control in some if not all sections of

the gait cycle [18], [19], [34], [35], [36], [44], [45], [46], [47],

[62], so understanding the HKIC’s performance relative to the

FSMC is scientifically relevant.

The FSMC had five discrete states throughout the gait cycle,

each with its own set of constant impedance parameters and

transition criteria. Similar to the methods discussed in Section

I, these parameters needed to be hand-tuned by an expert re-

searcher in order to produce the desired gait. To enable walking

at various inclines, three sets of tunable impedance parameters

and transition criteria were instantiated for each joint (i.e., one

set for level ground, one set for declines, and one set for inclines).

The controller selected between impedance parameter sets based

on the estimated incline γ̂ (Appendix Fig. 15(b)). In total, the

FSMC required 96 tunable parameters, including 45 impedance

parameters per joint and six FSM transition criteria.

B. Experimental Methods

Two AKA individuals participated in the experiment, with at-

tributes shown in Table I. A third participant was enrolled but was

unable to complete the protocol due to excessive swing-phase

lateral whipping caused by prosthetic misalignment. Although

we worked with the prosthetist to correct the alignment multiple

times, the prosthesis would become misaligned again after a

short walking bout, possibly due to a combination of his pros-

thetic socket and weak femur musculature [63]. We suspect that

the large distal mass of the robotic prosthesis also exacerbated

this problem. Due to this issue, we only present data from the

remaining two subjects in this article.

The experimental protocol was approved by the Institutional

Review Board of the University of Michigan (HUM00166976),

and the participants wore a ceiling-mounted safety harness while

walking on the treadmill. For the experiments, the presented

HKIC and the comparison FSMC were implemented on a back-

drivable, powered knee–ankle prosthesis, shown in Fig. 4 and
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described in depth in [39]. This prosthesis features quasi-direct

drive actuators that enable open-loop joint impedance control.

A licensed prosthetist fits the prosthesis to the participants and

ensured proper alignment. The participants were instructed on

the expected high-level behavior of both controllers and given

time to acclimate to each controller while walking overground

within parallel bars. Importantly, the participants were not told

which controller was expected to perform better during the

experiment. Following this overground acclimation, five trials

with each controller were conducted on an in-ground tread-

mill (Bertec, Columbus, OH, USA). For safety, instrumented

handrails were provided on either side of the treadmill. The

participants were encouraged to limit body weight support on the

handrails to maximize the realism of the experiment, which was

verified by handrail force data. Participant P1’s mean handrail

usage was under 12% bodyweight and participant P2 frequently

chose to use only one handrail (Fig. 4(c)–(d)).

The first three trials investigated the performance of the HKIC

and the FSMC during steady walking at different speed and

incline combinations. Each trial focused on a range of small

task deviations (±2 deg, ±0.2 m/s) around one of three baseline

tasks: χ = (0 deg, 1 m/s), χ = (5 deg, 1 m/s), and χ = (−5 deg,

1 m/s). We refer to these steady-state task trials as SS-Level, SS-

Incline, and SS-Decline, respectively. For the SS-Incline trial,

speed was limited to 1.1 m/s to ensure that the participants could

safely perform the trial.

The steady-state task trials began with an acclimation period,

where the participants walked at the baseline task until feeling

comfortable. During this time, the FSMC was tuned by the

authors of this work to produce a natural gait, incorporating

feedback from the participants and the prosthetist. The authors

have significant experience tuning impedance controllers [21],

[47], [61]. Tuning continued until the authors, prosthetist, and

participant were satisfied with the resulting natural gait (see

supplemental video, available online). The time taken to tune

the FSMC was recorded. Note that no tuning was done for the

HKIC. After tuning and acclimation, the participants walked on

the treadmill as it cycled through each of the five tasks near the

baseline task, each commanded for 45 s. In these trials, true task

feedback was provided to the controllers so that any errors in

the task estimates did not affect the results.

The tuning, acclimation, and testing procedure above was

repeated for each baseline task. These baseline tasks were chosen

to be far apart in the task space in order to sample a wide range

of tasks without deviating too far from any one of the FSMC’s

tuning points. Fig. 5(a) shows the recorded task-space profiles

from the treadmill for each trial, where the black dots indicate

each commanded task.

The latter two trials consisted of more rapid task changes

to investigate each controller’s behavior during continuous task

variations rather than at steady state and over a wider range

of tasks. Also during these trials, the controllers received no

real-time knowledge of the task from the treadmill, investigating

the autonomous capability of each controller to operate over

variable tasks. Both controllers utilized the same task estimation

methods (Section IV-B). The FSMC transitioned between the

tuned impedance parameters sets based on the estimated incline

(Appendix Fig. 15(b)). In these two trials, one with inclines (CV-

Incline) and the other with declines (CV-Decline), the treadmill

Fig. 5. Diagrams indicating the locations of the task space sampled during each
trial. Each transparent marker indicates the treadmill’s task feedback, sampled at
2 Hz. Each black dot indicates the task combination commanded to the treadmill
for a duration of 45 s in (a) and 20 s in (b).

started at χ = (0 deg, 1 m/s) and explored eight other points

within the task space in the range of [0,8] deg and [0.6,1.2]

m/s. Each task point was commanded to the treadmill for 20 s.

Because the treadmill required time to change task, smooth task

trajectories with continuous variations were generated, shown

in Fig. 5(b).

C. Experimental Results

1) FSMC Tuning Time: For the two participants, the FSMC

required on average 30 min of tuning to produce normative

gaits for the three baseline tasks. On average, the level-ground

task required 11 min, the incline task required 15 min, and the

decline task required 5 min. Participant-specific tuning times and

tuned FSM parameters are listed in Table IV in the Appendix.

Trends in the tuned parameters included higher stiffness values

during stance than in swing and highly varying knee equilibrium

angles across tasks. The observed gait was also noted to be

quite sensitive to the tunable FSM transition criteria. Significant

variance in the required tuning time for the different tasks was

also observed.

2) Steady-State Trials: The kinematic and kinetic traject-

ories produced by the HKIC during the steady-state trials high-

light its ability to reproduce normative biomechanics over vari-

able tasks (Fig. 6). Bilinear interpolation was used to generate

the able-bodied reference trajectories for tasks between those

reported in the dataset [24]. The observed HKIC trajectories

show strong similarity to the able-bodied references, particularly

at the ankle. Knee moments are the most different relative to

able-bodied for both the HKIC and the FSMC. The separation

and trends seen in the HKIC closely resemble those observed the

able-bodied data, suggesting appropriate adaptation in response

to variable-task walking.

We quantified the similarity between the observed and able-

bodied trajectories during stance and swing, showing that the

HKIC produced a low RMSE in most metrics (Fig. 7). Stance

and swing were treated separately to isolate the performance

of the novel impedance parameter model (Section III), as it was

only used during stance. The first 15 s at each task were neglected

to allow time for the treadmill to reach steady state. Unless

otherwise specified, we present interparticipant averages and

calculate standard deviations using lumped participant strides.

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 14,2025 at 03:31:11 UTC from IEEE Xplore.  Restrictions apply. 



BEST et al.: IMPEDANCE CONTROL OF POWERED KNEE–ANKLE PROSTHESIS FOR ADAPTIVE SPEED AND INCLINE WALKING 2159

Fig. 6. Plots of the interparticipant average kinematic and kinetic trajectories produced by each controller over (a) varying inclines at 1 m/s and (b) varying speeds
at level ground for the steady-state trials. Able-bodied trajectories from [24] are also shown for reference. The HKIC produced smooth kinematic variations with
incline changes as well as increasing knee flexion and ankle push-off torque with increased speed, resembling the able-bodied trajectories.
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Fig. 7. Interparticipant RMSE in the observed kinematics (left) and kinetics
(right) relative to able-bodied walking data for both the HKIC and FSMC during
the steady-state task trials. The error bars represent ±1 standard deviation over
lumped participant strides. The HKIC demonstrated lower mean error than the
FSMC in seven of eight metrics, with particular improvements at the ankle joint.
The high knee kinematic error in swing for the HKIC is the result of intentional
early extension to promote user confidence that the prosthesis was ready for
weight acceptance.

Fig. 8. Interparticipant average cadence for the steady-state task trials as
functions of speed for different ramp inclinations: ramp descent (left), level
ground (middle), and ramp ascent (right). Error bars represent ±1 standard
deviation over lumped participant strides. Both controllers show similar cadence
trends as the able-bodied reference (AB) calculated from [24], with increasing
step frequency with increasing speed. Overall, the participants preferred longer
strides relative to able-bodied, which may be due to the larger mass of the
powered prosthesis.

Individual RMSE values for each participant were similar to

the interparticipant averages and are available in the Appendix

(Table V). The low RMSE values suggest that, in addition to

replicating normative trends as task varied, the HKIC produced

kinematics and kinetics that were close to the reference values.

Further, the HKIC’s performance was as good as or better

than the hand-tuned FSMC’s performance in seven of the eight

metrics. The high knee kinematic error during swing can be

attributed to the intentional early knee extension meant to im-

prove user confidence (see Appendix A2) and it did not result

in adverse gait effects.

Interparticipant spatiotemporal gait metrics also showed sim-

ilarity to able-bodied data [24]. Both controllers elicited lower

cadence gaits (equivalently longer stride length gaits) compared

to able-bodied, but show generally similar trends of increasing

cadence with walking speed (Fig. 8). In addition, the stance

time symmetry ratio rSTS was calculated using the ground

reaction force data, defined as the ratio between the average

prosthetic stance time and the contralateral limb stance time.

The mean and standard deviation over the steady-state trials

of both participants were rSTS = 0.902± 0.017 for the HKIC

and rSTS = 0.892± 0.016 for the FSMC. Note that due to a

recording error, symmetry data were not available for partic-

ipant P1’s HKIC SS-Decline trial. Both controllers produced

TABLE II
TASK ESTIMATE RMSE OBSERVED DURING THE CONTINUOUSLY VARYING

TASK TRIALS AVERAGED OVER LUMPED PARTICIPANT STRIDES

a slightly more symmetric gait than average AKA participants

with passive prostheses (rSTS = 0.784, reported in [64]), but less

symmetric gaits than able-bodied people (rSTS = 1.02, reported

in [65]).

The HKIC also produced trends in joint work across variable

tasks that were consistent with able-bodied data (Fig. 9). As

one of the benefits of impedance control is the ability to control

energy exchange with the environment [10], the HKIC should

be able to replicate this biological behavior. The HKIC showed

similar trends as the able-bodied data, with a linear increase

in net work performed with increasing incline, particularly

at the ankle (increase of 0.0337 J/kg/deg, R2 = 0.982). For

comparison, able-bodied ankle work increases linearly at

0.0335 J/kg/deg with R2 = 0.987. The HKIC also increased

total work with increasing speed in a manner consistent with

able-bodied data, though the work differences between the

slow and fast speeds are minor for the able-bodied reference. In

contrast, the net work performed by the FSMC decreased with

speed and appeared discretized to three levels with respect to in-

clines, corresponding to its tuned tasks. Interestingly, the HKIC

and FSMC showed less energy absorption at the knee during

declines, which may reflect the habitual aversion to early stance

knee flexion commonly observed in AKA populations [66], [67].

3) Continuously Varying Trials: The continuously varying

trials demonstrated the HKIC’s ability to autonomously adapt

behavior to the sensed walking speed and ground incline. The

kinematic and kinetic errors were calculated in a similar manner

for the continuously varying task trials, though this time includ-

ing strides that occurred during task transients. Fig. 10 shows

the interparticipant average error trajectories at both joints for

the CV-Incline trial, calculated as the able-bodied references

subtracted from the observed values. Table V in the Appendix

details the participant-specific stance and swing kinematic and

kinetic RMSE for both the CV-Incline and CV-Decline trials.

Aside from the late-swing knee kinematics (discussed above),

the HKIC shows low errors throughout the gait cycle, particu-

larly at the ankle joint. Further, the magnitude of the FSMC’s

error is larger than the HKIC’s for most of the gait cycle, high-

lighting the importance of the HKIC’s continuously adaptive

nature.

As both controllers received no external task input during

these trials, the task estimates (and the phase estimate for the

HKIC) contributed to the kinematic and kinetic errors. The

task estimate RMSE, averaged over each stride and participant,

is shown in Table II for each trial. Although the same task

estimation algorithms were used with both controllers, FSMC

showed higher incline estimate error, suggesting that differences

in controller behavior may have impacted the incline estimate’s

efficacy. In addition, the average phase estimate trajectories

produced by HKIC during the CV-Incline and CV-Decline
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Fig. 9. Interparticipant average prosthesis work per stride over variable (a) inclines and (b) speeds during the steady-state task trials. Error bars represent ±1
standard deviation over lumped participant strides. An able-bodied reference (AB) calculated from [24] shows that the HKIC demonstrated biomimetic energy
injection, particularly through a linear increase in ankle work as incline increased, corresponding to 100.6% of the able-bodied rate. Both controllers showed less
energy absorption at the knee during steep declines, suggesting that our participants may have had habitual aversions to early stance knee flexion.

Fig. 10. Plot of the interparticipant average kinematic and kinetic error
trajectories in the continuously varying incline trial, relative to able-bodied
data [24]. The knee data are shown in the left column and the ankle in the right.
Shaded regions represent ±1 standard deviation over lumped participant strides.
Aside from intentional discrepancies in the late-swing knee kinematics (see
Appendix A2), the HKIC showed low RMSE across the gait cycle throughout
varying tasks, suggesting appropriately adapting biomechanics.

trials were highly linear (mean R2 = 0.989) and accurate (mean

RMSE of 6.157%), even as speed and incline varied (see Fig. 11).

However, the phase estimate saturated more often for partic-

ipant P2 than participant P1, suggesting that participant P2’s

thigh trajectory was less similar to able-bodied trajectories than

participant P1’s.

VI. DISCUSSION

A. HKIC Performance

This work presented a data-driven, phase-based walking con-

troller for a powered knee–ankle prosthesis that autonomously

adapted its behavior across a continuous range of walking speeds

and inclines. To achieve this without manual impedance tuning,

Fig. 11. Average phase estimate progression calculated in real time by the
HKIC during the continuously varying task trials for participants P1 and P2.
Shaded regions represent ±1 standard deviation. The linearity and consistency
of the trajectories illustrate the phase variable’s ability to adapt to continuous
task variations and appropriately parameterize the gait cycle.

we used an able-bodied dataset to optimize for continuous stiff-

ness, damping, and equilibrium angle functions that reproduced

biological stance joint torques, given biological kinematics. In an

initial offline analysis, we showed that our optimized impedance

parameter model produced joint torques with across-task

average normalized RMSE values of 0.78 and 0.58 for the knee

and ankle, respectively. The low normalized RMSE suggests that

the model captures the essential joint dynamics of able-bodied

walking.

The subsequent experiments with two AKA participants

demonstrated that the identified impedance parameter func-

tions also rendered appropriate stance phase joint mechanics

when used for real-time control in the HKIC. Other normative

walking features were observed, such as increasing ankle work

with increasing incline (Fig. 9) and increasing cadence with

walking speed (Fig. 8). Although the kinematic and kinetic

profiles produced by the HKIC had small differences relative

to able-bodied data (Figs. 6 and 7), the participants exhibited

qualitatively normal gait patterns over a wide array of tasks (see

supplemental video, available online). Kinematic and kinetic

trends emerged with variable speeds and inclines that were
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consistent with able-bodied data (Fig. 6), including appropri-

ately varying peak ankle moments, stance ankle kinematics,

and knee stance kinematics. Knee swing kinematics showed

the highest error for the HKIC, which was expected because

we intentionally allowed the phase variable to saturate early

to ensure full knee extension prior to HS. Pilot testing showed

that consistent full knee extension helped eliminate participants’

problematic instinctive compensations and promoted confidence

that the prosthesis was ready to accept weight (see Appendix

A2). Small phase shifts result in large swing kinematic errors

due to the large knee range of motion, and although the error

values appear large, they did not interfere with the participants’

gait or cause toe-stubbing.

Appropriate kinematic and kinetic adaptation are both prac-

tically and clinically important for the user. For example, knee

swing kinematic adaptations enable the prosthesis to have the

proper configuration at HS as incline varies. Without such

adaptations, the user may, for example, toe-stub during swing

when walking uphill with level-ground kinematics, or vice versa,

experience too much flexion to enable HS at the desired time.

Further, kinetic adaptation during stance enables increasing peak

ankle moments for propulsion as incline and speed increase

(Fig. 6). Improper joint kinetics can cause improper ground

reaction forces, which can affect user balance [68]. Finally, ap-

propriate kinematic and kinetic co-adaptation enables joint work

adaptation, even in cases where both kinematics and kinetics

deviate from able-bodied normative trajectories. For example,

the HKIC’s peak ankle moment at a 7 deg incline is slightly

smaller than able-bodied (Fig. 6). However, a corresponding in-

crease in peak plantarflexion angle allows the HKIC to maintain

appropriate ankle work (Fig. 9). Biomimetic energy injection

is important to prevent compensations from other joints and

additional health problems [3], [4], [5], [41].

Qualitative remarks by the participants also testified to the

biomimetic task adaptation of the HKIC. Participant P1 re-

marked while walking at the 7 deg incline that he did not feel like

he was walking uphill, suggesting appropriate joint dynamics

and energy exchange. Participant P2 remarked that he did not

even notice that the treadmill had transitioned to the 2 deg decline

and that he could “climb up much easier” while ascending steep

inclines. These anecdotal remarks further support the claim

that the HKIC adapts to changing tasks to produce normative

able-bodied biomechanics, which could result in many practical

benefits for the user. For example, the biomimetic energy injec-

tion at steep inclines (Fig. 9) may allow users to walk uphill for

longer before fatiguing.

While the FSMC’s performance was not drastically worse

than the HKIC’s in the tested metrics, it required on average

10 min of tuning per tuned task. Although only three tasks

were tuned for this study, practical deployment of the FSMC

would likely require many more tasks to be tuned. For example,

participant P2 noted that the FSMC was “kicking off way too

hard” when going uphill at slow speeds, but was happy with

its behavior at normal speeds, suggesting that more speed-

specific impedance parameter sets could be beneficial. However,

adding more tuning points is likely impractical in a clinical

setting, especially without specialized equipment such as a

variable-incline treadmill. Therefore, the HKIC’s potential to

produce biomimetic behavior over varying tasks without manual

impedance tuning is a significant benefit.

For online implementation of the continuous impedance

parameter model, gait phase needed to be estimated in real

time. The improved phase variable behavior observed in

simulation in Section IV-A was confirmed in the participant

experiments. Fig. 11 shows how the phase variable eliminated

the previously observed phase pause near push-off. The result of

this monotonicity is visible in the kinematics of Fig. 6, as there

is not a pause in the kinematic trajectories near push-off, which

was observed previously in [49]. Further, the general linearity

of the average phase trajectories in Fig. 11 (mean R2 = 0.989)

is improved compared to [49]. Because both the impedance

and kinematic models in HKIC assume a perfectly linear phase

estimate, the observed linearity keeps the model outputs of the

controller synchronized with the user’s gait. In addition, Fig. 11

shows that participant P2’s phase variable saturates at 1 earlier in

the gait cycle than participant P1. This occurs because the meth-

ods used to estimate the thigh trajectory features (Appendix A2)

prioritize phase saturation (and subsequently full knee

extension) to promote participant confidence. This early phase

saturation suggests that P2 preferred for the knee to be fully

extended earlier in swing, whereas P1 was satisfied with full knee

extension occurring right before HS, as it does in able-bodied

data.

The task estimates are other critical components required for

walking over continuously varying tasks. It is seen in Table II

that the error in the speed estimate was fairly consistent over

the trials, with RMSE between 0.10 and 0.12 m/s for both

controllers. This error is likely due to a slightly asymmetric gait,

which violates the assumptions made in the speed estimator’s

formulation. Gait asymmetries may be the result of our partici-

pants’ habitual compensations, socket comfort, or the significant

mass difference between the robotic prosthesis and participants’

passive prostheses. Interestingly, the incline estimate produced

lower error with the HKIC (0.61–0.66 deg) than the FSMC

(1.03–1.81 deg). We speculate that the higher error in the FSMC

is due to a feedback interaction between incline estimate errors

and the impedance parameters. Due to the discrete switching

behavior of the impedance parameters (Appendix Fig. 15(b)),

a small incline estimate error can result in large changes in

prosthesis behavior and may affect the θf and 
cop progressions.

Therefore, the continuous nature of the HKIC may be preferable,

as it does not display discrete changes in behavior with small

changes in task inputs.

B. Limitations and Future Work

The HKIC and this study were not without limitations. Our

experiment provided a somewhat limited view of the HKIC’s

behavior, as it involved only two participants, each with only

one experimental session (although both had prior experience

walking with the prosthesis). We expect that the data-driven

impedance parameter model identified in Section III will yield

similar performance for a wide array of participants, as it was

created without a priori knowledge of the participants or their

preferences. Preliminary studies of able-bodied users testing the

HKIC over varying tasks suggest that this assumption holds [69].

However, this assumption should be validated in future studies

with wider AKA participant pools, as the HKIC’s ability to

generalize to the full AKA population remains unknown. Fur-

ther, the performance of the HKIC should also be investigated
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when implemented on different hardware platforms to better

validate the framework. While the HKIC could in theory be

implemented on any powered prosthetic leg with the ability to

render a variable joint impedance, prostheses with nontrivial

actuator transmissions (e.g., [6], [48]) or series elasticity (e.g.,

[21], [61]) would require actuator characterization [70] and,

in some cases, closed-loop torque control to accurately render

variable joint impedance.

In addition, it is possible that there are users for which the

population average impedance parameters are not optimal. There

may also exist other impedance parameter functions that produce

normative biomechanics, as the human sensorimotor system

is highly adaptable [71], [72], [73]. Participants’ sensitivity to

changes in the impedance parameter model could be investigated

in future studies. In addition, there may be factors other than

those considered in this work that distinguish the ideal parameter

functions, such as user preference. A study investigating users’

preferred stiffness in ankle prostheses showed that the preferred

joint stiffness varies by user [74], which is likely true for AKA

participants as well. For example, participant P2 noted that the

knee felt “squishy” when ascending steep slopes and that he

would have preferred it to be stiffer. While one of the major

advantages of HKIC is that it required no manual impedance

parameter tuning, it is currently limited by the lack of an abil-

ity to customize to an individual’s preferred behavior. Future

work will investigate methods to incorporate user preferences

in the impedance model, such as weighting the optimization

with a single baseline personalization for level-ground walking,

as suggested in [75]. This baseline personalization could be

gathered using tools in a standard clinic [51], maintaining the

minimal-tuning nature of the controller.

Our study also did not investigate discrete changes in ground

slope, which may be encountered during daily ambulation (e.g.,

wheelchair ramps) and should be handled by a variable-task

walking controller. While the work in [49] showed that the

HKIC’s incline estimation algorithm is stable under discrete

incline changes, our task estimation methods are limited by

their discrete “once-per-step” update nature. Because we detect

incline during midstance, the user must, at a minimum, be able to

complete the first half of stance phase with the previous stride’s

task estimate. This is particularly problematic during discrete

transitions between steep inclines and level-ground walking

because the HS kinematics vary drastically [24]. Future work

involving anticipatory algorithms that update the task estimate

based on sensed characteristics of the upcoming terrain [76],

[77], [78] or user behavior [79], [80] may be necessary to

alleviate this limitation.

Further, this work only investigated rhythmic walking over

relatively long durations, though almost half of all walking

bouts in community ambulation contain less than 12 consec-

utive steps [81]. One of the unique strengths of the presented

phase variable is the ability to intuitively control nonrhythmic

tasks [31]. Although this capability of the HKIC was demon-

strated at the beginning and end of each trial in this study, it

should be explored further and characterized in future studies

involving rapid start/stop, lateral movements, and other behav-

iors that are prominent in agile locomotion. Such studies may

also highlight the limitations of using the current impedance pa-

rameter model for nonrhythmic tasks. Although the participants

were able to achieve start/stop behaviors in this experiment,

additional able-bodied data may need to be included in the

optimization to produce appropriate impedance parameters for

other nonrhythmic tasks.

The continuously adaptive nature of the HKIC may also be a

limitation in some circumstances. For example, participant P2

noted that while he appreciated that the HKIC always adapted

to the current task, he also preferred the predictability of the

FSMC. We plan to investigate methods to preserve the flexibility

of the HKIC while increasing predictability in future studies.

One way to improve the predictability of the HKIC may be

to increase the training duration to allow the participants to

better acclimate to and leverage the benefits the HKIC and the

powered prosthesis. Perhaps the lack of early stance knee flexion

in both controllers (Fig. 10) and the low knee energy dissipation

(Fig. 9) are less due to controller behavior and more due to the

participant’s habitual compensations developed through years

of using a passive prosthesis [66], [67]. Future work may show

that as the participants become more comfortable with a pow-

ered prosthesis and develop a stronger intuition for the HKIC’s

behavior, these gait features become more similar to able-bodied

data.

Finally, there is much interesting work to be done investigat-

ing the relationship between biological joint impedance mea-

sured in empirical studies [12], [13], [14] and the impedance pa-

rameters used in impedance controllers. Mechanical impedance

can only be characterized through perturbation studies, so the

impedance parameters found by optimizing over nonperturbed

gait data will not necessarily reflect these dynamics. We plan to

study the effects of constraining the optimization with known

empirical impedance values, as well as to investigate the HKIC’s

behavior during gait perturbations.

VII. CONCLUSION

This work presented a data-driven walking controller

designed to work over a continuum of speeds and inclines. We

developed continuous models of joint stiffness, damping, and

equilibrium angle for an impedance controller using convex

optimization. We also presented an improved phase estimation

algorithm, showing increased monotonicity and linearity.

Two AKA prosthesis users demonstrated the controller’s

ability to autonomously produce biomimetic behavior over

continuously varying tasks during treadmill experiments. The

experiments showed that, when compared with able-bodied

data, the presented controller produced biomimetic trends in

joint kinematics, kinetics, work, and cadence, indicating its

ability to render appropriate joint mechanics as task varied.

APPENDIX

A. Task-Invariant Phase Variable Algorithm

The new phase variable ŝ is calculated through a series of

linear equations with θth as an input. An FSM controls when each

equation is used. Although the FSM contains discrete states, the

structure of the linear equations ensures that ŝ is continuous.

Each equation is defined by quantitative features of the θth trajec-

tory, which are measured in real time. Table III lists the features’

definitions and notations. First, we give the rationale for each
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TABLE III
SYMBOL DEFINITIONS FOR FEATURES USED TO CALCULATE ŝ

Fig. 12. Average global thigh angle trajectory θth (positive flexion) for 1 m/s
0 deg able-bodied walking, segmented by the phase variable FSM states. The
phase variable is defined by linear mappings of θth during S1, S2, and S4, and by
a feedforward phase variable rate during S3 and S5. The feedforward rates for S3
and S5 are given by the average rate of change of the phase estimates during the
preceding states, which correspond to periods of constant thigh angular velocity.

FSM state and its corresponding phase variable equation. Then,

we present methods to estimate the thigh trajectory features in

real time, as well as the steps taken to promote closed-loop

stability of the phase estimate.

1) Phase Variable FSM: Consider the average θth trajectory

for an able-bodied individual walking at 1 m/s on level ground,

shown in Fig. 12. The pertinent θth trajectory features used in

the phase estimate are labeled, as well as the standard timing of

the FSM states. The overall structure of the FSM used to control

the phase estimate is shown in Fig. 13.

The FSM begins in S1, occurring just after an HS event.

During S1, θth is linearly scaled as the hip joint extends from θHS
th

to θMHE
th such that ŝ increases and ŝ = sMHE when θth = θMHE

th .

Mathematically, this is given by

ŝ =
θHS

th − θth

θHS
th − θMHE

th

sMHE in S1 and S2. (22)

The FSM transitions to S2 at a phase estimate threshold ŝ1→2 =
0.1, which typically corresponds to the point in the gait cycle

where the θth trajectory becomes linear.

In S2, ŝ is calculated using the same linear relationship as in

S1 (22), but is denoted as a distinct state because it represents a

portion of the gait cycle where θth (and therefore ŝ) has constant

Fig. 13. Flowchart depicting the FSM states and transition criteria used in the
phase variable calculation. States 1–3 (green) occur during the stance phase and
states 4–6 (blue) occur during swing. States where phase is directly calculated
based on thigh angle are shown as squares and states with feedforward definitions
are shown as circles. State 6 is only necessary for nonsteady gait and is typically
bypassed during steady walking.

velocity. The average rate of change of ŝ during S2 ( ˙̂sS2) is

recorded for use in S3. The FSM transitions to S3 once ŝ2→3 =
0.9sMHE, which typically corresponds to the end of the linear

portion of the thigh trajectory, or if θ̇th > 0. This second case

rarely occurs during steady walking, but is an important path to

S3 in the event of an unusually short stride.

S3 occurs during the section of the gait cycle where θth

reaches its minimum, and thus has a period of low angular

velocity θ̇th. Previous work has shown that sections of low θ̇th

are problematic because they cause a pause in the phase variable

trajectory [31], [41], [49]. This pause violates the assumption

that ŝ increases monotonically and at a constant rate, resulting

in incorrect kinematic and impedance model outputs. Therefore,

during S3, we decouple ŝ from θth and instead assume that phase

continues progressing at ˙̂sS2:

ŝ = ŝ23 +

∫ ∆t

0

˙̂sS2dτ in S3. (23)

This feedforward phase progression continues until a TO event.

Although this approach limits the user’s ability to stop phase

progression during S3, such cases are unlikely because stop-

ping would inhibit power delivery from the ankle during push-

off. Moreover, the underactuated dynamics of bipedal walking

dictate that once the user’s gravity vector passes anterior of

the stance foot, the user must continue the gait cycle until the

contralateral foot lands [68], [82]. Therefore, we expect the

sacrifice in direct control of phase progression during this section

of the gait cycle to be negligible.

After TO, the FSM transitions to S4, where phase is again

estimated via a linear scaling of θth. This mapping is defined

such that ŝ increases from ŝTO toward sMHF as θth increases:

ŝ =
θth − θTO

th

θMHF
th − θTO

th

(sMHF − ŝTO) + ŝTO in S4. (24)
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The FSM transitions to S5 when θth is equivalent to the average

of θHS
th and θMHF

th , which typically corresponds to the end of this

linear section of the thigh trajectory.

Two problems typically occurred with the previous phase

variable methods when θth ≈ θMHF
th , which occurs during S5 in

the new FSM. First, a pause in ŝ would occur as θ̇th slowed and

θth approached θMHF
th , similar to the effect seen in S3. Second,

the previous methods assumed that θMHF
th = θHS

th . In cases where

θMHF
th > θHS

th , such as the trajectory shown in Fig. 12, the resulting

ŝ would saturate prematurely. Excessive saturation in the phase

variable can cause desynchronization between the prosthesis and

the user, leading to problems such as toe-stubbing. This effect

was most exaggerated during declined walking, as the difference

between θMHF
th and θHS

th was most pronounced [24]. To avoid both

excessive saturation and a phase variable pause, a feedforward

phase progression is again enforced based on the average phase

rate in S4, ˙̂sS4:

ŝ = ŝ45 +

∫ ∆t

0

˙̂sS4dτ in S5. (25)

This feedforward phase rate continues until either an HS occurs

or ŝ = 1. If the user is walking consistently and the θth trajectory

feature estimates are correct, ŝ = 1 should occur simultaneously

with HS, returning the FSM to S1. If ŝ = 1 prior to HS, the FSM

transitions to S6.

S6 is primarily encountered if the user pauses at the end of the

gait cycle, so it does not appear in Fig. 12. During S6, ŝ is again

calculated using a linear scaling of θth, giving the user volitional

control of ŝ through θth:

ŝ =
θth − θMHE

th

θHS
th − θMHE

th

(1− sMHE) + sMHE in S6. (26)

This volitional control during S6 is important because it allows

movements such as kicking and nonsteady leg swinging [31].

As in S5, an HS event returns the FSM to S1.

2) Thigh Trajectory Feature Prediction: The θth features

used in (22)–(26) vary from stride to stride with changes in

speed, incline, and natural gait variation. Some of these features

are used in the phase estimate calculation before they occur

in the gait cycle, specifically θHS
th , θMHE

th , θMHF
th , sMHE, and sMHF.

For example, θMHE
th is used to calculate ŝ during S1 and S2, but

it does not typically occur until S3. Therefore, we predict these

features in real time based on observations from recent strides. At

controller initialization, estimates of the thigh trajectory features

are calculated using able-bodied data [24] and updated as new

strides became available. Bounds were enforced on all estimated

feature values to reject atypical strides and avoid stride-to-stride

oscillation in the estimates.

Previous work showed that care must be exercised when

predicting features of the thigh trajectory to prevent unwanted

interaction between the prediction algorithms and the user’s gait

progression. For example, Best et al. [49] observed that if a

simple moving average was used to calculate θMHE
th , a divergent

behavior occurred that resulted in the user taking progressively

larger strides. To avoid this behavior, the kinematic features

θHS
th , θMHE

th , and θMHF
th were estimated with moving average filters.

These filters recorded the feature values from the previous five

strides and averaged the median three for θHS
th and the minimum

three for θMHE
th and θMHF

th . These filters were chosen to best reject

nonrepresentative strides, and the five-stride window balanced

between filter response time and variance rejection.

Another closed-loop interaction was observed during pilot

studies regarding the predictions of sMHE and sMHF. In cases

when the feature predictors were updating following a rapid

change in task, we observed rare strides where ŝ underestimated

the true phase at the end of the gait cycle, causing the knee joint to

not fully extend before HS. Participants instinctively responded

by asymmetrically extending the late swing portion of the gait

cycle to try force the knee to full extension. Moving average

estimates of sMHE and sMHF, like those used for the kinematic

features, caused sMHE and sMHF to decrease, resulting in further

underestimation of ŝ on the subsequent stride. We suspect that

participants behaved this way because they were accustomed

to passive prostheses, which will collapse upon loading if the

knee is not fully extended. Therefore, new prediction methods

were developed for sMHE and sMHF that favored ŝ saturation over

underestimation to combat this instinctive behavior. Let tŝ=1 be

the first time during the stride that ŝ = 1. Then, the sMHE and

sMHF estimates were calculated as

sMHE =
1

2

(

tMHE − t0
tf − t0

+
tMHE − t0
tŝ=1 − t0

)

,

sMHF =
1

2

(

tMHF − t0
tf − t0

+
tMHF − t0
tŝ=1 − t0

)

. (27)

The first quotient in each line of (27) is the true phase where θMHE
th

and θMHF
th occurred. The second quotient is an upper bound on

this true phase. We average the two so that ŝ favors saturation and

full knee extension in late swing, avoiding the potential unstable

feedback loop with the user’s instinctive compensations. The

results of (27) were likewise low-pass filtered with an infinite

impulse response (IIR) filter to reject stride-to-stride variation

and to prevent step estimate changes.

Finally, to calculate the stance phase ŝst, the expected value

of ŝ at TO, ¯̂sTO, must be estimated. This was calculated with a

minimum moving average filter of ŝTO observed during previous

strides, similar to the thigh trajectory features. The average

window was nine strides long, as the TO phase exhibits slow

changes with task. Like the thigh trajectory features, ¯̂sTO was

initialized from able-bodied data.

Note that some minor aspects of the thigh trajectory feature

estimation algorithms were modified after P1’s experiment to

better accommodate adaptation for users with thigh kinematics

that differ significantly from able-bodied, such as P2. Namely,

the feature estimate bounds were added, the θMHE
th and θMHF

th

filters were changed from moving average to moving minimum

filters, and the ¯̂sTO filter was changed from an IIR filter to a

moving minimum filter. A post hoc simulation of P1’s data

before and after the minor adjustments showed only a 1.89%

mean absolute difference in phase estimate between methods,

suggesting that the changes would not have had an appreciable
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Fig. 14. Phase variable trajectories from four overground walking bouts
recorded while participant P1 acclimated to the prosthesis between parallel bars.
The phase variable is able to parameterize these nonrhythmic motions, allowing
the participant to start and stop the gait cycle at will.

effect on his results. Further, no distinguishable effects were

observed in the able-bodied simulation (Fig. 3(c)).

3) Phase Variable Linearization: The phase variable de-

scribed above produces a consistent phase estimate trajectory

over each stride during steady walking. This consistency allows

a linearization map to be formed in order to further improve

the phase estimate. Once the θth feature predictions converged

to steady values, the average progression of ŝ was recorded for

each steady walking stride and low-pass filtered to produce an

average trajectory, ¯̂s. The time constant of the IIR low-pass

filter was chosen to be sufficiently slow (19 strides) such that

the transients of the θth feature predictors were rejected. As a

further precaution, any saturated portions of ŝ were discarded

prior to averaging, as they diminish as the θth trajectory feature

predictions converge.

The average phase was written as a function of true phase,

given by ¯̂s = σ(s). Although the shape of the thigh trajectory

may cause σ(s) to be nonlinear, it is monotonic during normal

walking. This implies that an inverse relationship s = σ−1(¯̂s)
exists, which can be applied to correct for nonlinearities in

ŝ. First, σ(s) was fit with a sixth-order polynomial σ̄(s) that

was constrained with a minimum slope of 0.2. This minimum

slope ensured strict monotonicity and numerical stability of the

inverse. At each HS event, σ̄(s) was recalculated to incorporate

the previous stride’s effect on ¯̂s. Then, the final, linearized phase

estimate was calculated by applying the inverse map σ̄−1 to the

results of (22)–(26).

4) Phase Variable Results: Fig. 11 highlights the new phase

variable algorithm’s ability to parameterize variable-incline

walking, as consistent phase trajectories were produced for

both participants during the continuously varying task trials.

The feedforward states S3 and S5 allowed for a positive phase

rate, even when thigh velocity was low. In addition, the thigh

trajectory features were appropriately estimated, allowing a

consistent phase estimates that were independent of the vari-

able thigh trajectories seen with varying inclines. The phase

linearization algorithm ensured highly linear estimates, with

mean R2 = 0.997 for participant P1 and mean R2 = 0.982 for

participant P2. Finally, the volitional start/stop behavior of the

phase variable originally shown in [31] was preserved. Fig. 14

Fig. 15. (a) Structure and transition logic of the benchmark FSMC. Tunable
parameters �∗cop and t2→3 controlled the transitions from S1 to S2 and S2 to S3,
while constant ground contact and knee velocity thresholds controlled the other
three. States in green occur during stance and blue states during swing. (b) Task
transition logic indicating how the impedance parameter sets are selected based
on the incline estimate γ̂.

shows the phase variable trajectory for four nonsteady bouts

during the overground acclimation for participant P1, confirming

its ability to parameterize nonrhythmic motion.

B. Benchmark FSM Impedance Controller

The FSMC, based on the FSM impedance controller presented

in [16], was constructed to provide a benchmark with which

to compare the HKIC. The flow of the FSMC’s state machine

is depicted in Fig. 15. A tunable center of pressure threshold,


∗cop, controlled the transition from S1 to S2. Then, after a

tunable duration, t2→3, the FSM transitioned to S3. Next, a

TO event triggered the transition to S4. Finally, knee extension

(θ̇k < 0) caused a transition to S5, where the FSM remained

until returning to S1 at HS. During transitions, the impedance

parameters were rate-limited to prevent step changes in torque.

In the FSMC, the torque command was given by (1), whereK,B,

and θeq depended on the current FSM state (given in Table IV).

Many methods have been proposed for deciding when to

switch between sets of impedance parameters for different tasks,

including simple threshold methods [16] and more complex

machine learning methods [83], [84]. We employed a strategy

similar to [16] where the prosthesis directly estimated the ground

incline using the method described in Section IV-B. Then, a

secondary FSM was used to select between parameter sets

based on the estimated incline γ̂. To prevent rapid switching

between parameters at the boundaries, overlap was included in

the switching thresholds (Fig. 15(b)).

C. Additional Detailed Results

Table IV lists the results from the impedance parameter tuning

for the FSMC, including the tuned impedance parameters, tran-

sition thresholds, and tuning times. The stiffnessK, dampingB,

and equilibrium angle θeq were tuned by the research team for

each of the five states (S1, S2, S3, S4, and S5) at three baseline

tasks for each participant. Next, Table V shows the kinematic

and kinetic RMSE values for each participant during both the

steady state and continuously varying trials, each separated by

stance and swing.
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TABLE IV
RESULTS OF THE IMPEDANCE PARAMETER TUNING FOR THE FSMC FOR BOTH PARTICIPANTS P1 AND P2 AT EACH BASELINE TASK. THE FSMC CONSISTS OF FIVE

STATES: S1, S2, S3, S4, AND S5, EACH WITH UNIQUE PARAMETERS

TABLE V
KINEMATIC AND KINETIC RMSE RELATIVE TO ABLE-BODIED DATA FOR THE KNEE (K) AND ANKLE (A) DURING THE STEADY-STATE AND CONTINUOUSLY

VARYING TRIALS OF EACH PARTICIPANT
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