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Abstract—Quantum random access memory (qRAM) is
valuable for applying quantum computers to a broad range of
problems and for successfully implementing large-scale quantum
computation systems. Despite its importance, its adoption
may be restricted by the fact that the decomposition of the
qRAM function contains non-transversal gates, which cannot
be executed transversally on any quantum error correction
(QEC) code. To overcome these limitations, existing works employ
techniques like magic state distillation. However, distillation
is time- and qubit-intensive. This paper presents a fault-
tolerant, resource-efficient implementation of qRAM based on
pieceable fault tolerance. By breaking the logical CSWAP and
Toffoli gate into simpler, easier-to-execute but non-transversal
components, we first show that bucket-brigade qRAM can
be implemented in polynomial depth without the need for
ancillary magic states, further gate decomposition, or other gates.
Afterward, we demonstrate the resource efficiency of this method
of attaining fault tolerance in quantum operations. Based on
resource estimation results, fault-tolerant bucket brigades using
the pieceable technique perform better than fault-tolerant bucket
brigades using magic state distillation with respect to the number
of physical qubits, time, and cost.

Index Terms—Quantum Random-Access Memory, Quantum
computer, Quantum error correction

I. INTRODUCTION

The ability to load extensive classical data sets into quantum
processors will be crucial for applying quantum computers
to various problems and, ultimately, for the success of large-
scale quantum computation as an industry. It is a significant
challenge to create a quantum superposition of a data set
without incurring prohibitive cost at run time. The O(N)
quantum cost to convert N unstructured classical data elements
(each with a key, or address) to a superposition is inescapable.
We face the choice of paying this cost in hardware, software,
or a combination of the two.

Quantum Random Access Memory (QRAM), the quantum
equivalent of classical random access memory (RAM), has
been proposed as a general solution to this problem. qRAM
differs from classical RAM in that it utilizes qubits instead of
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classical bits as addresses. The use of qRAM as a quantum
oracle facilitates efficient implementation of a wide variety
of quantum algorithms such as machine learning, chemistry,
etc. [2]-[8].

Various qRAM architectures have been proposed to
efficiently query classical data on a quantum computer,
choosing different points in the hardware/software tradeoff [1],
[9]-[14]. Variants exist, but for the purposes of this paper we
will assume qRAM designs that execute the unitary operation

Do 1)10) — 3 sl [b), (M

where j is the memory address and b; is the classical value
at that address. The data value register |0) — |b;) we will
refer to as the data bus or bus qubit.

If it can be built, potentially the most valuable form of
qRAM is a design with logarithmic circuit depth (access time)
O(log(N)). Thinking in physical terms, the bus qubit must
be distributed to individual memory cells (“downstreaming’)
where a small portion of the quantum amplitude will be acted
upon separately, then reassembled (“upstreaming”) for further
processing as a unified register . The quantum address and bus
registers become entangled but (of course) remain unentangled
with the classical memory, which we can treat as read-only.

To understand downstreaming, RAM databases can be
modeled as a complete binary tree in which the address bus
consists of bits that direct a request down the tree (“route” the
request), taking the left or right path on the i level of the
tree based on the value of the i*" address bit. To address N
total data elements, we need an address that is n = log, N
bits. A Fanout qRAM can be built using an n-level binary tree
arrangement of nodes, providing ©(log(N)) latency.

This approach, however, suffers from decoherence problems
because each of the O(NV) active nodes each temporarily holds

'For example, a polarization photonic qubit can be split to run through
two paths via a polarizing beamsplitter, allowing the different states to be
operated on independently. The amplitudes will be split accordingly, retaining
any entanglement or relationship to other qubits.
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Fig. 1. Hann’s bucket brigade qRAM circuit for the case of n = 3 [1]. The address register is first loaded into the binary tree (illustrated on the left), with
three qubits per node. First, address qubit |ag) is transferred to the root of the tree. Lower-order address qubits such as |a1) — |a1)’ are spread to nodes
lower in the tree to route the bus qubit to the classical memory cells (b;). Many of the qubits in the circuit are used only briefly, and spend most of their
lifetime in a |0) state separate from our qubits of interest; a few of these are marked on the figure.

a qubit during the read operation. The importance of errors
in qRAM, and therefore whether addresses, data elements, or
both need to be protected via QEC, depends on the intended
application.

A significant improvement over Fanout qRAM, known
as bucket brigade, reduces the number of entangled qubits
scattered throughout the device and reduces the number of
gates that must directly interact with each address qubit [9].
Two significant changes are made. Address qubits and a bus
qubit are literally routed into a binary tree to reach the classical
memory cells, reducing the demand on each address qubit as
it comes into play by “copying” it in binary tree fashion. The
implementation of the tree is achieved through the use of three
states |0),]1), and |WW) (wait) instead of the two in Fanout
qRAM. All the nodes are initially initialized in the (inactive)
state |TV). Despite using ~ 3N qubits, only N are entangled
at one time.

Paler et al. [13] have proposed a parallel version of the
bucket brigade that reduces the circuit depth from ©(N) to
O(log(N)) in the worst case scenario (when the query is
executed on the N = 2" memory cells, where n is the number
of address bits) without ancillary qubits, as opposed to the
construction of Di Matteo er al. [11], which proposed an O(N)
number of ancillary qubits in the parallel version.

However, the bucket brigade approach is still sensitive to
noise and errors; the error scales polylogarithmically with
the size of the qRAM [15]. Unfortunately, it has been seen
that conventional QEC techniques for the bucket-brigade
architecture have large resource costs [14]. The main issue
lies in the fact that the bucket-brigade circuit uses the Toffoli
gate, which cannot be implemented transversally using a
CSS code [14] or surface code [11]. Instead, the Toffoli
gate is generally achieved via magic state distillation for
the T gate, which entails a significant investment of time
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and qubits, despite recent improvements [16]. Moreover, the
bucket brigade decomposed in terms of Clifford+T gates has
significant resource consumption [17].

This paper demonstrates that the non-transversality problem
in bucket-brigade qRAM can be addressed by breaking the
overall circuit into pieces that can individually be implemented
fault-tolerantly, resulting in better logical error rates with
fewer resources, unlike existing approaches. Hence, we present
a model of bucket-brigade qRAM that can be executed
fault tolerantly using pieceable techniques by breaking down
logical circuits into more straightforward, more manageable
components without the need for ancillary magic states or
other gates. We show formally how bucket-brigade qRAM
can be achieved in circuits whose depth is polynomial in the
number of address qubits (i.e., O(log” N) for some constant
k) for an N-memory element qRAM, although they require
O(N) gates, all of which are either Toffoli or CNOTs.
Then, the pieceable fault-tolerance principle is implemented
to maintain error resistance for these two gate types.

Subsequently, we evaluate the resource requirements in
comparison to alternative fault-tolerant implementations
employing magic state distillation like surface code.
As a result, we demonstrate that our proposal is more
resource-efficient than the previous approach. Compared
to our approach, fault-tolerant bucket-brigade gqRAM
implementations that employ magic state distillation have a
constant multiplicative gain (approximately 5, 12, and 1.2 for
time, physical, and total costs, respectively). In addition, we
expect that these results will lead to a low rate of logical
errors.

We begin with a full introduction to bucket brigade qRAM,
including pseudocode for a basic version and an optimized
version in Sec. IT 2. We present the concept of Pieceable Fault-
Tolerance in Section III. We introduce the proposed Pieceable
Fault-Tolerance Bucket-Brigade in section IV. We analyze
our proposals in section V. We conclude this paper with a
discussion in Section VI.

II. CIRCUITS FOR O(N) BUCKET-BRIGADE QRAM WITH
O(polylog(N)) DEPTH

Our circuit representation of qRAM builds on the detailed
bucket brigade circuit of Hann [1]. The circuit consists of five
phases: address distribution, bus distribution, data read, bus un-
distribution, and address un-distribution. The un-distribution
phases are the same gates as the distribution, in reverse order.
The first three phases of an N = 8 instance are shown
in Fig. 1. Algorithm 1 is a pseudocode for generating the
complete circuit (not the execution-time logic) for the first
three phases of a scalable circuit. In the pseudocode, CSWAP,
represents the ordinary CSWAP that swaps its second and third
arguments if the control bit is 1, while CSWAP,, swaps them
if its control bit is 0.

2 Although quite a number of papers present basic diagrams for fixed-size
versions and describe larger extensions, to the best of our knowledge this is
the first complete pseudocode in the literature.

The address register (typically initialized in H—>®” for the
first call) is swapped one qubit at a time into the binary tree
via the input register, converting the binary representation into
a unary one. Each “node” of the tree consists of three qubits,
called |P), |L), and |R) (for path select, left, and right). The
latter two are only briefly used as address qubit |a;41) is
distributed left or right based on |a;), except for the last level
of the tree, as described below. When subscripted |P,»7 j>, etc.,
1 is the level in the binary tree (starting with ¢ = 0 at the root)
and 0 < j < 2¢ indicates which node within that level.

After the address distribution, the |P) qubits hold the
address qubits, and the bus qubit is routed down the tree,
also temporarily using the |L) and |R) qubits, until reaching
the bottom of the tree, where |R) and |L) actually read all
N physical classical memories simultaneously, represented by
b; in Fig. 1. The read operation is achieved by a classically
controlled Z gate applied to the |R,,—1) and |L,_1) states.
Following this Z operation with a Hadamard will give the
readout as defined in (1).

The limiting factor in performance will be the number
of CSWAP gates and their performance. To work with
piecable fault tolerance (below), we use a CCZ gate and the
decomposition shown in Fig. 3. When the lower qubit is known
to begin in |0) (as happens in our circuits), the first CNOT can
be eliminated.

Descriptions of bucket brigade qRAM often begin with the
|P) qubits in a tertiary state |W), but to work with error
correction, we assume all of the qubits in the tree begin in
|0). This assumption also allows us to somewhat optimize
the circuit, since the common three-CNOT implementation
of SWAP can be reduced to two CNOTs if one of the
qubits is known to be |0). The optimized circuit is shown in
Algorithm 2. As with the CSWAP,, Toffoli, , indicates that
the NOT on the target qubit is executed if the first control
qubit is 0 and the second control qubit is 1. (Information and
gates not included are the same as Algorithm 1.)

For an N = 2"-element qRAM, Hann uses 3(N —1)+n+2
qubits, but only N non-zero amplitudes are present at any
time. Depending on actual physical implementation, including
how qubits are physically transferred within the device, some
of these qubits could potentially be eliminated during further
optimization. For example, the circuits as presented include
unconditional SWAP gates where one of the qubits is known
to be |0); physically routing the qubit instead will reduce the
number of qubits in the system.

Although the device requires O(N) quantum devices and
O(N) quantum gates, the lowest level of the tree also executes
O(N) operations simultaneously. Overall, the circuit depth
of the address distribution, the bottleneck in the process, is
O(log® N). More details on gate counts and performance are
presented in Sec. V.
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Algorithm 1 Hann Bucket Brigade Downstreaming and
Copying

Algorithm 2 An optimized downstreaming and copying
process for Hann Bucket Brigade

Input: An n-qubit address (ag, ..., a,—1) with ag the
high-order bit, and a bus qubit
Output: Memory data for the given address
Resources: N classical memories, O(N) q. ancillae
Preconditions: |P), ; = [0)
Runtime (circuit depth): ©(n?)
Gates: (Before we distribute the bus qubit) ©(n? x 2")
SWAP, and ©(n? x 2") CSWAP gates
1: {binary—unary address conversion}

2: for i =0 to n — 1 do {iterate over levels}
3: SWAP(|a;) , Input)

4 if i == 0 then

5 SWAP(Input,Po o)

6: else

7 CSWAP.(PO)O, Input, RO,Q)

8: CSWAP, (Py,0, Input, Lg)

9: if i == 1 then

10: SWAP(L0,0, Pl,O)

11: SWAP(R()’(), P1’1)

12: else

13: for k=1toi—1do

14: for j=0to 2" —1do

15: if j % 2 == 0 then

16: CSWAPO(P]C’]', Lk,j’ Lk’—l,j/Q)
17: CSWAP.(P]CJ, Rk,j, Lk,l,j/z)
18: else

19: CSWAPO(PkJ, LkJ, kal,(jfl)/2)
20: CSWAP.(PkJ, de, Rk—l,(j—l)/2)
21: end if

22: SWAP(LZ',LJ', Pi,2*j)

23: SWAP(R;_1;, P;2+j+1)

24: end for

25: end for

26: end if

27:  end if

28: end for

29: {next, distribute the bus qubit (|+))}

30: H(|bus))

31: SWAP(Input,|bus))

32: CSWAP.(PO’O, input, RO,O)
33: CSWAP, (PO’O, input, Lo’o)
34: fort=1ton—1do

35: for j=0to2'—1do

36: if j % 2 == 0 then

37: CSWAPO(PZ'J', Li,j7 Li—l,j/Z)

38: CSWAP,(PZ"J', Ri,js Li—l,j/Q)

39: else

40: CSWAPO(PZ‘J’, Li,j» Rifl,(jfl)/2)
41: CSWAP.(PZ'J’, R@j, Ri—l,(j—l)/2)
42: end if

43;  end for

44: end for

45: Copy data from the selected memory to the bus qubit.
46: Following this, the above must be uncomputed.
return memory data

Gates: (Before we distribute the bus qubit) ©(n? x 2")
CNOT, and ©(n? x 2") Toffoli

1: {binary—unary address conversion}

2: for i = 0 to n — 1 do {iterate over levels (n is
excluded)}

3: CNOT(Input, |a;))

4. CNOT(la;), Input)

5. if i == 0 then

6: CNOT(Input, P o)

7: CNOT(Fo,0, Input)

8 else

9: TOffOli.7.(P070, Input, R070)

10: CNOT(Ry,0, Input,)

11: TOffOliov.(Pgﬁo, Input, LO,O)

12: CNOT(Lg,9, Input)

13: if i ==1 then

14: CNOT(L070, PI,O)

15: CNOT(PL(), Lo,o)

16: CNOT(RQQ, Pl,l)

17: CNOT(PLl, RO,O)

18: else

19: for k=1tov—1do

20: for j=0to 2" —1 do

21: if ] % 2 == 0 then

22: TOffOliov.(PkJ, Lk_Lj/Q, LkJ)

23: CNOT(Lg,j, L—1,5/2)

24: TOffOli.’.(Pk}j, Lk—l,j/Zs Rk:g')

25: CNOT(R/CJ‘, Lk,Lj/Q)

26: else

27: TOffOliOv.(Pk,j, Rk—l,(j—l)/Qa th)

28: CNOT(Lk’j, Rk:_l,(j_l)/2)

29: TOffOli.’.(PkA’j, Rk—l,(j—l)/2’ Rk,j)

30: CNOT(R/CJ‘, kal,(jfl)/2)

31: end if

32: CNOT(Li_Lj, Pi,2*j)

33: CNOT(P»L‘,Q*J', Li—l,j)

34: CNOT(R;-1,5, P;245+1)

35: CNOT(Z; 24541, Ri—1,5)

36: end for

37: end for

38: end if

39:  end if

40: end for

41: {bus qubit (|+) distribution is unchanged)}
42: Copy data from the selected memory to the bus qubit.
43: Uncompute the bus distribution and address encoding
above.
return memory data
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TABLE I
THE [[7, 1, 3]] QUANTUM CODE STABILIZERS

K4 = XIXIXIX
k5 = XXIIXXI
K6 = XXXXIII

Kl=ZIZIZIZ
K2 =Z7Z11Z71
K3 = 7777111

III. PIECEABLE FAULT-TOLERANCE

Based on the realization that circuits that implement logical
gates can be broken into pieces that minimize contagious
errors (or error propagation), Yoder, Takagi and Chuang
proposed the concept of pieceable fault tolerance (PFT) to
perform error correction without needing ancillary magic
states, decomposition, or other gates [18]. PFT works because
non-contagious errors (those that commute with the circuit
pieces) can safely be corrected at the end of the circuit.
This saves on stabilizer measurements, which otherwise would
introduce more ancillae and potential errors. For qRAM,
the elimination of magic state distillation will provide an
important saving in resources, as detailed over the coming
sections.

Error detection and correction involves extracting
information from logically encoded data qubits without
destroying them [19], [20]. Here, we focus on stabilizer
codes, where a logical state |1)) has a stabilizer S such that
[) = S|¢), ie., 1) is a +1 eigenstate of S. The stabilizer
is designed to use ancilla qubits to determine the existence of
errors through syndrome measurement without compromising
the data qubits. Indeed, the quantum error correction circuits
attempt to use syndrome measurement to extract eigenvalues
without collapsing the superposition or introducing errors.

Before constructing our PFT-based qRAM, in this section
we briefly introduce the key concepts of PFT. We consider the
logical circuit £ = Ly, ... Lo L1, the Pauli group on n qubits
‘P., and the stabilizer set .S, where L is a logical gate and L; are
circuit pieces of that gate. The commutativity of two operators
A and B is symbolized by the expression [A, B] = 0, where
[A, B] = AB — BA is the commutator.

Definition III.1 (7-qubit Steane code). The Steane code is a
[[7,1,3]] CSS code, where 7, 1, and 3 indicate the number of
physical qubits, the number of logical qubits, and the distance
between valid code words, respectively. Valid code words are
in a +1 eigenstate of all of the stabilizers in Tab. I, and the
code is capable of correcting a single error [21]. Although
the Steane code is fully capable of concatenated (recursive)
implementation, in this paper we focus on only a single level,
allowing us to refer to “physical” and “logical” qubits without
confusion.

Definition III.2 (Contagious errors). Errors that can propagate
to other qubits when executing circuit pieces L; are described
as Pauli error operators

Ec={EeP, 3i|[E, L] #0} 2)

Contagious errors must be dealt with before further L;
operations are performed.

Definition III.3 (Non-contagious errors). Errors that cannot
propagate to other qubits are described as Pauli error operators,

Sc={E€P, Ji||E L] =0} 3)

Because they do not spread from qubit to qubit, correction of
these errors can be deferred without fear of error propagation.

Definition III.4 (Constant Stabilizer (S¢)). Constant
stabilizers commute with the L; operations to be performed,

Sc={seSVi|ls,L]=0} 4)

Yoder et al. state that constant stabilizer measurements should
be performed first.

Definition IIL.5 (Round-robin circuit). A round-robin circuit
applies gates to the full combinatoric set across multiple sets
of qubits, used in fault-tolerant execution of logical gates.
For instance, a round-robin circuit of C'Z gates on two sets
of three qubits A; and B; is formed by the nine gates
]_[j7ke{172)3} CZ(A;, By) [18], [22]. Our logical circuit pieces
L; will be round robin on the physical qubits.

Overall, the authors consider a stabilizer group and a
logical circuit (for instance, a logical CZ circuit). The latter
is subdivided into parts for the simple reason that although
the entire logic circuit is not fault-tolerant, certain sections
nevertheless can be. However, it is important to note that some
elements of the stabilizer group will be transformed into non-
Pauli operators when conjugated by non-Clifford gates. Thus,
it is necessary to be cautious in managing errors that may
cross between parts (contagious error in (2)). To this end, it
is necessary to inquire about the nature of the errors to be
controlled. The authors propose completing error correction
halfway through the circuit to prevent errors from propagating
until they become impossible to handle. For this reason, the
intermediate level is defined based on the concept of constant
stabilizers of (4) and aims to correct contagious errors. Other
types of errors, like non-contagious and single-qubit errors,
may be allowed to remain uncorrected when entering the
following circuit pieces.

IV. PIECEABLE FAULT-TOLERANCE BUCKET-BRIGADE

As shown in Sec. II, the bucket-brigade circuit can
be decomposed into CNOT and CSWAP gates as shown
Algorithm 1 or into Toffoli and CNOT as in Algorithm 2. As
a result, we only have to consider fault tolerance of these two
gates. As noted above, we did not consider using the tertiary
|W) state since it is not required in the full circuit model for
bucket brigade, slightly improving the error scaling [23].

To design our fault tolerance, we choose to use the Steane
code [21] due to its rich set of transversal Clifford gates and
connection to classical coding theory. Specifically, the gates
H (Hadamard), S (Phase gate), and CNOT (Controlled-NOT
gate) are all transversal in their simplest form. Therefore,
we only have to deal with fault tolerance for CSWAP.
Unfortunately, any QECC that corrects arbitrary Pauli errors
cannot perform CSWAP transversally, seen easily from its
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Fig. 2. The error correction strategy on an encoding block (with a maximum

of one X or Y error [18]) depends on measuring constant stabilizers and taking

action based on whether errors are present or not. A focus is placed on how contagious errors should be handled and how the reliability of non-constant

stabilizer measurements should be maintained after an error is identified.

decomposition into a Toffoli gate in Fig. 3 [24]. This constraint
will be overcome by using the pieceable technique on logical
CSWAP circuits.

We can observe that each of the logical CSWAP circuits
(L) represents a set of simple actions (gates, state preparation,
measurements, etc.) that take place on physical qubits.
Alternatively, each of them can be described as an ordered
list of these operators or actions as £ = {L,, Lp,—1,...,L1}
where the operators L; are multiplied, with L;_; acting before
L; [18].

It is important to note that each of these L; operators
will likely cause errors on the qubits on which it acts,
thus introducing the faulty component problem. To meet this
challenge, we will apply the Steane quantum code S on the
circuit £, leading to the circuit L = S L, ... S%LoSEL.
After each portion, we apply an error correction (with the
constant S&) without altering £ (because the portions L;
commute with stabilizers Sic, see (4)).

The strategy adopted consists of dividing the group of
stabilizers S of the Steane code S into two subgroups: the
first group, called constant stabilizers (S¢), includes all the
stabilizers s € S which commute with all the parts L; of
the circuit (4), while the second group, called non-constant
stabilizers, includes stabilizers which do not commute with all
the parts here. Thus, the constant stabilizers, responsible for
maintaining the Pauli circuit, will handle contagious errors,
introducing no more than one single-qubit error to the qubits
in the code. The elements in the constant stabilizer can
be measured using Shor’s fault-tolerant approach [25] with
repeats and majority voting.

H H

Fig. 3. Equivalent circuit representations of CSWAP. When constructing fault-
tolerant CSWAP based on pieceable techniques, the construction composed
of two CNOTSs, two Hadamard gates, and one CCZ is essential.

The outlined strategies are shown in Fig. 2. As a first
step, the eigenvalues of constant stabilizers must be measured
to detect contagious errors. If a constant stabilizer detects
an error, it signals a fault and allows corrections to be
made as a result. If the constant stabilizers do not detect
contagious errors, existing non-contagious errors can remain
uncorrected. On the one hand, because the non-contagious
errors do not propagate (by definition), they will be considered
later in the final error correction process. Alternatively, the
intermediate error correction (the correction that uses the
constant stabilizer) shares information such as the position of
the contagious errors regarding the syndrome measurement.
As a result, the final error correction will be aware of where
to look for non-contagious errors. These elements justify the
need for a final error correction step to fill the gaps in the
intermediate corrections.

We use the round-robin approach as in Def. IIL.5 to build
a fault-tolerant logical circuit for a CSWAP gate by using the
decomposition of CSWAP into CCZ gate in Fig. 3. Yoder et al.
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Fig. 4. Constructing the FT CSWAP using the pieceable CCZ on the Steane [[7,1,3]] code, following Fig. 3. The piecable CCZ (Fig. 5) checks constant
stabilizers. QEC blocks are full checks of all six stabilizer eigenvalues and any necessary correction. The seven transversal physical CNOTSs that constitute a

logical CNOT can be executed in parallel.

proved that a logical CCZ gate can be formed in round-robin
fashion [18]. As illustrated in Fig. 4, the logical CSWAP gate
is formed between qubits of the three code blocks, denoted
I1o5rei5.67 CSWAP(Aq, Bg, Cy), where A, B, and C are
blocks of qubits. The piecable CCZ in that figure is detailed
in Fig. 5. Each CCZ interacts with a qubit at most twice
as illustrated, therefore, our round-robin CSWAP can also be
described as a fault-tolerant logical circuit.

V. EVALUATION

Using the circuit defined in Algorithm 2, we determine the
resources of the bucket brigade in terms of Toffoli gates (Table
III).

As part of this section, we analyze the resource requirements
for implementing fault-tolerant bucket-brigade circuits when
dealing with many queries. For this purpose, we use the cost
metrics in [26], defined as follows,

Cost = log,(Logical qubits x Quantum code Cycles). (5)

Various considerations can be applied to the cost definition,
but as in [26], we consider the execution of the query’s
quantum circuit as the primary factor. Hence, time and space
are traded off at this cost. In the following, we refer to a bucket

brigade employing a fault-tolerant pieceable technique as BB-
pieceable, while BB-magic state refers to a bucket brigade
employing a magic state distillation technique.

A. Resource estimation settings

We use the Python-based code described in [11] to
calculate the resources required 3. This code provides a
flexible environment for testing and improving the qRAM.
Our pieceable Steane bucket brigade is compared to
alternative fault-tolerance implementations employing magic
state distillation like surface code. We use factors such as the
number of physical qubits, time, and cost (5) as a means of
comparing competing implementations.

Our simulation assumes a depolarizing error model, with
the error probability of a gate with three qubits, two qubits,
and one qubit being the same (pg=le — 5) [11]. However,
other physical operations, such as state preparations and qubit
measurements, are considered perfect [27]. Moreover, using
the same approach as in [27], we observe that the state
preparation has less than a 1% resource impact, so we decide
it can be disregarded.

3https://github.com/glassnotes/FT_qRAM_Circuits
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Fig. 5. The pieceable logical CCZL(|A) |B) |C)), using the Steane code. After the first piece, the X stabilizers K; (Tab. I) are applied to each block to deal
with a maximum of one contagious X or Y error. In contrast, non-contagious Z errors are delayed for later correction (during the final correction, showing
all six stabilizers) since they do not propagate. Blocks also share information about syndrome information to limit error propagation. In the final step, we
measure all stabilizers, considering the crucial information at the intermediate level regarding the position of X and/or Y errors. This way, the final correction

can pinpoint precisely where to look for Z errors

We use the algorithm in [26] to evaluate the number of
rounds during the magic state distillation. As long as the
magic state injection error rate is higher than the distillation
output error rate, the number of cycles will increase. When
considering the Clifford gates, we seek the smallest code
distance that satisfies the inequality defined in [26].

Table III contains the parameters we use in our resource
estimation and the configuration parameters. We follow the
workflow illustrated in Fig. 6 for our resource estimation.

B. Performance evaluation

During our resource estimation, we varied n from 15 to 36
and evaluated the resource requirements for the pieceable fault
tolerance technique and magic state distillation. The values
15 and 36 were selected due to their importance as n = 15
corresponds to 4 KB and n = 36 corresponds to 8 GB of
classical data [11]. Tables IV&V summarize the numerical
results for n = 16, n = 26, and n = 36.

In Fig. 7, we evaluate respectively the time (Fig. 7(a)), the
number of physical qubits (Fig. 7(b)) and the cost (Fig. 7(c))
according to address size m under bucket brigades using
surface code or pieceable techniques.

In Fig. 7(a), we observe that as n increases, the time
required for BB-pieceable and BB-magic increases. The time
varies linearly as a function of n, with deviations occurring
at n = 24. This trend can be attributed to an increase in the
number of cycles per state when distilling magical states. In
fact, the number of cycles increases from 80 for n = 23 to
130 for n = 24, whereas for the other values of n, the increase
was only 10 per cycle. The BB-pieceable technique on the 4

KB qRAM takes 0.832 ms compared to the BB-magic state
distillation that takes 4.752 ms. Similarly, the 8 GB qRAM
takes 5.153 ms compared to the BB-magic state distillation,
which takes 78.528 ms. A constant multiplicative factor exists
between BB-magic and BB-pieceable (approximately five to
fifteen times). In other words, BB-magic is approximately five
to fifteen times more time-consuming than BB-pieceable.

Figure 7(b) represents the variation of the number of
physical qubits as a function of n during the implementation of
the bucket brigade using pieceable technique and surface code.
We observe a linear variation in the number of physical qubits
with n. On the one hand, we note that a fault-tolerant bucket
brigade (4KB classical memory) can be implemented using
surface code and pieceable techniques with approximately
277 million and 21 million physical qubits, respectively.
On the other hand, when considering 8 GB of classical
data, BB-magic requires 2.17e+15 physical qubits, while BB-
pieceable requires 167.62 e+12 physical qubits. Hence, we
conclude that BB-magic has a constant multiplicative factor
of approximately ~ 12 compared to BB-pieceable concerning
physical qubit overhead.

In Fig. 7(c), we note a linear variation of the cost (5)
with n. The BB-magic has a constant multiplicative factor
of approximately 1.2 compared to the BB-pieceable regarding
cost overhead.

VI. DISCUSSIONS AND LIMITATIONS

A quantum random access memory (qQRAM) has the
potential to enable large-scale quantum computation systems,
which is why they are of considerable interest in quantum
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TABLE II
BUCKET-BRIGADE LOGICAL RESOURCE COUNTS

Designation Counts
Logical qubits 3x2"+n—-1

depth 8 xnZ —24xn+ 36

Toffoli 2x2"nZ —3xn+2)+4x (n—1)+2
Toffoli-depth 2xn?—4xn+6

CNOT 2" x (6xnZ—4xn+10)—4xn+9

TABLE III
SURFACE CODE PHYSICAL PARAMETERS [11], [26]
Designation Counts
Magic state input failure probability le-4
Gate failure probability le-5
surface code cycle 200e-9 seconds

computing. In qRAM, the error probability associated with
each query is ~ log2(N ) x 10~°, corresponding to a net
error rate in the range 1072 ~ 1072 for N in the range
103 ~ 10° when no error correction is considered. Such an

error per query might be sufficient for some qPCA-related
applications, but might not be good enough for Grover Search
(which needs v/ N queries). In light of this fact, error-corrected
QRAM becomes a necessity.

However, fault-tolerant designs require techniques such as
magic state distillation, which is both time and qubit-intensive
[24], [28].

Hence, this paper presents a fault-tolerant resource-efficient
implementation of qRAM based on Yoder et al.’s “pieceable
fault tolerance”. First, we demonstrate that qRAMs with
bucket-brigade gates can be implemented using polynomial
depth computing through CSWAPs and CNOTs or Toffoli and
CNOTs. Because we only need to maintain fault tolerance
for two gates, CSWAP and CNOT, we employ pieceable
techniques on their logical circuits through their division
into pieces and applying error correction to each part of the
circuit. Through this approach, we show that compared with
BB-pieceable, BB-magic has a constant multiplicative factor
(approximately 5, 12, and 1.2 for time, physical, and total
cost, respectively). Additionally, we expect low logical errors
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TABLE

v

ANALYSIS OF SURFACE CODES FOR FAULT-TOLERANCE BUCKET BRIGADES FOR n = 16, n = 26, n = 36,

Distillation parameters

n Dist_Factories Dist_time Cycles/State  Dist_logical_q /Factory Dist_logical_q Dist_physical_q  Dist_Total Cycles
16 60629 0.006356 70 16 970064 594649232.0.0 31780
26 32109505 0.032604 130 240 7706281200 1.541256e+12 163020
36 22215750426 0.078528 160 240 5331780102240  1.668847e+15 392640
Resource counts
n Toffoli_Depth Toffoli_Count Depth Cliffords_Count
16 454 27525182 1700 97124298
26 1254 80530636902 4820 265885319074
36 2454 163552354631822 9540 525154241216378
Totals
n Total_time (s) Total_Physical_q Total_Cost
16 0.006356 715179131.0 35.153983
26 0.032604 1.792915e+12 50.218472
36 0.078528 2.173935e+15 60.933933
TABLE V
ANALYSIS PIECEABLE FOR FAULT-TOLERANCE BUCKET BRIGADES FOR n = 16, n = 26, n = 36
Pieceable parameters

n physical_Toffoli_count physical_cx_count pieceable_time  pieceable_logical_q  pieceable_phys_q

16 578028822 4844432032 0.000953 779515.714286 5456610

26 1691143374942 14173392094752 0.002633 8.256730e+08 5779710810

36 3434599447268262 28785214415200672 0.005153 8.568932e+11 59982526149301

Resource counts

n Toffoli_Depth Toffoli_Count Depth Cliffords_Count

16 454 27525182 1700 97124298

26 1254 80530636902 4820 265885319074

36 2454 163552354631822 9540 525154241216378

Totals

n Total_time (s) Total_Physical_q Total_Cost

16 0.000953 43994718 29.844984

26 0.002633 86310357610 41.30284

36 0.005153 167626461925442 52.266122

in our proposal as a result of these results. However, we
considered using the Steane code, which has low correction
and detection capacity. As a result, better quantum codes with
high correction capabilities may be adopted for more robust
solutions in the future.
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