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Abstract—Quantum random access memory (qRAM) is
valuable for applying quantum computers to a broad range of
problems and for successfully implementing large-scale quantum
computation systems. Despite its importance, its adoption
may be restricted by the fact that the decomposition of the
qRAM function contains non-transversal gates, which cannot
be executed transversally on any quantum error correction
(QEC) code. To overcome these limitations, existing works employ
techniques like magic state distillation. However, distillation
is time- and qubit-intensive. This paper presents a fault-
tolerant, resource-efficient implementation of qRAM based on
pieceable fault tolerance. By breaking the logical CSWAP and
Toffoli gate into simpler, easier-to-execute but non-transversal
components, we first show that bucket-brigade qRAM can
be implemented in polynomial depth without the need for
ancillary magic states, further gate decomposition, or other gates.
Afterward, we demonstrate the resource efficiency of this method
of attaining fault tolerance in quantum operations. Based on
resource estimation results, fault-tolerant bucket brigades using
the pieceable technique perform better than fault-tolerant bucket
brigades using magic state distillation with respect to the number
of physical qubits, time, and cost.

Index Terms—Quantum Random-Access Memory, Quantum
computer, Quantum error correction

I. INTRODUCTION

The ability to load extensive classical data sets into quantum

processors will be crucial for applying quantum computers

to various problems and, ultimately, for the success of large-

scale quantum computation as an industry. It is a significant

challenge to create a quantum superposition of a data set

without incurring prohibitive cost at run time. The O(N)
quantum cost to convert N unstructured classical data elements

(each with a key, or address) to a superposition is inescapable.

We face the choice of paying this cost in hardware, software,

or a combination of the two.

Quantum Random Access Memory (qRAM), the quantum

equivalent of classical random access memory (RAM), has

been proposed as a general solution to this problem. qRAM

differs from classical RAM in that it utilizes qubits instead of

This work is supported by JST Moonshot R&D Grant (JPMJMS2061).

classical bits as addresses. The use of qRAM as a quantum

oracle facilitates efficient implementation of a wide variety

of quantum algorithms such as machine learning, chemistry,

etc. [2]–[8].

Various qRAM architectures have been proposed to

efficiently query classical data on a quantum computer,

choosing different points in the hardware/software tradeoff [1],

[9]–[14]. Variants exist, but for the purposes of this paper we

will assume qRAM designs that execute the unitary operation
∑

j

αj |j⟩ |0⟩ −→
∑

j

αj |j⟩ |bj⟩ , (1)

where j is the memory address and bj is the classical value

at that address. The data value register |0⟩ −→ |bj⟩ we will

refer to as the data bus or bus qubit.

If it can be built, potentially the most valuable form of

qRAM is a design with logarithmic circuit depth (access time)

Θ(log(N)). Thinking in physical terms, the bus qubit must

be distributed to individual memory cells (“downstreaming”)

where a small portion of the quantum amplitude will be acted

upon separately, then reassembled (“upstreaming”) for further

processing as a unified register 1. The quantum address and bus

registers become entangled but (of course) remain unentangled

with the classical memory, which we can treat as read-only.

To understand downstreaming, RAM databases can be

modeled as a complete binary tree in which the address bus

consists of bits that direct a request down the tree (“route” the

request), taking the left or right path on the ith level of the

tree based on the value of the ith address bit. To address N

total data elements, we need an address that is n = log2N
bits. A Fanout qRAM can be built using an n-level binary tree

arrangement of nodes, providing Θ(log(N)) latency.

This approach, however, suffers from decoherence problems

because each of the O(N) active nodes each temporarily holds

1For example, a polarization photonic qubit can be split to run through
two paths via a polarizing beamsplitter, allowing the different states to be
operated on independently. The amplitudes will be split accordingly, retaining
any entanglement or relationship to other qubits.
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Fig. 1. Hann’s bucket brigade qRAM circuit for the case of n = 3 [1]. The address register is first loaded into the binary tree (illustrated on the left), with
three qubits per node. First, address qubit |a0⟩ is transferred to the root of the tree. Lower-order address qubits such as |a1⟩ → |a1⟩

′ are spread to nodes
lower in the tree to route the bus qubit to the classical memory cells (bi). Many of the qubits in the circuit are used only briefly, and spend most of their
lifetime in a |0⟩ state separate from our qubits of interest; a few of these are marked on the figure.

a qubit during the read operation. The importance of errors

in qRAM, and therefore whether addresses, data elements, or

both need to be protected via QEC, depends on the intended

application.

A significant improvement over Fanout qRAM, known

as bucket brigade, reduces the number of entangled qubits

scattered throughout the device and reduces the number of

gates that must directly interact with each address qubit [9].

Two significant changes are made. Address qubits and a bus

qubit are literally routed into a binary tree to reach the classical

memory cells, reducing the demand on each address qubit as

it comes into play by “copying” it in binary tree fashion. The

implementation of the tree is achieved through the use of three

states |0⟩ , |1⟩ , and |W ⟩ (wait) instead of the two in Fanout

qRAM. All the nodes are initially initialized in the (inactive)

state |W ⟩. Despite using ∼ 3N qubits, only N are entangled

at one time.

Paler et al. [13] have proposed a parallel version of the

bucket brigade that reduces the circuit depth from Θ(N) to

Θ(log(N)) in the worst case scenario (when the query is

executed on the N = 2n memory cells, where n is the number

of address bits) without ancillary qubits, as opposed to the

construction of Di Matteo et al. [11], which proposed an O(N)
number of ancillary qubits in the parallel version.

However, the bucket brigade approach is still sensitive to

noise and errors; the error scales polylogarithmically with

the size of the qRAM [15]. Unfortunately, it has been seen

that conventional QEC techniques for the bucket-brigade

architecture have large resource costs [14]. The main issue

lies in the fact that the bucket-brigade circuit uses the Toffoli

gate, which cannot be implemented transversally using a

CSS code [14] or surface code [11]. Instead, the Toffoli

gate is generally achieved via magic state distillation for

the T gate, which entails a significant investment of time
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and qubits, despite recent improvements [16]. Moreover, the

bucket brigade decomposed in terms of Clifford+T gates has

significant resource consumption [17].

This paper demonstrates that the non-transversality problem

in bucket-brigade qRAM can be addressed by breaking the

overall circuit into pieces that can individually be implemented

fault-tolerantly, resulting in better logical error rates with

fewer resources, unlike existing approaches. Hence, we present

a model of bucket-brigade qRAM that can be executed

fault tolerantly using pieceable techniques by breaking down

logical circuits into more straightforward, more manageable

components without the need for ancillary magic states or

other gates. We show formally how bucket-brigade qRAM

can be achieved in circuits whose depth is polynomial in the

number of address qubits (i.e., O(logkN) for some constant

k) for an N -memory element qRAM, although they require

O(N) gates, all of which are either Toffoli or CNOTs.

Then, the pieceable fault-tolerance principle is implemented

to maintain error resistance for these two gate types.

Subsequently, we evaluate the resource requirements in

comparison to alternative fault-tolerant implementations

employing magic state distillation like surface code.

As a result, we demonstrate that our proposal is more

resource-efficient than the previous approach. Compared

to our approach, fault-tolerant bucket-brigade qRAM

implementations that employ magic state distillation have a

constant multiplicative gain (approximately 5, 12, and 1.2 for

time, physical, and total costs, respectively). In addition, we

expect that these results will lead to a low rate of logical

errors.

We begin with a full introduction to bucket brigade qRAM,

including pseudocode for a basic version and an optimized

version in Sec. II 2. We present the concept of Pieceable Fault-

Tolerance in Section III. We introduce the proposed Pieceable

Fault-Tolerance Bucket-Brigade in section IV. We analyze

our proposals in section V. We conclude this paper with a

discussion in Section VI.

II. CIRCUITS FOR O(N) BUCKET-BRIGADE QRAM WITH

O(polylog(N)) DEPTH

Our circuit representation of qRAM builds on the detailed

bucket brigade circuit of Hann [1]. The circuit consists of five

phases: address distribution, bus distribution, data read, bus un-

distribution, and address un-distribution. The un-distribution

phases are the same gates as the distribution, in reverse order.

The first three phases of an N = 8 instance are shown

in Fig. 1. Algorithm 1 is a pseudocode for generating the

complete circuit (not the execution-time logic) for the first

three phases of a scalable circuit. In the pseudocode, CSWAP•

represents the ordinary CSWAP that swaps its second and third

arguments if the control bit is 1, while CSWAP◦ swaps them

if its control bit is 0.

2Although quite a number of papers present basic diagrams for fixed-size
versions and describe larger extensions, to the best of our knowledge this is
the first complete pseudocode in the literature.

The address register (typically initialized in |+⟩⊗n
for the

first call) is swapped one qubit at a time into the binary tree

via the input register, converting the binary representation into

a unary one. Each “node” of the tree consists of three qubits,

called |P ⟩, |L⟩, and |R⟩ (for path select, left, and right). The

latter two are only briefly used as address qubit |ai+1⟩ is

distributed left or right based on |ai⟩, except for the last level

of the tree, as described below. When subscripted |Pi,j⟩, etc.,

i is the level in the binary tree (starting with i = 0 at the root)

and 0 ≤ j < 2i indicates which node within that level.

After the address distribution, the |P ⟩ qubits hold the

address qubits, and the bus qubit is routed down the tree,

also temporarily using the |L⟩ and |R⟩ qubits, until reaching

the bottom of the tree, where |R⟩ and |L⟩ actually read all

N physical classical memories simultaneously, represented by

bj in Fig. 1. The read operation is achieved by a classically

controlled Z gate applied to the |Rn−1⟩ and |Ln−1⟩ states.

Following this Z operation with a Hadamard will give the

readout as defined in (1).

The limiting factor in performance will be the number

of CSWAP gates and their performance. To work with

piecable fault tolerance (below), we use a CCZ gate and the

decomposition shown in Fig. 3. When the lower qubit is known

to begin in |0⟩ (as happens in our circuits), the first CNOT can

be eliminated.

Descriptions of bucket brigade qRAM often begin with the

|P ⟩ qubits in a tertiary state |W ⟩, but to work with error

correction, we assume all of the qubits in the tree begin in

|0⟩. This assumption also allows us to somewhat optimize

the circuit, since the common three-CNOT implementation

of SWAP can be reduced to two CNOTs if one of the

qubits is known to be |0⟩. The optimized circuit is shown in

Algorithm 2. As with the CSWAP◦, Toffoli◦,• indicates that

the NOT on the target qubit is executed if the first control

qubit is 0 and the second control qubit is 1. (Information and

gates not included are the same as Algorithm 1.)

For an N = 2n-element qRAM, Hann uses 3(N−1)+n+2
qubits, but only N non-zero amplitudes are present at any

time. Depending on actual physical implementation, including

how qubits are physically transferred within the device, some

of these qubits could potentially be eliminated during further

optimization. For example, the circuits as presented include

unconditional SWAP gates where one of the qubits is known

to be |0⟩; physically routing the qubit instead will reduce the

number of qubits in the system.

Although the device requires O(N) quantum devices and

O(N) quantum gates, the lowest level of the tree also executes

O(N) operations simultaneously. Overall, the circuit depth

of the address distribution, the bottleneck in the process, is

O(log2N). More details on gate counts and performance are

presented in Sec. V.
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Algorithm 1 Hann Bucket Brigade Downstreaming and

Copying

Input: An n-qubit address (a0, . . . , an−1) with a0 the

high-order bit, and a bus qubit

Output: Memory data for the given address

Resources: N classical memories, O(N) q. ancillae

Preconditions: |P ⟩i,j = |0⟩
Runtime (circuit depth): Θ(n2)
Gates: (Before we distribute the bus qubit) Θ(n2×2n)

SWAP, and Θ(n2 × 2n) CSWAP gates

1: {binary→unary address conversion}
2: for i = 0 to n− 1 do {iterate over levels}
3: SWAP(|ai⟩ , Input)
4: if i == 0 then

5: SWAP(Input,P0,0)

6: else

7: CSWAP•(P0,0, Input, R0,0)

8: CSWAP◦ (P0,0, Input, L0,0)

9: if i == 1 then

10: SWAP(L0,0, P1,0)

11: SWAP(R0,0, P1,1)

12: else

13: for k = 1 to i− 1 do

14: for j = 0 to 2k − 1 do

15: if j % 2 == 0 then

16: CSWAP◦(Pk,j , Lk,j , Lk−1,j/2)

17: CSWAP•(Pk,j , Rk,j , Lk−1,j/2)

18: else

19: CSWAP◦(Pk,j , Lk,j , Rk−1,(j−1)/2)

20: CSWAP•(Pk,j , Rk,j , Rk−1,(j−1)/2)

21: end if

22: SWAP(Li−1,j , Pi,2∗j)

23: SWAP(Ri−1,j , Pi,2∗j+1)

24: end for

25: end for

26: end if

27: end if

28: end for

29: {next, distribute the bus qubit (|+⟩)}
30: H(|bus⟩)
31: SWAP(Input,|bus⟩)
32: CSWAP•(P0,0, input, R0,0)

33: CSWAP◦ (P0,0, input, L0,0)

34: for i = 1 to n− 1 do

35: for j = 0 to 2i − 1 do

36: if j % 2 == 0 then

37: CSWAP◦(Pi,j , Li,j , Li−1,j/2)

38: CSWAP•(Pi,j , Ri,j , Li−1,j/2)

39: else

40: CSWAP◦(Pi,j , Li,j , Ri−1,(j−1)/2)

41: CSWAP•(Pi,j , Ri,j , Ri−1,(j−1)/2)

42: end if

43: end for

44: end for

45: Copy data from the selected memory to the bus qubit.

46: Following this, the above must be uncomputed.

return memory data

Algorithm 2 An optimized downstreaming and copying

process for Hann Bucket Brigade

Gates: (Before we distribute the bus qubit) Θ(n2×2n)
CNOT, and Θ(n2 × 2n) Toffoli

1: {binary→unary address conversion}
2: for i = 0 to n − 1 do {iterate over levels (n is

excluded)}
3: CNOT(Input, |ai⟩)
4: CNOT(|ai⟩, Input)
5: if i == 0 then

6: CNOT(Input, P0,0)

7: CNOT(P0,0, Input)

8: else

9: Toffoli•,•(P0,0, Input, R0,0)

10: CNOT(R0,0, Input,)

11: Toffoli◦,•(P0,0, Input, L0,0)

12: CNOT(L0,0, Input)

13: if i == 1 then

14: CNOT(L0,0, P1,0)

15: CNOT(P1,0, L0,0)

16: CNOT(R0,0, P1,1)

17: CNOT(P1,1, R0,0)

18: else

19: for k = 1 to i− 1 do

20: for j = 0 to 2k − 1 do

21: if j % 2 == 0 then

22: Toffoli◦,•(Pk,j , Lk−1,j/2, Lk,j)

23: CNOT(Lk,j , Lk−1,j/2)

24: Toffoli•,•(Pk,j , Lk−1,j/2, Rk,j)

25: CNOT(Rk,j , Lk−1,j/2)

26: else

27: Toffoli◦,•(Pk,j , Rk−1,(j−1)/2, Lk,j)

28: CNOT(Lk,j , Rk−1,(j−1)/2)

29: Toffoli•,•(Pk,j , Rk−1,(j−1)/2, Rk,j)

30: CNOT(Rk,j , Rk−1,(j−1)/2)

31: end if

32: CNOT(Li−1,j , Pi,2∗j)

33: CNOT(Pi,2∗j , Li−1,j)

34: CNOT(Ri−1,j , Pi,2∗j+1)

35: CNOT(Pi,2∗j+1, Ri−1,j)

36: end for

37: end for

38: end if

39: end if

40: end for

41: {bus qubit (|+⟩ distribution is unchanged)}
42: Copy data from the selected memory to the bus qubit.

43: Uncompute the bus distribution and address encoding

above.

return memory data
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TABLE I
THE [[7, 1, 3]] QUANTUM CODE STABILIZERS

K4 = XIXIXIX K1= ZIZIZIZ
k5 = XXIIXXI K2 =ZZIIZZI
K6 = XXXXIII K3 = ZZZZIII

III. PIECEABLE FAULT-TOLERANCE

Based on the realization that circuits that implement logical

gates can be broken into pieces that minimize contagious

errors (or error propagation), Yoder, Takagi and Chuang

proposed the concept of pieceable fault tolerance (PFT) to

perform error correction without needing ancillary magic

states, decomposition, or other gates [18]. PFT works because

non-contagious errors (those that commute with the circuit

pieces) can safely be corrected at the end of the circuit.

This saves on stabilizer measurements, which otherwise would

introduce more ancillae and potential errors. For qRAM,

the elimination of magic state distillation will provide an

important saving in resources, as detailed over the coming

sections.

Error detection and correction involves extracting

information from logically encoded data qubits without

destroying them [19], [20]. Here, we focus on stabilizer

codes, where a logical state |ψ⟩ has a stabilizer S such that

|ψ⟩ = S |ψ⟩, i.e., |ψ⟩ is a +1 eigenstate of S. The stabilizer

is designed to use ancilla qubits to determine the existence of

errors through syndrome measurement without compromising

the data qubits. Indeed, the quantum error correction circuits

attempt to use syndrome measurement to extract eigenvalues

without collapsing the superposition or introducing errors.

Before constructing our PFT-based qRAM, in this section

we briefly introduce the key concepts of PFT. We consider the

logical circuit L = Lm . . . L2L1, the Pauli group on n qubits

Pn and the stabilizer set S, where L is a logical gate and Li are

circuit pieces of that gate. The commutativity of two operators

A and B is symbolized by the expression [A,B] = 0, where

[A,B] = AB −BA is the commutator.

Definition III.1 (7-qubit Steane code). The Steane code is a

[[7, 1, 3]] CSS code, where 7, 1, and 3 indicate the number of

physical qubits, the number of logical qubits, and the distance

between valid code words, respectively. Valid code words are

in a +1 eigenstate of all of the stabilizers in Tab. I, and the

code is capable of correcting a single error [21]. Although

the Steane code is fully capable of concatenated (recursive)

implementation, in this paper we focus on only a single level,

allowing us to refer to “physical” and “logical” qubits without

confusion.

Definition III.2 (Contagious errors). Errors that can propagate

to other qubits when executing circuit pieces Li are described

as Pauli error operators

EC = {E ∈ Pn ∃i | [E,Li] ̸= 0}. (2)

Contagious errors must be dealt with before further Li

operations are performed.

Definition III.3 (Non-contagious errors). Errors that cannot

propagate to other qubits are described as Pauli error operators,

EC = {E ∈ Pn ∃i | [E,Li] = 0}. (3)

Because they do not spread from qubit to qubit, correction of

these errors can be deferred without fear of error propagation.

Definition III.4 (Constant Stabilizer (SC)). Constant

stabilizers commute with the Li operations to be performed,

SC = {s ∈ S ∀i | [s, Li] = 0}. (4)

Yoder et al. state that constant stabilizer measurements should

be performed first.

Definition III.5 (Round-robin circuit). A round-robin circuit

applies gates to the full combinatoric set across multiple sets

of qubits, used in fault-tolerant execution of logical gates.

For instance, a round-robin circuit of CZ gates on two sets

of three qubits Ai and Bi is formed by the nine gates∏
j,k∈{1,2,3} CZ(Aj , Bk) [18], [22]. Our logical circuit pieces

Li will be round robin on the physical qubits.

Overall, the authors consider a stabilizer group and a

logical circuit (for instance, a logical CZ circuit). The latter

is subdivided into parts for the simple reason that although

the entire logic circuit is not fault-tolerant, certain sections

nevertheless can be. However, it is important to note that some

elements of the stabilizer group will be transformed into non-

Pauli operators when conjugated by non-Clifford gates. Thus,

it is necessary to be cautious in managing errors that may

cross between parts (contagious error in (2)). To this end, it

is necessary to inquire about the nature of the errors to be

controlled. The authors propose completing error correction

halfway through the circuit to prevent errors from propagating

until they become impossible to handle. For this reason, the

intermediate level is defined based on the concept of constant

stabilizers of (4) and aims to correct contagious errors. Other

types of errors, like non-contagious and single-qubit errors,

may be allowed to remain uncorrected when entering the

following circuit pieces.

IV. PIECEABLE FAULT-TOLERANCE BUCKET-BRIGADE

As shown in Sec. II, the bucket-brigade circuit can

be decomposed into CNOT and CSWAP gates as shown

Algorithm 1 or into Toffoli and CNOT as in Algorithm 2. As

a result, we only have to consider fault tolerance of these two

gates. As noted above, we did not consider using the tertiary

|W ⟩ state since it is not required in the full circuit model for

bucket brigade, slightly improving the error scaling [23].

To design our fault tolerance, we choose to use the Steane

code [21] due to its rich set of transversal Clifford gates and

connection to classical coding theory. Specifically, the gates

H (Hadamard), S (Phase gate), and CNOT (Controlled-NOT

gate) are all transversal in their simplest form. Therefore,

we only have to deal with fault tolerance for CSWAP.

Unfortunately, any QECC that corrects arbitrary Pauli errors

cannot perform CSWAP transversally, seen easily from its
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action based on whether errors are present or not. A focus is placed on how contagious errors should be handled and how the reliability of non-constant
stabilizer measurements should be maintained after an error is identified.

decomposition into a Toffoli gate in Fig. 3 [24]. This constraint

will be overcome by using the pieceable technique on logical

CSWAP circuits.

We can observe that each of the logical CSWAP circuits

(L) represents a set of simple actions (gates, state preparation,

measurements, etc.) that take place on physical qubits.

Alternatively, each of them can be described as an ordered

list of these operators or actions as L = {Ln, Ln−1, . . . , L1}
where the operators Li are multiplied, with Li−1 acting before

Li [18].

It is important to note that each of these Li operators

will likely cause errors on the qubits on which it acts,

thus introducing the faulty component problem. To meet this

challenge, we will apply the Steane quantum code S on the

circuit L, leading to the circuit L = Sn
CLn . . . S

2
CL2S

1
CL1.

After each portion, we apply an error correction (with the

constant Si
C) without altering L (because the portions Li

commute with stabilizers Si
C , see (4)).

The strategy adopted consists of dividing the group of

stabilizers S of the Steane code S into two subgroups: the

first group, called constant stabilizers (SC), includes all the

stabilizers s ∈ S which commute with all the parts Li of

the circuit (4), while the second group, called non-constant

stabilizers, includes stabilizers which do not commute with all

the parts here. Thus, the constant stabilizers, responsible for

maintaining the Pauli circuit, will handle contagious errors,

introducing no more than one single-qubit error to the qubits

in the code. The elements in the constant stabilizer can

be measured using Shor’s fault-tolerant approach [25] with

repeats and majority voting.

=

H H

Fig. 3. Equivalent circuit representations of CSWAP. When constructing fault-
tolerant CSWAP based on pieceable techniques, the construction composed
of two CNOTs, two Hadamard gates, and one CCZ is essential.

The outlined strategies are shown in Fig. 2. As a first

step, the eigenvalues of constant stabilizers must be measured

to detect contagious errors. If a constant stabilizer detects

an error, it signals a fault and allows corrections to be

made as a result. If the constant stabilizers do not detect

contagious errors, existing non-contagious errors can remain

uncorrected. On the one hand, because the non-contagious

errors do not propagate (by definition), they will be considered

later in the final error correction process. Alternatively, the

intermediate error correction (the correction that uses the

constant stabilizer) shares information such as the position of

the contagious errors regarding the syndrome measurement.

As a result, the final error correction will be aware of where

to look for non-contagious errors. These elements justify the

need for a final error correction step to fill the gaps in the

intermediate corrections.

We use the round-robin approach as in Def. III.5 to build

a fault-tolerant logical circuit for a CSWAP gate by using the

decomposition of CSWAP into CCZ gate in Fig. 3. Yoder et al.
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Fig. 4. Constructing the FT CSWAP using the pieceable CCZ on the Steane [[7,1,3]] code, following Fig. 3. The piecable CCZ (Fig. 5) checks constant
stabilizers. QEC blocks are full checks of all six stabilizer eigenvalues and any necessary correction. The seven transversal physical CNOTs that constitute a
logical CNOT can be executed in parallel.

proved that a logical CCZ gate can be formed in round-robin

fashion [18]. As illustrated in Fig. 4, the logical CSWAP gate

is formed between qubits of the three code blocks, denoted∏
α,β,γ∈{5,6,7} CSWAP (Aα, Bβ , Cγ), where A, B, and C are

blocks of qubits. The piecable CCZ in that figure is detailed

in Fig. 5. Each CCZ interacts with a qubit at most twice

as illustrated, therefore, our round-robin CSWAP can also be

described as a fault-tolerant logical circuit.

V. EVALUATION

Using the circuit defined in Algorithm 2, we determine the

resources of the bucket brigade in terms of Toffoli gates (Table

III).

As part of this section, we analyze the resource requirements

for implementing fault-tolerant bucket-brigade circuits when

dealing with many queries. For this purpose, we use the cost

metrics in [26], defined as follows,

Cost = log2(Logical qubits × Quantum code Cycles). (5)

Various considerations can be applied to the cost definition,

but as in [26], we consider the execution of the query’s

quantum circuit as the primary factor. Hence, time and space

are traded off at this cost. In the following, we refer to a bucket

brigade employing a fault-tolerant pieceable technique as BB-

pieceable, while BB-magic state refers to a bucket brigade

employing a magic state distillation technique.

A. Resource estimation settings

We use the Python-based code described in [11] to

calculate the resources required 3. This code provides a

flexible environment for testing and improving the qRAM.

Our pieceable Steane bucket brigade is compared to

alternative fault-tolerance implementations employing magic

state distillation like surface code. We use factors such as the

number of physical qubits, time, and cost (5) as a means of

comparing competing implementations.

Our simulation assumes a depolarizing error model, with

the error probability of a gate with three qubits, two qubits,

and one qubit being the same (pg=1e − 5) [11]. However,

other physical operations, such as state preparations and qubit

measurements, are considered perfect [27]. Moreover, using

the same approach as in [27], we observe that the state

preparation has less than a 1% resource impact, so we decide

it can be disregarded.

3https://github.com/glassnotes/FT qRAM Circuits
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K1 K2 K3 K4 K5 K6
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CCZL-Piece-1 CCZL-Piece-2Constants Stabilizers Full QEC

Fig. 5. The pieceable logical CCZL(|A⟩ |B⟩ |C⟩), using the Steane code. After the first piece, the X stabilizers Ki (Tab. I) are applied to each block to deal
with a maximum of one contagious X or Y error. In contrast, non-contagious Z errors are delayed for later correction (during the final correction, showing
all six stabilizers) since they do not propagate. Blocks also share information about syndrome information to limit error propagation. In the final step, we
measure all stabilizers, considering the crucial information at the intermediate level regarding the position of X and/or Y errors. This way, the final correction
can pinpoint precisely where to look for Z errors .

We use the algorithm in [26] to evaluate the number of

rounds during the magic state distillation. As long as the

magic state injection error rate is higher than the distillation

output error rate, the number of cycles will increase. When

considering the Clifford gates, we seek the smallest code

distance that satisfies the inequality defined in [26].

Table III contains the parameters we use in our resource

estimation and the configuration parameters. We follow the

workflow illustrated in Fig. 6 for our resource estimation.

B. Performance evaluation

During our resource estimation, we varied n from 15 to 36
and evaluated the resource requirements for the pieceable fault

tolerance technique and magic state distillation. The values

15 and 36 were selected due to their importance as n = 15
corresponds to 4 KB and n = 36 corresponds to 8 GB of

classical data [11]. Tables IV&V summarize the numerical

results for n = 16, n = 26, and n = 36.

In Fig. 7, we evaluate respectively the time (Fig. 7(a)), the

number of physical qubits (Fig. 7(b)) and the cost (Fig. 7(c))

according to address size n under bucket brigades using

surface code or pieceable techniques.

In Fig. 7(a), we observe that as n increases, the time

required for BB-pieceable and BB-magic increases. The time

varies linearly as a function of n, with deviations occurring

at n = 24. This trend can be attributed to an increase in the

number of cycles per state when distilling magical states. In

fact, the number of cycles increases from 80 for n = 23 to

130 for n = 24, whereas for the other values of n, the increase

was only 10 per cycle. The BB-pieceable technique on the 4

KB qRAM takes 0.832 ms compared to the BB-magic state

distillation that takes 4.752 ms. Similarly, the 8 GB qRAM

takes 5.153 ms compared to the BB-magic state distillation,

which takes 78.528 ms. A constant multiplicative factor exists

between BB-magic and BB-pieceable (approximately five to

fifteen times). In other words, BB-magic is approximately five

to fifteen times more time-consuming than BB-pieceable.

Figure 7(b) represents the variation of the number of

physical qubits as a function of n during the implementation of

the bucket brigade using pieceable technique and surface code.

We observe a linear variation in the number of physical qubits

with n. On the one hand, we note that a fault-tolerant bucket

brigade (4KB classical memory) can be implemented using

surface code and pieceable techniques with approximately

277 million and 21 million physical qubits, respectively.

On the other hand, when considering 8 GB of classical

data, BB-magic requires 2.17e+15 physical qubits, while BB-

pieceable requires 167.62 e+12 physical qubits. Hence, we

conclude that BB-magic has a constant multiplicative factor

of approximately ≈ 12 compared to BB-pieceable concerning

physical qubit overhead.

In Fig. 7(c), we note a linear variation of the cost (5)

with n. The BB-magic has a constant multiplicative factor

of approximately 1.2 compared to the BB-pieceable regarding

cost overhead.

VI. DISCUSSIONS AND LIMITATIONS

A quantum random access memory (qRAM) has the

potential to enable large-scale quantum computation systems,

which is why they are of considerable interest in quantum
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Fig. 7. Variation of the physical qubits, the time, and the cost according to address size n under bucket brigades using surface code or pieceable techniques.

TABLE II
BUCKET-BRIGADE LOGICAL RESOURCE COUNTS

Designation Counts

Logical qubits 3× 2n + n− 1
depth 8× n2 − 24× n+ 36

Toffoli 2× 2n(n2 − 3× n+ 2) + 4× (n− 1) + 2
Toffoli-depth 2× n2 − 4× n+ 6

CNOT 2n × (6× n2 − 4× n+ 10)− 4× n+ 9

TABLE III
SURFACE CODE PHYSICAL PARAMETERS [11], [26]

Designation Counts

Magic state input failure probability 1e-4

Gate failure probability 1e-5

surface code cycle 200e-9 seconds

computing. In qRAM, the error probability associated with

each query is ≈ log2(N) × 10−5, corresponding to a net

error rate in the range 10−3 ∼ 10−2 for N in the range

103 ∼ 109 when no error correction is considered. Such an

error per query might be sufficient for some qPCA-related

applications, but might not be good enough for Grover Search

(which needs
√
N queries). In light of this fact, error-corrected

QRAM becomes a necessity.

However, fault-tolerant designs require techniques such as

magic state distillation, which is both time and qubit-intensive

[24], [28].

Hence, this paper presents a fault-tolerant resource-efficient

implementation of qRAM based on Yoder et al.’s ”pieceable

fault tolerance”. First, we demonstrate that qRAMs with

bucket-brigade gates can be implemented using polynomial

depth computing through CSWAPs and CNOTs or Toffoli and

CNOTs. Because we only need to maintain fault tolerance

for two gates, CSWAP and CNOT, we employ pieceable

techniques on their logical circuits through their division

into pieces and applying error correction to each part of the

circuit. Through this approach, we show that compared with

BB-pieceable, BB-magic has a constant multiplicative factor

(approximately 5, 12, and 1.2 for time, physical, and total

cost, respectively). Additionally, we expect low logical errors
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TABLE IV
ANALYSIS OF SURFACE CODES FOR FAULT-TOLERANCE BUCKET BRIGADES FOR n = 16, n = 26, n = 36,

Distillation parameters

n Dist Factories Dist time Cycles/State Dist logical q /Factory Dist logical q Dist physical q Dist Total Cycles

16 60629 0.006356 70 16 970064 594649232.0.0 31780
26 32109505 0.032604 130 240 7706281200 1.541256e+12 163020
36 22215750426 0.078528 160 240 5331780102240 1.668847e+15 392640

Resource counts

n Toffoli Depth Toffoli Count Depth Cliffords Count

16 454 27525182 1700 97124298

26 1254 80530636902 4820 265885319074

36 2454 163552354631822 9540 525154241216378

Totals

n Total time (s) Total Physical q Total Cost

16 0.006356 715179131.0 35.153983

26 0.032604 1.792915e+12 50.218472

36 0.078528 2.173935e+15 60.933933

TABLE V
ANALYSIS PIECEABLE FOR FAULT-TOLERANCE BUCKET BRIGADES FOR n = 16, n = 26, n = 36

Pieceable parameters

n physical Toffoli count physical cx count pieceable time pieceable logical q pieceable phys q

16 578028822 4844432032 0.000953 779515.714286 5456610
26 1691143374942 14173392094752 0.002633 8.256730e+08 5779710810
36 3434599447268262 28785214415200672 0.005153 8.568932e+11 59982526149301

Resource counts

n Toffoli Depth Toffoli Count Depth Cliffords Count

16 454 27525182 1700 97124298

26 1254 80530636902 4820 265885319074

36 2454 163552354631822 9540 525154241216378

Totals

n Total time (s) Total Physical q Total Cost

16 0.000953 43994718 29.844984

26 0.002633 86310357610 41.30284

36 0.005153 167626461925442 52.266122

in our proposal as a result of these results. However, we

considered using the Steane code, which has low correction

and detection capacity. As a result, better quantum codes with

high correction capabilities may be adopted for more robust

solutions in the future.
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