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ABSTRACT

Urban transportation networks are vital for the economic and environmental well-being of cities and they are
faced with the integration of Human-Driven Vehicles (HVs) and Connected and Autonomous Vehicles (CAVs)
challenge. Most of the traditional traffic management systems fail to effectively manage the dynamic and
complex flows of mixed traffic, mainly because of large computational requirements and the restrictions that
control models of traffic lights directly based on extensive and continuous training data. Most of the times,
the operational flexibility of CAVs is severely compromised for the safety of HVs, or CAVs are given high
priority without taking into account the efficiency of HVs leading to lower performance, especially at low CAV
penetration rates. On the other hand, the existing adaptive traffic light approaches were usually partial and
could not adapt to the real-time behaviors of the traffic system. Some systems operate with inflexible temporal
control plans that cannot react to variations in traffic flow or use adaptive control strategies that are based
on a limited set of static traffic conditions. This paper presents a novel traffic light control approach utilizing
the BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) clustering algorithm combined with
digital twins for a more adaptive and efficient system. The BIRCH is effective in processing large datasets
because it clusters data points incrementally and dynamically into a small set of representatives. The suggested
method does not only enable better simulation and prediction of traffic patterns but also makes possible the
real-time adaptive control of traffic signals at signalized intersections. It also improves traffic flow, reduces
congestion, and minimizes vehicle idling time by adjusting the green and red light durations dynamically
based on both real-time and historical traffic data. This approach is assessed under different traffic intensities,
which include low, moderate, and high, while efficiency, fuel consumption, and the number of stops are being
compared with the traditional and the existing adaptive traffic management systems.

1. Introduction

use real and historical traffic data with the goal of, through the use
of advanced mathematics, predicting traffic conditions and adapting

Urban transportation networks are pivotal in shaping the economic
and environmental landscape of cities [1]. With the advent of CAVs,
alongside HVs, traditional traffic management systems increasingly fall
short in handling dynamic and mixed traffic flows efficiently. The
burgeoning technology of digital twins offers a novel approach to
simulate and manage urban traffic through virtual replicas that reflect
real-world conditions, thus enabling adaptive control of traffic systems
in real-time [2,3].

Digital twins are virtual representations of physical systems that
enable real-time simulation, monitoring, and control. They allow for a
comprehensive and evolving model of systems. A digital twin updates
its state and behavior in real-time through the data it gets from sensors
and other inputs This entails risk assessment, process control, and
preventive maintenance hence increasing effectiveness and decreasing
expenses [1,4,5]. For instance, in traffic management, digital twins
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signal control accordingly. This helps in the efficient flow of traffic flow
and reduction of traffic jams while promoting the development of smart
cities with the least environmental effects.

The BIRCH (Balanced Iterative Reducing and Clustering using Hi-
erarchies) algorithm is most efficient for large datasets [6,7]. It pro-
vides an incremental and dynamic mechanism for grouping multi-
dimensional metric data points into a concise summary that is useful
in real-time traffic management applications [8,9].

Adaptive traffic light management methods rely heavily on accu-
rate real-time data, which is typically obtained from sensors, such as
induction loops and cameras. These sensors have their own set of lim-
itations, such as poor performance in adverse weather conditions and
limited detection capabilities (e.g., induction loops that only detect the
presence of a vehicle at a specific point). This can lead to sub-optimal
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traffic light control decisions in real-world scenarios. Implementing
and maintaining adaptive traffic control systems is also both complex
and costly. They require infrastructure and continuous maintenance
to ensure effective operation. The high cost and complexity can be a
barrier to widespread adoption, particularly in regions with limited
resources [10]. Coordinating adaptive traffic signals across multiple in-
tersections remains a challenge. Effective synchronization is crucial for
optimizing traffic flow across a broader network, but achieving this can
be difficult due to the asynchronous nature of traffic patterns and the
limitations of current technologies in handling complex scenarios [11].
Integrating new adaptive control technologies with existing traffic man-
agement infrastructure can pose significant challenges. Compatibility
issues between new and old systems can lead to inefficiencies and may
require additional investment to resolve [12].

However, despite advancements, existing traffic light management
systems often struggle with dynamic and static scheduling, failing to
accommodate the unpredictable variations in traffic flow [13-16]. This
leads to exacerbated congestion, increased travel times, and elevated
fuel consumption and greenhouse gas emissions. Such inefficiencies
highlight the critical need for traffic systems that can dynamically
adapt to fluctuating traffic conditions to optimize flow and reduce
environmental impacts [17]. Here are the main unresolved limitations
in the literature:

+ The direct traffic light control models need a considerable amount
of computational resources and long-term training data.

Most of the studies do not consider the operability of both CAVs
and HVs in the areas of intersections. The adaptability of CAVs
is often greatly limited in the interest of HV safety, or CAVs
are preferred without respect to HV efficiency. The imbalance
results in retarded system performance, especially at low CAV
penetration rates.

Some models use fixed signal phases, which are unable to adapt
to variations in traffic, while others exploit adaptive algorithms,
which, however, only consider a limited set of static traffic fea-
tures.

This paper is an extension of the research work published in [18].
The extension introduces a novel digital twin-based traffic light man-
agement system that incorporates the BIRCH clustering algorithm for
traffic data analysis [19]. Unlike traditional methods, this system uti-
lizes both real-time and historical traffic data to adaptively manage
traffic signals, thereby enhancing traffic flow efficiency and safety at
signalized intersections with mixed traffic conditions. The primary ob-
jective of this research is to demonstrate how the integration of digital
twin technology with real-time data processing can revolutionize traffic
management systems. Our methodology is designed to significantly
reduce stop times, enhance traffic flow, and curtail fuel consumption
by dynamically adapting traffic signals to changing conditions, thereby
contributing to a sustainable urban environment. To achieve these
objectives, we take into account real-time and historical data, manage
different traffic loads, and provide system reliability in different sce-
narios. The BIRCH algorithm will cluster large data sets and it allows
for online adjustments with real-time traffic information. This would
decrease the time that vehicles spend at red lights thus decreasing the
total time that a vehicle spends on the road and increasing traffic flow.
Thus, based on the real-time data received and the possibility to predict
traffic situations, the system will be able to adjust the traffic light signal
timings to provide smooth traffic flow. Also, short stopping times and
the smoother traffic flow result in less stop-and-go driving which in turn
results in reduced fuel consumption and greenhouse gas emissions.

The BIRCH algorithm, paired with Digital Twin technology for
traffic light management, substantially improves the control of urban
traffic systems. The BIRCH algorithm handles the data streams coming
from sensors and cameras in the traffic network on a real-time and
large scale. It compresses information into a Clustering Feature Tree (CF
Tree) that identifies vehicle clusters dynamically based on properties
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like intensity, type, and speed without regenerating all the data every
time. The flexibility dynamics help in the variance of the traffic system
conditions. The digital twin model uses the cluster data to carry out a
variety of traffic scenarios, including peak hour surges, or lane closures,
and predicts the results of different traffic light settings in a virtual
environment. BIRCH algorithm enables traffic managers to make timing
adjustments that are not reactive, in the sense that these changes are
made in response to predicting insights provided by the real-time data.
Consequently, BIRCH coupled with digital twins becomes a proactive
traffic management system that does not only react to the current traffic
state but also predicts future traffic patterns, improving general traffic
performance and safety.
The main contributions of the papers are as follows:

1. Conducting a comprehensive study of existing traditional and
adaptive traffic control systems.

2. Improving real-time and historical data processing for traffic
light control and prediction analysis by integrating BIRCH clus-
tering with digital twins.

3. Implementing and evaluating the suggested method across var-
ious traffic intensities (high, moderate, and low traffic condi-
tions).

The rest of the paper is organized as follows: Section 2 reviews
related works. Section 3 provides background on the research work.
Section 4 describes the methodology employed in developing the digital
twin-based traffic light management system combined with the BIRCH
algorithm. Sections 5 and 6 present the experimental setup and results.
Finally, Section 7 concludes the paper and outlines future research
directions.

2. Literature review

This section provides a summary of current intersection manage-
ment techniques and investigates the research gaps and limitations
within previous studies. Digital twins allow for a realistic and dynamic
representation of traffic systems, facilitating better decision-making
and adaptation to real-time conditions. Del Campo et al. in [20] in-
tegrate various technologies, such as IoT and VR to create respon-
sive and interconnected traffic control systems that can adapt to live
changes in traffic conditions. Additionally, modeling traffic control
systems can involve sophisticated algorithms that optimize traffic flow
at intersections, potentially reducing congestion and enhancing traffic
management efficiency [21].

Table 1 provides studies that developed intersection control meth-
ods for mixed traffic. These studies are classified by intersection type
(Unsignalized and Signalized) and by control strategy (Fixed Time and
Adaptive). Some studies [14,22] used communications of connected
and autonomous vehicles such as V2V and V2I to control signal-free
intersections. While these methods are adaptive by making a CAV
change its behavior when it is near an intersection, they are usually
inappropriate for humans.

Signalized intersection is a more viable option compared to signal-
free intersections when mixed traffic control strategies and policies are
being implemented. The present mixed traffic operation at signalized
intersections is mainly based on signal control strategies and policies
in managing CAVs. The strategies are classified as fixed timing control
and adaptive control. Fixed linked timing control is a cyclic and round-
robin based approach, which is simple to implement but generally leads
to inefficiency of traffic due to insufficient real-time traffic condition
analysis [15,25-28] and adaptive control [26,30,31]. On the other
hand, adaptive signal control changes signal timings — both phase
duration and sequence — upon real-time data and, therefore, is more
effective in dealing with dynamic traffic conditions.

However, the findings of the literature show that most of the current
adaptive signal control approaches are not comprehensive, which may
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Table 1
Traffic signal control for mixed traffic related studies.
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Paper Intersection categories Signal control strategies

Main idea

CHEN2024 [13] Signal-free -

SHI2022 [14] Signal-free -

QUA2020[22] Signal-free -

BUD2018[23] Signal-free -

YAN2023 [24] Signalized Fixed timing control
CHEN2021 [25] Signalized Fixed timing control
YA02020 [15] Signalized Fixed timing control
ZHA2018 [26] Signalized Fixed timing control
SHA2017 [27] Signalized Fixed timing control
DRE2008 [28] Signalized Fixed timing control
MOH2022 [29] Signalized Adaptive control
PAR2022 [30] Signalized Adaptive control
MA2022 [31] Signalized Adaptive control
LIU2018 [32] Signalized Adaptive control

Study evaluates vehicle sequencing at smart intersections using Markov
process modeling.

Study shows higher AV rates enhance traffic flow and safety. Deep
reinforcement learning used with Flow framework and SUMO simulator.

Study uses PPO in VRCIS with V2X to enhance urban traffic safety.

Study used intelligent roadside units to improve traffic flow and safety by
leveraging vehicle-to-infrastructure communications

Study proposes three two-step prediction optimization methods that match the
traffic arrival in different periods with the corresponding optimal signal
scheme.

Optimal control of mixed vehicle platoons at signalized intersections enhances
dynamics and efficiency.

Safety, Decentralized control model for connected automated vehicle
trajectories at signalized intersections optimizes efficiency without significant
system loss.

Cooperative eco-driving model for mixed AVs and HVs reduces fuel
consumption at signalized intersections, maintaining efficiency and comfort.

Paper introduces H-AIM for mixed traffic, reducing delays at low AV
penetration.

Study presents multiagent approach, replacing human coordination with
autonomous systems for safer, more efficient traffic management.

Study presents an optimal signal control algorithm that significantly reduces
vehicle delays at oversaturated intersections.

Enhanced H-AIM protocol integrates with traffic signals, effectively reducing
delays.

SPDL traffic control model minimizes delays, enhances capacity at
mixed-traffic intersections.

Safe intersection management for mixed human-driven and autonomous
vehicle systems.

result in reduced operational efficiency. For example, the Liu et al. [32]
approach utilizes cyclical changes to signal timing based on permissions
assigned to CAVs but fails to integrate traffic data from HVs which
could affect the efficiency of the system. Likewise, Ma et al. [31]
proposed a three-tier model that focuses on reducing traffic delays
by optimizing signal ordering and timing, however, this model pre-
dominantly utilizes the vehicle arrival rate as its input that may not
comprehensively represent the complex traffic dynamics.

In addition, intensive research has been carried out to optimize
the operation of CAVs for taking advantage of their accurate, and
predictable driving characteristics, postulating that these are not to
affect the behavior of HV within a safe traffic environment [33]. As
shown in Table 1, previous studies have established various types of
control policies for CAV. For example, CAVs have to obey traffic signal
rules as HVs do [15,25,26,31,34]. These kinds of studies optimize CAV
trajectories to make the mixed traffic perform efficiently, stable, and
green at the individual level or network level.

Previous research in the management of mixed traffic at intersec-
tions used different signal control strategies, but they carried several
shortcomings. To work properly, direct traffic light control models need
a lot of computational resources and a large amount of training data.
Many of these studies do not consider the efficiency of both CAVs and
HVs, leading to the loss of CAV flexibility in favor of HV safety or the
advantage of CAVs at the cost of HV efficiency, particularly at low CAV
levels. Also, the current approaches often do not respond to dynamic
alterations in traffic, with some systems being rigid signal plans and
others considering only a few traffic attributes.

To the best of our knowledge, there are no studies on the application
of data-driven insights for pre-programmed adjustments in traffic light
management. Utilizing the BIRCH algorithm for this purpose alone
offers a simple and efficient method that is particularly useful in situa-
tions where simplicity and resource efficiency are more important than
more complex direct traffic light adjustment models, which require
substantial computational resources and long training data.

3. Background

This section extends the research discussed in our previous paper
presented at conference [18], and defines the key elements, and the
requirements that are necessary for a 5G V2X digital twin architecture.
To gain an in-depth view, refer to the conference paper. Fig. 1 outlines
the architectural blueprint for the 5G V2X Digital Twin.

3.1. Sensing and data acquisition

The digital twin framework starts with the implementation of multi-
heterogeneous sensors that record data live from the physical en-
vironment. Such sensors include LIDAR, radar, cameras, and other
IoT devices, positioned in urban settings and vehicles. They gather
multidimensional data on vehicle locations, velocities, environmental
parameters, and infrastructural dynamics.

3.2. Data ingestion and processing

The data acquisition is the first stage, and the second stage consists
of relevant data ingestion pipelines that unify and synchronize data
from various sources. Through edge computing systems data processors
near the data source carry out initial data analysis. This decreases
latency and bandwidth consumption, also critical for real-time appli-
cations. Processed at the edge data include aggregation, normalization,
and preliminary anomaly detection that simplifies the datasets before
they move to centralized servers for advanced processing.

3.3. The 5G network

The 5G network infrastructure plays a critical role in its ultra-
reliable low latency communication (URLLC) capabilities that enable
real-time attributes of digital twins. Such 5G features, such as massive
MIMO and beamforming improve channels and spectrum to make the
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Fig. 1. C-V2X Digital Twin architecture [18].

data paths and bandwidth optimal which in turn increases robust-
ness and response of the communication network. Network slicing
enables the formation of dedicated virtual networks with optimized
resources and security settings for particular applications in a digital
twin ecosystem.

3.4. A model and simulate engine

The ontology-based design of the data model structurally repre-
sents the digital and physical entities, where relationships and entities
are defined in a scheme that mirrors the real-world configuration of
the V2X environment. These models are interpreted by the simula-
tion engine, which is typically implemented using simulation software
like MATLAB/Simulink or specialized simulation frameworks like Any-
Logic, to simulate different scenarios. This engine incorporates Al
algorithms, for example, neural networks for pattern recognition or
reinforcement learning for optimization tasks to forecast outcomes and
recommendations for proactive actions.

3.5. Data storage and management

Data management solutions are in line with the demanding nature
of high-velocity and high-volume V2X data streams. Data lakes when
implemented on platforms are a single store for all raw and processed
data and can support the processing of massive data for complex
analytics and machine learning.

3.6. User interface and visualization

UI and visualization tools are established to follow principles of
human-computer interaction to make sure that users can naturally
work with the digital twin system. Utilizing modern visualization tools
enables the stakeholders to observe and interact with the simulation
results in a lifelike and involving setting. Moreover, personalized dash-
boards give live data analysis in the form of interactive graphs and
charts.

3.7. Security, privacy, and interoperability

Security architectures consist of multi-layered approaches among
which end-to-end encryption, secure boot, and hardware-based security
modules (HSM) ensure data integrity and confidentiality. Privacy by
Design principle ensures that the development process is regulated by
some of the laws such as GDPR. Interoperability is established by using
common communication protocols such as MQTT or CoAP and standard
data formats such as JSON or Protocol Buffers, which ensures that IoT
platforms can be integrated with other systems and components.

3.8. Analytics and decision support

Statistical models, machine learning algorithms, and data mining
techniques are used by the analytics engine to find patterns and in-
sights from this data. This sub-system plays an important role in con-
verting raw data into actionable information, aiding decision-making
processes. Decision support systems with optimization algorithms pro-
vide advice through real-time analysis which improves operational
efficiency and predictive powers of the digital twin.

The digital twin architecture, which concentrates on these techni-
cal aspects, not only replicates the physical world precisely but also
improves the decision-making and operational processes within the
5G V2X ecosystem, thus creating dynamic and efficient transportation
systems.

4. Proposed methodology

Fig. 2 and algorithm 1 highlight the main process of the proposed
methods for adjusting pre-programmed traffic light systems, followed
by a function-based explanation of the method in more detail.

The necessary data structures are created to store real-time and
historical traffic data, the results of the intermediate analysis, clustering
results and control traffic decisions. The algorithm runs cyclically, on a
specific frequency, with the traffic data being gathered from different
sources like the V2I communication, sensors, and cameras (Algorithm,
line 3). The data is then cleaned to make it standard and relevant by
removing irrelevant information, scaling, transforming, and detecting
anomalies (Algorithm, line 4). The normalized data is then subjected to
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Fig. 2. The suggested system model for traffic light management.

Algorithm 1 The suggested process for adjusting pre-programmed
traffic light system

1: InitializeDataStructures()

2: loop every predefined_interval

3: TrafficData < CollectData()

NormalizedTrafficData < PreprocessData(TrafficData)

(T, B) « DefineBIRCHParameters()

BIRCHTree « BIRCHClustering(NormalizedTrafficData, T, B)

ClusterProperties < ClusterAnalysis(BIRCHTree)

TrafficForecasts < TrafficPrediction(ClusterProperties)

Anomalies < MisbehaviorDetection(ClusterProperties)

10: SignalAdjustments « SignalAdjustmentLogic(TrafficForecasts,
Anomalies)

11: ImplementControlAdjustments(SignalAdjustments)

12: FeedbackLoop()

© ® N TR

13: SystemMetrics < PerformanceEvaluation()
14: ModelUpdate(SystemMetrics)
15: end loop

the BIRCH algorithm with parameters such as the threshold value and
the branching factor to generate the CF Tree (Algorithm 1, lines 5-6).
The characteristics of these clusters are then examined to obtain useful
knowledge that can be applied to future traffic situations and anomaly
identification (Algorithm 1, line 7). According to these predictions
and anomalies, the required changes to the traffic signal systems are
decided and applied at the actual time (Algorithm 1, lines 10-11). A
control loop is created for the adaptive enhancement of the control
logic based on the performance assessments, including the traffic flow

rate, stop duration, and fuel usage (Algorithm 1, lines 12-14). These
performance metrics are incorporated in the digital twin model to
enhance future traffic control and simulation, thus, making the system
efficient in traffic regulation and handling. This cyclical process guar-
antees the constant supervision and the real-time modification of the
traffic signals’ timings, which in turn optimizes the traffic flow control
in cities.

4.1. Initialize data structures

Initiation of the data structures is one of the key steps of the
suggested traffic management system. This component is crucial in
allowing the search of the memory structures where real-time and
past traffic data, intermediate analysis findings, clustering outputs,
and traffic control decisions will be stored (Algorithm 1, line 1). The
value of these structures is dynamic and coordination of the real traffic
environment with the digital twin, so traffic is controlled in real-time
and decisions are made on time.

Data structures like VehicleData, SensorData, TrafficData, etc. are
intended to make the system work effectively with the expected traffic
data volume and variety. VehicleData is a key part of information
like vehicle ID, location coordinates, speed, acceleration, direction, and
timestamps, and it is critical for accurate tracking of vehicle behaviors
and movements. This data is very important not only for the present
traffic analytics but also to enhance the Digital Twin scenario modeling
functionalities [35-37]. SensorData allows gathering data from a traffic
sensor, for example, sensor IDs and vehicle IDs, and is important for
associating the true sensor data with the digital twin sensor data,
thus enhancing the accuracy of traffic condition simulation. TrafficData
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aggregation includes the incorporation of VehicleData along with Sen-
sorData as a full dataset for the BIRCH clustering algorithm and the
Digital Twin simulations aimed at optimizing fluid traffic movement
and interflow analysis.

In this step, we define the parameters for each data structure,
select the appropriate data type, and allocate memory for easier access
and effective processing. This method uses local edge devices for the
initial data selection and pre-processing to reduce the latencies and the
amount of data sent to central systems. BIRCH clustering is an intensive
processing activity that is centralized in server or cloud storage reposi-
tories, where the high computational powers provide for sophisticated
data processing and broad integration with the Digital Twin [19]. The
powerful infrastructure of the system allows the system to support real-
time data processing, which in turn improves the performance and
accuracy of the Digital Twin.

The loop time is modified based on the needs of the traffic man-
agement system. Such flexibility is crucial for giving the system re-
sponsiveness and balancing computing resources. The smaller intervals
that are imposed within the loop make the system more sensitive, and
hence it reacts faster to the traffic control and management policies.
Still, the intervals below 50 ms require greater computing power and
resource allocation. Alternatively, a long interval may save some of
the computational resources while the system loses its reactivity. This
feature of adjustable loop timing is crucial to the overall performance of
a traffic management system, providing the system with the flexibility
to adapt to the varying traffic conditions and operational requirements
for efficient fine-tuning.

This looping procedure ensures the Digital Twin and BIRCH clus-
tering algorithms are continuously supplied with new data, which
increases the capabilities of the system to offer precise and timely traffic
predictions and management decisions. The continuous data processing
loop makes the traffic management system adaptive and proactive,
allowing it to react to the urban traffic flow complexities, immediately.

4.2. Collect data

In this step, the process of data collection takes base traffic data
from many sources. They include traffic sensors, cameras, and V2I
communications (Algorithm 1, line 3). This is when these tools help us
by providing a diversity of data types, such as vehicle counts, speeds,
directions, and types. Every kind of data is important to obtain a full
picture of the situation with traffic at a given point in time. That is,
traffic sensors are commonly placed at intersections and on highway
routes to collect quantitative traffic flow information and traffic in-
tensity. Cameras generate visual feedback that is utilized to facilitate
more advanced requirements like vehicle classification and tracking,
V2I communication provides real-time information from the vehicles
to the traffic management systems to perform advanced strategies such
as dynamic signaling that is based on the current condition of traffic.
Data generated from traffic sensors, cameras, and V2I communications
are first pre-processed and organized through edge computing devices,
in which raw data is cleansed, aggregated/normalized, anomalous
readings are detected, and data transformation is done before the
streamlined data is sent to the central server for further analysis and
clustering with the help of the BIRCH algorithm.

The way data is processed, and the acquisition of data are maxi-
mized to ensure both speed and quality. Sometimes the system employs
edge computing devices to handle the large inflow of data streams.
The sensors that are located close to the data generators (e.g., near
the traffic lights, by the roadside, etc.) perform the preliminary part
of data processing. Edge data processing significantly reduces the la-
tency usually associated with sending raw data to central servers for
processing. Latency reduction is a crucial part of a traffic management
system based on data arriving just in time to make real-time decisions.
To add to that, the edge pre-processes the data. During the edge
pre-processing stage, several important operations are carried out to
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prepare the data for the next levels of analysis. First, data cleaning is
applied to eliminate unnecessary information and remove noise thereby
increasing the quality of data. Then, data aggregation gathers data from
multiple sensors regarding vehicles’ counts, speed, and direction, and
creates a unified data set. After this, data normalization is done to make
sure that all the values are on a comparable level, usually, the mean is
zero and the standard deviation is one; this is crucial when performing
analysis. Anomaly detection is then performed to detect the outliers
or any abnormal traffic behavior which may be due to some errors or
important traffic events to ensure data quality. Data transformation is
the last step that makes the raw sensor data suitable for application to
clustering algorithms by restructuring it. Thus, the pre-processing that
is done at the edge side helps to minimize the amount of data to be
sent to the central servers, to manage the networks more effectively,
and provide the traffic management system to work efficiently and
accurately.

4.3. Normalize traffic data

This step involves several key practices: data scaling and transfor-
mation, automated processing, and how outliers and errors are handled
(Algorithm 1, line 4). Every module is adapted to polish the gathered
raw traffic data, suited for detailed analysis and modeling within the
system.

The Z-score standardization scaling technique transforms the data
to have a mean of zero and a standard deviation of one [38]. This
transformation is important for addressing variables such as vehicle
speeds or counts that can otherwise bias the analysis because of dif-
ferences in magnitude scales. Z-score standardization is one of the
most popular data preprocessing methods which map the data into a
normal distribution with the mean of zero and the standard deviation
of one. This way, the general questions of different sizes in datasets are
addressed while improving the performance of many algorithms.[39]

Error checking and outlier detection are important steps in the
realization of normalization. This stage aims at enhancing the quality
of the data by detecting and correcting anomalies or errors that are
likely to create false results in the analysis. Devices like setting accept-
able data ranges allow the identification of data points outside of the
expected frames. Moreover, statistical techniques can be employed to
detect outliers, which are data points that significantly differ from the
other observations. How the outliers are treated—whether to exclude,
adjust, or separately analyze them is of critical importance since proper
treatment of outliers is what preserves the integrity and accuracy of
traffic data analysis.

Outliers in the traffic data are identified through statistical analysis
like the Z-score method, which determines points that are far away
from the mean. A measure of the spread of the data is the range, which
is defined as the difference between the first quartile and the third
quartile. These outliers are then dealt with in one of the following ways;
if they are thought to be errors then they are removed, if they are not
errors then they are altered in a way that reduces their effect, or they
are examined individually to gain a better understanding of the traffic
conditions in the data set. The clustering in the proposed framework is
performed using the BIRCH algorithm and in this step, outlier detection
is incorporated with edge computing to filter the data to eliminate the
noise before it is passed on to the next stage [39].

4.4. BIRCH clustering and VANET Digital Twins

The main use of the BIRCH algorithm in traffic light management
in combination with Digital Twin technology is that of the clustering
abilities of BIRCH and the simulation and predictive analytics of Digital
Twins. Here’s a detailed explanation of how this integration technically
manages traffic lights:

Fundamentally, the BIRCH algorithm processes and analyses live
traffic data obtained from sensors and cameras located at different
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nodes within the traffic network. This algorithm is well-equipped to
deal with large data streams by creating a feature-based summary of
the incoming data points as a CF Tree (Algorithm 1, line 6). The CF
Tree identifies clusters in terms of attributes such as intensity and type
of vehicle, time intervals, and speed. Each node in this tree represents
the statistical data of observations (vehicles) that are located within
this cluster, such as the linear sum and squared sum of the data points,
which are important in efficient computation of cluster centroids and
radii. This feature provides the opportunity to dynamically modify the
clusters as new data arrive without reprocessing all the data; therefore,
it is useful for dynamic environments such as traffic systems, where the
conditions are continuously changing [40].

After the clusters are created, this classified data drives the digital
twin model of the traffic system, virtual visualization of the physical in-
tersections, and traffic flows. This model takes advantage of the cluster
information to simulate various traffic situations, including the effect of
a traffic surge during the peak hours or a lane closure. The Digital twin
can forecast the consequences of different traffic light modifications,
like varying green light times for specific lanes, based on the clusters
generated by BIRCH. This model enables traffic managers to see the
possible bottlenecks and see the solutions without even implementing
them in reality in a virtual environment, therefore optimizing the traffic
flow and reducing congestion.

The real-time communication between the BIRCH algorithm and
the Digital Twin model results in an adaptive traffic light management
system that acts not only on past but also future traffic issues. Such
proactive action is productive and can substantially boost the efficiency
of urban traffic management systems.

The BIRCH algorithm has three main phases, as follows:

Phase 1: Contextual CF Tree Building with Traffic Data As
it can be seen in Fig. 3, the historical vehicle information that is
obtained by VANET collected from traffic sensors, cameras as well as
V2I communication. The edge devices then clean up this data and then
the processing of the data is done by the centralized servers using the
BIRCH algorithm. The data collected in clusters is then used in digital
twin simulations to estimate and control the traffic situation. The CF
Tree is built from the historical vehicle information gathered. The data
of each vehicle is a d-dimensional vector, with its position and velocity
forming a cluster feature for each cluster of the CF Tree [41].

If the d-dimensional number of data points (vehicles) is N, then
CF =(N,LS,SS) is defined as follows:

N
LS =Y X, m
i=1

Sums vectors representing the position and velocity of vehicles and
gives a direction and speed aggregate for the cluster.

N
58 =Y (X, @
i=1

A sum of squares of the vehicle vectors represents the spread of vehicle
movement within the cluster.

Phase 2: Hierarchical Clustering for Traffic Control The second
stage is aimed at the optimization of the clustering process in the
context of the centroids of clusters, i.e. the essence of the traffic flow
in each cluster.

The centroid is the core part of the cluster since it determines the
average flow direction and speed in the cluster known as C = LWS

This average provides insight into the overall traffic flow that may
not be apparent from individual data points.

Spread Clustering Process: The spread clustering process is an
evaluation of the current data grouping to check whether the existing
clusters need some adjustments, in the form of dividing large clusters
into smaller, more homogenized groups, or merging smaller clusters
into larger ones.

Homogeneity within clusters: If a cluster includes data points such
that their distances are rather large (i.e., the speeds and directions of
the vehicles are quite different) it might be split to have the clustering
more precisely reflect similar traffic behaviors.

Traffic flow optimization: Alternatively, if two or more clusters
have nearly the same centroids, their fusion may simplify the traffic
model but preserve a good part of the information, which would
facilitate the monitoring and management of these areas.

Strategic Clustering for Traffic Control: In this phase, the hier-
archical clustering is smart, making adjustments to the clusters based
on both real-time and historical traffic data in order to optimize the
traffic flow. The analysis of the centroids and the spread within clusters
will guide traffic system managers who can then make appropriate
decisions in respect of traffic light timings, lane usage, and other control
measures that kill congestion and improve traffic flow. By way of ex-
ample, consistent heavy congestion in one direction within a particular
cluster during peak hours could be combated with specific measures,
such as signal timing adjustments or temporary lane reversals, to better
distribute this flow.

In this stage of hierarchy clustering, the traffic is dynamic control
with predictive analytical. Continuous improvement of the cluster anal-
ysis by the BIRCH algorithm in the VANET Digital Twins framework
ensures real-time adaptive control system that manages both normal
traffic patterns as well as unforeseen situations effectively.
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Table 2
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Experiments environment setup parameters.

Parameter.

Desc.

Co-simulation

Area

Lanes

Intersections

Simulation time

Low Traffic Scenario
Moderate Traffic Scenario
High Traffic Scenario
Traffic Light_Cycle Times
Traffic Light_Green Phase
Adaptive Signal Control
T

B

SUMO-CARLA [43]

A grid of 4 x 4 blocks (with each block measuring 100 m on each side.)

2 lanes per direction

5

2 h (fast-forwarded at 4x speed)

1800 vehicles/h

3600 vehicles/h

5400 vehicles/h

90 s

30 s for main roads, and 20 s for secondary roads

+10 s

0.5 (Threshold value for BIRCH clustering algorithm, representing the maximum
radius of a cluster before a new cluster is formed

50 (Branching factor for BIRCH clustering algorithm, representing the maximum
number of child nodes per cluster node)

|
4

Fig. 4. A traffic simulation scenario image.

Phase 3: Traffic Clustering Refinement

Distances that exist between clusters CF; and CF, may indicate
which clusters to join or how to shift so that the system becomes better
(Algorithm 1, line 8) [42].

The Euclidean distance between the centroids of the two clusters is
computed, the terms are expanded, and then the terms are related to
the cluster features LS and SS through their definitions. D is the direct
use of the distance formula in terms of the cluster features that have
been summarized:

Dz\/Nl-SSZ+N2—2-LS1-LS2 @

N;{-N,

Optimal traffic control and safety in urban environments using
Digital Twins and VANETs require the perfect set of parameters. A
lower threshold (T) value is recommended for better capture of variable
urban traffic patterns. The value of the threshold has to be adjusted
by the system’s performance. An intermediate branching factor (B)
allows for effective data processing without the loss of granularity, a
requirement for thorough traffic analysis.

The parameters are readjusted continuously by the system due to its
constant performance evaluation process to guarantee that the traffic
clustering remains relevant and representative of the present urban
traffic state. Nevertheless, the refinement stage is relevant since it
continuously improves traffic control and safety measures through the
dynamic abilities of Digital Twins and VANETSs to adapt to the urban
traffic situation. Through the changes of the analysis and clustering
parameters, the system becomes more efficient in urban traffic man-
agement; it becomes more orderly, and congestion and traffic dangers
are eliminated throughout the network.

5. Experiment setup

In our traffic management system experimental setup, we utilize an
integrated simulation framework that encompasses SUMO [44], CARLA
[43], and Digital Twin technologies, thus permitting a comprehensive
simulation of traffic [45].

SUMO-CARLA [43] improves the simulation by highlighting the
behavioral analysis of individual vehicles. CARLA’s advanced graphics
and physics engines can be used to simulate the complex interac-
tions between AV and dynamic urban elements including pedestrian
flows, unexpected road obstructions, and various weather conditions.
These interactions are essential for rigorous verification of the sensory
and navigational algorithms of AVs under real-world and difficult
conditions.

The main responsibility of the Digital Twins in such an integrated
simulation environment is critical. It functions as a link between SUMO
[44] traffic simulations and the vehicular interactions that CARLA
models [43]. The Digital Twin is constantly updating with real-time
data from both simulation platforms and becomes a live, dynamic
model, which does not only replicate current traffic situation but also
predicts future states by the events and changes in the environment.
This predictive facility makes it possible for the proactive decisions of
traffic management and therefore, the optimization strategies to be very
effective.

Table 2 lists the main simulation parameters. We installed the detec-
tors and the sensor setup for our traffic experiments 50 m before each
junction on all approaches. The data-gathering process is scheduled to
run every 30 s to increase the accuracy of the observations. To provide
a visual understanding of the simulation testbed, refer to Fig. 4.

Our approach to this experiment was to develop and assess three
relevant traffic scenarios: low, moderate, and high traffic volumes given
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different traffic management strategies using SUMO [44], CARLA [43],
and digital twins traffic tools. Each scenario is carefully designed to
simulate different levels of congestion and traffic flow by establishing
concrete rates and intervals for various kinds of vehicles, like sedans,
SUVs, and buses. This approach helps us to realize the effects of various
traffic intensities on road utilization and to determine which manage-
ment tactics are the best for improving traffic flow and alleviating
congestion. Deriving testing scenarios is beneficial as they allow to
model various conditions, from light traffic, with an understanding
that a system might perform suitably in non-peak times, up to highly
congested situations that challenge the resiliency and efficiency of
traffic systems at peak times.

The low traffic scenario works at the overall capacity of 1,800
vehicles per hour which is 50% of a road’s full capacity with the vehicle
generation interval set as 2.86 s for sedans, 8 s for SUVs, and 40 s for
buses. Such longer periods between the vehicle generations, in effect,
simulate a less congested environment, which is typical for testing of
traffic management strategies in light traffic conditions which is seen
at the beginning or end of peak periods.

The paper considers full road capacity to be 3,600 vehicles per hour,
which is applied to the moderate traffic situation. The parameters of
the system are defined as follows where the low traffic flow is assumed
to be 1800veh/hr, which is half of the full capacity. This benchmark
can be useful in assessing the traffic management measures when the
traffic is not dense. The high traffic scenario with 5400 vehicles per
hour is used to examine the system in the worst conditions severe traffic
congestion. Thus, 50% of a road’s full capacity is obtained from these
predefined cases.

Under the moderate traffic scenario, the simulation utilizes the full
capacity of the road which is 3,600 vehicles per hour. The vehicle
generation intervals are 1.43 s for sedans, 4 s for SUVs, and 20 s for
buses, reflecting typical peak traffic flows. This situation presents a
well-proportioned layout that represents regular traffic jams, making
it possible to evaluate traffic control solutions in usual peak-time
conditions with flows as well as with light jams.

A high-traffic scenario assumes a road overcapacity with 5,400
vehicles per hour and shorter cars’ generation intervals of 0.95 s, SUVs’
intervals — 2.67 s, and buses’ intervals — 13.33 s. This situation describes
a case of very high traffic congestion, which tests the capacity of the
road and traffic management systems. It provides a worst-case scenario
for the assessment of the operability of adaptive control participants
during severe congestion and lower-speed traffic.

These values were selected based on the running of the simulations
several times in a bid to find the most appropriate parameters. This
way the process helped to achieve the high similarity of simulations to
real traffic intensity in peak hours and over capacity.

6. Simulation results

The proposed system in three different scenarios of low, mod-
erate, and high traffic always demonstrated its ability to constantly
dynamically adapt to real-time traffic condition in comparison to both
YAO [15] and traditional methods. The method by Yao and Li [15] is
based on CAV trajectory optimization fixed timing, and signal control.

6.1. Comparative analysis

This section provides a detailed comparison between Yao and
Li [15] and the suggested approach.

Yao and Li [15] investigated the decentralized management of the
CAV trajectories in the mixed traffic stream at an isolated intersection
with traffic signals. It is based on the approach of finding the best
possible path of each vehicle in terms of time, consumption, and
security. This is different from other models of control that dictate the
paths of all the vehicles as a whole. The control architecture proposed
by Yao and Li works on the premise that every CAV tries to find the

Ad Hoc Networks 164 (2024) 103613

optimal path on their own with the use of local information and goals.
The basic techniques that the authors use are trajectory optimization,
decentralized control, and the conversion of the continuous problem
into a discrete one to enhance the solvability of the problem; the
solution is found with the help of the DIRECT algorithm.

Nevertheless, our approach stands in contrast to Yao and Li’s in
several important ways owing to the fact that both HVs and CAVs are to
co-exist on the road and the common goal of enhancing traffic flow. Yao
and Li’s model is a distributed model; this is because the system does
not have a central control unit and all the vehicles make their decisions
on their own. This method is rather efficient in terms of computation
but it can lead to poor global solutions in some cases because it does not
have the complete picture. On the other hand, our approach is based
on the centralized strategy, which means that we take into account the
overall view of the traffic system and design the control flow of traffic
lights and vehicles’ movements. This approach enables the coordination
of the optimization thus leading to higher overall system optimization
than in the decentralized approach.  However, the work done by
Yao and Li is confined to isolated intersections and this reduces the
range of application of the study. Here is our proposal that covers
even more elaborate urban traffic scenarios, and we integrate a Digital
Twin concept for efficient data fusion and traffic signal adaptation. This
generalization helps our method to coordinate the traffic at different
intersections and even under different traffic conditions.

The second major difference can be observed in the technological
application. Despite the fact that Yao and Li employ a discrete opti-
mization model that is best for individual intersections, our approach
is based on the BIRCH clustering algorithm as well as digital twins. This
integration enables it to cluster traffic data in real time and also allow
traffic signal adaption to the traffic flow hence making our system very
sensitive to traffic conditions.

Yao and Li show better system performance with decentralized
control but there is a possibility of not being able to attain global sys-
tem optimum. On the other hand, the proposed method demonstrates
better versatility and performance in regulating traffic flow, especially
in areas of congestion. Thus, by keeping the stop rates lower and
applying optimal fuel economy technologies with the help of adaptive
controls our system shows its efficiency in managing urban traffic in a
sustainable manner.

6.2. Average stop rate

The stop rate considers the traffic light cycle frequency, the green
phase duration, and the intensity. The parameters can be defined as
follows: N: Total number of vehicles approaching the intersection
during a given period. .S: number of vehicles that stop at least once
during this period. T total traffic light cycle time (sum of all phases
including green, yellow, and red). G: duration of the green phase. L:
average vehicle arrival rate (vehicles per second).

Average Stop Rate (%) = (%) x 100 (C))

As the vehicles will stop during the non-green phase:

S=N—(L><G>< T ) ©)
period

Where pTTiod is the duration of the observation period in seconds.
We assume uniform arrival rates for a simple estimation:

S ~ L x (T — G) x period (6)

Average Stop Rate (%) ~ (1 - g) x 100 @
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Fig. 5. Performance evaluation in low traffic scenario.

6.3. Average fuel consumption (mL)

Fuel consumption depends on idling and stop-and-go conditions. We
consider the time spent idling and the fuel rate during idling; R: fuel
consumption rate while idling (mL per second) [46]; I: total idling time
for a vehicle (seconds).

Fuel Consumption per vehicle (mL) = Rx I (€©))
For the total fuel consumption over N vehicles:
Total Fuel Consumption (mL) = N X (Rx I) 9)

The frequency and duration of stops directly affect Idling time I,
which considers traffic light cycles.

I = Number of Stops x (Red + Yellow Phase Duration) (10)

N x R x Average Idling Time
N
This equation simplifies the understanding of fuel consumption by
focusing on two critical factors: The rate of fuel consumption when the
engine is running without any load and the time when this occurs. It
contributes to defining the effect of idling on the total fuel consumption
in traffic control conditions.

Average Fuel Consumption (mL) =

1D

6.4. Low traffic scenario

As can be seen in Fig. 5 the traditional method shows inefficiencies
due to static signal timings which do not adapt to real-time changes,
resulting in higher stop rates and increased fuel consumption.

10
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Fig. 6. Performance evaluation in moderate traffic scenario.

The traditional method applies fixed timings allocated to specific
signals without consideration of the congestion state of the road. This
works on fixed timings of green, yellow, and red lights depending on
the information gathered from previous experience and is recurrent in a
never-ending cycle, irrespective of the present traffic conditions. In this
case, it results in some disadvantages that include; making extra stops,
consuming more fuel, and congestion in case of flow changes during
rush hours or at certain times of the day.

YAO method provides moderate improvements over the traditional
method with gradual decreases in stop rates as CAV penetration in-
creases, yet still lacks full optimization for dynamic traffic conditions.
The proposed method that utilizes digital twins technology significantly
outperforms both the YAO method and the traditional method by
dynamically adjusting traffic signals using real-time data. This results
in substantial reductions in stop rates — from 42% at 10% CAV pene-
tration to 12% at 90% - and marked decreases in fuel consumption,
showcasing superior adaptability and efficiency in traffic management.

6.5. Moderate traffic scenario

In moderate traffic scenarios, the traditional method struggles with
peak traffic flows, leading to inefficient traffic management and higher
resource use due to its non-adaptive nature (see Fig. 6). However, the
YAO Method shows some adaptability with progressive improvements
in stop rates, yet remains limited in fully optimizing traffic signal
adjustments in response to real-time traffic dynamics. Meanwhile, the
proposed system demonstrates exceptional adaptability, with notable
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Fig. 7. Performance evaluation in high traffic scenario.

improvements in both stop rates and fuel consumption across all CAV
penetration levels.

Higher CAV penetration improves the performance of the traffic
control networks. Owing to the efficient driving and real-time data,
CAVs help in improving signal optimization which helps in reducing
fuel consumption and the number of stops. The digital twin model
and the BIRCH algorithm are key in this regard to help design this
intelligent control system that would enable the traffic to flow smoothly
with fewer stops.

The method adjusts to fluctuating intensities and regular traffic
jams effectively, showcasing its capability to handle moderate traffic
conditions far better than the YAO and Traditional methods.

6.6. High traffic scenario

In terms of traffic intensity, the traditional method fails to manage
extreme congestion effectively due to its reliance on static signal tim-
ing, resulting in high stop rates and excessive fuel consumption (see
Fig. 7). Although the YAO Method reduces stop rates with increasing
CAV penetration, it starts from a high base and does not decrease suf-
ficiently to manage high congestion effectively. Our proposed method
excels in severe congestion scenarios by maintaining lower stop rates
and optimizing fuel usage through advanced adaptive controls. It starts
from a lower base stop rate of 37% at 10% CAV penetration and reduces
it impressively to 15% at 90%, alongside significant reductions in fuel
consumption from 102 mL to 70 mL at the same penetrations. This
method’s dynamic adjustments based on real-time conditions prove
crucial for maintaining operational efficiency in high-intensity traffic.
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7. Conclusion

The paper introduces a novel digital twin-based traffic light control
solution that makes use of the BIRCH clustering algorithm to opti-
mize traffic signal management in urban areas with the coexistence of
CAVs and HVs. Our method shows concern for increased traffic flow
efficiency, lower congestion, reduced vehicle idling time, and environ-
mental impacts, that come from the constant changes that our method
makes to the traffic signals, using both real-time and historical data.
The suggested technique is highly superior to traditional and existing
adaptive traffic management systems for different traffic intensities. For
future research, more detailed data concerning pedestrians including
the census of pedestrians, their movement patterns, and the incidents
related to their safety can be used to bring a more realistic approach to
the management of traffic in urban areas. This will help in the creation
of a better traffic control system that can effectively manage traffic
flow, decrease traffic jams, and at the same time increase pedestrian
safety as well as boost the quality of life in urban areas.
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