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ABSTRACT

We ond explicit maximal rank Coxeter quotients for the knot groups of 595,515 out of the 1,701,936 knots
through 16 crossings. We thus calculate the bridge numbers and verify Cappell and Shaneson’s Meridional
Rank Conjecture for these knots. In addition, we provide a computational tool for establishing the conjecture
for those knots beyond 16 crossings whose meridional ranks can be detected via onite Coxeter quotients.
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1. Introduction

Knot groups and their quotients provide efective techniques for distinguishing and tabulating knots, studying their properties and
calculating a variety of classical invariants. Prime knots are determined, up to renection, by their groups [20]. Further, dihedral and
symmetric group quotients have been as instrumental as polynomial invariants in creating and expanding the knot table [14, 22]. In
this paper, we adopt a computational approach to studying two notoriously elusive knot invariants: the bridge number andmeridional
rank.We perform an exhaustive search, covering the groups of tabulated knots through 16 crossings, for quotients onto onite Coxeter
groups. We ond 595,515 quotients for knots of bridge number at least 3, which implies that 601,061 out of the orst 1,701,936 (non-
cyclic) knot groups admit maximal rank quotients, in the sense deoned below, onto onite Coxeter groups. For approximately 38% of
these knots, we compute the bridge number for the orst time. Our ondings are summarized in Section 4.

Recall that given a Coxeter presentation for a Coxeter group G, a renection is any element conjugate to one of the generators
in this presentation. The Coxeter rank of G is the cardinality of a minimal generating set of renections for G. In this paper, the
Coxeter rank will be denoted by r(G) and may also be called simply <the rank of G=. Whenever we consider a group homomorphism
ρ : π1(S

3\K) � G from a knot group onto a Coxeter group G, we will always assume that meridians of K map to renections in G.
Sometimes we will emphasize this property by saying that ρ is a good quotient.

Consider a good quotient ρ : π1(S
3\K) � G as above. If r(G) equals the bridge number of K, we say that ρ is a maximal rank

Coxeter quotient, abbreviated MRCQ. As the phrase suggests, the Coxeter rank of a good quotient for K can never exceed the bridge
number β(K). Indeed, recall that β(K) is an upper bound for the meridional rank μ(K). Furthermore, a generating set of meridians
is mapped by a good quotient map to a generating set of renections. Hence, for any good quotient map ϕ : π1(S

3\K) � G, we have
the inequalities

β(K) ≥ μ(K) ≥ r(G). (1.1)

Thus, we have a MRCQ precisely when β(K) = r(G) holds, and this equality can sometimes be verioed diagrammatically.

Proposition 1.1. [1] Let D be a diagram for a knot K. Denote by ω(D) the Wirtinger number (Deonition 2.5) of D. Assume that G is
a Coxeter group such that there exists a good quotient π1(S

3\K) � G. If the Coxeter rank of G satisoes r(G) = ω(D), the Meridional
Rank Conjecture holds for K and we have

ω(D) = ω(K) = β(K) = μ(K) = r(G).

Proof. The result follows from equation (1.1), combined with the fact that the Wirtinger number of any diagram of K is an upper
bound for the bridge number: ω(D) ≥ ω(K) = β(K), which is proved in [4].

Given an knot K with diagram D, we say that D exhibits a maximal rank Coxeter quotient if there exists a good quotient
ϕ : π1(S

3\K) � G such that r(G) = ω(D). The existence of such a ϕ allows us to apply Proposition 1.1 to prove the Meridional
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Rank Conjecture (Kirby List [17], Problem 1.11) for K. Moreover, D realizes the Wirtinger number of K, that is, ω(D) equals the
bridge number β(K). In this work, we determine the diagrams in the Hoste-Thistlethwaite-Weeks table [14] through 16 crossings
which exhibit maximal rank quotients onto onite Coxeter groups. We thereby compute the meridional ranks and bridge numbers for
the corresponding knots, along the way showing that these knots satisfy the Meridional Rank Conjecture of Cappell and Shaneson.
Note that the conjecture has been proven in a variety of special cases, notably torus links [24], links of meridional rank two [9],
Montesinos links [8] and generalized Montesinos links [19], twisted links [1], and certain classes of arborescent links [1, 2], among
others [3, 6, 7, 12]. It is unknown how many and precisely which knots through 16 crossings are covered by one or more of these
theoretical results. In practice, it can be challenging to determinewhether a given knot satisoes the hypotheses of some of the theorems
cited above, particularly when these hypotheses include the existence of a diagram with special properties. This makes it diocult to
identify potential counter-examples to the conjecture, that is, knots which do not belong to any of the special cases for which the
conjecture is known to hold. Our work is a step toward bridging this gap. Moreover, when the meridional rank of a knotK is detected
by a onite Coxeter quotient, we explicitly compute the bridge number and meridional rank of K from Gauss code for a diagram of K.

Theorem 1.2 (Main Theorem). Let D be a knot diagram. D admits a maximal rank quotient onto a onite Coxeter group H if and only
if such a quotient is detected by the algorithm outlined in Section 3.

The result follows from three main ingredients: the equality between the bridge number and Wirtinger number of a knot
(Theorem 2.6); the easy fact that the existence of a Coxeter quotient of a knot group can be detected in any diagram of the knot
(Proposition 2.8); and the celebrated classiocation of onite Coxeter groups (Theorem 2.2). These results are recalled in Section 2, and
our proof appears in Section 3, which is dedicated to showing that the homomorphism search we perform is exhaustive. Therein,
we also describe our method for trimming the set of possible generating sets for onite Coxeter groups without compromising the
exhaustiveness of the search; this step was necessary in order to make the computation feasible. We have implemented the algorithm
and run it on all knots through 16 crossings. Our search identioed all diagrams in the knot table which admit MRCQs onto onite
Coxeter groups. The data obtained by running our algorithm for all tabulated knots through 16 crossings is summarized in Section 4.
We conjecture that crossing number minimizing diagrams of prime knots through 16 crossings realize the Wirtinger numbers of the
corresponding knots, that is, we posit that ω(D) = ω(K) for any minimal diagram D of a prime knot K through 16 crossings. If
true, this would imply that we have identioed precisely the knots in the table which admit maximal rank quotients onto onite Coxeter
groups.

1.1. Applications

The values of bridge number and meridional rank established in this paper have implications for other diocult to evaluate knot
invariants. An early version of our computation was used to ond the stick number of knots in several challenging cases [5].
Additionally, the bridge number gives a lower bound on the superbridge index [18]. It is possible to use the values of bridge number
established by our algorithm together with recent upper bounds on superbridge index [27] to compute the superbridge index of some
knots for which the value was previously unknown. Further, our algorithm can be adapted to accept non-planar Gauss codes and thus
to give lower bounds on the virtual bridge number of virtual knots. When paired with the upper bounds from [23], this technique
can be used compute the virtual bridge number of many virtual knots. Finally, our algorithm can be used in conjunction with the
results in [16] to establish the meridional rank and bridge number of certain twist spun knots, which are knotted 2-spheres in R

4.

2. Bridge numbers via Coxeter quotients

We recall some basic deonitions and necessary background on knot colorings, Coxeter groups and Wirtinger numbers of links, as
well as the approach from [1] for computing bridge numbers using Coxeter quotients of knot groups.

2.1. Classiocation of onite Coxeter groups

Deonition 2.1. Let � be a onite simple graph with edges labeled by integers greater than 1. The Coxeter group C(�) is a group
generated by a set in bijective correspondence with the vertices of �, subject to the following two types of relations:

(1) s2 = 1 for all generators s.
(2) (st)k = 1 for all pairs of generators s, t connected by and edge of weight k ∈ N.

We call � the Coxeter graph and the presentation determined by � a Coxeter presentation of C(�).

Note that a given Coxeter group can have Coxeter presentations of diferent rank. See Figure 1. However, as we will see, this is not
the case for the class of Coxeter groups that we use in this paper, namely onite Coxeter groups in which all renections belong to the
same conjugacy class.
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Figure 1. Two Coxeter presentations for the dihedral group D6 = 〈x, y|x2 = y6 = 1, xyx = y−1〉.

Finite Coxeter groups are classioed. Every onite Coxeter group is isomorphic to exactly one group in a list of four inonite families
and six exceptional groups. For more details on this well-known classiocation theorem, see any of the standard Coxeter group
references, for instance Bourbaki [10].

Theorem 2.2. Every onite Coxeter group is a onite renection group. Moreover, every onite Coxeter group is isomorphic to exactly one of
the groups An(n ≥ 1),Bn(n ≥ 2),Dn(n ≥ 4),E6,E7,E8, F4,H3,H4, and I2(m)(m ≥ 2).

Note that each of the groups listed in the previous theorem are deoned by aCoxeter graph and correspondingCoxeter presentation.
Given a Coxeter presentation of a group C(�), the Coxeter rank r(C(�)) is known to equal the number of vertices of �, see for

example Lemma 2.1 in [13]. In this paper, we are interested in all Coxeter presentations of onite Coxeter groups with Coxeter rank
3, 4, or 5, such that the set of renections form a single conjugacy class. On the one hand, it was shown in [4] that all knots in the
knot table up to 16 crossings have bridge number at most 5. On the other, knots of bridge number less than 3 are classically known to
admit MRCQ; indeed all two-bridge knots have dihedral quotients. Therefore, the Coxeter groups needed in order to ond MRCQs
for the remaining cases are those with Coxeter rank 3, 4, or 5. Additionally, all meridians in the fundamental group of a knot exterior
are conjugate. Hence, if ρ : π1(S

3\K) � G is a Coxeter quotient, then the renections of G form a single conjugacy class. The groups
in Theorem 2.2 that meet these criteria are A3, A4, A5, D4, D5, H3, and H4. However, to be sure that our search is exhaustive, we
need to take into account all Coxeter presentations of onite Coxeter groups, since, in order to detect the existence of a surjective
homomorphism onto G, we need to consider all possible minimal generating sets for G within the specioed conjugacy class of
renections.

Theorem 2.3. Given a onite Coxeter group C(�) such that the renections of C(�) form a single conjugacy class, then � is of type
A,B,D,E, F,G,H, or I.

This stronger statement follows from the proof of the classiocation of onite Coxeter groups (see, for example, Sections 2.7 and 6.4
of Humphreys [15]). As a consequence of this theorem and our previous observations, every Coxeter presentation of a onite Coxeter
group with Coxeter rank 3, 4, or 5 such that the set of renections form a single conjugacy class is one of A3, A4, A5, D4, D5, H3, and
H4. Thus, we can restrict to these presentations when implementing our search for all MRCQs from knot groups to onite Coxeter
groups for tabulated knots through 16 crossings.

2.2. Cappell and Shaneson’smeridional rank conjecture

Recall that a meridian of a link L is a based loop m : S1 → S3\L which is freely homotopic to the boundary of an embedded disk
D2 ↪→ S3 intersecting L transversally once. Themeridional rank μ(L) is the smallest number of elements of π1(S

3\L) represented by
meridians which suoce to generate the group. The bridge number β(L) is the minimal number of local maxima of L with respect to
the standard height function h : R3 → R, taken over all embeddings l :

∐

S1 ↪→ R
3 isotopic to L for which h|l is Morse. One readily

derives from theWirtinger presentation of π1(S
3\L) that the inequality β(L) ≥ μ(L) holds for all links, since the meridians near the

local maxima of L are seen to generate the group. Cappell and Shaneson asked if the two invariants in fact coincide.

Conjecture 2.4 (MRC). Let L ⊂ S3 be a link. Are its bridge number and meridional rank equal?

We approach this question by studying an intermediate quantity, the Wirtinger number of L, deoned in [4] via a combinatorial
procedure we now recall. Let D be a link diagram and let W(D) be a subset of the set of strands in D. We will refer to the elements
of W(D) as colored strands. The data (D,W(D)) represents a partially colored diagram. Denote by c a crossing in D and by o, u1 and
u2 the overstrand and the two understrands at c. When {o, u1} ⊂ W(D) and {u2} /∈ W(D), we say a coloring move can be performed
at c, by setting W′(D) := W(D) ∪ {u2}. We refer to the partially colored diagram (D,W′(D)) as the result of performing a coloring
move on W(D) at c and we write W(D) −→ W′(D).

Let |D| denote the number of crossings in D. A complete coloring sequence for D consists of a collection of n strands in D,
{s1, . . . , sn} := W1(D), together with |D| − n coloring moves

W1(D) −→ W2(D) · · · −→ W|D|−n(D),
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where W|D|−n(D) is the set of all strands in D. Each of the initial strands si ∈ W1(D) is called a seed strand or simply a seed for the
sequence. When a complete coloring sequence exists starting with W1(D), we say that the strands in W1(D) are a generating set of
seeds for D.

Deonition 2.5. TheWirtinger number of a link diagram D, denoted ω(D), is the smallest integer n such that there exist a generating
set of seeds for D with n elements. TheWirtinger number of a link L, denoted ω(L), is the minimal value of ω(D) over all diagrams
D of L.

The motivation for this deonition is straight-forward: the Wirtinger number of a diagram D gives a combinatorial upper bound
on the meridional rank of the corresponding link L. Indeed, a coloring move at a crossing c corresponds to the fact that, together,
the Wirtinger meridians of the overstrand o and of the understrand u1 generate the Wirtinger meridian of the second understrand
u2; this is immediate from the Wirtinger relation at c. Thus, if there exists a coloring sequence for D starting from a collection of
seeds {s1, . . . , sn}, then the Wirtinger meridians of these strands generate the group of the link L and, therefore, μ(L) ≤ ω(D). This
inequality holds for any diagram D of L, showing that, in fact,

μ(L) ≤ ω(L).

On the other hand, the argument used previously to show that β(L) ≥ μ(L) for any link can be used without modiocation to
show that β(L) ≥ ω(L). Put diferently, if the strands containing the local maxima of an embedding are chosen as seeds, a complete
coloring sequence can be produced by extending the partial coloring successively at crossings of lower height. Combining the above
observations, we see that for any link L ⊂ S3,

β(L) ≥ ω(L) ≥ μ(L).

Theorem 2.6. [4] Let L ⊂ S3 be a link. Its Wirtinger number and bridge number are equal: ω(L) = β(L).

The meridional rank conjecture is thus equivalent to proving the inequality ω(L) = μ(L) for all links. As outlined in the
Introduction, one way to establish this equality for a specioc link L is to exhibit a diagram D of L which admits a Coxeter quotient of
rank ω(D). Our main result, Theorem 1.2, is identifying all diagrams D of knots through 16 crossings whose groups admit quotients
of rank ω(D) onto onite Coxeter groups. When a knot K has this property, we conclude, as in Proposition 1.1, that

ω(D) ≥ β(K) ≥ μ(K) ≥ ω(D).

A Coxeter quotient of a knot group can be described in any diagram of the knot, as reviewed next. Conversely, the existence of a
quotient can be diagrammatically detected; see Lemma 2.8.

2.3. Knot colorings and knot group quotients

A classical method for distinguishing knots is via Fox p-colorings of their diagrams. LetD be a diagram of a link L. A p-coloring ofD
is an assignment f (s) ∈ {1, . . . , p} for each strand s in D, subject to the condition that at every crossing in D the relation

f (u1) + f (u2) − 2f (o) ≡ 0 mod p (2.1)

holds, where o is the overstrand and u1, u2 the two understrands. Let Dp = 〈x, y|x2 = yp = 1, xyxy = 1〉 denote the dihedral group
of order 2p. A Fox p-coloring deones a homomorphism ϕ : π1(S

3\L) → Dp by mapping the Wirtinger meridian ms of a strand s to
a renection in Dp determined by f :

ϕ[ms] := xyf (s).

Given a crossing in D, Equation (2.1) guarantees that the Wirtinger relation among the meridians at this crossing is satisoed by
the images of these meridians under ϕ. The assignment of integers mod p to each strand in a link diagram D determines a group
homomorphism if and only if the equation is satisoed at every crossing in D.

When a knot or link admits many distinct Fox p-colorings for a oxed p, the number of such colorings can be used to derive a lower
bound on its meridional rank. However, the existence of a single homomorphism onto a given dihedral group can only prove that the
meridional rank of a knot is bigger than one, since two renections suoce to generate the image. For the purpose of studying MRC,
it is therefore more helpful to ond quotients from knot groups to groups which require many generators in a oxed conjugacy class
(for link groups, conjugacy classes). We employ onite Coxeter groups to this end. See Section 2.1 for a deonition and quick review of
the properties and classiocation of these groups. We will make extensive use the fact that homomorphisms from a link group to any
group can be described diagrammatically, just like Fox colorings.
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Deonition 2.7. Let G be a group and let D be a diagram of an oriented link L. Denote by s(D) the set of strands in D. A G-coloring of
D is a map

r : s(D) → G

si �→ gsi

such that for any crossing c in D with overstrand si and understands sj and sk, the relation holds:

gsigsjg
−1
si

= g. (2.2)

In order to pass from a G-coloring of a diagram of L to a homomorphism π1(S
3\L) → G, we map the Wirtinger meridian of any

strand t, with the orientation determined by the orientation of L, to the element gt ∈ G.

Lemma 2.8. Let D be a diagram of a link L and G a Coxeter group. There exists a good quotient ϕ : π1(S
3\L) � Gmapping meridians

of L to renections in G if and only if D admits a G-coloring by renections.

Proof. Let μsi denote the Wirtinger meridian of the strand si, with the orientation induced by the given orientation on L. Given a
good quotient ϕ, we deone a G-coloring of D by setting r(si) = ϕ(μsi). Since ϕ is a good quotient, ϕ(μsi) is a renection for each
si ∈ s(D), so D admits a G-coloring by renections.

For the converse, denote by r : s(D) → G a given G-coloring of D by renections. As above, we deone a corresponding map
ρ : {mt|t a strand in D} → G by setting ρ(mt) = gt , where mt is the Wirtinger meridian of the strand st . Since the Wirtinger
meridians in a diagram generate the link group, the assignment ρ extends to a map ρ : π1(S

3\L) → G. As in the case of Fox
colorings, Equation (2.2) guarantees that this map is a homomorphism. All meridians of L are conjugate toWirtinger meridians, and
therefore map to renections in G. Hence, a G-coloring of D induces a good quotient ρ : π1(S

3\L) → G.

This well-known lemma is included to highlight the fact that, ifD is a diagram of a link L andD does not admit a coherent labeling
by renections in a Coxeter group G, then no homomorphism π1(S

3\L) � G exists mapping meridians of L to renections. The ability
to work with any diagram of L is a useful counterpoint to results which establish themeridional rank conjecture under the assumption
that there exists a diagram with certain preferred properties.

When aG-coloring ofD induces a goodmaximal rank Coxeter quotient toG, we say theG-coloring ofD is a diagrammaticMRCQ.
We will be performing exhaustive searches for such quotients, using the following observation.

Remark 2.9. Let D be a diagram for a link L and let s denote a generating set of seeds for D. Assume L admits a quotient
ρ : π1(S

3\L) → G. In order to deone this quotient, it suoces to determine the images under ρ of Wirtinger meridians of the
strands in s. This partial coloring will extend uniquely to a G-coloring of D.

A class of link diagrams admiting natural Artin and Coxeter colorings was discovered by Brunner [11]. The corresponding links
were later called twisted. A link L is twisted if it admits a diagram D, reduced in the sense of [11], with the following property:
checkerboard color the complementary planar regions of D in such a way that the unbounded region is <white=; view the <black
regions= as a union of disks and twisted bands1; this surface contains at least one full twist in each band. Figure 2 is an example of
a twisted diagram. More generally, all, standard diagrams of pretzel knots are twisted as long as every parameter of the pretzel is at
least 2 in absolute value.

Given a twisted link L, Brunner showed how to deone a quotient of π1(S
3\L) onto an Artin group G, by labeling the strands in

a twisted diagram D of L with appropriate elements of G. In Figure 2, a twisted diagram is labeled by elements of an Artin group,
following Brunner’s construction. A generating set for the group is in bijection with the planar regions in the complement of the
twisted surface determined by D. The relations in the group are determined by the number of crossings in each twisted band of D.

It is convenient to replace G by its natural Coxeter quotient, where the relation x2 = 1 is added for each of the Artin generators.
This will allow us to disregard orientations (since a renection is equal to its inverse) and to make use of results like the classiocation
of onite Coxeter groups.

For a link L presented in a twisted diagramD, in order to describe a quotient of the group of L, it suoces to determine the images of
the twomeridians at one end of each twist region inD. The images of the remainingmeridians under this quotient will be determined
by the Wirtinger relations at crossings. Again, refer to Figure 2 for an explicit example of this general principle. Brunner’s idea is to
assign matching generators at the two ends of every twist region. This forces certain Coxeter relations in the quotient, determined by
the number of crossings in each of the twist regions.

We now turn to the rank of the quotient in Brunner’s construction. As previously noted, Coxeter generators are in bijectionwith the
regions in the complement of a twisted surface bounded by L. Thus, the number of such regions is a lower bound for the meridional
rank of L. Using the Wirtinger number, matching upper bounds on the bridge numbers were found, which proved MRC for twisted

1Again, the surface is assumed to be reduced, whichmeans that each disk is incident to at least 3 bands (otherwise the disk becomes absorbed into a band) and
the crossings in each band have the same sign.
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Figure 2. The pretzel knot P(3,−3, 3), together with a quotient onto the Artin group 〈a, b, c|(ab)3 = (bc)3 = (ac)3 = 1〉 or the Coxeter group 〈a, b, c|a2 = b2 = c2 = 1,

(ab)3 = (bc)3 = (ac)3 = 1〉.

Figure 3. A diagram of the knot 816 with Gauss code {−1, 2,−3, 4,−8, 6,−7, 3,−4, 5,−6, 1,−2, 7,−5, 8} and seed strands {e1 , e2 , e3} = {(−8, 5,−1), (−6, 1,−2),
(−8, 6,−7)}.

links [1]. A similar technique was applied beyond those links for which Brunner found diagrammatic Coxeter quotients, for example
to Montesinos links and other natural inonite families of arborescent links [1, 2], proving the MRC in these cases as well.

Two-bridge knots are a class of examples which illustrate the limitations of working with twisted diagrams. As noted above, the
meridional rank of a two-bridge knot is always detected in a maximal Coxeter quotient, namely by a quotient onto a dihedral group.
However, checkerboard-coloring the diagram of a two-bridge knot seldom produces a twisted surface. An exhaustive search for
Coxeter quotients can prove more efective in practice than one which relies on the existence of a diagram with certain favorable
properties.

3. Homomorphism search

3.1. Summary of the algorithm

The algorithm used for obtaining our results takes as input Gauss code G of a knot diagramDG representing a knotKG . Following the
algorithm developed in [4] and available at [28], the Gauss code is translated into the following data associated toDG : a set of strands,
denoted SG = {s1, s2, . . ., sj, . . ., sn}; and a set of crossings, denoted CG = {c1, c2, . . ., cj, . . ., cm}. Next, the algorithm from [28] is run
to calculate theWirtinger number ofDG and to identify a minimal set of seed strands EG = {e1, e2, . . ., ej, . . ., eω(DG)}. See Figure 3
for an example of how the seeds strands in DG are recorded in terms of G.

Let r1, r2, . . ., rn be a minimal generating set of renections for a Coxeter group H with Coxeter rank n = ω(DG) for some oxed
knot diagram DG . As observed in Remark 2.9, coloring the strands in EG by elements of H suoces to determine the image of all of
π1(S

3\KG) under a (potential) homomorphism toH. Fix a bijectivemap from r1, r2, . . ., rn to EG . Since EG is a generating set of seeds,
by repeatedly applying the Wirtinger relations at crossings, this partial coloring can be extended to an assignment of renections inH
to all strands of DG . In case this assignment constitutes a coherent H-coloring of DG , there exists a maximal rank Coxeter quotient
from the knot group KG to H. By Proposition 1.1, such a homomorphism implies that ω(DG) is equal to the meridional rank of KG

and to the bridge number of KG .
Given a onite Coxeter group H, let R(H) denote the set of all renections in H and let Gen(H) be the set of all minimal generating

sets of renections for H. If ω(DG) equals the Coxeter rank r(H), a brute force method of searching for good quotients for KG to H
would be to check, for every set R inGen(H), whether every possible bijection from R to EG extends to anH-coloring ofDG . Whether
a specioc bijection deones a coherent coloring can be verioed as follows. Starting with the given bijection from R to a generating set
of seeds in DG , sequentially extend this partial H-coloring using the Wirtinger relations at crossings. Since the process started with
a generating set of seeds, it is guaranteed to result in assigning an element of H to each strand in DG . Once every strand of D has
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Figure 4. Left: a bijection between a pair of seed strands for the given diagram and the generating set {(12), (23)} ⊂ S3 . Middle: extending the labeling by applying the
Wirtinger relation at a crossing. Right: extending the labeling at a second crossing, then performing a check. The original bijection does not extend to a homomorphism from
the group of the Figure-8 knot to S3 , as evidenced by the shaded crossing.

been labeled by an element ofH, check whether the images of the strands under this potential homomorphism satisfy the Wirtinger
relations at those crossings which have not been used to create the coloring. When this is the case, the initial assignment deones a
quotient from KG to H. See Figure 4.

However, this is computationally intensive for the larger onite Coxeter groups. It is also highly redundant because, in general, many
generating sets will be related by inner automorphisms of the group. Taking this redundancy into account, for larger Coxeter groups
H we implemented a preprocessing step in which we found a smaller subset of Gen(H) which suoces for an exhaustive search.

Given a Coxeter group H, deone an equivalence relation on the set Gen(H) by declaring

{r1, r2, . . ., rr(H)} ∼ {ρ1, ρ2, . . ., ρr(H)}

if there exists g ∈ H such that {g−1r1g, g
−1r2g, . . ., g

−1rr(H)g} = {ρ1, ρ2, . . ., ρr(H)}. We say a subset A ⊂ Gen(H) is robust if it
contains at least one element from each equivalence class corresponding to the relation <∼=.

Lemma 3.1. Let G be Gauss code for a knot diagram D, EG a minimal set of seed strands for DG , and A ⊂ Gen(H) a robust set for a
Coxeter group H. There exists a diagrammatic MRCQ of DG onto H if and only if there exists {ρ1, ρ2, . . ., ρn} ∈ A and a bijection of
{ρ1, ρ2, . . ., ρn} to EG that can be extended to an H-coloring of DG .

Proof. Suppose there exists {ρ1, ρ2, . . ., ρn} ∈ A and a bijection of {ρ1, ρ2, . . ., ρn} to EG that can be extended by repeatedly applying
the Wirtinger relations at each crossing to an H-coloring of DG . By Lemma 2.8, there exists a maximal rank Coxeter quotient of DG

to H.
For the converse, suppose there exists a diagrammatic MRCQ φ of DG to H. Denote the elements of EG by

{e1, e2, . . ., ej, . . ., eω(DG)}. By deonition, φ is a good quotient so it maps {e1, e2, . . ., ej, . . ., eω(DG)} to a set of renections
{r1, r2, . . ., rj, . . ., rω(DG)} in H. Since φ is of maximal rank, ω(DG) = r(H). Since {e1, e2, . . ., ej, . . ., eω(DG)} is a
generating set of seeds for DG , the corresponding Wirtinger meridians form a generating set for the knot group. Consequently,
{φ(e1), φ(e2), . . ., φ(eω(DG))} generates the image of φ. Sinceω(DG) = r(H), it follows that {r1, r2, . . ., rj, . . ., rω(DG)} is a minimal
generating set of renections for H. Hence, {r1, r2, . . ., rj, . . ., rω(DG)} ∈ Gen(H). Since A is a robust subset of Gen(H), then there
exists {ρ1, ρ2, . . ., ρj, . . ., ρω(DG)} ∈ A such that {ρ1, ρ2, . . ., ρj, . . ., ρω(DG)} ∼ {r1, r2, . . ., rj, . . ., rω(DG)}. In particular, there
exists g ∈ H such that {g−1r1g, g

−1r2g, . . ., g
−1rω(DG)g} = {ρ1, ρ2, . . ., ρj, . . ., ρω(DG)}. If θ is the inner automorphism ofH given

by conjugation by g, then θ◦φ is amaximal rankCoxeter quotient ofDG toH and there is a bijection from {ρ1, ρ2, . . ., ρj, . . ., ρω(DG)}

to EG that can be extended by repeatedly applying the Wirtinger relations at each crossing to an H-coloring of DG .

By Lemma 3.1, in order to verify the existence of a MRCQ of DG toH, it suoces to check whether any bijection from a set in A, a
robust subset of Gen(H), to a minimal set of seed strands of DG can be extended to an H-coloring of DG .

Given Gauss code G of a knot diagram DG representing a knot KG , we implemented the following steps to perform an exhaustive
search for good homomorphisms from DG to a onite Coxeter group H.

(1) DG is parsed into a set of strands SG and the algorithm from [28] is used to ond a minimal set of seeds EG =

{e1, e2, . . ., ej, . . ., eω(DG)} ⊂ SG .
(2) If ω(DG) = r(H) and A ⊂ Gen(H) is robust, then for every R ∈ A and every bijection f : R → EG we test whether f can be

extended to an H-coloring of DG .

We can now prove the main result of this paper.

Proof of Theorem 1.2. Let G be the Gauss code for a diagram DG of a knot. Let H be a Coxeter group such that the Coxeter
rank of H is ω(DG) and DG has a maximal rank Coxeter quotient ρ to H. We need to verify that ρ will be detected by our
search. By Lemma 2.8, the homomorphism ρ induces an H-coloring of DG . Applying our algorithm to G, we ond a minimal
set of seed strands EG = {e1, e2, . . ., ej, . . ., eω(DG)} ⊂ SG . The above H-coloring of DG induces a labeling of EG by
renections {r1, r2, . . ., rj, . . ., rω(DG)}. Since EG is a generating set for π1(S

3 \ K) and the H-coloring of DG induces a
MRCQ from DG to H, we know that {r1, r2, . . ., rj, . . ., rω(DG)} is a generating set of H. Given A ⊂ Gen(H) a robust
set, there exists an element {ρ1, ρ2, . . ., ρj, . . ., ρω(DG)} ∈ A and a g ∈ H such that {ρ1, ρ2, . . ., ρj, . . ., ρω(DG)} =



34 R. BLAIR ET AL.

{g−1r1g, g−1r2g, . . ., g−1rjg, . . ., g−1rω(DG)g}. Note that conjugating each label of D by g gives a new H-coloring of DG such that
EG is labeled by {ρ1, ρ2, . . ., ρj, . . ., ρω(DG)}. Therefore, in its search through all bijections of the form f : EG → A, where A is an
element of the robust setA, the algorithm will ond a labeling of EG by the generators {ρ1, ρ2, . . ., ρj, . . ., ρω(DG)} which induces an
H-coloring of DG . Thus, the algorithm will return a positive hit for a MRCQ to H.

By construction, if the algorithm returns a positive hit for a maximal rank Coxeter quotient to H, then the Coxeter rank of H is
ω(DG) and there is an H-coloring of DG .

3.1.1. MRCQs to onite Coxeter groups among all knots up to 16 crossings

We implemented the algorithm described above in Python and searched for all maximal rank Coxeter quotients to onite Coxeter
groups among the 1,701,936 prime knots [14] of crossing number less than or equal to 16. It was shown in [28] that all Gauss codes
available in the census of these knots result in diagrams with Wirtinger number at most 5. Therefore, we designed the code to search
for good homomorphisms to onite Coxeter groups of Coxeter rank at most 5. Moreover, the meridians of a knot group form a single
conjugacy class. Additionally, the MRC is known for knots of Wirtinger number two [9], and generating suitable homomorphisms
for the knot group of Wirtinger number two knots to dihedral groups is well-understood. As a result, our code searches for maximal
rank Coxeter quotients to those onite Coxeter groups of Coxeter rank 3, 4, or 5 whose renections constitute a single conjugacy class.
As discussed in Section 2.1, every Coxeter presentation for such a group is one of A3, A4, A5, D4, D5, H3, and H4. In Section 3.2, we
discuss how we generated robust sets of generating sets for each of these groups.

3.2. Generating robust sets

To illustrate our approach, we outline the process we used to generate a robust set of generating sets for the group D4. First, we
represented D4 as a subgroup of GL4(R). Speciocally, D4 is isomorphic to the subgroup generated by the following matrices:
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0 0 0 1
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Since the renections in D4 are all contained in a single conjugacy class, we know that there exists a robust set for the groupD4 so that

every generating set in the robust set contains the matrix A =

£

¤

¤

¥

−1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

¦

§

§

¨

. Since D4 contains a total of 12 renections, if we ox

the orst renection, this leaves 11 × 10 × 9 = 990 sets of four distinct renections that contain A. Recall that each renection in R
4 has

a rank 1 eigenspace corresponding to the eigenvalue −1 and a rank 3 eigenspace corresponding to the eigen value 1. For a set of four
renections to generate D4 is must be that R4 is spanned by the set of four eigenvectors corresponding to the four one-dimensional
eigenspaces associated to the −1 eigenvalues for each of the four renections spans. We determined by direct computation that 630 of
the 990 sets of renections had this property. We found that 624 of 630 generated a group of order 192 = |D4| and that the remaining
six groups generated (Z/2Z)4. Thus, this set of 624 four-element sets of renections is a robust set of generating sets for the group D4.
Naturally, smaller robust sets help reduce run time when searching for MRQCs across millions of knot diagrams.

Building robust sets of generating sets for each of the groups A3, A4, A5, D5, H3, and H4 was done by an analogous method.
For each group, computational resources devoted to building a small robust set were balanced against computational time saved by
running the maximal rank Coxeter quotient search algorithm using the smaller robust set. For example, signiocant computational
time was spent to generate small robust sets for H4, and D5. As in the example outlined above, we started by generating all sets of
four (resp. 5) renections containing a oxed preferred renection. These sets were trimmed in two ways: orst, sets that generated a
proper subgroup were removed. Then, we implemented a brute force search that identioed when two generating sets were related
by an inner automorphism and deleted one of the redundant generating sets. Ultimately, we found a robust set of generating sets
for H4 that contained 25,224 elements, down from 11,703,240 sets before the trimming process; and a robust set of generating sets
for D5 that contained 1778 elements, down from 1,860,480 sets before the trimming process. All robust sets generated are available
here [21].

4. Computational ondings

In this section we organize our computational data into tables. Note that we found maximal rank Coxeter quotients for 595,515,
roughly 35%, of all 1,696,390 knots of crossing number at most 16 that have minimal diagrams withWirtinger number 3, 4, or 5. We
use the fact that the Wirtinger number detects all 5546 two-bridge knots of crossing number at most 16 and all knots with crossing
number at most 16 have Wirtinger number at most 5 [4]. As stated previously, all two-bridge knots admit a maximal rank Coxeter
quotient to a onite dihedral group. Hence, exactly 601,061 of the 1,701,936 prime knot diagrams with crossing number at most 16
admit a maximal rank Coxeter quotient to a onite Coxeter group.
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This work also verioes the MRC for a large portion of tabulated knots. Already, knots with diagrams of Wirtinger number 2 and
3 were known to satisfy the MRC [9]. In addition, this computation establishes the MRC for 227,163 knots with Wirtinger number 4
or 5. Altogether, the MRC has been verioed for at least 1,363,137, or approximately 80.1%, of all 1,701,936 prime knots with crossing
number at most 16 (Tables 1–4).

Table 1. Knots with maximal rank Coxeter quotients by group type.

Crossing number Prime knots MRCQ to A3 , A4 , or A5 MRCQ to D4 , or D5 MRCQ to H3 , or H4

3 1 1 0 0
4 1 0 0 0
5 2 0 0 0
6 3 1 0 0
7 7 2 0 0
8 21 7 0 0
9 49 17 0 9
10 165 39 0 40
11 552 121 15 124
12 2176 370 13 537
13 9988 1772 316 2572
14 46,972 7069 1099 12,494
15 253,293 37,490 7997 66,962
16 1,388,705 183,509 457,923 363,456

Totals 1,701,936 230,398 55,233 446,194

Table 2. Prime knots withω(D) = 3 which admit maximal rank Coxeter quotients.

Crossing number Knots with ω(D) = 3 MRCQ to A3 MRCQ to H3 MRCQ to A3 or H3

3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 9 6 0 6
9 24 8 9 16
10 120 26 40 64
11 446 85 109 190
12 1952 312 489 729
13 8614 1221 1995 2954
14 39,291 5495 8808 13,104
15 187,121 25,181 41,771 61,343
16 892,851 116,071 198,290 288,557

Totals 1,130,428 148,405 251,511 366,963

5. Brief remarks

5.1. Bridge number and crossing number

Our computations suggest the following relationship between the bridge number and crossing number of a knot.

Conjecture 5.1. Let n ≥ 3 and let K be a prime knot with bridge number equal to n. The crossing number of K is at least 3n − 1.

For all prime knots through 16 crossings, the conjecture can be verioed using the upper bounds on the bridge number obtained
from the Wirtinger numbers of crossing-number minimizing diagrams in the knot table. Remark also that the lower bound we
propose is optimal: for any n ≥ 3 there exists a knot with exactly 3n − 1 crossings and bridge number n, namely the pretzel knot
P(2, 3, 3, . . ., 3). Of course, the conjectured inequality would not hold for links as, for example, an unlink onmore than one component
would violate it. Non-prime knots also easily violate the inequality, for example the connected sum of a trefoil with itself (Table 4).

5.2. Homomorphisms to inonite Coxeter groups

As previously discussed, maximal rank Coxeter quotients were used in [1, 2] to prove the Meridional Rank Conjecture for large
inonite families of links. The Coxeter quotients used in that proof are in the vast majority of cases inonite. We expect that for a sizable
fraction of the knots studied in [1, 2] nomaximal rank oniteCoxeter quotients exist, though no exhaustive search has been performed
due to the high crossing numbers of these knots and the absence of a tabulation. Nevertheless, we posit that extending the current
work to inonite Coxeter groups is likely to result in computing the meridional rank of many more knots. As far as we know, it is an
open question whether the meridional rank of a knot is always detected in a onite quotient (not necessarily to a Coxeter group).
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Table 3. Prime knots withω(D) = 4 and maximal rank Coxeter quotients.

Crossing # ω(D) = 4 MRCQ to A4 MRCQ to H4 MRCQ to D4 To A4 , H4 or D4

3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0
9 0 0 0 0 0
10 0 0 0 0 0
11 15 15 15 15 15
12 48 13 48 13 48
13 1022 456 577 316 595
14 6958 1387 3686 1069 3788
15 64,723 11,944 25,191 7975 29,588
16 488,032 63,258 165,166 42,282 189,566

Totals 560,798 77,073 194,683 51,670 223,600

Table 4. Prime knots withω(D) = 5 and maximal rank Coxeter quotients.

Crossing number Knots with ω(D) = 5 MRCQ to A5 MRCQ to D5 MRCQ to A5 or D5

3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 30 30 30 30
15 62 22 22 22
16 5072 3479 3511 3511

Totals 5164 3531 3563 3563

We give an explicit example of a 12-crossing knot whose meridional rank is detected in an inonite Coxeter quotient but not in a
onite one.

Example 5.2. The knot 12a210 admits a maximal rank Coxeter quotient to the inonite Coxeter group determined by the Coxeter

matrix

£

¥

1 2 3
2 1 7
3 7 1

¦

¨ , see Figure 5. This is a Montesinos knot on three rational tangles, and the existence of this maximal rank Coxeter

quotient also follows from [1, p. 1551, footnote 2]. In contrast, our algorithm proves that there does not exist a homomorphism onto
A3 orH3. In other words, even though there is a homomorphism to an inonite Coxeter group that establishes the MRC for this knot,
there is no maximal rank Coxeter quotient to a onite Coxeter group that achieves the same. Many other explicit examples of inonite
MRCQs for 3-bridge knots can be found in [26].

Figure 5. The Montesinos knot 12a210, together with a maximal rank quotient onto the Coxeter group 〈a, b, c|a2 = b2 = c2 = 1, (ab)3 = (ac)7 = (bc)2 = 1〉. The knot
does not admit a MRCQ onto a onite Coxeter group.
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The nonexistence of a maximal rank Coxeter quotient for some knots may guide the search for potential counter-examples to the
meridional rank conjecture. At a minimum, many knots are ruled out as possible counter-examples by our method. However, it is
also known that the meridional rank of a knot is not always detected in a Coxeter quotient. It was shown by Ryfel that many torus
knots not only do not admit a maximal rank Coxeter quotient but do not admit any nontrivial Coxeter quotients whatsoever.

Theorem 5.3. [26] Let p, q ∈ Z be coprime odd integers such that p ≥ 3 and q has no factor less than or equal tomax{5, p}. Then the
(p, q)-torus knot does not admit any non-trivial Coxeter quotients.

On the other hand, the Meridional Rank Conjecture holds for all torus links [25].
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