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Data-Driven Variable Impedance Control of
a Powered Knee—Ankle Prosthesis for
Adaptive Speed and Incline Walking

T. Kevin Best
Elliott J. Rouse

Abstract—Most impedance-based walking controllers for pow-
ered knee-ankle prostheses use a finite state machine with dozens
of user-specific parameters that require manual tuning by technical
experts. These parameters are only appropriate near the task (e.g.,
walking speed and incline) at which they were tuned, necessitating
many different parameter sets for variable-task walking. In con-
trast, this article presents a data-driven, phase-based controller for
variable-task walking that uses continuously variable impedance
control during stance and kinematic control during swing to enable
biomimetic locomotion. After generating a data-driven model of
variable jointimpedance with convex optimization, we implement a
novel task-invariant phase variable and real-time estimates of speed
and incline to enable autonomous task adaptation. Experiments
with above-knee amputee participants (/N = 2) show that our
data-driven controller 1) features highly linear phase estimates
and accurate task estimates, 2) produces biomimetic kinematic
and Kkinetic trends as task varies, leading to low errors relative to
able-bodied references, and 3) produces biomimetic joint work and
cadence trends as task varies. We show that the presented controller
meets and often exceeds the performance of a benchmark finite
state machine controller for our two participants, without requiring
manual impedance tuning.

Index Terms—Impedance control, optimization, prostheses.

1. INTRODUCTION

O PERFORM activities that require net-positive energy,
such as ascending ramps and stairs, passive prosthesis
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users must supply supplemental power from intact joints [1],
leading to secondary complications including increased energy
expenditure [2], osteoarthritis [3], [4], and lower back pain [5].
While powered prostheses can help avoid these complications
by performing net-positive work [1], [6], [7], [8], [9], designing
prosthetic control systems for diverse environments remains a
challenge.

Impedance control is a common strategy in lower limb wear-
able robotics because of its simplicity and ability to produce be-
haviors that are similar to human biology, such as a compliantly
controlled interaction with the ground [10] and dynamics similar
to what has been observed in skeletal muscles [11]. Further,
empirical studies have shown that ankle joint dynamics during
walking are well described with an impedance controller [12],
[13], [14]. A standard impedance controller calculates joint
torque 7 based on a joint angle ¢ and joint velocity 6 as

T=—K(0 — 0eq) — BY, 1)

where K, B, and 0 are parameters defining the joint’s stiffness,
damping, and equilibrium angle, respectively.

Traditional methods of impedance control for lower limb
prostheses involve segmenting the gait cycle into discrete sub-
phases, where each subphase has its own constant values of K,
B, and 0.y. Researchers manually tune the impedance parame-
ters in each subphase until the observed gait is satisfactory [6],
[15], [16], [17], [18], [19]. Switching between subphases is
controlled by a finite state machine (FSM) with transition criteria
based on sensor readings (e.g., elapsed time, leg loading, joint
angles, etc.). Like the impedance parameters, these transition
criteria are often experimentally tuned for an individual’s gait
by a technical expert. More elaborate impedance value repre-
sentations have been suggested [19], [20], [21], [22], but these
methods still required manual, expert tuning.

Joint kinematics and kinetics vary based on the ground incline
and walking speed [23], [24] (together termed the user’s task).
Therefore, the necessary impedance parameters and state ma-
chine transition criteria also vary. For a standard FSM impedance
controller to operate over a wide array of tasks, many tunable pa-
rameters are required. For example, one multimodal impedance
controller required a total of 140 tunable parameters for five
ambulation modes [20]. While only a portion of these parameters
were considered necessary to tune, the device’s configuration
and tuning still required the researchers up to five hours to
complete.

1552-3098 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 14,2025 at 03:31:11 UTC from IEEE Xplore. Restrictions apply.



2152

In contrast to the standard FSM-based impedance control
paradigm, some authors have suggested using continuous func-
tions to define the impedance parameters and how they evolve
over the gait cycle [25], [26], [27], [28]. In general, controllers
that continually vary a robot’s output mechanical impedance
with time are known as variable impedance controllers [29].
Biomechanical principles suggest that human joints behave like
variable impedance controllers [30] and empirical studies have
observed this behavior at the ankle joint during walking [12],
[13], [14]. Therefore, variable impedance control may offer a
biomimetic solution for controlling powered prosthetic legs.
However, how to appropriately define the variable impedance
functions to realize walking gaits remains an open question.

A variable impedance controller was suggested in [26] using
linear functions for stiffness and damping during stance. The
linear functions were hand-tuned and held constant regardless
of task. The variable impedance control method in [25] elim-
inated tuning altogether by using able-bodied kinematic data
to generate continuous impedance parameter functions of gait
phase. However, this method was limited to the knee joint,
did not consider joint kinetics, and was never experimentally
validated. Recently, Kumar et al. [27] proposed a similar vari-
able impedance controller, where ankle stiffness and damping
were defined as polynomials in gait phase, and the coefficients
defining the polynomials were identified using constrained least
squares with an able-bodied kinematic and kinetic dataset.
The authors utilized piecewise-constant equilibrium angles and
demonstrated continuous stiffness and damping expressions that
produced satisfactory gait with a postoptimization tuning pro-
tocol. This work was later extended to include variable inclines
and a phase variable parameterization of stiffness and damping
based on the phase portrait of the thigh angle and its integral [28].
However, this phase variable is known to have challenges with
nonsteady walking [31], and changes in impedance associated
with walking speed were not considered. The authors of [28] also
note that their method of identifying the impedance parameters
is nonconvex, which does not guarantee a globally optimal
solution [32] for their controller.

This article addresses these limitations by presenting a new
phase-based, task-adaptive walking controller built on a hybrid
combination of continuously variable impedance control during
stance and kinematic control during swing (Fig. 1). First, we
present a convex, data-driven framework to calculate stance
phase joint stiffness, damping, and equilibrium angle as contin-
uous functions of gait phase, walking speed, and incline from an
able-bodied dataset [24] (Section III). Paired with an analogous
model of swing joint kinematics [23], our hybrid controller
adapts behavior across varying tasks based on real-time phase,
speed, and incline estimates (Section IV). Next, we present an
improved phase variable that avoids kinematic singularities and
is robust to the diverse family of thigh trajectories associated
with variable-task walking. Then, we perform validation ex-
periments with two above-knee amputee (AKA) participants,
demonstrating that the adaptive controller produces biomimetic
trends in joint kinematics, kinetics, work, and cadence across
varying tasks (Section V). Finally, we show that our presented
controller meets or exceeds the performance of a hand-tuned
benchmark FSM impedance controller in most tested met-
rics, suggesting that our optimized kinematic and impedance
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Fig. 1. A block diagram of the hybrid kinematic impedance controller pre-

sented in this work. Real-time estimates of gait phase § and task x define desired
joint impedance parameters K, B, 0q, and joint angles 64 using data-driven
models. Depending on if the user is in stance or swing, the torque commands
7 are calculated using either an impedance controller or a position controller,
respectively.

models sufficiently capture the key biomechanics of variable-
task walking.

II. RELATED WORK

Many researchers have attempted to lessen the manual tuning
burden of FSM impedance controllers in previous work. One
common approach is to limit impedance control to the stance
phase of gait and use kinematic control in swing phase, similar
to our proposed architecture. Though many have used this hybrid
architecture without a phase variable [6], [33], [34], [35], [36],
[37], [38], [39], [40], relatively few have used it with one [28],
[41]. Phase variable parameterization can be helpful because it
allows continuous regulation of the dynamic interaction between
the user and the ground during stance and provides the user with
indirect volitional control over foot position during swing [31].

Additionally, some researchers have used biological quasi-
stiffness curves calculated from able-bodied data[33], [37], [38],
[41],[42] inlieu of hand-tuned impedance parameters. While the
work in [33], [37], [38], and [42] enabled variable-speed walking
and the work in [38] enabled obstacle crossing, these approaches
were limited to level ground and relied on an FSM to switch
between regions of the nonlinear quasi-stiffness curve during
stance. Similarly, a quasi-passive ankle prosthesis presented
in [43] enabled variable-incline walking with limited tuning
by implementing a constant external quasi-stiffness relationship
between the global shank angle and ankle torque. This external
quasi-stiffness relationship was shown to be invariant across in-
clines during midstance, obviating the need for real-time incline
estimation. However, this invariant relationship was limited to
midstance and the controller relied on an FSM with manually
tuned behavior for the remainder of the gait cycle. Further, as the
control approach was developed for a passive prosthesis, it did
not provide a method to increase net ankle work with increasing
incline, which is an important characteristic of able-bodied walk-
ing [24]. Finally, this method was limited to ankle prostheses,
and it is unclear whether the analogous external quasi-stiffness
relationship for the knee during midstance is similarly invariant.

Other researchers have used reinforcement learning (RL) to
automatically tune the impedance parameters online while a user
walks, thus reducing the need for manual expert tuning [44],
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[45], [46]. Reward functions have been built on knee kinematic
similarity to predefined trajectories or the observed contralateral
knee’s trajectories. However, these approaches were limited to
the knee joint only and can require several minutes of walking
before the optimal impedance parameters are identified. Further,
the RL algorithms focused on kinematic features; the resulting
kinetics and overall biomechanics were not investigated.

Non-impedance-based tuning-free controllers have also been
developed. In [31], [47], [48], able-bodied kinematic profiles pa-
rameterized by a phase variable (i.e., virtual constraints) enabled
tuning-free walking. This approach was extended for variable
speed and incline walking in [49]. A similar controller was
suggested for stair ascent [50]. However, the purely kinematic
control paradigm tended to display nonbiomimetic joint torques
during stance. In addition, the tuning-free knee—ankle prosthesis
controller presented in [22] used an electromyography signal
from the biceps femoris to control knee torque. The ankle
impedance controller used a constant stiffness and damping
with an equilibrium angle calculated from the knee angle. This
controller enabled walking, sitting, squatting, and lunging, but
was not demonstrated on different slopes.

Finally, our work is most closely related to the phase-varying
impedance controller derived from able-bodied data in [28], as
discussed in Section I. However, our approach is distinct in
multiple important ways. First, our convex optimization for-
mulation provides an approximation of the globally optimal
impedance parameter functions. In addition to global optimality,
our convex formulation can be solved in polynomial time [32]
to facilitate future work on real-time optimization using user
data or clinician preference (e.g., [51]). Second, our variable
impedance model includes a continuous function for equilibrium
angle, mirroring the continuous progression of biological joint
dynamics [12], [13], [14]. Third, our variable impedance model
is further parameterized by walking speed, which is critical to
reproducing normative gait energetics [48]. Fourth, we estimate
the task variables in real time, making the system fully au-
tonomous. Fifth, we use a phase variable that is more robust
to variable speed and incline behavior than prior phase variable
definitions [28], [31], [48], [49]. And sixth, we demonstrate that
our approach produces biomimetic trends in joint kinematics,
kinetics, work, and cadence for two novel AKA participants
over a range of tasks without any manual impedance tuning.

III. VARIABLE IMPEDANCE MODEL FOR STANCE

A. Model Framework

To use impedance control for the stance phase of the gait cycle
in a continuous, phase-based control framework, we require a
model analogous to the kinematic model developed in [23] that
describes how the impedance parameters (I, B, and 04) should
evolve. Specifically, we require the impedance parameter model
to be continuously parameterized by both gait phase s and task
X = (v, ), where task is defined by the current walking speed
v and ground incline ~y over the ranges 0.8 < v < 1.2 m/s and
—10 <~ <10 deg.

A model that meets these criteria can be constructed from
a linear combination of phase-varying polynomials, where the
linear combination weights vary with the task. Polynomial
functions of phase are useful to model parameter progression

2153

during stance because they are simply parameterized and can
represent arbitrary aperiodic signals. We use fourth-order poly-
nomials (d = 4), as they allow sufficient flexibility to model the
parameter behavior without overfitting. Once the appropriate
polynomial functions are identified for individual tasks in a
dataset, bilinear interpolation can be used to create a unified,
continuous model with task and phase inputs.

First, we define task-specific polynomial functions that rep-
resent how the parameters vary during stance for a set of
fixed tasks. For convenience, let sy be the stance phase (i.e.,
Sst = $/$T10, Where stq is the phase at toe-off (TO)). Then, the
impedance parameters for the pth fixed task ,, are

d

i

E kzpssu Xp E blpssu eq,Xp E CipSsty
i=0

)
where k., = {(Kip, bip, €ip) | i € {0,...,d}} is a set of con-
stant coefficients. Then, the coefficients r,. defining the
impedance parameter trajectories for an arbitrary task (v,~)
are calculated through bilinear interpolation of its four nearest
neighboring tasks x,, -, , where v, € {v1, 2}, v € {71,72}.

For all j elements in k,., this interpolation is

Vo —V V—1U J J —
KJ] — [ } [KV171 KV172] |:-YQ FY‘|_ (3)

(= v)(e — ) (K, K T-m

V271 Va2

Finally, using #,~ and (2) evaluated at the current stance phase
sst, the impedance parameters are calculated. Therefore, the
model is fully defined once each task-specific set of coefficients
Ky, is calculated.

B. Model Fitting

We use an optimization-based approach to fit the model
to a dataset of able-bodied walking [24]. The dataset
contains kinematic and kinetic joint trajectories recorded
from ten participants walking at steady state at 15 distinct
points in the task space (i.e., v € {—10,—5,0,5,10} deg,v €
{0.8,1.0, 1.2} m/s). Therefore, for each task y,,, we construct an
optimization problem to identify the set of impedance parameter
coefficients n;p that, when used in (1) and (2), best reproduced
the mass-normalized joint torques 7 in the dataset, given the
dataset kinematics (6, 6) over all n data points at x:

*
I{Xp

1 192
arg min—||7 — 7|3,
n

where 7 = K, (feq,x, — 0) — By, 0- )

1) Solution Approximation: As written, (4) is difficult to
solve, as the product Ky 0, is nonlinear in the unknown
parameters, and the overall objective function is nonconvex. To
avoid this issue, we solve a similar, convex problem and use its
solution to approximate a solution to (4). First, we combine the
product of K, and 6, into a new, higher order polynomial
dy, with independent coefficients d;,:

Z klpsst Z elpsst Z 611785'( (&)

eq Xp
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By treating the J;;, terms as independent from the k;,, terms,
the impedance equation for 7 becomes linear in the unknown
parameters k;p, b;p, and J;,. We can then write the modified
optimization problem as a standard quadratic program (QP),
defining a new argument vector 2 € R44+3x1 a5

0] . (6)
Let a; € R*4+3%1 be defined for each data point j as

Xr = [kop, ey kdp, bgp, ey bdp, (50],, ..

. . T
9-5?,...,—9j3d Y s%4

o
., —0js G185y 8]

—|_p.qY _
04]—[95- i

55,
(N

Then, the objective function L(,, ) from (4) becomes
L _ 1 A2 1 . 2 T 1 TH 8
(KXP)_E||T_T||2_E;Tj_f I+§$ z, (8)
where
2 n - 2 n
H:Ez;ajaj’ f:Ez;TjOéj. (9)
j= j=

2) Constraints and Regularization: To prevent overfitting,
we added a diagonal regularization matrix R = diag(A) €
R4d+3x4d+3 o [T to penalize the L norm of . The nth diagonal
entries in R corresponding to the regularization weights on k;
and b; were A,, = le~® while ,, = 1le~2 for the §; terms. These
hyperparameters were chosen prior to the experiments in order to
produce a smooth model that captured general behavior instead
of overfitting to the training dataset.

Next, we added a constraint matrix A to ensure that K, (s)
and B, (s) remained within ranges that were both physiologi-
cally realistic and feasible for the prosthesis to render in a stable
manner. Namely, K, (s) was constrained above 1.5 Nm/rad/kg
and B, (s) was constrained between 0.01 and 1.0 Nms/rad/kg.
In addition, AKA participants in preliminary experiments noted
that a low stiffness at heelstrike (HS) was unsettling, as they
were accustomed to a locked knee during early stance with
their take-home prostheses. Therefore, a minimum HS stiffness
constraint of 3.0 Nm/rad/kg was added to increase participants’
confidence that the prosthesis was ready for weight acceptance
at HS.

To enforce these constraints, we discretized stance phase into
n; points in the range [0,1]. We constructed a constraint matrix
A € R37 %4443 from submatrices A, € R *4+1 a5

0 d

ST -0 81 -4, 0 O
Ac=|: o i]oa=|0 -4 o], o
O gl 0 As O

nj 7Lj

A column vector b € R3"*! contained n; copies of the mini-
mum stiffness and damping and maximum damping values, with
the first term modified for the HS constraint:

b=-[3.0,1.5,...,1.5,0.01,...,0.01, —1.0,.. ., —1.0}T .
Y
Finally, we arrived at the full QP, with the positive offset torque
(sum-of-squares) in (8) neglected without loss of generality:
minimize 1z"(H + R)z — f'x
X

. 12)
subject to Az < b.
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We solved this QP for each subject and task X, combina-
tion in the dataset (/N = 150) using the MATLAB Optimiza-
tion Toolbox (R2021b, MathWorks, Natick, MA, USA). Then,
we approximated the solution to the original problem (4) by
projecting the rational function &, (s¢)/ Ky, (Sst) = Oeq,, (Sst)
onto a dth-order polynomial. We assumed the polynomial or-
der was sufficiently high to approximate the rational function
Oy, (8s)/ Ky, (sst) without significant information loss. This
assumption was validated by the model’s low reconstruction
error, detailed in the next section. Then, for each task x, the
intersubject mean set of coefficients ,, was calculated for
use as the final model. Trials that did not well represent the
data, measured by a variance accounted for below 75%, were
discarded as outliers prior to averaging.

C. Modeling Results

Fig. 2 shows the calculated impedance parameter model pro-
jected onto a speed of 1 m/s, which was produced by evaluating
(2) and (3) with &,,. To quantify the impedance parameter
model’s reconstruction error, we calculated 7 for the knee and
ankle over each trial in the dataset using the model:

7= K(55,7, V) (Beq (55,7, ) — 0) — B(sg, 7, )0.

Then, we calculated the root mean squared error (RMSE) in joint
torque over all subjects for each task ,, in the dataset and nor-
malized by the dataset torque’s standard deviation for . This
dimensionless metric, which we call normalized reconstruction
error E, describes how many standard deviations 7 is from
the mean dataset torque trajectories, on average. Normalized
reconstruction errors below 1.0 indicate that the model is able to
predict joint torque to accuracy levels similar to able-bodied
intersubject variation. Averaged over all tasks, the knee and
ankle normalized reconstruction errors were E;, = 0.78 £ 0.11
and E, = 0.58 4= 0.09, respectively.

13)

IV. HYBRID KINEMATIC IMPEDANCE CONTROLLER

The proposed hybrid kinematic impedance controller (HKIC,
Fig. 1) is an evolution of the purely kinematic controller pre-
sented in [49]. In the HKIC, real-time phase and task estimates
provide inputs to the impedance model developed in Section III
during stance and the kinematic model developed in [23] during
swing to provide reference joint behavior. Impedance and posi-
tion controllers enforce the respective model outputs, described
below. Once configured with the user’s mass and leg segment
lengths, the controller operates autonomously, requiring neither
manual impedance tuning nor external knowledge of the terrain.
The following sections discuss each component of the HKIC in
turn.

A. Task-Invariant Phase Estimation

An estimate of the user’s progression through the gait cycle
is required in order to synchronize the control outputs with the
user’s gait. An ideal version of this estimate (termed a phase
variable) increases from O to 1 at a constant rate between each
HS [52]. Similar to [31] and [49], the HKIC’s phase variable § is
calculated using a piecewise-linear mapping of the user’s global
thigh angle 6y, which has a roughly sinusoidal trajectory (see
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and ankle, projected onto a speed of ¥ = 1 m/s. These surfaces show the approximated solution to the original optimization problem (4).

Fig. 3(a)). This angle is measured directly using an Inertial Mea-
surement Unit (IMU, 3DM-CX5-25, LORD Microstrain, Willis-
ton, VT, USA) mounted on the proximal end of the prosthesis’s
knee joint. Mounting the IMU on the prosthesis instead of the
person ensures a rigid connection to prevent slipping and vibra-
tion, which are commonly associated with soft tissue connec-
tions. Proper alignment of the prosthesis by a prosthetist ensures
correct alignment of the IMU. The 6y,-based method of phase
estimation is preferable because it allows the user to start and
stop the gait cycle at will and enables nonrhythmic behavior [31].

However, previous iterations of the y,-based phase variable
did not work well for variable-task locomotion because of
assumptions made about the shape of the 6y, trajectory.
For example, [31] and [49] assumed that the 6y, trajectory
could be divided into two monotonic sections. While this
assumption holds fairly well for level-ground and incline
walking, it is invalid for steep declines [24] (Fig. 3(a)). Previous
methods produced inaccurate, saturated phase estimates for such
cases [49]. Further, previous methods did not account for periods
of low thigh angular velocity (i.e., when the hip joint is most
extended or most flexed), leading to pauses in the phase estimate
and subsequent problems in the controller behavior [41], [49].
Therefore, in this work, we relax previous assumptions and
add flexibility to the phase variable to better parameterize
the gait cycle based on the diverse 6y, trajectories observed
in variable-task locomotion. First, we introduce short periods
of feedforward phase progression that allow § to maintain a
constant positive rate even when the thigh angular velocity is
low, which enables a powerful and biomimetic push-off. Second,
we add states to account for thigh trajectories that have more
than two monotonic sections (especially common during ramp
descent) to prevent excessive phase saturation and gait desyn-
chronization. Third, we introduce a technique to improve the
linearity of 3, correcting for previous steady-state nonlinearities
and thus making it closer to an ideal phase estimate. For brevity,
the mathematical details for these improvements are presented in
Appendix A.

To illustrate the benefits of the new phase variable over its
predecessor [31], [49], we conducted a simulation using thigh
kinematic data from [24] (Fig. 3(a)). For each trial of treadmill
walking in the dataset, we calculated the phase variable using
both the new method (Appendix A) and the previous method
described in [49]. For each incline, we averaged the phase
trajectories over all strides, participants, and walking speeds,
shown in Fig. 3(b) and (c). Notably, the new phase variable
eliminated the phase estimate pause associated with maximum
hip extension that was observed with the previous phase variable.
The new method also reduced the early saturation seen in the
previous phase variable, which was particularly prominent at
steep ramp declines. Finally, the new method demonstrated
improved linearity, particularly during midstance. Compared to
an ideal linear phase trajectory, the new method showed 6.25%
RMSE with R? = 0.990 while the previous method showed
7.48% RMSE and R? = 0.976 over all tasks.

B. Tuask Estimation

In addition to the phase estimate, the HKIC requires an
estimate of the user’s current task y, which is calculated at
each TO during steady walking. The estimation methods below
are based on [49], with modifications to improve performance.
Both estimates update once per stride and are filtered with a
moving average over three strides to account for stride-to-stride
variation. Although filtering introduces a time delay in the task
estimates, experiments in [49] demonstrated that this limitation
does not prevent the user from continuing to walk while the
estimates converge.

1) Walking Speed: The user’s speed is estimated using a
three-link leg model, comprising thigh, shank, and foot links,
similar to [33], [53], [54], [55], and [49]. Using forward kine-
matics and inputs from the joint encoders and the thigh IMU,
we calculate the Cartesian locations of the heel and toe relative
to the hip joint, respectively, given by xpee and ze. At each TO
event, the forward progression of the hip relative to the foot’s
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of maximum hip extension.

point of contact with the ground during the previous stance phase
is calculated as

dst - thoe - thesef||27 (14)

where xﬁesel_ is the value of Zpee from the previous HS. Similarly,
by assuming a symmetric gait, the forward progression of the
hip relative to the contralateral foot’s ground contact point over
a swing phase is approximated at each HS as

s)

where xg,?’ likewise iS x,. from the previous TO. Then, we
calculate the total forward progression over the gait cycle as
dg + dgw + loor, Where fo 1S a constant accounting for the
length of the prosthetic foot. Finally, walking speed is estimated
by dividing forward progression by stride time.

2) Incline: The ground inclination is estimated by the global
angle of the foot #; when the foot was flat on the ground, similar
to the methods presented in [16], [49], [54], [55], [56]. Asitisun-
desirable to add an extra inertial sensor to the foot, we calculate
this angle from the thigh IMU using forward kinematics, along
with a correction for foot bending. Prosthetic feet are designed
to deflect for energy storage [57], so foot deflection significantly
impacts the incline estimate. Offline testing with our prosthesis’s
foot [39] (Lo Rider, 1E57, Ottobock, Duderstadt, Germany)
showed that deflection was correlated with the bending moment
in the sagittal plane m,,. An on-board six-axis load cell (M3564F,
Sunrise Instruments, Nanning, China), located at the distal end
of the ankle joint, measures this moment directly. Then, 6 is
calculated as

dew = Hxheel - :L,[T;‘(e)—”%

Or = O — O + 0, + 0 + kypm,, (16)

where k; is the linear bending coefficient, 6y is the relative knee
angle, and 6, is the relative ankle angle. All joint angles are
measured positive in flexion and are zero when the user stands
upright. The constant offset term 6 accounts for the angular
difference between the prosthetic foot, the cosmesis, and the
sole of the shoe.

To determine when the foot was flat on the ground, the center
of pressure in the foot reference frame ., is calculated using
the load cell, similar to [49]. We consider the foot to be flat when
7.5 < leop < 12 cm from the ankle joint, which corresponds to
the ground reaction force acting between the middle and the

ball of the foot. During this period, 6 is averaged to produce the
incline estimate for the stride.

C. Impedance and Kinematic Controllers

1) Stance Impedance Controller: During stance, a variable
impedance controller is used to calculate joint torques. First, the
stance phase estimate Sy is calculated by

A7)

where 510 is the expected value of the phase variable at TO
(see Appendix A for details). Using Sy and Y, joint stiffness K,
damping B, and equilibrium angle 0., are calculated using (2)
and (3) and the model developed in Section III. Then, the joint
torque during stance is calculated with the following impedance
control law, scaled by user mass m:

7o = (K (80 %) Geq 5 0) — 0) = Bl 0)6)

2) Swing Kinematic Controller: A proportional derivative
(PD) controller uses constant gains k, and kg to directly track
desired joint angle trajectories. This is in contrast to the equi-
librium angles of the impedance controller, which do not nec-
essarily align with the normative joint angles. A continuous
model of able-bodied joint kinematics [23], generated using data
from [24], provides the desired trajectories defined as

35 = 8/5710,

(18)

N
Ba(5,x) = > bi(s)ex(x), (19)

where by (s) are Fourier series and ¢ (x) are Bernstein basis
polynomials. Similar to the impedance model, (19) is evaluated
in real time using § and x. Then, the PD torque command during
swing, Ty, 1S given by

Tow = kp(Ba — 0) + ka(fs — 6).

3) Stance to Swing Transition Smoothing: A time-varying
weight wg, ensures a smooth transition from impedance control
to position control. Because impedance control may allow the
joint angles to vary from their nominal trajectories depending
on how the user loads the prosthesis, this smoothing is critical
to avoid discrete changes in joint torque. At TO, wy, increases
from O to 1 over 0.25 s for the knee and 0.05 s for the ankle. The
ankle smoothing is faster because close tracking of the ankle

(20)
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(a) P1: Overground acclimation (b) P1: 7 deg, 1 m/s

Fig. 4.

kinematics during early swing is important for avoiding toe-
stubbing. The actual output to the joint motors is given by

Tt during stance, 21

T = . .
during swing.

Wsw Tsw
Because the equilibrium angles at HS are close to the kinematic
references at the end of the gait cycle, no smoothing is necessary
for the swing to stance transition.

Close examination of (21) shows that for a brief period just
following TO, minimal control action is applied to the joints.
This is acceptable because the low-impedance actuators used in
our prosthesis [39] allow the joints to continue moving along
their current trajectories according to their passive dynamics
without control input. Passive early swing knee and ankle dy-
namics have been shown to produce human-like gait [58], [59],
and these passive dynamics may contribute to the biomimetic
behavior of the controller.

V. AMPUTEE PARTICIPANT EXPERIMENTS

Experiments with two AKA participants were performed to
investigate the ability of the HKIC to produce biomimetic gaits
over variable tasks. To benchmark the HKIC’s performance
against another well-known controller, we also implemented
a standard, piecewise-constant FSM impedance controller and
tuned it for each participant. The participants completed the
experimental protocol once with each controller, detailed below.
Photos of the experiment are shown in Fig. 4, and video
recordings are available online as supplemental media.

A. Benchmark FSM Impedance Controller

A benchmark finite state machine controller (FSMC) was de-
signed based on the variable-incline FSM impedance controller
presented in [16], with an additional stance state and modified
transition criteria to improve performance (see Appendix B for
details). This controller was chosen as a benchmark because
of its simple construction, widespread usage [1], and ability to
create biomimetic walking gaits when appropriately tuned [16].
While more sophisticated variants of the FSM impedance con-
trol paradigm have shown stronger results, such as those that
modulate the impedance parameters based on joint angles or
prosthesis axial force [6], [20], [21], [60], [61], the original
version from [16] provides a valuable benchmark for comparing
novel controllers because its performance and limitations are

(c) P2: 0 deg, 1 m/s (d) P2: -7 deg, 1 m/s

Photos of AKA participants P1 and P2 performing various tasks with the HKIC during the experiments.

TABLE I
PARTICIPANT ATTRIBUTES

Age | Mass | Height | Years since .
D Sex (yrs) (kg) (m) amputation Etiology
P1 | Male 26 116 1.9 26 Congenital
P2 | Male 40 84 1.8 23 Cancer

widely understood [1], [9]. Further, many modern controllers
still use FSM impedance control in some if not all sections of
the gait cycle [18], [19], [34], [35], [36], [44], [45], [46], [47],
[62], so understanding the HKIC’s performance relative to the
FSMC is scientifically relevant.

The FSMC had five discrete states throughout the gait cycle,
each with its own set of constant impedance parameters and
transition criteria. Similar to the methods discussed in Section
I, these parameters needed to be hand-tuned by an expert re-
searcher in order to produce the desired gait. To enable walking
at various inclines, three sets of tunable impedance parameters
and transition criteria were instantiated for each joint (i.e., one
set for level ground, one set for declines, and one set for inclines).
The controller selected between impedance parameter sets based
on the estimated incline 4 (Appendix Fig. 15(b)). In total, the
FSMC required 96 tunable parameters, including 45 impedance
parameters per joint and six FSM transition criteria.

B. Experimental Methods

Two AKA individuals participated in the experiment, with at-
tributes shown in Table I. A third participant was enrolled but was
unable to complete the protocol due to excessive swing-phase
lateral whipping caused by prosthetic misalignment. Although
we worked with the prosthetist to correct the alignment multiple
times, the prosthesis would become misaligned again after a
short walking bout, possibly due to a combination of his pros-
thetic socket and weak femur musculature [63]. We suspect that
the large distal mass of the robotic prosthesis also exacerbated
this problem. Due to this issue, we only present data from the
remaining two subjects in this article.

The experimental protocol was approved by the Institutional
Review Board of the University of Michigan (HUMO00166976),
and the participants wore a ceiling-mounted safety harness while
walking on the treadmill. For the experiments, the presented
HKIC and the comparison FSMC were implemented on a back-
drivable, powered knee—ankle prosthesis, shown in Fig. 4 and
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described in depth in [39]. This prosthesis features quasi-direct
drive actuators that enable open-loop joint impedance control.

A licensed prosthetist fits the prosthesis to the participants and
ensured proper alignment. The participants were instructed on
the expected high-level behavior of both controllers and given
time to acclimate to each controller while walking overground
within parallel bars. Importantly, the participants were not told
which controller was expected to perform better during the
experiment. Following this overground acclimation, five trials
with each controller were conducted on an in-ground tread-
mill (Bertec, Columbus, OH, USA). For safety, instrumented
handrails were provided on either side of the treadmill. The
participants were encouraged to limit body weight support on the
handrails to maximize the realism of the experiment, which was
verified by handrail force data. Participant P1’s mean handrail
usage was under 12% bodyweight and participant P2 frequently
chose to use only one handrail (Fig. 4(c)—(d)).

The first three trials investigated the performance of the HKIC
and the FSMC during steady walking at different speed and
incline combinations. Each trial focused on a range of small
task deviations (42 deg, 0.2 m/s) around one of three baseline
tasks: x = (0 deg, 1 m/s), x = (5 deg, 1 m/s), and xy = (—5 deg,
1 m/s). We refer to these steady-state task trials as SS-Level, SS-
Incline, and SS-Decline, respectively. For the SS-Incline trial,
speed was limited to 1.1 m/s to ensure that the participants could
safely perform the trial.

The steady-state task trials began with an acclimation period,
where the participants walked at the baseline task until feeling
comfortable. During this time, the FSMC was tuned by the
authors of this work to produce a natural gait, incorporating
feedback from the participants and the prosthetist. The authors
have significant experience tuning impedance controllers [21],
[47], [61]. Tuning continued until the authors, prosthetist, and
participant were satisfied with the resulting natural gait (see
supplemental video, available online). The time taken to tune
the FSMC was recorded. Note that no tuning was done for the
HKIC. After tuning and acclimation, the participants walked on
the treadmill as it cycled through each of the five tasks near the
baseline task, each commanded for 45 s. In these trials, true task
feedback was provided to the controllers so that any errors in
the task estimates did not affect the results.

The tuning, acclimation, and testing procedure above was
repeated for each baseline task. These baseline tasks were chosen
to be far apart in the task space in order to sample a wide range
of tasks without deviating too far from any one of the FSMC’s
tuning points. Fig. 5(a) shows the recorded task-space profiles
from the treadmill for each trial, where the black dots indicate
each commanded task.

The latter two trials consisted of more rapid task changes
to investigate each controller’s behavior during continuous task
variations rather than at steady state and over a wider range
of tasks. Also during these trials, the controllers received no
real-time knowledge of the task from the treadmill, investigating
the autonomous capability of each controller to operate over
variable tasks. Both controllers utilized the same task estimation
methods (Section IV-B). The FSMC transitioned between the
tuned impedance parameters sets based on the estimated incline
(Appendix Fig. 15(b)). In these two trials, one with inclines (C'V-
Incline) and the other with declines (CV-Decline), the treadmill
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Fig.5. Diagramsindicating the locations of the task space sampled during each
trial. Each transparent marker indicates the treadmill’s task feedback, sampled at
2 Hz. Each black dot indicates the task combination commanded to the treadmill
for a duration of 45 s in (a) and 20 s in (b).

started at y = (0 deg, 1 m/s) and explored eight other points
within the task space in the range of [0,8] deg and [0.6,1.2]
m/s. Each task point was commanded to the treadmill for 20 s.
Because the treadmill required time to change task, smooth task
trajectories with continuous variations were generated, shown
in Fig. 5(b).

C. Experimental Results

1) FSMC Tuning Time: For the two participants, the FSMC
required on average 30 min of tuning to produce normative
gaits for the three baseline tasks. On average, the level-ground
task required 11 min, the incline task required 15 min, and the
decline task required 5 min. Participant-specific tuning times and
tuned FSM parameters are listed in Table IV in the Appendix.
Trends in the tuned parameters included higher stiffness values
during stance than in swing and highly varying knee equilibrium
angles across tasks. The observed gait was also noted to be
quite sensitive to the tunable FSM transition criteria. Significant
variance in the required tuning time for the different tasks was
also observed.

2) Steady-State Trials: The kinematic and kinetic traject-
ories produced by the HKIC during the steady-state trials high-
light its ability to reproduce normative biomechanics over vari-
able tasks (Fig. 6). Bilinear interpolation was used to generate
the able-bodied reference trajectories for tasks between those
reported in the dataset [24]. The observed HKIC trajectories
show strong similarity to the able-bodied references, particularly
at the ankle. Knee moments are the most different relative to
able-bodied for both the HKIC and the FSMC. The separation
and trends seen in the HKIC closely resemble those observed the
able-bodied data, suggesting appropriate adaptation in response
to variable-task walking.

We quantified the similarity between the observed and able-
bodied trajectories during stance and swing, showing that the
HKIC produced a low RMSE in most metrics (Fig. 7). Stance
and swing were treated separately to isolate the performance
of the novel impedance parameter model (Section III), as it was
only used during stance. The first 15 s at each task were neglected
to allow time for the treadmill to reach steady state. Unless
otherwise specified, we present interparticipant averages and
calculate standard deviations using lumped participant strides.
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Fig. 6.  Plots of the interparticipant average kinematic and kinetic trajectories produced by each controller over (a) varying inclines at 1 m/s and (b) varying speeds
at level ground for the steady-state trials. Able-bodied trajectories from [24] are also shown for reference. The HKIC produced smooth kinematic variations with

incline changes as well as increasing knee flexion and ankle push-off torque with increased speed, resembling the able-bodied trajectories.
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Fig. 7. Interparticipant RMSE in the observed kinematics (left) and kinetics
(right) relative to able-bodied walking data for both the HKIC and FSMC during
the steady-state task trials. The error bars represent £1 standard deviation over
lumped participant strides. The HKIC demonstrated lower mean error than the
FSMC in seven of eight metrics, with particular improvements at the ankle joint.
The high knee kinematic error in swing for the HKIC is the result of intentional
early extension to promote user confidence that the prosthesis was ready for
weight acceptance.
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Fig. 8. Interparticipant average cadence for the steady-state task trials as
functions of speed for different ramp inclinations: ramp descent (left), level
ground (middle), and ramp ascent (right). Error bars represent +1 standard
deviation over lumped participant strides. Both controllers show similar cadence
trends as the able-bodied reference (AB) calculated from [24], with increasing
step frequency with increasing speed. Overall, the participants preferred longer
strides relative to able-bodied, which may be due to the larger mass of the
powered prosthesis.

Individual RMSE values for each participant were similar to
the interparticipant averages and are available in the Appendix
(Table V). The low RMSE values suggest that, in addition to
replicating normative trends as task varied, the HKIC produced
kinematics and kinetics that were close to the reference values.
Further, the HKIC’s performance was as good as or better
than the hand-tuned FSMC’s performance in seven of the eight
metrics. The high knee kinematic error during swing can be
attributed to the intentional early knee extension meant to im-
prove user confidence (see Appendix A2) and it did not result
in adverse gait effects.

Interparticipant spatiotemporal gait metrics also showed sim-
ilarity to able-bodied data [24]. Both controllers elicited lower
cadence gaits (equivalently longer stride length gaits) compared
to able-bodied, but show generally similar trends of increasing
cadence with walking speed (Fig. 8). In addition, the stance
time symmetry ratio rsys was calculated using the ground
reaction force data, defined as the ratio between the average
prosthetic stance time and the contralateral limb stance time.
The mean and standard deviation over the steady-state trials
of both participants were rsrs = 0.902 + 0.017 for the HKIC
and rgrs = 0.892 4+ 0.016 for the FSMC. Note that due to a
recording error, symmetry data were not available for partic-
ipant P1’s HKIC SS-Decline trial. Both controllers produced
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TABLE I
TASK ESTIMATE RMSE OBSERVED DURING THE CONTINUOUSLY VARYING
TASK TRIALS AVERAGED OVER LUMPED PARTICIPANT STRIDES

Trial Controller | Incline (deg) | Speed (m/s)
CV-Incline HKIC 0.61 £ 0.58 0.10 £0.07
FSMC 1.81 £1.42 0.11 £+ 0.06

CV-Decline HKIC 0.66 £+ 0.42 0.11 £0.07
FSMC 1.03 4+ 0.68 0.12 £0.07

a slightly more symmetric gait than average AKA participants
with passive prostheses (rsts = 0.784, reported in [64]), but less
symmetric gaits than able-bodied people (rsts = 1.02, reported
in [65]).

The HKIC also produced trends in joint work across variable
tasks that were consistent with able-bodied data (Fig. 9). As
one of the benefits of impedance control is the ability to control
energy exchange with the environment [10], the HKIC should
be able to replicate this biological behavior. The HKIC showed
similar trends as the able-bodied data, with a linear increase
in net work performed with increasing incline, particularly
at the ankle (increase of 0.0337 J/kg/deg, R? = 0.982). For
comparison, able-bodied ankle work increases linearly at
0.0335 J/kg/deg with R? = 0.987. The HKIC also increased
total work with increasing speed in a manner consistent with
able-bodied data, though the work differences between the
slow and fast speeds are minor for the able-bodied reference. In
contrast, the net work performed by the FSMC decreased with
speed and appeared discretized to three levels with respect to in-
clines, corresponding to its tuned tasks. Interestingly, the HKIC
and FSMC showed less energy absorption at the knee during
declines, which may reflect the habitual aversion to early stance
knee flexion commonly observed in AKA populations [66], [67].

3) Continuously Varying Trials: The continuously varying
trials demonstrated the HKIC’s ability to autonomously adapt
behavior to the sensed walking speed and ground incline. The
kinematic and kinetic errors were calculated in a similar manner
for the continuously varying task trials, though this time includ-
ing strides that occurred during task transients. Fig. 10 shows
the interparticipant average error trajectories at both joints for
the CV-Incline trial, calculated as the able-bodied references
subtracted from the observed values. Table V in the Appendix
details the participant-specific stance and swing kinematic and
kinetic RMSE for both the CV-Incline and CV-Decline trials.
Aside from the late-swing knee kinematics (discussed above),
the HKIC shows low errors throughout the gait cycle, particu-
larly at the ankle joint. Further, the magnitude of the FSMC’s
error is larger than the HKIC’s for most of the gait cycle, high-
lighting the importance of the HKIC’s continuously adaptive
nature.

As both controllers received no external task input during
these trials, the task estimates (and the phase estimate for the
HKIC) contributed to the kinematic and kinetic errors. The
task estimate RMSE, averaged over each stride and participant,
is shown in Table II for each trial. Although the same task
estimation algorithms were used with both controllers, FSMC
showed higher incline estimate error, suggesting that differences
in controller behavior may have impacted the incline estimate’s
efficacy. In addition, the average phase estimate trajectories
produced by HKIC during the CV-Incline and CV-Decline
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Fig. 10. Plot of the interparticipant average kinematic and kinetic error
trajectories in the continuously varying incline trial, relative to able-bodied
data [24]. The knee data are shown in the left column and the ankle in the right.
Shaded regions represent 1 standard deviation over lumped participant strides.
Aside from intentional discrepancies in the late-swing knee kinematics (see
Appendix A2), the HKIC showed low RMSE across the gait cycle throughout
varying tasks, suggesting appropriately adapting biomechanics.

trials were highly linear (mean R? = 0.989) and accurate (mean
RMSE of 6.157%), even as speed and incline varied (see Fig. 11).
However, the phase estimate saturated more often for partic-
ipant P2 than participant P1, suggesting that participant P2’s
thigh trajectory was less similar to able-bodied trajectories than
participant P1’s.

VI. DISCUSSION

A. HKIC Performance

This work presented a data-driven, phase-based walking con-
troller for a powered knee—ankle prosthesis that autonomously
adapted its behavior across a continuous range of walking speeds
and inclines. To achieve this without manual impedance tuning,
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Fig. 11. Average phase estimate progression calculated in real time by the

HKIC during the continuously varying task trials for participants P1 and P2.
Shaded regions represent +1 standard deviation. The linearity and consistency
of the trajectories illustrate the phase variable’s ability to adapt to continuous
task variations and appropriately parameterize the gait cycle.

we used an able-bodied dataset to optimize for continuous stift-
ness, damping, and equilibrium angle functions that reproduced
biological stance joint torques, given biological kinematics. In an
initial offline analysis, we showed that our optimized impedance
parameter model produced joint torques with across-task
average normalized RMSE values of 0.78 and 0.58 for the knee
and ankle, respectively. The low normalized RMSE suggests that
the model captures the essential joint dynamics of able-bodied
walking.

The subsequent experiments with two AKA participants
demonstrated that the identified impedance parameter func-
tions also rendered appropriate stance phase joint mechanics
when used for real-time control in the HKIC. Other normative
walking features were observed, such as increasing ankle work
with increasing incline (Fig. 9) and increasing cadence with
walking speed (Fig. 8). Although the kinematic and kinetic
profiles produced by the HKIC had small differences relative
to able-bodied data (Figs. 6 and 7), the participants exhibited
qualitatively normal gait patterns over a wide array of tasks (see
supplemental video, available online). Kinematic and kinetic
trends emerged with variable speeds and inclines that were
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consistent with able-bodied data (Fig. 6), including appropri-
ately varying peak ankle moments, stance ankle kinematics,
and knee stance kinematics. Knee swing kinematics showed
the highest error for the HKIC, which was expected because
we intentionally allowed the phase variable to saturate early
to ensure full knee extension prior to HS. Pilot testing showed
that consistent full knee extension helped eliminate participants’
problematic instinctive compensations and promoted confidence
that the prosthesis was ready to accept weight (see Appendix
A2). Small phase shifts result in large swing kinematic errors
due to the large knee range of motion, and although the error
values appear large, they did not interfere with the participants’
gait or cause toe-stubbing.

Appropriate kinematic and kinetic adaptation are both prac-
tically and clinically important for the user. For example, knee
swing kinematic adaptations enable the prosthesis to have the
proper configuration at HS as incline varies. Without such
adaptations, the user may, for example, toe-stub during swing
when walking uphill with level-ground kinematics, or vice versa,
experience too much flexion to enable HS at the desired time.
Further, kinetic adaptation during stance enables increasing peak
ankle moments for propulsion as incline and speed increase
(Fig. 6). Improper joint kinetics can cause improper ground
reaction forces, which can affect user balance [68]. Finally, ap-
propriate kinematic and kinetic co-adaptation enables joint work
adaptation, even in cases where both kinematics and kinetics
deviate from able-bodied normative trajectories. For example,
the HKIC’s peak ankle moment at a 7 deg incline is slightly
smaller than able-bodied (Fig. 6). However, a corresponding in-
crease in peak plantarflexion angle allows the HKIC to maintain
appropriate ankle work (Fig. 9). Biomimetic energy injection
is important to prevent compensations from other joints and
additional health problems [3], [4], [5], [41].

Qualitative remarks by the participants also testified to the
biomimetic task adaptation of the HKIC. Participant P1 re-
marked while walking at the 7 deg incline that he did not feel like
he was walking uphill, suggesting appropriate joint dynamics
and energy exchange. Participant P2 remarked that he did not
even notice that the treadmill had transitioned to the 2 deg decline
and that he could “climb up much easier” while ascending steep
inclines. These anecdotal remarks further support the claim
that the HKIC adapts to changing tasks to produce normative
able-bodied biomechanics, which could result in many practical
benefits for the user. For example, the biomimetic energy injec-
tion at steep inclines (Fig. 9) may allow users to walk uphill for
longer before fatiguing.

While the FSMC’s performance was not drastically worse
than the HKIC’s in the tested metrics, it required on average
10 min of tuning per tuned task. Although only three tasks
were tuned for this study, practical deployment of the FSMC
would likely require many more tasks to be tuned. For example,
participant P2 noted that the FSMC was “kicking off way too
hard” when going uphill at slow speeds, but was happy with
its behavior at normal speeds, suggesting that more speed-
specific impedance parameter sets could be beneficial. However,
adding more tuning points is likely impractical in a clinical
setting, especially without specialized equipment such as a
variable-incline treadmill. Therefore, the HKIC’s potential to
produce biomimetic behavior over varying tasks without manual
impedance tuning is a significant benefit.
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For online implementation of the continuous impedance
parameter model, gait phase needed to be estimated in real
time. The improved phase variable behavior observed in
simulation in Section IV-A was confirmed in the participant
experiments. Fig. 11 shows how the phase variable eliminated
the previously observed phase pause near push-off. The result of
this monotonicity is visible in the kinematics of Fig. 6, as there
is not a pause in the kinematic trajectories near push-off, which
was observed previously in [49]. Further, the general linearity
of the average phase trajectories in Fig. 11 (mean R? = 0.989)
is improved compared to [49]. Because both the impedance
and kinematic models in HKIC assume a perfectly linear phase
estimate, the observed linearity keeps the model outputs of the
controller synchronized with the user’s gait. In addition, Fig. 11
shows that participant P2’s phase variable saturates at 1 earlier in
the gait cycle than participant P1. This occurs because the meth-
ods used to estimate the thigh trajectory features (Appendix A2)
prioritize phase saturation (and subsequently full knee
extension) to promote participant confidence. This early phase
saturation suggests that P2 preferred for the knee to be fully
extended earlier in swing, whereas P1 was satisfied with full knee
extension occurring right before HS, as it does in able-bodied
data.

The task estimates are other critical components required for
walking over continuously varying tasks. It is seen in Table II
that the error in the speed estimate was fairly consistent over
the trials, with RMSE between 0.10 and 0.12 m/s for both
controllers. This error is likely due to a slightly asymmetric gait,
which violates the assumptions made in the speed estimator’s
formulation. Gait asymmetries may be the result of our partici-
pants’ habitual compensations, socket comfort, or the significant
mass difference between the robotic prosthesis and participants’
passive prostheses. Interestingly, the incline estimate produced
lower error with the HKIC (0.61-0.66 deg) than the FSMC
(1.03-1.81 deg). We speculate that the higher error in the FSMC
is due to a feedback interaction between incline estimate errors
and the impedance parameters. Due to the discrete switching
behavior of the impedance parameters (Appendix Fig. 15(b)),
a small incline estimate error can result in large changes in
prosthesis behavior and may affect the 6; and £, progressions.
Therefore, the continuous nature of the HKIC may be preferable,
as it does not display discrete changes in behavior with small
changes in task inputs.

B. Limitations and Future Work

The HKIC and this study were not without limitations. Our
experiment provided a somewhat limited view of the HKIC’s
behavior, as it involved only two participants, each with only
one experimental session (although both had prior experience
walking with the prosthesis). We expect that the data-driven
impedance parameter model identified in Section III will yield
similar performance for a wide array of participants, as it was
created without a priori knowledge of the participants or their
preferences. Preliminary studies of able-bodied users testing the
HKIC over varying tasks suggest that this assumption holds [69].
However, this assumption should be validated in future studies
with wider AKA participant pools, as the HKIC’s ability to
generalize to the full AKA population remains unknown. Fur-
ther, the performance of the HKIC should also be investigated
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when implemented on different hardware platforms to better
validate the framework. While the HKIC could in theory be
implemented on any powered prosthetic leg with the ability to
render a variable joint impedance, prostheses with nontrivial
actuator transmissions (e.g., [6], [48]) or series elasticity (e.g.,
[21], [61]) would require actuator characterization [70] and,
in some cases, closed-loop torque control to accurately render
variable joint impedance.

In addition, it is possible that there are users for which the
population average impedance parameters are not optimal. There
may also exist other impedance parameter functions that produce
normative biomechanics, as the human sensorimotor system
is highly adaptable [71], [72], [73]. Participants’ sensitivity to
changes in the impedance parameter model could be investigated
in future studies. In addition, there may be factors other than
those considered in this work that distinguish the ideal parameter
functions, such as user preference. A study investigating users’
preferred stiffness in ankle prostheses showed that the preferred
joint stiffness varies by user [74], which is likely true for AKA
participants as well. For example, participant P2 noted that the
knee felt “squishy” when ascending steep slopes and that he
would have preferred it to be stiffer. While one of the major
advantages of HKIC is that it required no manual impedance
parameter tuning, it is currently limited by the lack of an abil-
ity to customize to an individual’s preferred behavior. Future
work will investigate methods to incorporate user preferences
in the impedance model, such as weighting the optimization
with a single baseline personalization for level-ground walking,
as suggested in [75]. This baseline personalization could be
gathered using tools in a standard clinic [51], maintaining the
minimal-tuning nature of the controller.

Our study also did not investigate discrete changes in ground
slope, which may be encountered during daily ambulation (e.g.,
wheelchair ramps) and should be handled by a variable-task
walking controller. While the work in [49] showed that the
HKIC’s incline estimation algorithm is stable under discrete
incline changes, our task estimation methods are limited by
their discrete “once-per-step”” update nature. Because we detect
incline during midstance, the user must, at a minimum, be able to
complete the first half of stance phase with the previous stride’s
task estimate. This is particularly problematic during discrete
transitions between steep inclines and level-ground walking
because the HS kinematics vary drastically [24]. Future work
involving anticipatory algorithms that update the task estimate
based on sensed characteristics of the upcoming terrain [76],
[77], [78] or user behavior [79], [80] may be necessary to
alleviate this limitation.

Further, this work only investigated rhythmic walking over
relatively long durations, though almost half of all walking
bouts in community ambulation contain less than 12 consec-
utive steps [81]. One of the unique strengths of the presented
phase variable is the ability to intuitively control nonrhythmic
tasks [31]. Although this capability of the HKIC was demon-
strated at the beginning and end of each trial in this study, it
should be explored further and characterized in future studies
involving rapid start/stop, lateral movements, and other behav-
iors that are prominent in agile locomotion. Such studies may
also highlight the limitations of using the current impedance pa-
rameter model for nonrhythmic tasks. Although the participants
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were able to achieve start/stop behaviors in this experiment,
additional able-bodied data may need to be included in the
optimization to produce appropriate impedance parameters for
other nonrhythmic tasks.

The continuously adaptive nature of the HKIC may also be a
limitation in some circumstances. For example, participant P2
noted that while he appreciated that the HKIC always adapted
to the current task, he also preferred the predictability of the
FSMC. We plan to investigate methods to preserve the flexibility
of the HKIC while increasing predictability in future studies.
One way to improve the predictability of the HKIC may be
to increase the training duration to allow the participants to
better acclimate to and leverage the benefits the HKIC and the
powered prosthesis. Perhaps the lack of early stance knee flexion
in both controllers (Fig. 10) and the low knee energy dissipation
(Fig. 9) are less due to controller behavior and more due to the
participant’s habitual compensations developed through years
of using a passive prosthesis [66], [67]. Future work may show
that as the participants become more comfortable with a pow-
ered prosthesis and develop a stronger intuition for the HKIC’s
behavior, these gait features become more similar to able-bodied
data.

Finally, there is much interesting work to be done investigat-
ing the relationship between biological joint impedance mea-
sured in empirical studies [12], [13], [14] and the impedance pa-
rameters used in impedance controllers. Mechanical impedance
can only be characterized through perturbation studies, so the
impedance parameters found by optimizing over nonperturbed
gait data will not necessarily reflect these dynamics. We plan to
study the effects of constraining the optimization with known
empirical impedance values, as well as to investigate the HKIC’s
behavior during gait perturbations.

VII. CONCLUSION

This work presented a data-driven walking controller
designed to work over a continuum of speeds and inclines. We
developed continuous models of joint stiffness, damping, and
equilibrium angle for an impedance controller using convex
optimization. We also presented an improved phase estimation
algorithm, showing increased monotonicity and linearity.
Two AKA prosthesis users demonstrated the controller’s
ability to autonomously produce biomimetic behavior over
continuously varying tasks during treadmill experiments. The
experiments showed that, when compared with able-bodied
data, the presented controller produced biomimetic trends in
joint kinematics, kinetics, work, and cadence, indicating its
ability to render appropriate joint mechanics as task varied.

APPENDIX
A. Task-Invariant Phase Variable Algorithm

The new phase variable § is calculated through a series of
linear equations with 0y, as an input. An FSM controls when each
equation is used. Although the FSM contains discrete states, the
structure of the linear equations ensures that § is continuous.
Each equation is defined by quantitative features of the 6y, trajec-
tory, which are measured in real time. Table III lists the features’
definitions and notations. First, we give the rationale for each
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TABLE III
SYMBOL DEFINITIONS FOR FEATURES USED TO CALCULATE §

OMS | 9y at HS

Hﬁl‘él'm Oy at maximum hip extension
GthF O at maximum hip flexion
9;1};0 O at TO

SMHE | $ at maximum hip extension
SMHF s at maximum hip flexion

St0 § at toe TO

é Average rate of change of § during S2
Average rate of change of § during S4
At Time since state transition

tMHE Time at maximum hip extension
tMHF Time at maximum hip flexion
to Time at HS
tr Time at gait cycle completion
N o @ 9
e T
30 ‘ . :
20 S2 | .
’go gHS !
) 10+ Yth i 1
s 0 i ]
<
-10+ §1 1
20 .
0.0 0.2 1.0
Fig. 12.  Average global thigh angle trajectory 0y, (positive flexion) for 1 m/s

0 deg able-bodied walking, segmented by the phase variable FSM states. The
phase variable is defined by linear mappings of 6y, during S1, S2, and S4, and by
afeedforward phase variable rate during S3 and S5. The feedforward rates for S3
and S5 are given by the average rate of change of the phase estimates during the
preceding states, which correspond to periods of constant thigh angular velocity.

FSM state and its corresponding phase variable equation. Then,
we present methods to estimate the thigh trajectory features in
real time, as well as the steps taken to promote closed-loop
stability of the phase estimate.

1) Phase Variable FSM: Consider the average 6y, trajectory
for an able-bodied individual walking at 1 m/s on level ground,
shown in Fig. 12. The pertinent 6y, trajectory features used in
the phase estimate are labeled, as well as the standard timing of
the FSM states. The overall structure of the FSM used to control
the phase estimate is shown in Fig. 13.

The FSM begins in S1, occurring just after an HS event.
During S1, 6y, is linearly scaled as the hip joint extends from 615
to OYHE such that § increases and § = sy when 0y, = OYHE,
Mathematically, this is given by

. O — Oy .
s = mSMHE in S1 and S2. (22)
Glh - eth
The FSM transitions to S2 at a phase estimate threshold 5,5 =
0.1, which typically corresponds to the point in the gait cycle
where the 0y, trajectory becomes linear.

In S2, 5 is calculated using the same linear relationship as in
S1(22), but is denoted as a distinct state because it represents a

portion of the gait cycle where 0y, (and therefore $) has constant
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Fig. 13. Flowchart depicting the FSM states and transition criteria used in the
phase variable calculation. States 1-3 (green) occur during the stance phase and
states 4-6 (blue) occur during swing. States where phase is directly calculated
based on thigh angle are shown as squares and states with feedforward definitions
are shown as circles. State 6 is only necessary for nonsteady gait and is typically
bypassed during steady walking.

velocity. The average rate of change of s during S2 (352) is
recorded for use in S3. The FSM transitions to S3 once $5_.3 =
0.9smuE, which typically corresponds to the end of the linear
portion of the thigh trajectory, or if 6y, > 0. This second case
rarely occurs during steady walking, but is an important path to
S3 in the event of an unusually short stride.

S3 occurs during the section of the gait cycle where 0Oy
reaches its minimum, and thus has a period of low angular
velocity 6y,. Previous work has shown that sections of low 6,
are problematic because they cause a pause in the phase variable
trajectory [31], [41], [49]. This pause violates the assumption
that § increases monotonically and at a constant rate, resulting
in incorrect kinematic and impedance model outputs. Therefore,
during S3, we decouple § from 6y, and instead assume that phase
continues progressing at S0

At
§ = o +/ SgodT in S3. (23)
0

This feedforward phase progression continues until a TO event.
Although this approach limits the user’s ability to stop phase
progression during S3, such cases are unlikely because stop-
ping would inhibit power delivery from the ankle during push-
off. Moreover, the underactuated dynamics of bipedal walking
dictate that once the user’s gravity vector passes anterior of
the stance foot, the user must continue the gait cycle until the
contralateral foot lands [68], [82]. Therefore, we expect the
sacrifice in direct control of phase progression during this section
of the gait cycle to be negligible.

After TO, the FSM transitions to S4, where phase is again
estimated via a linear scaling of 6y,. This mapping is defined
such that $ increases from Stg toward syyr as 0y, increases:

. O — OO . L.
S = W(SMHF — STO) + Sto 1N S4.
th  — Yth

(24)
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The FSM transitions to S5 when 6y, is equivalent to the average
of 0215 and OYHF which typically corresponds to the end of this
linear section of the thigh trajectory.

Two problems typically occurred with the previous phase
variable methods when 60y, ~ 6)1F, which occurs during S5 in
the new FSM. First, a pause in $§ would occur as éth slowed and
0, approached OYHF, similar to the effect seen in S3. Second,
the previous methods assumed that ONHE = OIS Tn cases where
OYHE > 8IS such as the trajectory shown in Fig. 12, the resulting
5 would saturate prematurely. Excessive saturation in the phase
variable can cause desynchronization between the prosthesis and
the user, leading to problems such as toe-stubbing. This effect
was most exaggerated during declined walking, as the difference
between OHF and 05 was most pronounced [24]. To avoid both
excessive saturation and a phase variable pause, a feedforward
phase progression is again enforced based on the average phase
rate in S4, §g4°

At
§ =845+ / Sg4dT in S5. 25)
0

This feedforward phase rate continues until either an HS occurs
or § = 1. If the user is walking consistently and the 0y, trajectory
feature estimates are correct, § = 1 should occur simultaneously
with HS, returning the FSM to S1. If § = 1 prior to HS, the FSM
transitions to S6.

S6 is primarily encountered if the user pauses at the end of the
gait cycle, so it does not appear in Fig. 12. During S6, § is again
calculated using a linear scaling of 6y, giving the user volitional
control of § through 6y;:

eth o 03?HE
otHh HMHE (1

S = — SMHE) + smug  1n S6. (26)
This volitional control during S6 is important because it allows
movements such as kicking and nonsteady leg swinging [31].
As in S5, an HS event returns the FSM to S1.

2) Thigh Trajectory Feature Prediction: The 0y, features
used in (22)—(26) vary from stride to stride with changes in
speed, incline, and natural gait variation. Some of these features
are used in the phase estimate calculation before they occur
in the gait cycle, specifically Gth , GMHE QMHF SMHE, and SyyE-
For example, OYHE is used to calculate 5 durlng S1 and S2, but
it does not typlcally occur until S3. Therefore, we predict these
features in real time based on observations from recent strides. At
controller initialization, estimates of the thigh trajectory features
are calculated using able-bodied data [24] and updated as new
strides became available. Bounds were enforced on all estimated
feature values to reject atypical strides and avoid stride-to-stride
oscillation in the estimates.

Previous work showed that care must be exercised when
predicting features of the thigh trajectory to prevent unwanted
interaction between the prediction algorithms and the user’s gait
progression. For example, Best et al. [49] observed that if a
simple moving average was used to calculate O\E, a divergent
behavior occurred that resulted in the user taking progressively
larger strides. To avoid this behavior, the kinematic features
OiS | OMHE “and OMHF were estimated with moving average filters.
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These filters recorded the feature values from the previous five
strides and averaged the median three for 015 and the minimum
three for OYME and OYHF. These filters were chosen to best reject
nonrepresentative strides, and the five-stride window balanced
between filter response time and variance rejection.

Another closed-loop interaction was observed during pilot
studies regarding the predictions of sygg and sygp. In cases
when the feature predictors were updating following a rapid
change in task, we observed rare strides where s underestimated
the true phase at the end of the gait cycle, causing the knee joint to
not fully extend before HS. Participants instinctively responded
by asymmetrically extending the late swing portion of the gait
cycle to try force the knee to full extension. Moving average
estimates of sypg and sypyr, like those used for the kinematic
features, caused sypg and syvyr to decrease, resulting in further
underestimation of § on the subsequent stride. We suspect that
participants behaved this way because they were accustomed
to passive prostheses, which will collapse upon loading if the
knee is not fully extended. Therefore, new prediction methods
were developed for sy and sypr that favored § saturation over
underestimation to combat this instinctive behavior. Let ;1 be
the first time during the stride that § = 1. Then, the syyg and
SMHE estimates were calculated as

s _ 1 (tmue —to | tmue — to

MIEZ 9 \ Tty —to | tam1 —to

5 _ 1 (tmur —to | tmur —to 27
MIEZ 9\ Tty —to | tami—to )

The first quotient in each line of (27) is the true phase where O)HE
and O} occurred. The second quotient is an upper bound on
this true phase. We average the two so that $ favors saturation and
full knee extension in late swing, avoiding the potential unstable
feedback loop with the user’s instinctive compensations. The
results of (27) were likewise low-pass filtered with an infinite
impulse response (IIR) filter to reject stride-to-stride variation
and to prevent step estimate changes.

Finally, to calculate the stance phase S, the expected value
of § at TO, éro, must be estimated. This was calculated with a
minimum moving average filter of sy observed during previous
strides, similar to the thigh trajectory features. The average
window was nine strides long, as the TO phase exhibits slow
changes with task. Like the thigh trajectory features, $7o0 was
initialized from able-bodied data.

Note that some minor aspects of the thigh trajectory feature
estimation algorithms were modified after P1’s experiment to
better accommodate adaptation for users with thigh kinematics
that differ significantly from able-bodied, such as P2. Namely,
the feature estimate bounds were added, the O}HE and g}HF
filters were changed from moving average to moving minimum
filters, and the $7o filter was changed from an IIR filter to a
moving minimum filter. A post hoc simulation of P1’s data
before and after the minor adjustments showed only a 1.89%
mean absolute difference in phase estimate between methods,
suggesting that the changes would not have had an appreciable
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Fig. 14. Phase variable trajectories from four overground walking bouts
recorded while participant P1 acclimated to the prosthesis between parallel bars.
The phase variable is able to parameterize these nonrhythmic motions, allowing
the participant to start and stop the gait cycle at will.

effect on his results. Further, no distinguishable effects were
observed in the able-bodied simulation (Fig. 3(c)).

3) Phase Variable Linearization: The phase variable de-
scribed above produces a consistent phase estimate trajectory
over each stride during steady walking. This consistency allows
a linearization map to be formed in order to further improve
the phase estimate. Once the 0y, feature predictions converged
to steady values, the average progression of s was recorded for
each steady walking stride and low-pass filtered to produce an
average trajectory, 5. The time constant of the IIR low-pass
filter was chosen to be sufficiently slow (19 strides) such that
the transients of the 6y, feature predictors were rejected. As a
further precaution, any saturated portions of s were discarded
prior to averaging, as they diminish as the 6y, trajectory feature
predictions converge.

The average phase was written as a function of true phase,
given by § = (). Although the shape of the thigh trajectory
may cause o(s) to be nonlinear, it is monotonic during normal
walking. This implies that an inverse relationship s = o~ *(3)
exists, which can be applied to correct for nonlinearities in
§. First, o(s) was fit with a sixth-order polynomial 7(s) that
was constrained with a minimum slope of 0.2. This minimum
slope ensured strict monotonicity and numerical stability of the
inverse. At each HS event, & (s) was recalculated to incorporate
the previous stride’s effect on §. Then, the final, linearized phase
estimate was calculated by applying the inverse map 6! to the
results of (22)—(26).

4) Phase Variable Results: Fig. 11 highlights the new phase
variable algorithm’s ability to parameterize variable-incline
walking, as consistent phase trajectories were produced for
both participants during the continuously varying task trials.
The feedforward states S3 and S5 allowed for a positive phase
rate, even when thigh velocity was low. In addition, the thigh
trajectory features were appropriately estimated, allowing a
consistent phase estimates that were independent of the vari-
able thigh trajectories seen with varying inclines. The phase
linearization algorithm ensured highly linear estimates, with
mean R? = 0.997 for participant P1 and mean R? = 0.982 for
participant P2. Finally, the volitional start/stop behavior of the
phase variable originally shown in [31] was preserved. Fig. 14
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(b)

Fig. 15.  (a) Structure and transition logic of the benchmark FSMC. Tunable

parameters Ezop and to_,3 controlled the transitions from S1 to S2 and S2 to S3,

while constant ground contact and knee velocity thresholds controlled the other
three. States in green occur during stance and blue states during swing. (b) Task
transition logic indicating how the impedance parameter sets are selected based
on the incline estimate 4.

shows the phase variable trajectory for four nonsteady bouts
during the overground acclimation for participant P1, confirming
its ability to parameterize nonrhythmic motion.

B. Benchmark FSM Impedance Controller

The FSMC, based on the FSM impedance controller presented
in [16], was constructed to provide a benchmark with which
to compare the HKIC. The flow of the FSMC’s state machine
is depicted in Fig. 15. A tunable center of pressure threshold,
&‘;op, controlled the transition from S1 to S2. Then, after a
tunable duration, t5_.3, the FSM transitioned to S3. Next, a
TO event triggered the transition to S4. Finally, knee extension
(ék < 0) caused a transition to S5, where the FSM remained
until returning to S1 at HS. During transitions, the impedance
parameters were rate-limited to prevent step changes in torque.
In the FSMC, the torque command was given by (1), where K, B,
and 6.4 depended on the current FSM state (given in Table IV).

Many methods have been proposed for deciding when to
switch between sets of impedance parameters for different tasks,
including simple threshold methods [16] and more complex
machine learning methods [83], [84]. We employed a strategy
similar to [ 16] where the prosthesis directly estimated the ground
incline using the method described in Section IV-B. Then, a
secondary FSM was used to select between parameter sets
based on the estimated incline 4. To prevent rapid switching
between parameters at the boundaries, overlap was included in
the switching thresholds (Fig. 15(b)).

C. Additional Detailed Results

Table IV lists the results from the impedance parameter tuning
for the FSMC, including the tuned impedance parameters, tran-
sition thresholds, and tuning times. The stiffness K, damping B,
and equilibrium angle 6., were tuned by the research team for
each of the five states (S1, S2, S3, S4, and S5) at three baseline
tasks for each participant. Next, Table V shows the kinematic
and kinetic RMSE values for each participant during both the
steady state and continuously varying trials, each separated by
stance and swing.
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TABLE IV
RESULTS OF THE IMPEDANCE PARAMETER TUNING FOR THE FSMC FOR BOTH PARTICIPANTS P1 AND P2 AT EACH BASELINE TASK. THE FSMC CONSISTS OF FIVE
STATES: S1, S2, S3, S4, AND S5, EACH WITH UNIQUE PARAMETERS

Participant P1 SS-Level — (0 deg, 1 m/s) SS-Incline — (5 deg, 1 m/s) SS-Decline — (—5 deg, 1 m/s)
Tuning Time 3 min 14 min 5 min
Transition Liop 8.00 cm 5.00 cm 10.00 cm
Parameters ta_3 0.091 s 0.190 s 0.061 s
Impedance Si S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
» | K (Nm/kg) 2.25 2.00 1.00 1.25 | 0.75 1.50 1.50 0.75 1.00 | 1.00 2.25 2.00 1.00 | 1.00 | 1.00
2 [ B (Nms/kg) 0.14 0.13 0.12 [ 0.07 | 0.06 | 0.09 | 0.09 0.09 | 0.08 | 0.07 0.09 0.10 0.10 | 0.05 | 0.07
M Oeq (rad) 0.15 0.25 1.20 130 [ -0.15 | 0.35 | 0.25 0.50 1.20 | 0.30 0.15 0.35 0.75 | 1.25 | 0.05
o | K (Nm/kg) 1.50 3.50 450 | 0.10 | 0.50 | 3.50 | 3.50 4.00 | 0.35 | 1.00 3.50 3.50 350 | 1.00 | 1.00
< | B (Nms/kg) 0.14 0.14 0.14 [ 0.13 | 0.10 | 0.14 | 0.14 0.14 | 0.15 | 0.10 0.10 0.10 0.10 | 0.10 | 0.10
< Oeq (rad) —-0.10 [-0.30 [-0.35 ] 0.20 [ 0.00 | 0.10 | -0.10 [ -0.23 | 0.20 | 0.10 [ 0.100 [ -0.050 | 0.00 [ 0.10 | 0.10
Participant P2 SS-Level — (0 deg, 1 m/s) SS-Incline — (5 deg, 1 m/s) SS-Decline — (—5 deg, 1 m/s)
Tuning Time 19 min 16 min 4 min
Transition Leop 9.25 cm 7.25 cm 12.50 cm
Parameters to_s3 0.090 s 0.230 s 0.061 s
Impedance Si S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
» | K (Nm/kg) 2.25 2.00 1.00 1.25 1.15 | 225 | 2.00 1.20 1.00 | 1.50 2.25 2.00 1.00 | 1.00 | 1.00
2 [ B (Nms/kg) 0.14 0.13 0.12 [ 0.06 | 0.07 | 0.09 | 0.09 0.09 | 0.08 | 0.09 0.14 0.13 0.12 | 0.08 | 0.05
M Oeq (rad) 0.15 0.25 1.40 140 | 0.05 | 025 | 0.25 0.40 1.20 | 0.10 0.10 0.35 0.85 | 1.25 | 0.05
o | K (Nm/kg) 1.50 3.00 4.00 | 0.10 | 0.50 | 2.50 | 2.00 4.00 1.00 | 1.00 1.00 3.50 4.50 | 1.00 | 1.00
< | B (Nms/kg) 0.14 0.14 0.14 [ 0.13 | 0.10 | 0.14 | 0.15 0.14 | 0.14 | 0.10 0.14 0.14 0.14 | 0.10 | 0.10
< Oeq (rad) —-0.10 [-0.30 [-0.35 ] 0.20 | 0.00 | 0.05 [ -0.10 | -0.5 0.25 | 0.10 | =0.05 | -0.05 0.00 | 0.10 | 0.10

TABLE V
KINEMATIC AND KINETIC RMSE RELATIVE TO ABLE-BODIED DATA FOR THE KNEE (K) AND ANKLE (A) DURING THE STEADY-STATE AND CONTINUOUSLY
VARYING TRIALS OF EACH PARTICIPANT

Steady-State Trials Continuously Varying Trials
Stance Swing Stance Swing

Angle Moment Angle Moment Angle Moment Angle Moment

(deg) (Nm/kg) (deg) (Nm/kg) (deg) (Nm/kg) (deg) (Nm/kg)

K A K A K A K A K A4 K A4 K A K A
P HKIC | 5.08 | 493 | 022 | 030 | 9.70 | 2.51 | 0.14 | 0.04 | 471 | 506 | 0.20 | 0.27 | 7.28 2.64 | 0.13 | 0.04
FSMC | 8.07 | 6.78 | 0.23 | 0.37 786 | 5.69 | 0.16 | 0.06 | 815 | 738 | 0.21 | 039 | 790 | 586 | 0.16 | 0.06
P2 HKIC | 7.83 | 4.09 | 0.26 | 020 | 17.98 | 3.83 | 0.17 | 0.06 | 810 | 3.75 | 0.28 | 0.19 | 16.81 | 3.67 | 0.16 | 0.06
FSMC | 842 | 492 | 0.28 | 0.25 8.62 | 5.19 | 0.16 | 0.07 | 830 | 576 | 0.24 | 0.27 9.35 5.09 | 0.15 | 0.06
AVG HKIC | 648 | 450 | 0.24 | 0.25 | 1390 | 3.18 | 0.15 | 0.05 | 640 | 440 | 0.24 | 0.23 | 12.04 | 3.15 | 0.15 | 0.05
FSMC | 8.26 | 581 | 0.26 | 0.31 8.25 543 | 0.16 | 0.07 | 822 | 6.57 | 0.22 | 0.33 8.62 | 547 | 0.16 | 0.06
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