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Abstract—Analogous to #H,-methods for linear time
invariant systems, £5-gain is an important input-output
characterization of robustness for nonlinear systems. The
Hamilton-Jacobi Inequality can be used to establish £5-
gain if an appropriate storage function can be identified.
Continuous piecewise affine storage functions for small-
signal Lo-stability analysis of nonlinear systems have
previously been applied to open-loop analysis. Here, they
are used to develop a suboptimal controller synthesis
method for nonlinear systems that minimizes the local,
closed-loop small-signal L»-gain. The method selects a
piecewise affine state feedback controller using convex
optimization.

Index Terms—Optimal control, robust control, LMis,
stability of nonlinear systems, computational methods.

[. INTRODUCTION

HEN ensuring that stability is robust to error in
linear time invariant (LTI) models, H, optimal con-
trol is a popular tool. The stability margin of a feedback
interconnection between an uncertainty block and an LTI
system is usually characterized by the closed-loop Hoo-
norm. However, if no LTI model adequately captures the
system dynamics, an Hs optimal controller can have poor
performance in practice. Though the Hoo-norm does not
directly generalize to nonlinear systems, it is equivalent to
the L;-induced norm from input to output signals in the
time domain (with zero initial state) [1]. Hence, the £;-gain
minimization problem is the analogue to the H, optimal con-
trol, minimizing the response to disturbances not captured by
a nonlinear model. While the resulting optimization problem
can be non-convex and extremely challenging to solve, this
letter presents a practical method to find piecewise affine
state-feedback controllers that are locally £;-suboptimal using
convex optimization.
The Hamilton-Jacobi Inequality (HJI) can establish the £L,-
gain of a nonlinear system, provided an appropriate storage
function can be found [2, Ch. 8], but there is no systematic
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method to perform this search for general nonlinear systems.
While sum-of-squares (SOS) programming has been applied
to polynomial dynamics with relaxed HJI conditions, it has
also revealed non-existence of a uniform bound, as well as
lack of monotonicity, on the degree of polynomial Lyapunov
function in asymptotic stability analysis for certain nonlinear
autonomous systems [3], [4]. Alternatively, the construction
of continuous piecewise affine (CPA) Lyapunov functions
for asymptotic stability analysis [5], [6], [7] has recently
inspired small-signal £;-gain analysis using CPA storage
functions [8], [9]. Here, we leverage the previous, CPA-based
small-signal £;-gain analysis to inspire a new, £,-suboptimal
controller synthesis method for constrained nonlinear systems.

The proposed method selects a piecewise affine state-
feedback controller, as well as a CPA storage function as a HJI
solution candidate, for the closed-loop dynamics over a subset
of the state space. Previously, [8], [9] derived error bounds so
that solving the HIJI at a finite number of states established
an open-loop small-signal L»-gain bound. In comparison,
this letter defines a controller synthesis problem by deriving
an extra error bound that includes variable state-feedback
gains. Finally, a convex optimization problem is posed to find
a piecewise affine state-feedback controller that minimizes
the closed-loop small-signal L,-gain over a subset of the
state space. The results are demonstrated in a numerical
example.

Il. PRELIMINARIES

All vectors are defined over the Euclidean n-space. The
inner product of two vectors is denoted by (-, -). The non-
negative real numbers are denoted RT. A closed (open)
interval of integers between a and b is denoted by Zﬁ (Zg).
Bold I and 0 denote the identity matrix and zero matrix,
respectively. The set of all real, symmetric, n x n matrices is
denoted by S”, and * replaces transpose entries in elements of
S". Negative semi-definiteness of M € S" is denoted M < 0.
For v € R”, v* denotes its a” element. The k" column of
g € R is denoted by g and the (j, k)" element is 8jk-

The p-norm of a vector is denoted as |-|,, where
1 <p<oo and p=2 when the subscript is omitted. All
matrix norms considered here are induced by vector p-norms.
A function f € £} if |[f||2£2 = o fOTF@) dr < oo. It is in
the extended L, space, f € Ege, if its truncation, fr(t) is in

5. where fr(1) =f(1), 0<t<T and fr(t) =0, t > T. The
set of functions that are k-times continuously differentiable
over their domains is CX. The gradient of V : R" — R is
VV(x) = [%V(x), e, %V(x)], and its Hessian matrix is
denoted by V2V (x).
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A. Lo-Stability

The following definitions introduce L;-stability and the
Hamilton-Jacobi Inequality that form the basis of the main
results. To begin, dissipativity is key to stability analysis.

Definition 1 (Dissipativity [10]): Consider a nonlinear
system G : R" x L) — E’z’ .» With state-space realization

{J'c(t) = f(x(®) + g(x(®))u(@),
y(#) = h(x()),

where x(7) € R", u(t) € R™, and y(¢) € R? are the state, input,
and output of G, respectively. The system G is dissipative with
respect to the supply rate s : R™ x R — R if there exists a
locally bounded storage function, V : R" — R™, satisfying

t
{V(x(t))—fo s(u(r),y(r))dr}, )

where U = {u € L7, | fotls(u(r),y(r))ldt < 00Vt > 0}

When Eq. (1) is specified with an initial state x(0) = xo,
it corresponds to mapping Gy,:L5, — L:’z’e. Here we specify
x(0) € R" to G, which is a set of mappings Gy,, each with
an immutable x¢ value. Note that local boundedness of the
storage function was not required in Willem’s original defi-
nition, but this additional property is crucial for defining the
storage functions as solutions to partial differential inequalities
(PDIs) [10].

Systems are L£;-stable if they have finite £,-gain, which can
be defined in terms of dissipativity. The dependence on ¢ of
x(1), u(t), y(t) is dropped hereafter for brevity.

Definition 2 (L>-Gain [2, Ch. 3]): A state space system
G (Eq. (1)) has finite £>-gain if for some finite y > 0 it is
dissipative with respect to the supply rate

x(0) € R" "

V(x(0))> sup

>0,ueld

1 1
s(u, y) = 5y2||u||2 - §||y||2. 3)

The L5-gain of G, p(G), is the infimum of all such y.

The next theorem provides sufficient conditions to establish
gain of a state-space realization. It is much like [1, Th. 2],
but the more general setting of [10, Th. 3.1] accommodates
nonzero initial conditions. Most importantly, it admits lower
semi-continuous storage functions, because its PDI is under-
stood in the weak sense. Here, [10, Th. 3.1] with the supply
rate from Eq. (3) implies the second inequality, and the first
follows identically to the proof of [1, Th. 2].

Theorem 1 (HJI [10, Th. 3.1], [1, Th. 2]): Consider a state
space system G (Eq. (1)), and let y > 0. If there exists a
locally bounded solution, V : R” — R™, to the HJI,

1
VV@F () + Z—VZVWx)g(x)gT(x)vTvu)
1 T n
+5h (x)h(x) <0, Vx e R", 4)
then V and y also satisfy

VV@)f(x) + VV(x)gx)u <
1 1
V2 lull? = SIyI%, Vx € RY, u e R, (5)
implying that system G is Lj-stable and that 7(G) < y.

When solving the HJI (4) with V(x) and y? as design vari-
ables, their product makes the inequality nonlinear. Applying

the Schur complement [11, Ch. 2] to (4) results in an
equivalent linear matrix inequality (LMI) [9, Th. 1],

VV(x)f(x) * *
Hx) = [gT@VTV(x) =292  « | =<0, Vx e R".(6)
h(x) 0 -2

Ineq. (6) represents an infinite number of LMIs, one for
each x in a region. However, triangulation of the region can
limit the number of LMI constraints.

B. Continuous Piecewise Affine Storage Function

This subsection clarifies notation related to triangulations,
which will be used to define storage functions and controllers.

A set of vectors {xj};\': o C R" is affinely independent if
ZJN:] Aj(xj — x0) = 0 implies A; = O for each j € Z. An n-
simplex is the convex hull of a set of n+1 affinely independent
vectors. A triangulation is the union of a finite set of n-
simplexes whose intersections are either a face or empty [6].

In this letter, we search for a CPA storage function when
solving Ineq. (6). Because a CPA function is uniquely defined
by its values on the vertexes of its triangulation, we move
from searching over an infinite dimensional space of potential
storage functions, V(-), to a finite dimensional vector space of
design variables, V(x; ;).

Definition 3 (CPA Function [6]): Consider a triangulation
T=U A;, where my € Ziﬁ and A; is the i n-simplex. A
function, V:T — R, is continuous piecewise affine (CPA) if
for each i € Z'I"T there exists w; € R” and a; € R such that
Vix) = wiTx + a; for every x € A;.

CPA storage functions have piecewise constant gradients
that greatly simplify computation. The gradient of a CPA
function is ill-defined on simplex boundaries, but computing
it on simplex interiors is adequate, since [10, Th. 3.1] implies
that Ineq. (6) can be understood in the weak sense.

Lemma 1 (Gradient of CPA Function [6]): The local gra-
dient of a CPA function, VV(x) = VV; =w; for all x €
interior(A;), can be computed as

T
(xi1 — xi0) V(xi1) — V(xio0)
vy, = : : )
(xin — xi,o)T V(xin) = V(xi0)
With the choice of CPA storage functions, Eq. (6) still
represents an infinite number of LMIs, but the work of this

letter will surmount this hurdle by adding error bounds to a
finite number of constraints.

-1

C. Error Bound

The following lemma bounds the difference between a
nonlinear function and its affine approximation over an n-
simplex. It was presented implicitly in [9, Th. 4], but part of
the result was initially established by [5, Proposition 2.2].

Lemma 2 (Vector Error Bound [5], [9]): Let A C R" be an
n-simplex with vertices {x;}i_ that include xo =0 if 0 € A.
Consider a vector function f : A — R”", where f € C*. Let
B € R" and E¢(-) € R" have respectively elements,

= max
JkeZl xeA

, ®)

V2]

jk

Authorized licensed use limited to: Duke University. Downloaded on August 14,2025 at 13:01:29 UTC from IEEE Xplore. Restrictions apply.



CAO et al.: £,-SUBOPTIMAL CONTROL FOR NONLINEAR SYSTEMS VIA CONVEX OPTIMIZATION 903

aroy | 9%(x).if 0 ¢ A, and
Ef (xJ) '_ {0“ (xJ]) if 0 € A, where ©a)
1
¢“(v) = <_§V2fa(za)(xj —x), % —x), (©b)
1
0°(x;) = (—§<V2f“(za)x — vzf“(za,j)xj),xj), (9¢)

for some z, on the line segment between x and x; in Eq. (9b);
for some z, on the line segment between x and 0, and some
Zq,j on the line segment between x; and 0 in Eq. (9¢). Set

nmaXezs if 0 ¢ A, and
Cj =
T |l (maxkeZ’l’”xk” + ||x,||) if0eA.
Then for all x € A,

S

(10)

n n n
1
£ =Y wf () =D k() = 5B xe, (1)
j=0 j=0 j=0
where values A; satisfy x = 3% (A, 0 =4 = 1. Consider
also an affine function V:A — R. Let 8 = [|Bllo. If [ >
IVV(x)|; for all x € A, then on A,

VV@F) = Y25 VV(5)f ()

J=0

= > XVV(x)E(x) < <IB '

J=0 J=0

AjCj. (12)

N =

D. Local, Small-Signal L>-Gain

While £;-gain applies to all x € R" and u € R, local,
small-signal £;-gain constrains input signals so that the states
remain in a subset of the state-space. The following definition
is adapted from [12, Ch. 5]. In it, a subset of the state-space
of Eq. (1), A C R”", is robustly positive invariant (RPI) to a
constrained input set, U C E’z"e. If x(0) € A and u € U then
x(t) € A for all t > 0.

Definition 4 (Local, Small-Signal L>-Gain): The mapping
G :R"x Lg‘e — ﬁge, defined by Eq. (1), has finite local,
small-signal £-gain on A C R" if: Ais RPIto U = {ueLl’, |
sup,~ollur(Hlloo < ru} for some r, > 0 and all 7 > 0; and
V : R* — R satisfies Eq. (2) with s(u, y) from Eq. (3) for
some finite y > 0, whenever x(¢) € A. The local, small-signal
Lo-gain of G, y(G), is the infimum of all such y.

Theorems 2 and 3 of this letter rely on the HJI to bound
the local, small-signal £;-gain of systems. The next corollary
connects these concepts.

Corollary 1: Consider state space system G : R" x U —
E’z’e (Eq. (1)), where U = {ueLf, | sup;qllur(t)lloo < 1} for
some r, > 0 and all 7 > 0. Suppose that A C R" is RPI to U
and that all assumptions from Theorem 1 hold for all x € A.
Then G has local, small-signal £;-gain of at most y on A.

Proof: Since A is RPI to U, trajectories with x(0) € A
remain in A for all + > 0. Following the logic of Theorem 1,
Eq. (5) is satisfied for all x € A, and therefore all x(f). By
Definition 4, y bounds the local, small-signal £;-gain of G
on A. ]

This letter focuses on closed-loop control design to satisfy
HIT (6) on a subset of the state space, 2. After that, [8, Th. 5]
provides a convex optimization method that can be used to
identify A C  that is RPI to ¢/. Co-optimization of the gain
bound and invariant set is left to future work.

I1l. MAIN RESULTS

This section extends the CPA storage function approach
from small-signal £;-stability analysis in [8], [9] to controller
synthesis. By deriving Taylor expansion error bounds for the
feedback term, we develop a two-step optimization process
that minimizes closed-loop £;-gain bounds. The process uses
a CPA storage function combined with a piecewise affine state-
feedback controller over each n-simplex.

A. Theoretical Gain Criteria

The following theorem establishes criteria to bound a
closed-loop system’s gain, separating the contributions of a
plant and controller.

Theorem 2: Consider state space system G:R" x L5, — £’2’ .
defined by Eq. (1), where f, g, h € C2, f(0) = 0, g(0) = 0,
h(0) = 0, and x(¢), u(r), and y(r) are respectively the state,
input, and output of G. Let G, with y = G.;(r) be composed of
G in closed-loop with a state-feedback policy u(x, r) = K(x)+r
with exogenous disturbances (7). Suppose that Q@ C R” is a
connected, compact, constrained subset of the state space of
Eq. (1) and has triangulation 7 = Uf"le A;, where my € Z%,
A; is the i"* n-simplex, and {xi,j};.lzo C R”" are the vertexes of
A;. Further, R(x) = K;x for all x € A; with matrices {K,'}'?:I -
R™*"_ Suppose there exists a CPA function V:7T — RT and
constants ¥ € R, £ = {[;}//; C R* and K = {x;}]/] C R*

satisfying for all (i, ) € Z'lﬁ 7 7,
v >0, (13a)
V(xij) = 0, (13b)
IVVilly < 1, (13¢)
IKill; < ki, and (13d)
M;; <0, (13e)
where
Ml-l’j]. * *
Mij= | g(xi)) VIV, =291 +1 « |, (14a)
h(x,-,j) 0 —I

1
M}} = VVif (xij) + VVig(xi ) Kixij + Slibici
[ [PIPIR a
+lvikicij + Eliﬂixi’(ici,j + Zli Cij E ik

k=1
»
1
2 2
+Zci,jzpi,a»
a=1

VV; is computed by Lemma 1, ¢;; is defined by Eq. (10), and
for each k € Z', a € ZF,

(14b)

3%fP (x
Bi = max &) , (15a)
P.q.r€Z} E€A,; 8xq8x, x=£
g, (x
Vik =  max gi( ) , Vi:=maxv;, (15b)
X SAR N R N kez'?
9% g, (x)
Mik = max S , Wi = max u; r{15¢)
P.q.reZ} E€A,; 8xq3x, x=£ keZt
d%h(x
Pia =  max @) , and (15d)
q,reZ} el axqax, x=£
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(15¢)

X; ‘= max }1,

jezn i

Then V is a CPA storage function satisfying the HII (6) for
Ge1 on Q. Suppose there exists A C Q that is RPI with respect
to the dynamics G, with exogenous disturbances satisfying
r(yeld ={r( € £’2”e| supsollrr(Hllee < ry} for some r, > 0
and all T > 0. Then G, has local, small-signal £,-gain of at
most ¥ = /¥ on A.

Proof: In this proof, the HJI (6) is shown to hold on
each simplex for the closed-loop system. This follows in the
vein of [9, Th. 4], but some adaptation is needed for control
design of closed-loop systems. The term g(x)fR(x) introduces
new design variables. There is also a small difference in the
completion of squares. In the proof, Lemma 2 is used to relate
H(x) < 0,x € interior(A;) to H(x;;). Next, we derive error
bounds of g(x)R(x). Lastly, in addition to the HJI condition,
by Corollary 1, the assumption of a RPI set to the signal r € U
implies that the system is local, small-signal £;-stable.

We begin by substituting f.;(x) := f(x) + g(x)R(x) for f(x)
into Ineq. (6) and apply Lemma 2 over each i n-simplex,
where any x € A; is a convex combination of the vertexes
X = Zj Ajx;j with 0 < 4; < I, to obtain

n 11 21T n
H(x)— Y hH(xi))= ZA [E21 } ZAE,,, (16)
j=0

where
El} = VV@fa(x) — YV (xij)fer(xig).
E21T [VVWE,, (xij) +... VV®Eg, (xij) EF(xi))].

and Eg(x;;), for all k € Z7', have components Egk(xi,j), for
all a € Z7, by substituting all symbols f with g, as well as
x; with x; j in Eq. (9). Similarly for Ej(x; ;).

To remove the dependence on x in H(x) < 0, we first bound
the indefinite matrix E;; by completing the square, as

11| 21T 21
|:Ei,j +E;;E;; *]
0

Eij < 1l (17)

Using a subscript i to distinguish values that differ across
n-simplexes, Eq (12) (ll) in Lemma 2 yield EIZJITE;{ <

411]Zk l'uzk 411 lpta

We bound E11 next. Only the proof for 0 ¢ A; case is
shown because t e same steps follow for 0 € A;. By Eq. (7),
VV(x) = VV; for all x € A;, so it can be factored out. Let
U%(x) = [g(x)Kx]*. Grouping the f, U terms yields Ellj1 =

VVi(E{j + Ei(’/j), where for each a € Z7,

[E{j]u ={=
[Eg]a = (—%VZU“(ZQ)()C,'J- —x),x,-,j —x).

Eq. (18), (19) follow from Eq. (9b). Lemma 2 can be

applied directly to bound VV; Ef by Eq. (12), but more work

is required before applying Holder s inequality, VV; EU <

||VV1-||1HEZ . Apply Cauchy-Schwarz inequality on [EI-UJ-]“,
. \

again using subscript i to index n-simplexes, and with ¢;;
defined by Eq. (10), we obtain

a
et =]

aeZl

1 2 ra
SV Ga) (X x),and  (18)

— x),xi,j —_

19)

< — max ”V U%(z4)
2 z4€A;

_Cz Je (20)

We examine next the components of Hessian V2U%(x), which
has elements [V2U*(X)]y = [AW)]wy + [AT)]y + [BO) Ly,
where

m

d
[AQ@) ]y = ,Z; 3 8K, and @1)
[BG)]uy = Z P 2 ZK,kxk (22)

k=1

The induced 2-norm of Q € R™" is bounded by ||Q], <
VIQI Qoo [13, Ch. 5]. Since

n
= maXZ ii| < n max |
”Q”l jeZ’{ “ |Qlj| i,jeZ'1'|Qlj )

n
1Qlloc = max ) | Q| < n max
® ez /—1| i ijer

each 2-norm of A(x) and B(x) are bounded above by
n times maximum absolute-valued element, which by
applying Holder’s inequality on Egs. (21), and (22)
yields ||A(x)|l, < nvik; and ||B(x)||,<nuixik;. Apply Holder’s
inequality and by the triangle inequality on | V2U*(x)||,, from
Eq. (20) we find
1

VVE < lC,](lel + 2,1le,1<,> (23)
Applying this to bound Elj1 + EZITE21 in Eq. (17) and
substituting in Eq. (16) results in

" EN
H(x)~ Z AiH (xij)= ) Aj[ o
j=0 j=0

n
* —_
1] =) 4k,
=0

- 1 1
whereEl-l,} = fl,-ﬁ,-c,',j + livikici j + Eliuixi/cicij

zzlzjzl’sz+ sza

Rearranging, H(x) < Zj:O Aj(H (xi f) —i—E,; ;). Therefore, with
0 < ; <1, imposing H(x;;) + E,-,j <0 forallje Zg implies
H(x) < 0 for all x € A;. Additionally, to impose also the
HJI (6) as in H(x;;) < O for all vertexes in T, S-procedure
can be applied because each E;; > 0. Thus, by imposing the
constraints (13e) at the vertexes x;; of each n-simplex A;, by
Corollary 1, Gy with u(f) € U has local, small-signal £;-
gain < y on Q. [ |

(24)

B. Computable Gain Criteria

In Theorem 2, terms involving the product of variables V;
and K; or /; and «; create bilinear and non-convex constraints.
However, if an initial feasible solution is provided, an iterative
convex overbounding (ICO) technique is guaranteed to find
solutions under LMI constraints. The convex optimization
problem is presented in the following theorem.

Theorem 3: Let Eq. (1), Q, A, 7, and V, &, ¢ all satisfy
the assumptions of Theorem 2. Further, define new CPA
function V 4 §V, controller (& 4+ §R)(x), and bound i + §r.
Then the solutions of the following problem satisfy Theorem 2
with ¥ 4+ 8y* < .

SV*Sy™, L%, 8K*, 68" =  argmin Sy

SV, 8¢,8L,6K,8R
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subject to

¥ +éy >0, (25a)
V(xij) +68V(xij) =0 Vie Z'",Vje Zi,  (25b)
IV8Villy <8l VieZ], (25¢)
I8Killy < 8ki VieZ]T, (25d)
M;j <0 VieZ]" VjeZ, (25¢e)

where £ = {81}, C R*, 8K = {8k}7/, C R,
SR={8K;}, C R™", V8V, := V8V (x) Vx € A; by replacing
Vi with §V; in Eq. (7), and

M * * x

11 +  x
iy
Mlzj1 20 +5PI+L x x x x
M — h(xi)) 0 —I x x
b 3l; 0 0 tll-’j * x|
Sk 0 0 0 t;'(,/' *
| MP 0 0 0 0 —21]
(26a)
M{} = (VVi+ V8Vf (xiy) + VVig(xij) (K + 6Kp)xi,
1
+V8Vig(xi.j)Kixi,j + E(ll + 81 Bici
1.2
+8lvikicij + Livi(ki + dki)cij + Zc’z*-i Z pfa
a=1
1 _ 1 _
+§liﬂixi(/<i + 8ki)cij + Esli,u'ixiKiCjJ
1 m 1 m
el Do udi+ Slishiel; Y iy (26b)
k=1 k=1
M2 = g(xiy) (VTVi + VsV, (26¢)
1
M,'G,} = VsV + Eg(xi,j)(SKixi,j, (26d)
—4
I
lij = - ; (26e)
Y C,'ZJ quzl Mi2,k + Xipicij + 2vicij
—4
lij = (261)

- - A
Xipicij + 2vicij

with [; = [VVily, ki = IIKill;, cij defined by Eq. (10), and
other constants defined in Eq. (15) for each k € Z"*, a € Z’l’ .

Proof: We must have ¢ + §y¥* < 1 because the
minimization problem stated in Eq. (25) inherits feasibility
from Theorem 2 with §(-) = O for each [;, x;, ¥, V, and §R =
0. The remainder of this proof is devoted to formulate Eq. (26).
This is done through a sequence of completing the squares on
cross-terms between design variables.

Following the proof of Theorem 2, substitute first (-)
with (-) 4+ §(-) in Eq. (14b) for each [, K;, k;, V, ¥, noting
that the §(-) terms are design variables. Since gradient is
a linear operator, V(V; +46V;) = VV; + V§V;. Bound next
IVVi+ VéV;||; and ||K; + 6K;||; with the triangle inequality.
Lastly, Young’s relation can be applied on terms involving the
product of §/; and ék;, as well as V§V; and 8K;, followed by
Schur complements to obtain LMI constraints.

Complete the squares to obtain

1 _ 1 1 _
5li5Ki<v,'Ci,j + EM,‘X,‘C,‘J) < (EUZ'C{J + ZMiXici’j> (51,-2 + 5/(?).

To eliminate the product V§V;g(x;;)dK(x;;), apply Young’s
relation [14, Eq. (5)],

He(V5Vi%g(xi»j)8Kxi’/) =

1 L T 1
E(vavi + 5%i0Ki 8 (xij)) (V' 8V + Eg(x,-,,-)(woc,-,j),
where He(A) = A + AT for A € R"™",

Finally, perform Schur complement [11, Ch. 2] to all three
inner products or squared terms and obtain the definition of
M;; in Eq. (26). [ ]

C. Implementation Notes

Theorem 3 provides an optimization problem to simultane-
ously search for a storage function that bounds closed-loop
gain, while searching for a controller that minimizes that gain.
However, it requires an initial controller and storage function.
If the open-loop system G is L;-stable, then solutions V, and
y of G via [9, Th. 4], along with 8 = {K; = 0};”=7I can serve
this purpose, as demonstrated in the numerical example.

If G is not Lp-stable, initialization is challenging, and a
stabilizing controller may not even exist. One heuristic would
be to fix any random set of control gains, & = {Ki}l’.":Tl,
and solve for the other design variables in Theorem 2, while
minimizing the violations of the constraints in Eq. (13). Then,
perturbations on the control gains and other variables can be
iteratively selected to minimize the violation of Eq. (25) rather
than 81. Once a feasible solution is found, perturbations can
be selected following Eq. (25) directly.

Finally, to establish local, small-signal £,-gain, a RPI subset
of @ must be found. This can be done after selecting a
controller via [8, Th. 5], but co-optimizing the gain and RPI
set on which it is established is left to future work.

IV. NUMERICAL EXAMPLE

The effectiveness of Theorem 3 for controller synthesis was
demonstrated by comparing closed-loop and open-loop small-
signal £;-gain bounds (y.; and y,;), where y,; was computed
from [9, Th. 4].

Consider the dynamical system from [8], [9],

X1 _ X2 0
|:)'c2:| - |:— sinx; —x2] + |:x2:|”’ x(0) e, (27
y = 'x21

with xe R2,ueR,yeR, and Q = {(x;,x) | |x| <
0.8, [x2] < 0.8,—0.8 < x; +x < 0.8}. A piecewise affine
state-feedback controller was designed to minimize closed-
loop £3-gain bound on 2 of system Eq. (27) using Theorem 3.

While any triangulation suffices to set up constraints, a
Delaunay triangulation was used to avoid slivers. Methods
to compute Delaunay triangulations in R"” are well-
established [15, Ch. 9], and multiple software packages are
available for triangulations in R?. Using the mesh generation
procedure from [16], we constructed three triangulations of
2 containing 266, 530, and 1,806 2-simplexes, respectively.
The size of each 2-simplex decreases with an increasing total
number of 2-simplexes.

Using [9, Th. 4], we obtained the open-loop gain bound
vor on 2 and the CPA storage function V. These solutions,
along with controller R = {K; = 0};"!1, served as the initial
feasible solution for the control design in Theorem 3, yielding
the closed-loop gain bound y,; on 2 and the final controller
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Fig. 2. Gain y; after each iteration for 3 triangulation schemes.

K(x). We implemented the optimization problem in MATLAB
using the YALMIP toolbox [17] with the MOSEK semi-
definite programming solver [18]. For the ICO algorithm,
we set the termination condition as || < 1079, balancing
computational efficiency with the need to avoid premature
convergence to local minima.

The closed-loop gain y,; remained smaller than open-loop
gain y,; for all triangulation schemes (Fig. 1). The Taylor
expansion error bounds reduced with the decreasing sizes of
2-simplexes (due to ¢;; by Eq. (10)), which reduced conser-
vativeness in the HJI constraints. As a result, both £;-gain
bounds decreased asymptotically. The y,; for triangulation of
266 2-simplexes already achieved result close to the numerical
limit, whereas y,; did not. Therefore, this triangulation appears
to have the largest improvement.

Among all three triangulation schemes, y.; improved most
within the first 10 iterations (Fig. 2), demonstrating the
effectiveness of Theorem 3. The refinement of triangulation
improved the £5-gain bound but led to an O(m) increase in
both variables and constraints, resulting in an O(m3-) increase
in computational cost per iteration of Eq. (25) when using
interior point methods for this 2D example [19, Ch. 6]. The
current method will not scale well if a dense triangulation is
needed, especially for systems with many states. An adaptive
triangulation scheme of varying n-simplex density can be
considered to reduce m7 for future work.

The small-signal bound r, was not sought in this example
because it can be done by applying [8, Th. 5] to the closed-
loop system.

V. CONCLUSION

Based on the HJI, we developed two theorems for comput-
ing piecewise affine state-feedback controllers that minimize
the local, closed-loop small-signal £;-gain bound of non-
linear systems. Theorem 3 establishes that this can be
accomplished using semi-definite programming. Our numer-
ical results demonstrate improved closed-loop performance

compared to open-loop bounds on the region of interest. The
approach benefits from the computational efficiency of semi-
definite programming and the implementation simplicity of
piecewise affine state-feedback.

The local, small-signal £,-gain bound from Theorem 2, 3
apply only to the search space. Nonetheless, local analysis
of nonlinear systems is sufficient for the design requirements
in many practical applications. While local, small-signal £;-
stability requires input constraints to maintain states within
the analyzed region, future work will address relaxing the
condition g(0) = 0 and co-optimizing the closed-loop gain
bound with input signal bound.

REFERENCES

[1] A. van der Schaft, “£;-gain analysis of nonlinear systems and nonlinear
state-feedback H o control,” IEEE Trans. Autom. Control, vol. 37, no. 6,
pp. 770-784, Jun. 1992.

[2] A. van der Schaft, £,-Gain and Passivity Techniques in Nonlinear
Control. Cham, Switzerland: Springer, 2017.

[3] A. A. Ahmadi, “On the difficulty of deciding asymptotic stability of
cubic homogeneous vector fields,” in Proc. Am. Control Conf. (ACC),
2012, pp. 3334-3339.

[4] E. Summers et al., “Quantitative local £;-gain and reachability analysis

for nonlinear systems,” Int. J. Robust Nonlin. Control, vol. 23, no. 10,

pp. 1115-1135, 2013.

P. Giesl and S. Hafstein, “Construction of Lyapunov functions for

nonlinear planar systems by linear programming,” J. Math. Anal. Appl.,

vol. 388, no. 1, pp. 463-479, 2012. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0022247X11009899

P. Giesl and S. Hafstein, “Revised CPA method to compute Lyapunov

functions for nonlinear systems,” J. Math. Anal. Appl., vol. 410, no. 1,

pp. 292-306, 2014. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0022247X13007452

P. Giesl and S. Hafstein, “Computation and verification of Lyapunov

functions,” SIAM J. Appl. Dyn., vol. 14, no. 4, pp. 1663-1698, 2015.

[Online]. Available: https://doi.org/10.1137/140988802

[8] R. Lavaei and L. J. Bridgeman, “Iterative, small-signal £, stability
analysis of nonlinear constrained systems,” 2023, arXiv:2309.00517.

[9]1 A. K. Strong, R. Lavaei, and L. J. Bridgeman, “Improved small-signal

L7-gain analysis for nonlinear systems,” in Proc. Am. Control Conf.,

2024, pp. 3377-3382.

M. R. James, “A partial differential inequality for dissipative nonlin-

ear systems,” Syst. Control Lett., vol. 21, no. 4, pp. 315-320, 1993.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/

016769119390074G

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix

Inequalities in System and Control Theory. Philadelphia, PA, USA: Soc.

Ind. Appl. Math., 1994.

H. K. Khalil, Nonlinear Systems, 3rd Edition. Upper Saddle River, NJ,

USA: Prentice Hall, 2002.

C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia,

PA, USA: Soc. Ind. Appl. Math., 2000.

N. Sebe, “Sequential convex overbounding approximation methods

for bilinear matrix inequality problems,” IFAC-PapersOnline, vol. 51,

no. 25, pp. 102-109, 2018.

[15] M. de Berg, 0. Cheong, M. van

M. Overmars, Computational  Geometry:

Applications.  Berlin, Germany: Springer,

doi: 10.1007/978-3-540-77974-2_9.

D. Engwirda, “Locally-optimal Delaunay-refinement and optimisation-

based mesh generation,” Ph.D. dissertation, Dept. Math. Statist.,

University of Sydney, Camperdown, NSW, Australia, 2014. [Online].

Available: http://hdl.handle.net/2123/13148.

J. Lofberg, “YALMIP: A toolbox for modeling and optimization

in MATLAB,” in Proc. CACSD Conf., Taipei, Taiwan, 2004,

pp. 284-289.

(Mosek ApS, Copenhagen, Denmark). The MOSEK Optimization

Toolbox for MATLAB Manual. Version 10.1. 2024. [Online]. Available:

http://docs.mosek.com/latest/toolbox/index.html

Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms

in convex programming. Philadelphia, PA, USA: Soc. Ind. Appl. Math.,

1994.

[5

—_

[6

)

[7

—

[10]

(1]

[12]
[13]

[14]

Kreveld, and
Algorithms  and
2008, pp. 191-218,

[16]

[17]

(18]

[19]

Authorized licensed use limited to: Duke University. Downloaded on August 14,2025 at 13:01:29 UTC from IEEE Xplore. Restrictions apply.



