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The formulation of Bayesian inverse problems involves choosing prior distributions; choices that seem equally reason-

able may lead to significantly different conclusions. We develop a computational approach to understand the impact of

the hyperparameters defining the prior on the posterior statistics of the quantities of interest. Our approach relies on

global sensitivity analysis (GSA) of Bayesian inverse problems with respect to the prior hyperparameters. This, how-

ever, is a challenging problem—a naive double loop sampling approach would require running a prohibitive number

of Markov chain Monte Carlo (MCMC) sampling procedures. The present work takes a foundational step in making

such a sensitivity analysis practical by combining efficient surrogate models and a tailored importance sampling ap-

proach. In particular, we can perform accurate GSA of posterior statistics of quantities of interest with respect to prior

hyperparameters without the need to repeat MCMC runs. We demonstrate the effectiveness of the approach on a simple

Bayesian linear inverse problem and a nonlinear inverse problem governed by an epidemiological model.

KEY WORDS: prior hyperparameters, global sensitivity analysis, Sobol’ indices, Bayesian inverse prob-

lems, importance sampling, surrogate modeling

1. INTRODUCTION

Consider a Bayesian inverse problem governed by a system of differential equations. The inverse problem uses a
vector d of measurement data to estimate the uncertain model parameters, µ. The solution of the Bayesian inverse
problem is the posterior distribution ºpost(µ|d). After solving the inverse problem, typically we seek to make some
predictions based on the posterior. For example, for a prediction quantity q(µ) we may consider

Epost(q) :=
Z

q(µ)ºpost(µ|d) dµ.

A crucial component of this analysis is to know how the choice of prior hyperparameters affects such predictions. We
present a practical variance-based global sensitivity analysis (GSA) approach to study how the statistics (e.g., mean
or variance) of q vary with respect to prior hyperparameters. The global sensitivity indices associated to each prior
hyperparameter enable us to identify which hyperparameters carry the most influence over the prediction.

Bayesian inference is pervasive; this perspective makes inferences not just from data, but also by incorporating
prior beliefs and assumptions. In practice, these prior assumptions are often subjective choices made by the researcher.
Different prior assumptions can result in differing outcomes from inference in Bayesian inverse problems [1]. This
well-known issue motivated statisticians in the 1980s and 1990s to develop a methodology, known as robust Bayesian
analysis or Bayesian sensitivity analysis [2–5], for ensuring the robustness of Bayesian inference across a class of
priors. These ideas have continued to receive attention over the past two decades [6–11]. The goals of robust Bayesian
analysis are related to, but distinct from those of our approach. Rather than answering whether our inference is
sensitive to prior assumptions, we aim to characterize the uncertainty distribution resulting from uncertainty in the
prior hyperparameters and identify which hyperparameters have the greatest impact on uncertainty.
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Related work. Sensitivity analysis of Bayesian inverse problems has been subject to several recent research
efforts. The articles [12–14] consider hyperdifferential sensitivity analysis (HDSA) of Bayesian inverse problems.
HDSA is a technique used originally for (deterministic) PDE-constrained optimization problems. HDSA, as a practi-
cal framework for sensitivity analysis of optimal control problems governed by PDEs, was considered in [15]. In [16],
HDSA was used for sensitivity analysis of deterministic inverse problems to auxiliary model parameters and param-
eters specifying the experimental setup (experimental parameters). In [12], use of HDSA is extended to nonlinear
Bayesian inverse problems. Specifically, the authors consider the Bayes risk and the maximum a posterior probability
(MAP) point as quantities of interest for sensitivity analysis.

In [13], the HDSA framework is used to study Bayesian inverse problems governed by ice sheet models. The
sensitivity of information gain, measured by the Kullback–Leibler (KL) divergence between the prior and posterior,
to uncertain model parameters in linear Bayesian inverse problems is studied in [14]. HDSA provides valuable insight
for experimenters on where to focus resources during experimental design and when measuring auxiliary parameters.
The previous works on HDSA of Bayesian inverse problems have focused primarily on sensitivity analysis with
respect to auxiliary or experimental rather than prior hyperparameters. More importantly, HDSA is local, relying on
derivative information evaluated at a set of nominal parameters. Variance-based GSA, see Section 3, accounts for the
uncertainty in the hyperparameters globally.

The work of [17], which is closely related to our work, examines statistical models using Bayesian inference. In
that paper, the authors perform variance-based GSA on posterior statistics with respect to both prior and likelihood
hyperparameters. Their method uses Gaussian process (GP) surrogates to emulate the mapping from the hyperpa-
rameters to the posterior distribution. This requires many Markov chain Monte Carlo (MCMC) runs to build the GP
surrogate. For the Bayesian inverse problems we target, it is impractical to repeat the many MCMC runs needed to
build a surrogate. This is due to the high cost of evaluating the forward model and the difficulty of tuning each MCMC
run. Our interest in the influence of prior assumptions means we focus only on the prior hyperparameters. Restrict-
ing to prior hyperparameters avoids the challenges associated with multiple MCMC runs by enabling an importance
sampling approach to integrating the QoIs under study with respect to multiple posterior distributions. Strategies for
importance sampling on multiple distributions have been subject to several previous works; see e.g., [18–22]. We
exploit structure in the Bayesian inverse problem to derive a tailored importance sampling approach. Another related
work that has partly inspired the approach in the present work is [23]. That article outlines a method for GSA of rare
event probabilities and combines surrogate-assisted GSA with subset simulation.

Our approach and contributions. We present a viable computational approach to analyze the sensitivity of
Bayesian inverse problems to prior hyperparameters. The proposed approach is goal oriented—the focus is on the
posterior statistics of prediction/goal QoIs that are functions of the inversion parameters. We first frame the problem
in a manner conducive to variance-based GSA in Section 2. We detail the computational strategy for sensitivity anal-
ysis in Section 4. Our method combines two key techniques. Importance sampling eliminates the need for repeated
MCMC runs for different choices of the prior. Then, sparse polynomial chaos expansion (PCE) and extreme learning
machine (ELM) surrogate models emulate the mapping from prior hyperparameters to statistics of q. Use of surro-
gate models further eases the computational burden. The combined approach enables prior hyperparameter sensitivity
analysis for many Bayesian inverse problems. If one has access to a single MCMC run, then one can ascertain prior
hyperparameter importance. To demonstrate the effectiveness of the proposed approach, we present computational
experiments in the context of two examples: a simple linear inverse problem in Section 5.1 and a nonlinear inverse
problem governed by an epidemiological model in Section 5.2.

2. HYPERPARAMETER-TO-STATISTIC MAPPING OF BAYESIAN INVERSE PROBLEMS

In an inverse problem [24], we use a model and observed data to estimate unknown model parameters of interest. We
consider the inverse problem of estimating a parameter vector µ in models of the form

(
y0 = f(y; µ),
y(t0) = y0.

(1)
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Here, y 2 Rnstate is the state vector. In a deterministic formulation of the inverse problem, we typically seek a µ 2 Rn

that minimizes the cost functional,
J(µ) := kBy(µ)° dk2. (2)

Here, d 2 Rndata is a vector of data measurements, B is a linear operator that selects the corresponding model
responses, and y is obtained by solving Eq. (1).

Real-world measurements are always subject to some observation error. The Bayesian approach to inverse prob-
lems [24] describes the inversion parameters through a statistical distribution that takes uncertainty into account. This
distribution for µ, known as the posterior distribution, is conditioned on the observed data and consistent with the
prior distribution. In this context, the prior distribution encodes our prior knowledge regarding the parameters. The
Bayes formula shows how the model, data, and the prior are combined to obtain the posterior distribution:

ºpost(µ|d) / ºlike(d|µ)£ ºpr(µ), (3)

where ºlike is the data likelihood and ºpr is the prior probability density function (PDF). The likelihood of the data is
assessed according to the cost (2) and the noise model that describes the error distribution for each measurement. For
example, suppose the observation error follows a Gaussian noise model so that By(µ) + ¥ = d, ¥ ª N (0, °noise).
In this case, the Bayes formula reads

ºpost(µ|d) / exp
µ
°
1
2
(By(µ)° d)>°°1noise(By(µ)° d)

∂
£ ºpr(µ). (4)

In practice, we are often interested in scalar prediction quantities of interest (QoIs) that depend on µ. Let q(µ)
be such a QoI. Solving the Bayesian inverse problem enables reducing the uncertainty in µ and consequently in q(µ).
In this case, the statistical properties of q depend on ºpost. Let ™(q) denote a generic statistic of q. Examples include
™(q) = var(q) or ™(q) = E(q), where the expectation and variance are with respect to the posterior distribution.
Another example is ™(q) = q(µMAP); i.e., QoI evaluated at the maximum a posteriori (MAP) point estimate of µ.
Recall that the MAP point, µMAP, is a point where the posterior PDF attains its maximum value. Using the Bayes
formula (4), we note that the MAP point is the solution to the nonlinear least squares problem,

µMAP = argmin
µ

J(µ) := (By(µ)° d)>°°1noise(By(µ)° d)° 2 log(ºpr(µ)). (5)

We consider how the choice of prior affects ™(q). Narrowing this question, we take a parameterized family
of prior distributions ºª

pr(µ) determined by a vector ª 2 Rd of scalar hyperparameters. For a Gaussian prior, the
hyperparameters can be taken as the prior means and variances. With this setup, the choice of ª will determine our
statistic of interest so that™(q) = ™ª(q). In what follows, the hyperparameter-to-statistic (HS) mapping F : Rd

! R
is given by

F (ª) := ™ª(q). (6)

To model the uncertainty in the hyperparameters, we consider them as random variables and then analyze how the un-
certainty in the entries of ª contributes to the uncertainty in F (ª). To this end, we follow a variance-based sensitivity
analysis framework, and compute the Sobol’ indices [25,26] of the HS mapping F with respect to ª.

For the purposes of this study, we let the prior hyperparameters ª follow uniform distributions, ªj ª U [aj , bj ],
for j = 1, . . . , d. We focus on three choices for the statistic of interest ™ in Eq. (6):

• the mean: Fmean(ª) = Eª
post(q);

• the variance: Fvar(ª) = Eª
post(q2)° (Eª

post(q))2; and

• the QoI evaluated at the MAP point: FatMAP(ª) := q(µMAP(ª)), with µMAP(ª) from Eq. (5).

The mean and variance are computed from moments of the posterior PDF. These two quantities can be estimated at
each ª byMonte Carlo integration. Estimating FatMAP instead requires solving the nonlinear least-squares problem (5)
for each ª.

Volume 15, Issue 2, 2025



68 Darges, Alexanderian, & Gremaud

3. GLOBAL SENSITIVITY ANALYSIS AND SURROGATE-ASSISTED APPROACHES

We focus on variance-based GSA using Sobol’ indices [25–30]. Consider a (scalar-valued) model

y = F (x), x 2 Rd.

We assume that the components of x are independent random variables. In variance-based GSA, the most important
inputs are those that contribute the most to the output variance var(F (x)). Sobol’ indices are quantitative measures
of this contribution. Specifically, the first-order Sobol’ indices Sk, and the total Sobol’ indices Stotk , are defined by

Sk =
var(Fk)
var(F )

, Stotk = 1°
var(E(F |xl, l 6= k))

var(F )
, (7)

where Fk(xk) := E(f |xk) ° E(f). In practice, the Sobol’ indices are approximated by pick-freeze estimators [31].
The strategy for computing these estimators uses Monte Carlo sampling and requires evaluating the model at many
sample points. This can be too costly, especially when the model F is expensive to evaluate. In such cases, it is
common practice to construct a surrogate model bF º F whose Sobol’ indices can be efficiently computed [32,33].
In the best case scenario, the Sobol’ indices of the surrogate model can be computed analytically. We detail two such
surrogate models below.

Polynomial chaos surrogates. Polynomial chaos expansions (PCEs) take advantage of orthogonal polynomials to
approximate expensive-to-evaluate models; see [34,35]. The standard approach is to truncate the PCE based on the to-
tal polynomial degree. PCE surrogates are advantageous because they admit analytic formulas for Sobol’ indices that
depend only on the PC coefficients [34]. In practice, the PC coefficients are typically computed using nonintrusive
approaches that involve sampling the model F . These include nonintrusive spectral projection or regression-based
methods [36]. In the present work, we build PCE surrogates using sparse regression [37,38]. As noted in [23], this
approach is particularly useful in the case where function evaluations are noisy. Solving the sparse regression problem
can be formulated as a linear least-squares problem regularized by an `1-penalty [39,40]. In our numerical compu-
tations, we use the SPGL1 solver [41,42] to solve such problems. Note that an `1-penalty approach also involves
choosing a penalty parameter. In our experiments, we perform a tenfold cross validation over training sets to choose
the `1-penalty parameters.

Sparse weight-ELM surrogates. Sparse weight extreme learning machines (SW-ELMs), introduced in [43], are
a class of neural network surrogates that build on the standard extreme learning machines (ELMs). These surrogates
are closely related to random feature expansions, which have been proposed for use in uncertainty quantification [44].
SW-ELM surrogates are specialized for applications in global sensitivity analysis. They are single-layer neural net-
works of the form

bF (x) = Ø>¡(Wx + b), x 2 Rd. (8)

Here, Ø denotes the output weight vector,W the hidden layer weight matrix, b the hidden layer bias vector, and¡ the
activation function. Whereas with traditional neural networks, all weights and biases are trained at once by solving
a nonlinear least-squares problem, ELMs instead randomly choose the hidden layer weights and biases. Training an
ELM then only involves determining the output layer weights by solving a linear least-squares problem; see [45,46]
for details. This means training ELMs is very simple and fast. SW-ELMmodifies the weight sampling step of standard
ELM to improve performance for GSA. The method introduces a validation step to choose a sparsification parameter
p. Similar to PCE, analytical formulas for Sobol’ indices of SW-ELM, as shown in [43], can be derived for specific
choice of activation function. Unlike PCE surrogates, which are expansions over an orthogonal basis, SW-ELM
surrogates are expansions over random nonorthogonal bases. SW-ELM surrogates are quick and easy to train, but are
also structurally different from PCE surrogates. In our numerical results, we compare the Sobol’ index estimates from
both surrogates to gain further confidence in the results. For the SW-ELM surrogates used in our experiments, the
number of neurons used is half the number of training points. A fraction of the training points are used as a validation
set to choose the sparsification parameter. See [43] for further details.

International Journal for Uncertainty Quantification



Sensitivity of Bayesian Inverse Problems to the Prior Distribution 69

4. METHOD

In this section, we outline our proposed approach for GSA of hyperparameter-to-statistic (HS) mappings of the
form Eq. (6). Our focus will be mainly on HS mappings that involve integrating over the posterior. Examples are
the posterior mean or variance. For simplicity, we focus on

F (ª) = Eª
post(q) =

Z

Rd

q(µ)ºª
post(µ) dµ. (9)

We generalize the strategies described below to the cases of variance and higher-order moments later in this section.
Estimating the Sobol’ indices of Eq. (9) is generally challenging. Computing F (ª) using samples from the

posterior distribution of µ often requires a MCMC method. With MCMC, the mean ergodic theorem guarantees
convergence to F (ª) as we take more MCMC samples as long as the Markov kernel is ergodic [47]. A naive approach
for computing the Sobol’ indices of F (ª) would be to follow a sampling procedure where an MCMC simulation
is carried out for each realization of ª. This is typically infeasible. For one thing, the computational cost of this
naive approach will be prohibitive for most practical problems. In addition, performing multiple runs of an MCMC
algorithm can be problematic, because such methods typically have algorithm-specific parameters that might need
tuning for different realizations of ª.

In Section 4.1, we outline an approach that combines MCMC and importance sampling for fast computation of
moment-based HS mappings under study. Then, in Section 4.2, we present an algorithm that combines the approach
in Section 4.1 and surrogate models to facilitate GSA of moment-based HS maps. In that section, we also discuss the
computational cost of the proposed approach, in terms of the number of required forward model evaluations. We also
briefly discuss GSA of FatMAP in Section 4.3.

4.1 Importance Sampling for Fast Evaluation of Moment-Based HS Maps

Importance sampling [22,48] aims at accelerating the computation of integrals such as Eq. (9), where the target
distribution ºª

post is difficult to sample from. This is done by introducing an importance sampling distribution ºIS(µ),
which is tractable to work with, and from which we are likely to sample points where the target posterior distribution
takes high density.

Let ºIS be an importance sampling distribution. The integral (9) can be written as
Z

Rn

q(µ)ºª
post(µ|d) dµ =

Z

Rn

wª(µ)q(µ)ºIS(µ) dµ, with wª(µ) =
ºª
post(µ|d)
ºIS(µ)

, (10)

provided that ºIS(µ) > 0 whenever q(µ)ºpost(µ) 6= 0 [48]. When this holds, we can create a Monte Carlo estimate
of Eq. (10),

Z

Rn

q(µ)ºª
post(µ|d) dµ º

MX

i=1

wi q(µi), µi ª ºIS, (11)

where wi = wª(µi), i = 1, . . . ,M , define the importance sampling weights. For our purposes, we desire weights
that are much greater than zero and have little variation over different samples. Our motivation for using importance
sampling is to compute Eq. (11) for different realizations of ª without the need for multiple MCMC runs. For this
to be successful, there must be an importance sampling distribution suitable for all the target posteriors. This is
a fundamental assumption behind the proposed method. We propose an importance sampling approach tailored to
the Bayesian inverse problem of interest that enables computing Eq. (11) for different choices of ª using the same
importance sampling distribution.

Because the choices of prior distribution belong to a parameterized family, the target posterior distributions
belong to a parameterized family (parameterized by the same prior hyperparameters) as well. We let the importance
sampling distribution be the posterior ºIS = ºISpost constructed using a specific choice of prior, ºISpr . This ºISpr is chosen
from the same family as the priors in such a way that its high-probability region covers that of the family of target
priors. See Fig. 1 for an illustration, for the case of Gaussian priors. We then consider
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π ISpr

πξ 1
pr

πξ 2
pr

FIG. 1: The interiors of the solid-line and dashed-line ellipses represent the high density regions of two priors ºª1
pr and ºª2

pr ,
respectively. They are both enclosed by the high density region of ºISpr , represented by the interior of the dotted-line ellipse.

ºISpost(µ|d) / ºlike(d|µ)£ ºISpr (µ). (12)

Importance sampling often breaks down if the importance sampling distribution fails to cover the density of the
target, especially when the target distribution has a heavy tail. As noted in our computational results, choosing a prior
that “covers” all the target priors typically results in a suitable importance sampling posterior ºISpost. With the present
strategy, it is possible to sample from ºISpost with one run of MCMC and gather information for all the target posteriors.
Choosing the importance sampling prior from the same family as the target priors is expedient but not essential to
this strategy. However, doing so makes it easy to compare the importance sampling distribution against the target
distributions. The importance sampling prior can be from different family or mixture distribution, though the cases
where these choices are more advantageous require future study.

We derive an expression for the estimator (11) when ºIS = ºISpost. We let µIS and °IS denote the mean and
covariance of ºISpr while µª and °ª will denote the mean and covariance of ºª

pr. Let Pª and P IS be the normalization
constants that correspond to ºª

post and ºISpost, respectively:

Pª :=
Z

Rd

ºlike(d|µ)ºª
pr(µ) dµ, P IS :=

Z

Rd

ºlike(d|µ)ºISpr (µ) dµ. (13)

We can write the importance sampling weights in Eq. (10) as

wª(µ) =
ºª
post(µ)

ºISpostµ)
=

ºª
pr(µ)ºlike(µ)/Pª

ºISpr (µ)ºlike(µ)/P IS =
1

Pª/P IS

ºª
pr(µ)

ºISpr (µ)
. (14)

Letting the importance sampling weight in Eq. (11) be given by Eq. (14), we obtain
Z

Rn

q(µ)ºª
post(µ|d) dµ =

1
Pª/P IS

Z

Rn

q(µ)
ºª
pr(µ)

ºISpr (µ)
ºISpost(µ|d) dµ. (15)

We can use the importance sampling distribution to rewrite the ratio of normalization constants Pª/P IS as

Pª

P IS =
1

P IS

Z

Rn

ºlike(d|µ)ºª
pr(µ) dµ

=
1

P IS

Z

Rn

ºlike(d|µ)ºª
pr(µ)

P IS

ºlike(d|µ)ºISpr (µ)
ºISpost(µ|d) dµ

=
1

P IS

Z

Rn

P IS ºª
pr(µ)

ºISpr (µ)
ºISpost(µ|d) dµ

=
Z

Rn

ºª
pr(µ)

ºISpr (µ)
ºISpost(µ|d) dµ. (16)
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Combining the expressions (15) and (16) yields the estimator

F (ª) =
Z

Rn

q(µ)ºª
post(µ|d) dµ º

1
C(µ1, . . . , µM )

MX

i=1

q(µi)
ºª
pr(µi)

ºISpr (µi)
, µi ª ºISpost, (17)

where C(µ1, . . . , µM ) =
PM

i=1(º
ª
pr(µi)/ºISpr (µi)) is from the estimator of Eq. (16). For the case of Gaussian priors,

ºª
pr(µ)

ºISpr (µ)
= exp

∑
1
2
°
(µIS ° µ)>°°1IS (µIS ° µ)° (µª ° µ)>°°1ª (µª ° µ)

¢∏
. (18)

There are some diagnostics for evaluating the effectiveness of a sample set from the importance sampling
distribution—see Chapter 9 in [22]. We use effective sample size in our experiments. A large effective sample size is
desirable as it indicates small variation in the estimator (15). For a given ª, the effective sample size is

nª
E :=

≥PM
i=1 wª(µi)

¥2

PM
i=1 wª(µi)2

, µi ª ºISpost. (19)

Recall from Eq. (14) that we can rewrite wª = ºª
post/ºISpost = (1/(Pª/P IS))(ºª

pr/ºISpr ). We can write Eq. (19) as

nª
E =

√
MX

i=1

ºª
post(µi)

ºISpost(µi)

!2. MX

i=1

√
ºª
post(µi)

ºISpost(µi)

!2
=

√
MX

i=1

1
Pª/P IS

ºª
pr(µi)

ºISpr (µi)

!2.
0

@
MX

i=1

√
1

Pª/P IS

ºª
pr(µi)

ºISpr (µi)

!21

A

=

√
MX

i=1

ºª
pr(µi)

ºISpr (µi)

!2.
0

@
MX

i=1

√
ºª
pr(µi)

ºISpr (µi)

!21

A.

(20)

In practice, we assess the suitability of ºISpost as an importance sampling distribution by examining the distribution of
nª
E for an ensemble of realizations of ª. This is illustrated in our computational results in Section 5.
Such diagnostics highlight potential avenues for choosing the importance sampling procedure in a more system-

atic manner. For example, Chapter 5 in [49] explores finding the importance sampling distribution that minimizes the
variance of all importance sampling weight functions. Alternatively, one could can minimize the Hellinger distance
between the importance sampling distribution and the target distributions [50].

Higher-order moments.We examine themth order moment of q,

Eª
post(q

m) =
Z

Rd

°
q(µ)

¢m
ºª
post(µ) dµ. (21)

The estimator (17) approximates the expectation of q with respect to the posterior. The formula can be applied to
estimate themth-order moment,

Eª
post(q

m) º
1

C(µ1, . . . , µM )

MX

i=1

°
q(µi)

¢m ºª
pr(µi)

ºISpr (µi)
, µi ª ºISpost. (22)

In this way, statistics that depend on higher-order moments can be estimated. For example, the variance, which
depends on the second moment and expectation, has the estimator

Eª
post(q

2)°
°
Eª
post(q)

¢2
º

1
C(µ1, . . . , µM )

MX

i=1

°
q(µi)

¢2 ºª
pr(µi)

ºISpr (µi)
°

√
1

C(µ1, . . . , µM )

MX

i=1

q(µi)
ºª
pr(µi)

ºISpr (µi)

!2

,

µi ª ºISpost.

(23)

Accurate estimation of Fvar(ª) using Eq. (23) then requires accurate estimation of Fmean(ª).
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4.2 Algorithm for GSA of Moment Based HS Maps

We show in Algorithm 1 how GSA can be done on the HS mappings, by using M samples from one MCMC run to
yield approximations to the HS mappings F̃M

mean º Fmean and F̃M
var º Fvar. The approximate F̃M

mean mappings and F̃M
var

are defined with respect to the estimators (17) and (23), respectively. For example,

F̃M
mean =

1
C(µ1, . . . , µM )

MX

i=1

q(µi)
ºª
pr(µi)

ºISpr (µi)
, µi ª ºISpost. (24)

Variance-based sensitivity analysis can be done through pick-freeze estimators for the Sobol’ indices of the approx-
imate HS mappings. If many function evaluations and MCMC samples are used, this process can be expensive. A
faster alternative is to used surrogate models. We employ sparse regression PCE and sparse weight ELM, discussed
in Section 3. Sample realizations of ª are generated by HS [51,52]. These samples serve as a training set for building
surrogate models for GSA, as discussed in Section 3. The purpose of using two different surrogate methods is to help
gain further confidence in the computed results.

MCMC generates correlated samples. One strategy for reducing the correlation between samples is thinning [53].
Thinning an MCMC chain means to keep every kth sample in the chain while discarding the rest. This reduces the set
toM/k samples. Because the remaining samples are spaced farther apart in the original MCMC chain, the thinned set
overall has less correlation than the original set. It is also cheaper to compute the statistical moments of the smaller
thinned set than of those of the original set. An extra step can be added to Algorithm 1 where the MCMC chain is
thinned. This can be helpful ifM and N are large so that computing all HS mapping approximations requires many,
many operations.

Algorithm 1 incurs much of its cost during the MCMC sampling stage, assuming that the model and QoI q are
expensive to evaluate. In this work, we use the delayed-rejection adaptiveMetropolis (DRAM) [28,54,55] algorithm to
performMCMC. Our method does not specifically depend on DRAM and can be used in conjunction with anyMCMC
algorithm. DRAM, however, is state-of-the-art and has broad applicability. With delayed rejection, each MCMC stage
can include up to a fixed number of extra delayed-rejection steps. Each of these steps requires us to evaluate the model

Algorithm 1: Variance-based prior sensitivity analysis through importance sampling
Input: (i) Likelihood PDF ºlike(d|µ). (ii) Hyperparameter-dependent prior PDF ºª

pr(µ). (iii) Importance
sampling prior PDF ºISpr (µ). (iv) Collection of hyperparameter samples {ªk}

N
k=1. (v) QoI function

q(µ). (vi) Monte Carlo sample sizeM .
Output: (i) First-order Sobol’ indices. (ii) Total Sobol’ indices.

1 Choose importance sampling prior ºISpr
2 Perform MCMC to generate samples, {µi}

M
i=1, from ºISpost, of which cM are distinct

3 for i = 1, . . . , cM
4 Compute and store q(µi)
5 Compute and store ºISpr (µi)
6 for k = 1, . . . , N
7 Compute and store ºªk

pr (µi)
8 end for
9 end for
10 for k = 1, . . . , N
11 Approximate Fmean(ªk) and Fvar(ªk), using the estimators (17) and (23), with

n
q(µi),ºªk

pr (µi),ºISpr (µi)
oM

i=1
12 end for
13 Estimate first-order and total Sobol’ indices of Fmean and Fvar
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an additional time. Typically, one initially runs MCMC forMburn burn-in stages. These burn-in samples are discarded
and not included in the set of posterior draws. The cost of running the MCMC stage in Algorithm 1 with DRAM is
O(M + Mburn) model evaluations. In the second stage, we evaluate q at the distinct MCMC samples. Because the
MCMC samples usually include repeated draws, the number of these QoI evaluations is less thanM .

4.3 GSA of the MAP Point

The MAP point is an important point estimator and studying its sensitivity to prior parameters complements the study
of other moment-based HS maps such as the posterior mean or variance. The approach described in Algorithm 1 can
be used in cases where F (ª) involves moments of the posterior, as in the case of the mean and variance. On the other
hand, evaluating FatMAP requires solving the regularized nonlinear least-squares problem (5) for each realization of ª.
No numerical integration is needed. One does not even need to know the normalization constant of the posterior to find
its MAP point. While we do not use Algorithm 1 to study FatMAP, we evaluate it at the same set of realizations {ªk}

N
k=1

used in Algorithm 1. These evaluations are used to build surrogate models for FatMAP. The computed surrogate is then
used for fast GSA of FatMAP.

5. COMPUTATIONAL RESULTS

In this section, we consider two model inverse problems as test beds for our proposed approach. Specifically, we
use Algorithm 1 for global sensitivity analysis (GSA) of hyperparameter-to-statistic (HS) mappings from the inverse
problems under study. These examples are used to examine various aspects of the proposed method. In Section 5.1,
we consider a simple linear inverse problem. Specifically, we formulate fitting a line to noisy data as a linear Bayesian
inverse problem. In this case, the posterior distribution is known analytically. This means that the HS mappings admit
analytical forms, and we can perform GSAwithout Algorithm 1. This problem serves as a benchmark where we gauge
the accuracy of GSA with Algorithm 1 against reference values. The QoI in this example is a quadratic function. For
this QoI, we study the HS mappings for the mean and variance. The Sobol’ indices, approximated using Algorithm 1,
of these HS mappings are compared to the true Sobol’ indices. Overall, we note close agreement between the results
produced by our method and the analytic results.

Next, we apply our method to a nonlinear Bayesian inverse problem in Section 5.2. The inverse problem is gov-
erned by the SEIR epidemiological model [56,57]. It exemplifies the type of problem that Algorithm 1 is designed
and intended for. Our numerical results provide a unique perspective on the impact of uncertainty in prior hyperpa-
rameters. The QoI is the basic reproductive number. We quantify the uncertainty in the mean, variance, and MAP
point that is caused by uncertainty in the prior hyperparameters. The Sobol’ indices of the mean, variance, and MAP
point HS mappings are computed using Algorithm 1 and highlight the most influential hyperparameters in each case.
We use two different surrogate modeling approaches in these computations: one based on sparse polynomial chaos
expansions (PCEs) and the other based on sparse weight extreme learning machines (SW-ELMs). The two approaches
provide results that match closely.

5.1 Linear Bayesian Inverse Problem

We consider the problem of fitting a line y = mt+ b to noisy measurements {(ti, yi)}4i=1 at times t = 0, 0.5, 1.5, 2.5.
The slope m and intercept b are treated as unknown parameters, which we seek to estimate. We cast this problem in
a Bayesian framework. This serves to illustrate various properties of our proposed framework.

5.1.1 Bayesian Inverse Problem Setup

Let the inversion parameter vector be denoted by µ =
£

b m
§>. We consider estimation of µ from

Aµ + ¥ = y, (25)

whereA =

"
1 1 1 1
0 0.5 1.5 2.5

#>
is the forward operator, ¥ models measurement noise, and y is the data.
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We assume noise at each measurement independently follows the standard normal distribution, i.e., ¥i ª N (0, 1).
The noise covariance is °noise = I4£4. We assume a “ground-truth” parameter vector µtrue = [1 ° 2]> and generate
measurements by adding sampled noise ¥i to yi = °2ti + 1 for i = 1, . . . , 4; see Fig. 2. We assume a Gaussian prior
distribution N (µpr,ßpr) for the inversion parameters µ with

µpr =

"
µb

µm

#
, ßpr =

"
æ2b 0
0 æ2m

#
. (26)

Due to linearity of the parameter-to-observable map and Gaussian prior and noise models, the posterior distribution
for µ is also Gaussian and explicitly known. It is the Gaussian distribution N (µpost,ßpost), where

ßpost = (A>°°1noiseA + ß°1
pr )°1, µpost = °post(A>°°1noisey + ß°1

pr µpr). (27)

Quantity of interest.We introduce the QoI which depends on the inversion parameters µ. The QoI is the quadratic
form

q(µ) = µ>µ = m2 + b2, µ ª N (µpost,ßpost). (28)

As µ is a Gaussian random variable, we have access to expressions for the first and second moments [58–61]. of the
QoI. We can therefore express the mean and variance of the QoI analytically.

Epost(q) = tr(ßpost) + µ>postµpost, var(q) = 2 tr(ß2
post) + 4µ>postßpostµpost. (29)

Uncertainty in prior hyperparameters. Before building the posterior distribution, we must choose values for
the prior hyperparameters ª =

£
µb µm æ2b æ2m

§> that appear in Eq. (26). We assume these parameters are
specified within some interval around their nominal values and are modeled as independent uniformly distributed
random variables. We use a nominal value of 1 for each of the parameters and let the upper and lower bounds of the
distributions be ± 50% perturbations of the nominal value.

5.1.2 Parameter Estimation and Importance Sampling

To understand how the uncertainty in the prior hyperparameters affects the QoI, we employ Algorithm 1 from Sec-
tion 4. The first step is to choose a prior ºISpr to build the importance sampling distribution ºISpost. We takeN (µISpr ,ß

IS
pr)

with

0 0.5 1 1.5 2

t

-2

-1

0

1

2

3

4

y

True Model

Data

FIG. 2: The true trajectory of the linear model plotted with the noisy measurements at times t = 0, 0.5, 1.5, 2
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µpr =

"
1
1

#
, ßpr =

"
1.52 0
0 1.52

#
. (30)

We use the DRAM algorithm, discussed in Section 4, to draw 105 samples from ºISpost. In Fig. 3, we compare the prior,
analytic posterior, and MCMC-constructed posterior marginal distributions of b and m. Before we implement Algo-
rithm 1, we evaluate whether ºISpost is an acceptable importance sampling distribution. As discussed in Section 4, we
use Eq. (20) to compute the effective sample size over the distribution of prior hyperparameters ª. The distribution
of effective sample sizes, given in Fig. 4(left), shows that ºISpost is an effective importance sampling distribution over
many realizations of ª. In Fig. 4, we give a further visual of how ºISpost serves as an effective importance sampling
distribution. In the right panel, the distribution of q, when µ ª ºISpost, is compared to the distributions of q(µ) when
µ ª ºª

post, for three realizations of ª. The realizations are

• ª1 =
£
1.5 0.5 1.5 1

§>,

• ª2 =
£
1.5 1.5 1.5 1.5

§>,

• and ª3 =
£
1 1.5 1 0.5

§>.
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FIG. 3: MCMC chains of the inversion parameters m and b along with corresponding marginal posterior distributions compared
to prior distributions
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FIG. 4: Left: Histogram, over 1000 realizations of ª, of effective sample size for importance sampling ofM = 105 samples from
ºISpost. Right: Distribution of q when µ ª ºISpost compared to when µ ª ºª

post for three realizations of ª.

5.1.3 Sensitivity Analysis

We now study q given in Eq. (28). We are interested in the variance and mean HS mappings (6) Fmean(ª) = Eª
post(q)

and Fvar(ª) = varª(q). As shown in Eq. (29), these HS mappings take analytically known forms.
We use Algorithm 1 to yield estimations of the HS mappings for use in uncertainty quantification and computing

Sobol’ indices. The importance sampling distribution is given by ºISpost, as described in Section 4, and with ºISpr as
specified in Eq. (30). We study how the Sobol’ indices, computed via Algorithm 1, converge as we increase MCMC
sample sizeM .

The Sobol’ indices estimated by Algorithm 1 are compared against benchmark indices. We compute the bench-
mark indices by applying the standard sampling approach from [31] to the HS mappings. This yields accurate indices
because we have access to the analytic expressions of Fvar and Fmean.

In Fig. 5, the study for Fmean is given. The tests of convergence for the first-order and total Sobol’ indices
compare the pick-freeze estimators of the approximate HS mapping F̃mean to the pick-freeze estimators of the exact
HS mapping Fmean, given by Eq. (29), which we treat as reference values. Each set of estimators uses 6 £ 106
evaluations to compute. We see how closely the Sobol’ indices of the approximate HS mapping converge to the
reference values asM increases.

As the pick-freeze estimators are expensive to evaluate, we demonstrate in Fig. 5 how surrogates can speed up
GSA and give accurate results. In our computations, we build sparse PCE and sparse weight ELM [43] surrogate
models, discussed in Section 3 using 103 realizations of ª, drawn using LHS. SW-ELM surrogates also use another
200 realizations for validation during the weight sparsification step. For PCE surrogates, the PC basis is truncated
at total degree 5. With only a modest MCMC sample size of M = 104, we can ascertain the correct importance
ranking of the total Sobol’ indices of Fmean. The surrogate models provide us with accurate GSA, but require few
model evaluations.

In Fig. 6, we have results of repeating the above study for Fvar. A slower rate of convergence may be expected, but
is not observed. The numerical studies for the present model linear inverse problem provide a proof-of-concept study
of Algorithm 1. In particular, availability of analytic expressions for the HS mappings enables testing the accuracy of
the computed results. In all the numerical tests, we note that a modest MCMC sample size is sufficient to obtain the
correct parameter rankings.

We show in Fig. 7 the uncertainty in the posterior mean and variance of the QoI caused by uncertainty in the
prior hyperparameters. Kernel density estimates of the distribution of the approximate HS mapping are compared to
those of the true HS mapping. We estimate the approximation errors that result from using MCMC in Algorithm 1
and from building the surrogate models. A verification set of 1000 realizations of ª is drawn from the distribution on
the prior hyperparameters. We evaluate relative error over this set, so that
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FIG. 5: Top left: Convergence experiment showing how the first-order Sobol’ indices of F̃ M
mean converge to those of Fmean with

increasing MCMC sample size M . Sobol’ indices are approximated using pick-freeze estimators with 6 £ 106 evaluations. Pick-
freeze estimators for Sobol’ indices of Fmean (horizontal lines) are treated as values. Top right: Convergence experiment showing
how the total Sobol’ indices of F̃ M

mean converge to those of Fmean with increasing MCMC sample sizeM . Bottom left: Comparison
of reference first-order Sobol’ indices to surrogate-estimated indices where F̃ M

mean evaluations are approximated with M = 105
MCMC samples. Bottom right: Comparison of reference total Sobol’ indices to pick-freeze estimators and surrogate-estimated
indices.

≤rel(F,G) :=
PN

k=1(F (ªk)°G(ªk))2
PN

k=1(F (ªk))2
. (31)

We also assess the relative error in total Sobol’ indices using

Srel :=
Pd

i=1
°
Stoti (F )° Stoti (G)

¢2
Pd

i=1
°
Stoti (F )

¢2 . (32)

The relative approximation errors are given in Table 1 along with the maximum relative errors in approximation of
the Sobol’ indices.
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FIG. 6: Top left: Convergence experiment showing how the first-order Sobol’ indices of F̃ M
var converge to those of Fvar with
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how the total Sobol’ indices of F̃ M

var converge to those of Fvar with increasing MCMC sample size M . Bottom left: Comparison
of reference first-order Sobol’ indices to surrogate-estimated indices where F̃ M

var evaluations are approximated with M = 105
MCMC samples. Bottom right: Comparison of reference total Sobol’ indices to pick-freeze estimators and surrogate-estimated
indices.

5.2 Nonlinear Bayesian Inverse Problem Based on SEIR Model

In this section, we consider a Bayesian inverse problem governed by the susceptible-exposed-infected-recovered
(SEIR) model [56,57] epidemic model. In Section 5.2.1 we discuss the governing SEIR model and the Bayesian
inverse problem under study. In Section 5.2.2, we study the proposed importance sampling procedure for computing
the HS mappings under study. Finally, in Section 5.2.3, we present our computational results for GSA of the present
Bayesian inverse problem with respect to prior hyperparameters.

5.2.1 The Inverse Problem

The SEIR model simulates the time dynamics of an epidemic outbreak in a population. The model has four compart-
ments, S,E, I , andR, corresponding to the susceptible, exposed, infected, and recovered populations. The individuals
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FIG. 7: Left: True distribution of Fmean compared to its approximation, estimated using F̃ M
mean with M = 105 MCMC samples.

Right: True distribution of Fvar compared to its approximation, estimated using F̃ M
var withM = 105 MCMC samples.

TABLE 1: Left: Relative approximation errors, defined by Eq. (31), capturing error from MCMC and
from surrogate approximation. Right: Relative error in total Sobol’ index estimates, defined by Eq. (32),
resulting from error from MCMC and from surrogate approximation. Surrogate approximation captures
deviation of the surrogate from the approximate HS mapping. MCMC error captures deviation of the
approximate HS mapping from the true HS mapping

Error type Fmean Fvar

≤rel(F, F̃M ) 1.78 £ 10°2 0.100
≤rel(F, F̃M

ELM) 1.78 £ 10°2 0.100
≤rel(F, F̃M

PCE) 1.78 £ 10°2 0.100
≤rel(F̃M , F̃M

ELM) 4.56 £ 10°6 6.73 £ 10°6

≤rel(F̃M , F̃M
PCE) 2.95 £ 10°5 1.53 £ 10°4

Error type Fmean Fvar

Srel(F, F̃M ) 2.85 £ 10°2 1.98 £ 10°2

Srel(F, F̃M
ELM) 1.31 £ 10°2 6.24 £ 10°3

Srel(F, F̃M
PCE) 1.69 £ 10°2 8.43 £ 10°3

Srel(F̃M , F̃M
ELM) 2.52 £ 10°2 3.89 £ 10°3

Srel(F̃M , F̃M
PCE) 1.55 £ 10°2 1.24 £ 10°2

in the exposed compartment are those who have been exposed to the disease but are not yet displaying signs of infec-
tion. The individuals in the I compartment are infected and infectious. We consider a standard SEIR model where we
assume recovered individuals cannot be reinfected. Additionally, we assume that the natural birth and death rates are
equal and neglect disease related mortality. This ensures that the total population N = S + E + I + R remains con-
stant over time. The present model is described by the following system of nonlinear ordinary differential equations
(ODEs):

Ṡ = µN ° ØSI/N ° µS,

Ė = ØSI/N ° (æ + µ)E,

İ = æE ° (∞ + µ)I,

Ṙ = ∞I ° µR.

(33)

There are four model parameters in the above system which we seek to estimate. The infection rate Ø, in units of
days°1, represents how quickly an infected individual infects a susceptible individual. The recovery rate ∞, in units
of days°1, represents how fast an infected individual recovers from infection. The latency rate æ, in units of days°1,
represents how long it takes for an exposed individual to display symptoms. Lastly, there is also a parameter µ, with
units of individuals per day, which represents both the natural birth rate and the natural death rate. In the model,

Volume 15, Issue 2, 2025



80 Darges, Alexanderian, & Gremaud

individuals are only born susceptible while individuals in any compartment can die a natural death. As noted before,
since the birth and death rates are the same, the total population size remains constant.

Setup. Bayesian analysis of an epidemic using the SEIR model requires constructing a posterior of the model
parameters from available infection data [62]. For the purposes of this example, we simulate an epidemic governed
by the SEIR model for a population of N = 1000 individuals. The nominal parameters and initial conditions are
detailed in Table 2. The nominal parameter values will be used as “ground-truth” in the computational studies that
follow. The dynamics of the epidemic under these conditions are shown in Fig. 8(left). Next, we formulate a Bayesian
inverse problem. In what follows, we formulate the inverse problem as that of estimating the log of the uncertain
model parameters. Hence, we consider the inversion parameter vector, µ =

£
logµ logØ logæ log∞

§>. The
data measurements, used to solve the inverse problem, consist of simulated data {(tk, Ik)} at times tk = 3k + 30,
where k = 1, . . . , 15. These simulated data measurements are obtained by solving the SEIR model with ground-truth
parameter values and adding random noise. The noise at each measurement is identically independently distributed
from a normal distribution N (0, 302). The simulated data compared to the true model are shown in Fig. 8(right).

We use a Gaussian prior N (mpr,ßpr) on the inversion parameter vector µ with

mpr =

2

6664

mlogµ

mlogØ

mlogæ

mlog∞

3

7775
, ßpr =

2

6664

s2logµ 0 0 0
0 s2logØ 0 0
0 0 s2logæ 0
0 0 0 s2log∞

3

7775
. (34)

TABLE 2:Model parameters and initial conditions used to simulate
the SEIR model (33) in Fig. 8

Model parameter Value Initial condition Value
µ 5.48 £ 10°5 S0 999
Ø 1/2.5 E(0) 0
æ 1/3 I(0) 1
∞ 1/7 R(0) 0

0 50 100 150 200

Time (days)

0

200

400

600

800

1000

In
d

iv
id

u
al

s

Susceptible

Exposed

Infected

Recovered

0 50 100 150 200

Time (days)

0

50

100

150

200

In
fe

ct
ed

True Model

Data

FIG. 8: Left: Simulated dynamics of an epidemic outbreak following the SEIR model. The total population isN = 1000 individ-
uals and the model parameters are µ = 5.48£ 10°5 individuals/day, Ø = 1/2.5 days°1, æ = 1/3 days°1, and ∞ = 1/7 days°1.
Initially, there is one infected individual and there are no exposed individuals. Right: Simulated data of the epidemic outbreak
compared to the true infected dynamics. The simulated infected data are taken by adding noise to values from the true model. The
noise is sampled from the normal distributionN (0, 302).
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Unlike the inverse problem in Section 5.1, this Bayesian inverse problem is nonlinear. In this case, we do not have
access to an analytically known posterior distribution. This means MCMC is needed to sample from the posterior
distribution.

Uncertainty in prior hyperparameters. We assume there is uncertainty in the hyperparameters that appear in
Eq. (34). Specifically, we consider the vector

ª =
£

mlogµ mlogØ mlogæ mlog∞ s2logµ s2logØ s2logæ s2log∞

§>

of parameters that define the prior as uncertain. In the present study, we assume that the entries of ª are independent
uniformly distributed random variables, as specified in Table 3.

Quantity of interest. An important quantity of interest in epidemiology is the basic reproduction number, denoted
R0. It can be interpreted as the number of secondary infections caused, on average, by a single individual [56].
Determining R0 of an epidemic is key to understanding how severe the outbreak could be. For the SEIR model (33),
R0 takes the form

R0 =
Ø

∞ + µ

æ

æ + µ
. (35)

For the simulated epidemic in Fig. 8, R0 = 2.7985. The importance of R0 makes it a prime area to apply uncertainty
quantification and robustness analysis. In [63], the robustness of R0 estimates to model parameters is considered
through local derivative-based methods. Hence, we focus on R0 as the QoI:

q(µ) =
eµ2

eµ4 + eµ1

eµ3

eµ3 + eµ1
.

5.2.2 Parameter Estimation and Importance Sampling

Before we can implement Algorithm 1, we have to choose the importance sampling distribution. In accordance with
the discussion in Section 4, we choose the importance sampling distribution ºISpr as N (mIS

pr ,ß
IS
pr) with

mIS
pr =

2

6664

°10
°1.5
°1.5
°1.5

3

7775
, ßIS

pr =

2

6664

22 0 0 0
0 22 0 0
0 0 22 0
0 0 0 22

3

7775
. (36)

Becausemlogµ takes a wider range of values compared to the other means, we impose a large variance on logµ
in ºISpr . We construct the corresponding posterior ºISpost using the DRAM algorithm. The first 104 samples are removed
for burn-in. We adapt the proposal distribution for 106 iterations. After this we take 106 draws from the MCMC
chain. Because the posterior is non-Gaussian, the resulting MCMC chain has high levels of correlation. We present
the MCMC chains of log parameters and their respective marginal posterior distributions in Fig. 9. In Fig. 10(left), we
evaluate the effectiveness of our importance sampling distribution by examining the distribution of effective sample
sizes. We also compare the distribution of R0 values, with respect to ºISpost, compared to the posterior distributions for
three realizations of the prior hyperparameters in Fig. 10(right). The realizations are

TABLE 3: Intervals for admissible hyperparameter values of the prior µ ª N (mpr,ßpr). Each
hyperparameter is uniformly distributed on an interval perturbed± 50% of the respective nominal
value

Mean hyperparameter Distribution Variance hyperparameter Distribution
mlogµ U([°15,°5]) s2logµ U([0.5, 1.5])
mlogØ U([°2.25,°0.75]) s2logØ U([0.5, 1.5])
mlogæ U([°2.25,°0.75]) s2logæ U([0.5, 1.5])
mlog∞ U([°2.25,°0.75]) s2log∞ U([0.5, 1.5])
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FIG. 9: Results of Bayesian parameter estimation for SEIR example. Chains are constructed by taking 106 posterior samples after
104 iterations of burn-in and 106 iterations for adapting the proposal distribution. Marginal distributions are constructed by kernel
density estimation on the respective MCMC chains.
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Compared to the effective sample sizes observed for the linear example in Fig. 4, there is a larger proportion of target
distributions ºª

post for which the effective sample size is small. Still, for the majority of the target distributions, the
effective sample size is sufficient.

5.2.3 Sensitivity Analysis

Here, we study the sensitivity of the HS mappings Fmean, Fvar, and FatMAP to prior hyperparameters, relative to the
QoI q(µ) = R0. As discussed in Section 4, FatMAP is not evaluated the same way as the other two HS mappings—it
is evaluated by solving an optimization problem. Therefore, we only include convergence studies for Fmean and Fvar.

We start by studying the pick-freeze estimators of total Sobol’ indices for Fmean and Fvar. To reduce the compu-
tational burden, we thin the MCMC chain from 106 iterates to 2 £ 104 iterates. We track the convergence of these
indices as we increase the number of MCMC samples from ºISpost up to 2 £ 104 samples. The pick-freeze estimators
use 106 design points, requiring 107 total evaluations of the HS mapping. The results are reported in Fig. 11 for Fmean
and in Fig. 12 for Fvar.

For each HS mapping, we also construct surrogate models using 103 realizations of ª, drawn using LHS. For
polynomial chaos expansion surrogates, we use expansions of total degree 5. SW-ELM surrogates use 1000 realiza-
tions for training and an additional 500 realizations for validation during the weight sparsification step. We use these
surrogates to approximate the first-order and total Sobol’ indices of the approximate HS mappings. The surrogate
estimates are compared to the pick-freeze estimators in Fig. 11 for Fmean and in Fig. 12 for Fvar.

We must use a large proportion of the MCMC chain before the pick-freeze estimators fully stabilize. Despite this,
the hyperparameter sensitivity rankings stabilize much faster, after one-fourth of the chain is used to approximate the
HS mappings in Fig. 12.

GSA of FatMAP, defined in Eq. (5), does not make use of Algorithm 1. Instead, as discussed in Section 4.3,
evaluating the HS mapping for each realization requires solving an optimization problem. This costly process makes
estimating the pick-freeze estimators of the HS mapping too expensive. We instead perform GSA using only the
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FIG. 11: Top row: Convergence of pick-freeze estimators of the total indices of F̃ M
mean(ª) with increasing MCMC sample sizeM .

Total indices of the mean hyperparameters and variance hyperparameters are displayed separately. Bottom row: First-order and
total Sobol indices estimated by SW-ELM and PCE surrogates compared to pick-freeze estimators, labeled F M

mean(ª). Pick-freeze
estimators use 106 design points. HS mapping approximations useM = 2£ 104 samples.

surrogates. SW-ELM and PCE surrogates are constructed using the same sets of realizations used to build surrogates
for F̃M

mean and F̃M
var . The Sobol’ index estimates are summarized in Fig. 13.

The results from the SW-ELM and sparse regression PCE surrogates provide comparable summaries. This sug-
gests that the present computations are stable with respect to the choice of the surrogate model. The global sensitivity
analysis of Fmean, Fvar, and FatMAP allow us to infer much information about which hyperparameters in the prior mat-
ter and which do not. The Sobol’ indices suggest that the uncertainty in the prior mean of log∞ and prior variances of
logµ, log∞ can be ignored because their respective Sobol’ indices are close to zero. It is encouraging that GSA of the
different HS mappings yields similar conclusions because the methods for GSA of Fmean and Fvar are different from
the methods used for FatMAP. To illustrate this is the case, we compare the distributions of Fmean, Fvar, and FatMAP
to the distributions of their respective reduced mappings, for which the unimportant prior hyperparameter inputs are
fixed at nominal values in Fig. 14. The density estimates in Fig. 14 confirm that those three prior hyperparameters
have little influence over the posterior mean, variance, and MAP point. Thus, the experimental resources should be
put towards finding more information about the other hyperparameters.

We lastly quantify the approximation errors resulting from building the surrogate models. A verification set of
1000 realizations of ª is drawn from the distribution on the prior hyperparameters. For Fmean and Fvar, we can only
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FIG. 13: First-order and total Sobol’ indices of FatMAP estimated by SW-ELM and PCE surrogates. Each evaluation of FatMAP (5)
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examine the error between the surrogates and the approximate HS mappings, rather than the true HS mappings. For
FatMAP we can assess the error between the surrogate and the true HS mapping, but do not have pick-freeze estimators
to compare the surrogate estimated Sobol’ indices against. The error estimates are summarized in Table 4.

6. CONCLUSION

We have developed a computational approach quantifying sources of uncertainty unique to Bayesian inverse prob-
lems. The approach enables in-depth analysis of a problem’s dependence on uncertainties in prior hyperparameters.
Global sensitivity analysis indicates that the posterior distribution can exhibit complex dependence on such hyperpa-
rameters. Consequently, the uncertainty in the prior hyperparameters leads to uncertainty in posterior statistics of the
prediction/goal quantities of interest which needs to be accounted for. The results of GSA provide valuable insight
in this context. Such an analysis reveals the prior hyperparameters that are most influential on the posterior statis-
tics of prediction quantities of interest and whose specification requires care. Our computational studies provide a
proof-of-concept of the proposed approach and indicate its viability. In particular, at the cost of one MCMC run, we
can obtain reliable estimates of the sensitivity of moment-based hyperparameter-to-statistic mappings with respect to
prior hyperparameters.

The steps taken in this work show that there are numerous challenges and promising future directions to build
towards. An important aspect of our approach is the proposed importance sampling procedure. A limitation of the

TABLE 4: Left: Relative approximation errors, defined by Eq. (31), capturing error
in approximating F̃M

mean and F̃M
mean using SW-ELM and PCE surrogates. Right: Relative

approximation errors, defined by Eq. (31), capturing error in approximatingFatMAP using
SW-ELM and PCE surrogates. Bottom: Relative error in total Sobol’ index estimates,
defined by Eq. (32), comparing surrogate estimates to pick-freeze estimators. Surrogate
approximation captures deviation of the surrogate from the approximate HS mappings
F̃M
mean and F̃M

mean

Error type Fmean Fvar

≤rel(F̃M , F̃M
ELM) 1.93 £ 10°3 1.49 £ 10°2

≤rel(F̃M , F̃M
PCE) 1.40 £ 10°3 1.46 £ 10°2

Error type FatMAP

≤rel(F, F̃M
ELM) 8.77 £ 10°4

≤rel(F, F̃M
PCE) 5.41 £ 10°4

Error type Fmean Fvar

Srel(F̃M , F̃M
ELM) 2.52 £ 10°2 3.83 £ 10°2

Srel(F̃M , F̃M
PCE) 3.92 £ 10°3 2.11 £ 10°2
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present study is that the importance sampling prior in Eq. (12) was chosen in an empirical manner. While this can be
practical in many cases, developing a systematic approach for picking this distribution is an interesting and important
avenue of future investigations. This can be facilitated, e.g., by considering an appropriate optimization problem for
finding ºISpr . This requires definition of suitable performance objectives for ºISpr that are tractable to optimize. Progress
has been made in this area in Chapter 5 of [49]. There are still cases where there is no single importance sampling
posterior that can cover all high-density regions of the target posteriors. This can occur, for example, if the high-
density regions of the target priors have little or no overlap. Future work should explore possible remedies, including
choosing the importance sampling prior from a different family than that of the target priors, building an importance
sampling prior out of a suitable mixture of target priors, using different importance sampling distributions for different
groupings of target distributions, and multiple importance sampling—see Chapter 9 in [22].

The computational studies in this article are limited to inverse problems with low-dimensional inversion param-
eters. Also, our framework assumes a prior that belongs to a parameterized family. There are many opportunities for
expanding the present framework. MCMC for high-dimensional Bayesian inverse problems is computationally ex-
pensive but the cost can be eased by replacing the forward model with a surrogate or using multifidelity methods [64].
Infinite-dimensional Bayesian inverse problems can be solved through scalable MCMCmethods [65–67]. Exploration
of hyperparameters that affect the likelihood, as done in [17] for statistical models, is particularly intriguing. Our im-
portance sampling approach promises computational efficiency as long as excess evaluations of the forward model
are avoided. Uncertainty in certain likelihood parameters, such as hyperparameters affecting the noise model, can be
studied through importance sampling. The practicality of using importance sampling to study uncertainty in model
parameters depends on the model structure.

Future work should consider an alternate framework of approximating the posterior using, for example, the
Laplace approximation as in [68,69] to propagate uncertainty frommodel hyperparameters. Approximating posteriors
in this way is appropriate for examining the effects of hyperparameter uncertainty on other types of analysis, such as
optimal experimental design [70,71].

Yet another direction for future work is the development of hyperparameter screening steps. A tried-and-true
approach is to screen via derivative-based global sensitivity measures [72,73], after which a variance-based analysis
may be conducted. Such derivative-based approaches may be accelerated using tools from hyperdifferential sensitivity
analysis [12,16]. This would be important for inverse problems with a large number of prior hyperparameters.
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