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Abstract
1.	 Collective motion, that is the coordinated spatial and temporal organisation of 

individuals, is a core element in the study of collective animal behaviour. The self-
organised properties of how a group moves influence its various behavioural and 
ecological processes, such as predator–prey dynamics, social foraging and migra-
tion. However, little is known about the inter- and intra-specific variation in col-
lective motion. Despite the significant advancement in high-resolution tracking 
of multiple individuals within groups, providing collective motion data for animals 
in the laboratory and the field, a framework to perform quantitative comparisons 
across species and contexts is lacking.

2.	 Here, we present the swaRmverse package. Building on two existing R packages, 
trackdf and swaRm, swaRmverse enables the identification and analysis of collec-
tive motion ‘events’, as presented in Papadopoulou et al. (2023), creating a unit of 
comparison across datasets. We describe the package's structure and showcase 
its functionality using existing datasets from several species and simulated trajec-
tories from an agent-based model.

3.	 From positional time-series data for multiple individuals (x-y-t-id), swaRmverse 
identifies events of collective motion based on the distribution of polarisation and 
group speed. For each event, a suite of validated biologically meaningful metrics 
are calculated, and events are placed into a ‘swarm space’ through dimensional 
reduction techniques.

4.	 Our package provides the first automated pipeline enabling the analysis of data 
on collective behaviour. The package allows the calculation and use of complex 
metrics for users without a strong quantitative background and will promote com-
munication and data-sharing across disciplines, standardising the quantification 
of collective motion across species and promoting comparative investigations.
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1  |  INTRODUC TION

The study of collective behaviour is a highly interdisciplinary field 
of research; biologists, psychologists, physicists, complexity scien-
tists, engineers, and others combine their expertise to understand 
how individuals behave in groups and how their social interactions 
lead to complex collective patterns (Couzin & Krause, 2003; Garnier 
et al., 2007; Herbert-Read, 2016; Vicsek & Zafeiris, 2012). Whether 
examining fish schools (Georgopoulou et  al.,  2022; Herbert-Read 
et  al.,  2011; Katz et  al.,  2011), sheep flocks (Ginelli et  al.,  2015; 
King et  al.,  2012), or human crowds (Ettehadieh et  al.,  2014; King 
et al., 2015; Moussaid et al., 2009), researchers often analyse data 
comprising multiple individuals' trajectories collected over time 
using motion tracking from animal-attached tags or camera im-
ages (Dell et  al., 2014; Fehlmann & King, 2016; King et  al., 2018). 
Despite increasing data availability, comparisons across datasets are 
still lacking (Papadopoulou, Fürtbauer, et al., 2023), hindering prog-
ress in advancing our understanding of the mechanisms, functions, 
and evolution of collective behaviour (Biro et  al.,  2016; Bousquet 
et  al.,  2024; Ioannou & Laskowski,  2023; Jolles et  al.,  2020; King 
et al., 2018).

The coordinated spatial and temporal organisation of individ-
uals seen in animal groups, whether it be fish schools or primate 
troops, can be studied as collective motion (Vicsek & Zafeiris, 2012), 
and understood from the perspective of self-organisation, where 
group properties emerge from individual rules of motion and in-
teraction (Camazine et al., 2003; Garnier et al., 2007; Hemelrijk & 
Hildenbrandt, 2011). Collective motion is a common aspect of many 
collective behaviours in nature, particularly when groups move 
together to migrate (Voelkl et al., 2015), forage (King et al., 2008, 
2015; Mazué et  al.,  2023) or escape predators (Herbert-Read 
et al., 2015; King et al., 2012; Papadopoulou et al., 2022). Metrics of 
collective motion, such as the group order (how aligned its members 
are) and density (number of individuals per unit area), are often used 
to quantify the level of synchrony and cohesion within the group 
(Huth & Wissel,  1994; Inada & Kawachi,  2002), and these simple 
metrics can provide researchers insight into how group properties 
relate to group functioning (Giardina, 2008; Sumpter, 2006; Sumpter 
et al., 2012).

Despite the existence of established metrics that capture the 
characteristics of collective motion across species (Katz et al., 2011; 
Lukeman et al., 2010; Pettit et al., 2013; Herbert-Read et al., 2011), 
their use often relates to a specific field of research. For example, 
how group cohesion in fish schools or bird flocks changes under pre-
dation risk (Herbert-Read et al., 2017; Sankey, Storms, et al., 2021) 
or how social relationships affect the collective movement of troops 
of primates (Bracken et al., 2022; Farine et al., 2016) or herds of un-
gulates (Ozogány et al., 2023; Sankey, O'Bryan, et al., 2021; Torney 
et al., 2018). We thus lack a standardised framework for quantify-
ing inter- and intra-specific variation in collective motion. In addi-
tion, given the diverse background and range of quantitative skills 
of collective behaviour researchers, analysing trajectories requires 
substantial effort and time, leading to only a few metrics being used 

per study. This further introduces disparities across studies and in-
creases the risks of software errors. Overall, comparative analyses 
that can unify research practices and generalise findings across sys-
tems are hindered.

The animal behaviour community would therefore benefit from 
an automated pipeline enabling the analysis of data on collective 
motion. An approach to studying the intra-and inter-specific varia-
tion in collective motion across species and contexts has recently 
been proposed by Papadopoulou, Fürtbauer, et al. (2023). Here, we 
extend and develop this framework to provide an R package for an-
alysing collective motion datasets. Our package requires positional 
time-series data for multiple individuals (x-y-t-id), from which it 
identifies events of collective motion. For each event, a suite of bi-
ologically meaningful metrics are calculated. Events are placed into 
a ‘swarm space’: a multi-dimensional space in which each dimen-
sion captures a single characteristic of collective motion, visualised 
through dimensionality reduction techniques, allowing a straight-
forward comparison of events within- and across- groups, species, 
or contexts. We demonstrate the functionality and applicability of 
swaRmverse using a dataset of goat herds (Capra aegagrus hircus; 
O'Bryan et al., 2019; Sankey, O'Bryan, et al., 2021), a simulated data-
set from an agent-based model of homing pigeons (Columba livia; 
Papadopoulou et al., 2022), and metrics of collective motion that are 
included in the package, calculated from three previously published 
datasets of stickleback fish (Gasterosteus aculeatus; Georgopoulou 
et  al.,  2022), homing pigeons (Papadopoulou et  al.,  2022; Sankey, 
Storms, et  al.,  2021), and chacma baboons (Papio ursinus; Bracken 
et al., 2022) in Papadopoulou, Fürtbauer, et al.  (2023). We further 
present a step-by-step case study, comparing tracks of a herd of 
goats and a flock of sheep moving in the same area.

2  |  INTO THE SWARMVERSE

The swaRmverse package builds on two existing packages that facili-
tate the loading and processing of spatiotemporal data of collectives: 
trackdf (Garnier, 2023b) and swaRm (Garnier, 2023a). We use trackdf 
to standardise the input format of the data into the package pipeline. 
We use swaRm to process motion data at a lower level, for instance, 
calculating the heading time-series of an individual, the distance be-
tween all individuals, or the bearing angle of each individual to its 
nearest neighbour at a single time point. The swaRmverse package 
then combines these into a complete analysis pipeline allowing re-
searchers to quickly investigate characteristics of collective motion, 
according to the framework developed by Papadopoulou, Fürtbauer, 
et al. (2023).

The package is available on CRAN and can be installed through 
the install.packages function in R (R Core Team,  2019). Any issues 
should be reported on the GitHub repository: https://​github.​com/​
marin​apapa/​​swaRm​verse​. Its current version (v0.1.1) requires R 
version ≥3.5. Instructions on how to prepare a dataset for the 
package pipeline, calculate metrics of collective motion, and con-
struct ‘Swarm spaces’ (see below) are included in our vignettes 
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    |  3PAPADOPOULOU et al.

(‘https://​marin​apapa.​github.​io/​swaRm​verse/​​artic​les/​’) as ‘step1_
data_preparation.html’, ‘step2_data_analysis.html’, and ‘step3_
swarm_space.html’, respectively.

2.1  |  Package workflow

The complete pipeline of swaRmverse is built around five steps 
(Figure  1a). The data are first transformed into the standardised 
format required by the package (Figure  1a.1). This is done by the 
set_data_format function that requires vectors of positional data (x 
and y, or longitude and latitude), individual identifiers, and time. A 
set variable is used to specify independent periods of collective mo-
tion, for instance, the date of each trajectory (default), or the id of 

its experimental trial (user-defined). Many specifications about the 
presence of another grouping level in the data can thus be added 
through the set_data_format function, for example, if one wants to 
compare trajectory data for fish schools in different test arenas, or 
schools of different group sizes. All variables are combined into the 
set column. Then, the add_velocities function calculates the heading 
and speed of each individual, adds them to the working data-frame 
(Figure  1a.2), and returns a list of data-frames with each element 
corresponding to a single set. Since headings are inferred from the 
positional time-series, when an individual is not moving (very low 
speed), its heading is set to NA.

With the main time-series list complete, two functions calculate 
a series of higher-level metrics. First, time-series of bearing angle 
and distance to each individual's nearest neighbour are added by the 

F I G U R E  1  Schematic overview of swaRmverse. (a) The main pipeline. Each number links to a major function of the package, as also given 
in Table 1. Each table represents a data.frame or list of data-frames in the package, and the parameters step2time, geo, mov_av_time_window, 
pol_lim, sp_lim, and event_dur_limit the user-defined arguments of each step. Red arrows and parameter names indicate steps that require 
an informed decision from the user or suggested sensitivity analysis for the chosen values. The pol and speed columns of the group metrics 
table are the moving average of polarisation and speed of the group over a given time window. (b.I) Metrics calculated at each time-
step, linked to steps 3 and 4 of (a). The nnds indicate the distance to the nearest neighbour of each group member, and nnba the bearing 
angle between a focal individual i and its nearest neighbour. vi and v̂ indicate the velocity of a focal individual and the group at a given ti, 
respectively. The shape index is shown as the angle between the group velocity vector and the longest side of an object-oriented bounding 
box around all individuals. (b.II) Metrics for each event calculated at step 5 of (a).
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pairwise_metrics function (Figure 1a.3,b.I). Then a new data-frame 
with time-series of the group-level measurements of polarisation, 
shape, and speed is created by the group_metrics_per_set function 
(Figure 1a.4,b.I). To remove noise from the group time-series, a time 
window can be given as argument to calculate the moving average 
of polarisation and speed over the time-series of each set. Based 
on these two data-frames, the col_motion_metrics function splits 
the time-series into events of collective motion and calculates 10 
metrics for each event (Figure  1a.5,b.II). The definition of events 
of collective motion, metrics, and the creation of a swarm space 
(Figure 1a.6) are explained in detail below. The major functions cur-
rently included in the package are summarised in Table 1.

2.2  |  Events of collective motion

To enable meaningful comparisons across datasets, a unit of compar-
ison should first be chosen. During the past 20 years, high-resolution 
tracking data of multiple individuals' positions within groups have 
been collected through a variety of tools. Laboratory-based re-
search tends to use short observations and image-based tracking 
designed to gather fine-scale data on variation in specific types of 
collective motion (Biro et al., 2016; Ioannou & Laskowski, 2023). In 
contrast, research on wild animals aims to maximise the duration 
of data collection, using sensor technologies to capture a range of 

collective behaviour events (Hughey et al., 2018; King et al., 2018; 
Westley et al., 2018). Therefore, while the data needed to conduct 
comparative analyses exist, they are in different forms and often 
‘hidden’ within larger movement datasets.

swaRmverse extracts discrete ‘events’ of collective motion from 
the time-series data based on the distribution of polarisation (de-
gree of alignment of group members) and group speed, as developed 
by Papadopoulou, Fürtbauer, et  al.  (2023). To remove noise and 
allow the identification of long continuous periods of coordinated 
motion, the col_motion_metrics function uses the smoothed time-
series of polarisation and speed according to the user-defined mov-
ing average time-window of group_metrics_per_set. Based on these 
distributions, the user can decide the event threshold of each vari-
able: time-periods with lower values in speed or polarisation than 
the respective thresholds will be discarded, and consecutive time-
steps above the thresholds will be labelled as belonging to the same 
‘event’. A noise threshold can also be selected to merge consecutive 
events, if there is a small time-window separating them.

The events definition is an important decision to be taken by 
the user and should be guided by the nature and aim of the anal-
ysis. Since it aims to represent the unit of collective motion of a 
given species, for comparisons within a species, choosing a sin-
gle threshold across datasets is recommended. However, given 
that different species will vary in the proportion of time that in-
dividuals spend in coordinated motion and in how ordered their 

TA B L E  1  The major functions comprising the current pipeline of the swaRmverse package, along with the necessary user-defined 
parameters.

Function Description Parameters Step

Main pipeline

set_data_format Standardises the raw data input to the main data-
frame with individual positional time-series.

raw data information (1)

add_velocities Adds the time-series of heading and speed in the 
dataset.

geo (2)

pairwise_metrics Adds the time-series of distance and bearing angle 
of each individual to its nearest neighbour (NN) in 
a dataset.

geo (3)

group_metrics_per_set Calculates the time-series of group properties 
(group size, polarisation, shape, average speed).

geo, sampling frequency, sliding 
window

(4)

col_motion_metrics Splits the data in events of collective motion and 
calculates the metrics for each event.

sampling frequency, speed & 
polarisation thresholds

(5)

swarm_space Splits the data in events of collective motion and 
calculates the metrics for each event.

type of space (“pca” or “tsne”), t-SNE 
parameters, event duration filter

(6)

Further functionality

group_metrics Calculates the time-series of collective properties 
of a group.

geo, sampling frequency (3)

nn_metrics Adds the time-series of distance and bearing angle 
of each individual to its NN in a group.

geo (4)

expand_pca_swarm_space Adds new data points in a previously created pca 
space.

new event metrics, pca object (6)

Note: The raw data information refers to the timeseries of positions (with individual identifiers) and details about the type of data, as requested by the 
track_df package. The geo argument captures whether the positional data are geographic coordinates. The sliding window is the averaging window 
for the estimation of the smoothed timeseries of polarisation and group speed. The new event metrics refers to a data-frame with collective motion 
metrics, as returned by the col_motion_metrics function. The exact list of all arguments with their descriptions are given in Table S1.
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    |  5PAPADOPOULOU et al.

groups are (Papadopoulou, Fürtbauer, et al., 2023; Papadopoulou, 
Hildenbrandt, & Hemelrijk, 2023), these thresholds can be adjusted 
accordingly. Similarly, for pre-processed experimental data focus-
ing only on collective motion, cutting the trajectories of each set 
may not be meaningful; the thresholds can then be set to 0 and each 
event will be a full set as defined in set_data_format. The duration 
of each event, also exported by the col_motion_metrics function, 
and the total number of identified events can be used to validate 
that the threshold selection is meaningful, capturing real periods 
of collective motion. A balance between the quantity and duration 
of identified events given varying thresholds should be examined 
(Figure 2) to ensure that the chosen thresholds provide useful in-
formation for answering the user's research question. In addition, 
through the noise_thresh argument of the col_motion_metrics func-
tion, the user can choose to merge events that are separated by a 
small time window. The start time of each event, included in the 
exported data-frame, can also be used to visualise the trajectories 
of each event.

2.3  |  Metrics of collective motion

Variations in the way that individuals move as a collective can exist 
across many levels. At a fine scale, individuals have a given distance 
and angle to their neighbours at every point in time. At a global level, 
the group has a shape in space, a given degree of order, as well as 
the averages and within-group variation in the aforementioned pair-
wise metrics. At the scale of an event, the group may vary on all 
these characteristics over time. To capture inter- and intra-specific 

variation across these levels, at its current state, the package calcu-
lates 10 metrics described below.

The order of a group, how aligned group members are to each 
other, and its variation over time, are captured through the aver-
age and the standard deviation of polarisation over time during each 
event (mean_pol and sd_pol), respectively (Figure 1b). The cohesion 
of the group is captured by three metrics. First, based on the dis-
tance of each group member to its nearest neighbour at a given 
time-point, we calculate the time-series of average nearest neigh-
bour distance (NND) during an event (Figure 1b). Then, we calculate 
the overall average NND on an event (mean_mean_nnd) and its varia-
tion over time (sd_mean_nnd). Second, to capture within-group vari-
ation in NND, we calculate its standard deviation at each time-step, 
and its average during an event (mean_sd_nnd). We further measure 
how much a group changes its speed during an event by calculating 
the coefficient of variation in average speed over time (cv_speed), 
to also allow comparisons across species with different locomotion 
styles and speed magnitude.

Characteristics of a group's spatiotemporal dynamics are also 
measured through metrics of shape and internal structure. We use 
an object-oriented bounding box (OOBB) approach (as in Hemelrijk 
& Hildenbrandt,  2011) to capture whether a group is more wide 
than long or more long than wide. Based on the OOBB that con-
tains all group members, we calculate the angle between its longest 
side and the average heading of the group (Figure 1b.I). Thus our 
shape index varies from 0 rads (for a perfectly oblong group) to 
pi/2 rads (for a perfectly wide group). We measure the average and 
the standard deviation of this index over time during each event 
(mean_shape and sd_shape). The relative position of individuals to 

F I G U R E  2  (a) Sensitivity analysis of the number (y-left) and average duration (y-right) of events of collective motion over varying 
thresholds for average speed and polarisation in a herd of goats (O'Bryan et al., 2019; Sankey, O'Bryan, et al., 2021). The solid blue lines 
represent varying quantile for speed (circles) and polarisation (squares), while the other quantile is set to 0.5. (b) Heatmap of the number of 
events identified for each combination of speed and polarisation quantile. In Papadopoulou, Fürtbauer, et al. (2023), the 0.5 quantile was 
used as a threshold for this dataset.
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one another is measured through the nearest neighbour bearing 
angle: the angle between the heading of each focal individual and 
the line between its position and the position of its nearest neigh-
bour (Figure 1b.I). We calculate the group average of this angle from 
all group members and the average over time (mean_mean_bangl). 
Finally, by calculating the frontness (Papadopoulou, Fürtbauer, 
et al., 2023) between each individual and its nearest neighbour (the 
absolute value of the bearing angle divided by 180°, that is how in 
front or behind an individual is positioned relative to its NN), we 
calculate the standard deviation over all group members at a given 
time. Through the average of this metric through time (mean_sd_
front), we capture how queue-like a group is, adding structure to 
the more approximate measurement of shape.

2.4  |  The swarm space

A user may take the metrics described above and export them for 
their own bespoke analyses (see further functionality, below). The 
end-point of our package pipeline is the investigation of the inter- 
and intra-specific variation of one or more datasets. To achieve that, 
the swarm_space function allows for comparisons across quantified 
events of collective motion using dimensionality reduction tech-
niques (Ayesha et al., 2020). The package currently supports principal 
components analysis (PCA) (Hotelling, 1933 using the stats package) 
and t-distributed stochastic neighbour embedding (t-SNE) (using 
the Rtsne package; Krijthe, 2015; van der Maaten & Hinton, 2008). 
These two methodologies can work complementary to one another, 
with the first reflecting the global structure in the data and the lat-
ter the between-events similarities (Ayesha et al., 2020). However, 
given the events data-frame, the user can choose other analyses de-
pending on the specifics of the aimed comparison. For instance, if 
the objective is to compare events across many species from differ-
ent taxonomic clades, one may consider using Phylogenetic Factor 
Analysis (PFA, Hassler et al., 2022). The main factors identified from 
the dimensionality reduction can then be examined to see which 
variables explain most variation in the data and load onto the dif-
ferent axes. For a more detailed interpretation and discussion of 
these methods for comparison across species, see Papadopoulou, 
Fürtbauer, et al. (2023).

The PCA option further allows to project new data on an existing 
space (using the prcomp function of stats). This is done by the expand_
swarm_space function that takes a previously created PCA object 
and metrics of collective motion of a new dataset. A PCA object of 
the four empirical datasets of Figure 4a and the PC1-3 coordinates of 
each event from Papadopoulou, Fürtbauer, et al. (2023) are included 
in the package as multi_species_pca and multi_species_pca_data, re-
spectively. With more datasets being analysed with our package, this 
existing multi-dimensional space can keep expanding (see Section 2.5 
for an example). Finally, a limit for the minimum duration that an event 
should have to be included in the space can also be defined through 
the event_dur_limit argument of the swarm_space function; we recom-
mend removing events of very short duration given that they may not 

be representative of the group's collective motion. In the original anal-
ysis of Papadopoulou, Fürtbauer, et al. (2023), events with a duration 
of less than 15 s were discarded.

2.5  |  Case study: Sheep flocks versus goat herds

We follow the steps mentioned above (Table  1; Figure  1, steps 
1–6) to compare the collective motion of sheep (N = 10) and goats 
(N = 15) in Namibia, moving around the same area in two consecu-
tive years (data provided by Lisa O'Bryan, for details about the area 
and method of data collection see O'Bryan et al. (2019)). Given that 
the two species also have the same mode of locomotion, we can 
perform meaningful comparisons of their collective motion. Any 
differences between the two should reflect differences in the so-
cial interactions between group members or different reactions to 
the same habitat. The two datasets comprise individual GPS trajec-
tories in similar formats: a data-frame with several columns, includ-
ing the ones for time (in date-time format), individual identifiers, 
longitude, and latitude (geo=TRUE). To start, we input these col-
umns as vectors in the set_data_format (step 1), indicating also the 
time-zone in which the data were collected (using the OlsonNames() 
format from R's timezones). For working with different data types 
(e.g. camera tracking in the lab), see our vignettes and the trackdf 
package (Garnier, 2023b). The function returns the tracks of each 
group in a standardised format, and assigns a ‘set’ column (cate-
gories that may split the tracks) that here coincide with the date 
of data collection (Figure 3a). We then calculate the timeseries of 
heading and speed, creating a list of data-frames for each set using 
the add_velocities function (step 2).

From this list, we can calculate pairwise metrics (with the pair-
wise_metrics function): adding the distance, id and bearing angle of 
each individual's nearest neighbour to the timeseries data-frame (step 
3). By investigating the distribution of these variables (e.g. Figure 3b), 
we noticed a few errors in the GPS locations of the raw sheep data. 
We thus filtered the data to exclude any position that had nearest 
neighbour distance larger than 50 meters. The user should consider 
whether data cleaning or trajectory smoothing practices are neces-
sary for their dataset or research question. Based on the clean data, 
we calculate the group-level timeseries of polarisation, speed and 
shape (e.g. Figure 3c), using the group_metrics_per_set function, with 
a chosen averaging sliding window (here 30 s, step 4). We can then 
use the col_motion_metrics function to split the tracks in events of 
collective motion and calculate all our metrics (step 5). We used the 
0.5 and 0.75 quantile of the distribution of speed and polarisation, 
respectively, per species to define our events (but see Section 2.2 and 
Figure 2 for information in selecting these thresholds).

After filtering out events with duration less than 15 s 
(Papadopoulou, Fürtbauer, et al., 2023), we merged the data-frames 
of each species and we performed the dimensionality reduction with 
the swarm_space function (step 6), using the ‘pca’ option, to com-
pare the events of the two species (Figure 3c). The function returns 
a list with three elements: the ‘swarm_space’ data-frame (with PC1-3 
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values per event), a ‘ref’ data-frame that holds the additional informa-
tion of each event (e.g. starting time, duration), and the PCA object. 
By plotting the swarm_space data (Figure 3d), we see that the two 
species differ in several characteristics such as average polarisation 
and temporal variation in their group shape (Figure 3e,f). The first 
three components of the PCA explain approximately 65% of variance, 
something the user should investigate using the summary function 
on the PCA object. Finally, we can expand our previous swarm space 
(multi_species_pca) to include the sheep dataset (Figure 4a), using the 
expand_swarm_space function. All code to reproduce this case study, 
including the plotting functions (not available in the package), is on 
our online repository: https://​github.​com/​marin​apapa/​​Papad​opoul​
ou_​et_​al_​2024_​swaRm​verse​ (Papadopoulou, 2024).

2.6  |  Further functionality

Apart from the analysis of empirical data, the swarm space ap-
proach might be particularly useful for comparing simulated 

data from agent-based models that are often used in collective 
behaviour research, to validate whether the model captures the 
characteristics of the system it aims to study (supporting pattern-
oriented modelling, Grimm et al., 2005). Here, we created another 
example of a new swarm space (Figure  4b) that combines the 
previously published events of collective motion Papadopoulou, 
Fürtbauer, et  al.  (2023), also included in the package (multi_spe-
cies_metrics), and events from analysing simulated trajectories 
from the HoPE model, an agent-based model calibrated to re-
semble flocks of homing pigeons through distributions of speed, 
nearest neighbour distance and relative position of neighbours 
(Papadopoulou et al., 2022). Each species covers a different area 
of the PCA space, with the simulated pigeon flocks overlapping 
with the real ones (Figure 4b).

The complete pipeline of the package can be accessed through 
the col_motion_metrics_from_raw function (steps 2–5, used here 
for the analysis of the simulated data), when only the overall met-
rics across sets and events are returned, given the standardised 
input data-frame. Outside of the end goal of the swarm space and 

F I G U R E  3  Case study: Goats versus sheep. (a) The trajectories of each group. (b) The distributions of nearest neighbour distance (NND). 
(c) The timeseries of average speed of each group, smoothed using a 30 s time window. (d) The PCA comparing the identified events of 
collective motion, with the loadings of some important variables (mean_shape, mean_mean_nnd, mean_pol, cv_speed). (e) Polarisation and (f) 
variation in shape during the events of each species.
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structure of our pipeline, our package can help with the analysis 
of spatiotemporal datasets. For instance, the lower level func-
tion nn_metrics calculates for each time-step in a data-frame the 
bearing angle and distance to a nearest neighbour, while the co-
ordinates of this neighbour in the reference frame of the focal 
individual can also be added through the add_coords argument 
or by the standalone function add_rel_pos_coords (Figure  4c). 
Similarly, the group_metrics function calculates the time-series of 
average speed, polarisation, and shape index of a group. A more 
experienced user can thus combine functionalities and create new 
metrics to visualise the collective motion characteristics of their 
system.

These metrics (e.g. NND, group polarisation), apart from their sig-
nificance in the study of self-organised social systems, are valuable 
to our understanding of animal movement ecology. For instance, one 
can focus their analysis on the spatial distribution of the events of 
collective motion identified by the package or how these metrics 
vary across the range of the group. Such investigation will provide 
insights on the way animals interact with their ecosystem and add 
the dimension of group behaviour in the analysis of GPS and acceler-
ometery data of individuals (Fehlmann et al., 2017). In experiments 
in the laboratory or the management of livestock, these metrics can 
also be used to automatically flag conditions related to animal health 
and welfare (Demandt et al., 2018; Matthews et al., 2017).

3  |  CONCLUSIONS

Both the in-between steps and the ending point of our pipeline (the 
produced swarm space) are valuable to future studies. The swarm 

space can act as a first step in the analysis of collective behaviour 
data, hinting in which direction the analysis should continue, dis-
entangling the source of variation within or across datasets. Our 
package can also facilitate comparisons between models and em-
pirical data, a crucial and challenging step in the validation of re-
sults and theoretical conclusions in self-organised systems (Crooks 
et al., 2008). These comparisons are usually focused on a couple of 
metrics, without others being investigated or with clear criteria in 
selecting them. At the same time, comparisons across many collec-
tive characteristics can be challenging (Hildenbrandt et  al.,  2010; 
Papadopoulou, Fürtbauer, et  al.,  2023). The new components 
of a swarm space or the metrics that capture more variation in a 
given dataset can then be selected instead, as the key aspects for 
comparisons between models and data. This can further facilitate 
bio-inspired applications in swarm-robotics, with the emergent col-
lective characteristics of a given algorithm being clearly linked to a 
given function (Dorigo et al., 2021).

Apart from the insights of this package for collective behaviour 
experts, this work is a step towards the standardisation of analy-
sis of collective motion across systems. We hope that with the in-
volvement of the collective behaviour community, the package 
will expand to include more metrics of collective motion such as 
path characteristics (Roberts et al., 2004), pairwise information for 
neighbours of higher order and rate of change of their social net-
work (Papadopoulou, Hildenbrandt, & Hemelrijk,  2023), capturing 
more variation that may exist across systems. Through the ease of 
calculating these metrics with any existing dataset, irrespective of 
the main aim of the study that collected it, we can work towards 
a mapping of characteristics of collective motion and start build-
ing bridges across disciplines that are interested in understanding 

F I G U R E  4  (a) A PCA space comparing events of collective motion in five empirical datasets of chacma baboons (Bracken et al., 2022), 
goats (O'Bryan et al., 2019; Sankey, O'Bryan, et al., 2021), stickleback fish (Georgopoulou et al., 2022), homing pigeons (Sankey, Storms, 
et al., 2021) and sheep (data by Lisa O'Bryan). The PCA object is the one previously published by (Papadopoulou, Fürtbauer, et al., 2023), 
with the new data from our case study added through the expand_swarm_space function. (b) A new PCA space comparing the previously 
published events of collective motion, and a simulated dataset from an agent-based model of pigeons (Papadopoulou et al., 2022). (c) 
The relative position (nnx, nny) of the nearest neighbour (NN) in the reference frame of all focal individuals in the goats dataset (distance 
measured in meters).
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self-organised social systems, while also supporting the further use 
of existing open datasets.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

Table  S1: The main arguments of the major functions comprising 
the current pipeline of the swaRmverse package. The option to 
parallelize the calculations across sets is given.

How to cite this article: Papadopoulou, M., Garnier, S., & 
King, A. J. (2024). swaRmverse: An R package for the 
comparative analysis of collective motion. Methods in Ecology 
and Evolution, 00, 1–11. https://doi.org/10.1111/2041-
210X.14460

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14460 by N
j Institute O

f Technology, W
iley O

nline Library on [25/11/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://doi.org/10.1098/rstb.2017.0004
https://doi.org/10.1098/rstb.2017.0004
https://doi.org/10.1111/2041-210X.14460
https://doi.org/10.1111/2041-210X.14460

	swaRmverse: An R package for the comparative analysis of collective motion
	Abstract
	1  |  INTRODUCTION
	2  |  INTO THE SWARMVERSE
	2.1  |  Package workflow
	2.2  |  Events of collective motion
	2.3  |  Metrics of collective motion
	2.4  |  The swarm space
	2.5  |  Case study: Sheep flocks versus goat herds
	2.6  |  Further functionality

	3  |  CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	PEER REVIEW
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES


