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Abstract

A promising approach for scalable Gaussian processes (GPs) is the Karhunen-Loéve (KL)
decomposition, in which the GP kernel is represented by a set of basis functions which are
the eigenfunctions of the kernel operator. Such decomposed kernels have the potential to
be very fast, and do not depend on the selection of a reduced set of inducing points. How-
ever KL decompositions lead to high dimensionality, and variable selection thus becomes
paramount. This paper reports a new method of forward variable selection, enabled by the
ordered nature of the basis functions in the KL expansion of the Bayesian Smoothing Spline
ANOVA kernel (BSS-ANOVA), coupled with fast Gibbs sampling in a fully Bayesian
approach. It quickly and effectively limits the number of terms, yielding a method with com-
petitive accuracies, training and inference times for tabular datasets of low feature set
dimensionality. Theoretical computational complexities are O(NP?) in training and O(P) per
point in inference, where Nis the number of instances and P the number of expansion
terms. The inference speed and accuracy makes the method especially useful for dynamic
systems identification, by modeling the dynamics in the tangent space as a static problem,
then integrating the learned dynamics using a high-order scheme. The methods are demon-
strated on two dynamic datasets: a ‘Susceptible, Infected, Recovered’ (SIR) toy problem,
along with the experimental ‘Cascaded Tanks’ benchmark dataset. Comparisons on the
static prediction of time derivatives are made with a random forest (RF), a residual neural
network (ResNet), and the Orthogonal Additive Kernel (OAK) inducing points scalable GP,
while for the timeseries prediction comparisons are made with LSTM and GRU recurrent
neural networks (RNNs) along with the SINDy package.
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Introduction

Gaussian processes (GPs) are stochastic functions that are engines for nonparametric regres-
sion. Initially developed for modeling and interpolation in geographic information systems
datasets, applications have multiplied across many fields of data science. A key advantage of
the GP is its broad, continuous nonparametric support and the amenability of different GP
kernels to precise analysis. They are widely recognized as powerful vehicles for static dataset
modeling and interpolation with uncertainty quantification.

A GP is Gaussian in that it is a covariance model linking pairs of points on functional
draws. As such a GP is completely described by a mean function (often zero in the prior) and
covariance kernel. The most famous and perhaps simplest of the covariance kernels is the
squared exponential:

k(x,x') = ¢® exp [—

where the sill ¢ and range & parameters determine the scale and smoothness of the draws. In a
typical implementation modeling a static dataset Z, the statistical model

Z=0(x|c%, &) + ¢ (2)

with 6 ~ N(0, k) the GP and € an observation error process, is first used to infer the hyper-
parameters, after which predictions conditioned on the training dataset can be made. The
draws on the squared exponential GP—a limiting case of the Matérn covariance family—are
infinitely differentiable.

From a practical standpoint the training of the above GP is O(N?), where N is the number
of training data points, requiring a Cholesky decomposition of the full covariance matrix. This
limits the use of the GP to moderately-sized datasets, generally of a thousand instances or
fewer. An important avenue of research is accelerating the speed of both training and infer-
ence, such that the GP’s superior modeling features can be trained on large datasets and
deployed as machine learning vehicles within other types of models.

Scalable Gaussian processes with inducing points

Liu, et al. [1] provide a thorough overview of efforts that aim to improve scalability while
maintaining prediction accuracy using global kernel approximations derived in some sense
from a set of M << N inducing points [2-6]. Generally the goal is to approximate the full-
rank kernel matrix with local approximations. Of particular note is a O(N) method that
directly estimates the covariance with training and inference times that limits the increase in
M for large N developed by Wilson, et al. [7]. Some methods employ Analysis of Variance
(ANOVA) decompositions to the full kernel which break out contributions in terms of fea-
tures and their combinations:

n

K(xx) = 30+ 30 D w1, ) + - G

i=1 i=1 j=i+l

where 7 is the feature set dimensionality and the individual terms are not necessarily orthogo-
nal. This presents opportunities for variable selection [8]; of particular note is the recent
Orthogonal Additive Kernel (OAK) which orthogonalizes the kernels in (3) in order to mini-
mize overlap between main effects and higher-order interactions [9].

Inducing points acceleration of GPs opens up GP regression to large datasets. However,
inference is still O(M?) per point, limiting its usefulness in contexts where inference speed is
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important, such as those where the GP model will be used in the context of control or optimi-
zation applications. This motivates a search for alternative methods that are fast in both train-
ing and evaluation.

Karhunen-Loéve decomposition and BSS-ANOVA

Another approach to scalability in GPs that is distictive to the inducing points approach is the
Karhunen-Loeéve (KL) expansion, in which the kernel is expressed in terms of a sum over its
eigenfunctions:

o(x; B) = Z ﬁi¢i(x) (4)

where
¢i(x) = \/xz‘ui(x)
/K(x, K, (x)dx' = hu(x)
B~ N (0, 1)

Such methods have the potential to be fast: O(NP?) in training and O(P) per point for infer-
ence, where P is the number of terms in the expansion. However such kernels have not been
the subject of much research in machine learning contexts generally. The main issues are trac-
table calculation of the basis functions {¢;} and a curse of dimensionality [10].

In 2009 Reich and collaborators [11] introduced the Bayesian Smoothing Spline ANOVA
(BSS-ANOVA) kernel, which is subject first to an ANOVA decomposition, followed by a KL
decomposition. The core of the BSS-ANOVA kernel is:

LB, (e —x)) (5)

K, (%, ) = B, (x) B, («) + B, (x) B, (x') — BVt

where B, is the k™ Bernoulli polynomial, defined by the generating function

te™ - t
o —1 - B;(x) 7 (6)
yielding
1
B(x) =x-— 5
) 1
B,(x) =x>—x+ 6
B,(x) :36"1—29c3—|—3c2—i
! 30

This kernel is effectively a sum of a non-stationary quadratic response surface—corre-
sponding to the first two terms in (5)—and a stationary deviation (the final term). Covariances
for higher-order interactions are constructed with dyadic products of the main effect covari-
ance given in (3):

1 (b 2, b, 20]) = e (6, x5 (o 2) (7)

and so on for higher-order interactions. Terms are then multiplied by scaling hyperparameters
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-0.5

and added together to produce the full kernel:

n n—1 n
_ 2.9 2 2 2.2
K—GofoJrGlTlE :Kl,i+o-21’-2§ ,E Koyt e (8)
i—1

i=1 j=i+1

The kernel so constructed is supported on a second-order Sobolev space [11], a broad support
which is one of its primary advantages. The significance of separate ¢* and 7* scaling parame-
ters will become clear below in the context of Bayesian linear regression.

Building the kernel in this fashion effectively addresses the problem of generating the eigen-
functions from the KL decomposition: because all of the terms in (8) are based on the genera-
tive kernel (5), the KL decomposition of (8) will depend only on eigenfunctions of «.
Additionally if all input features are normalized to an [0, 1] interval (we restrict the discussion
to continuous input features for now), then it is only necessary to compute a single set of basis
functions {¢;}. The decomposed BSS-ANOVA GP is written:

o(x:B) = py + Zn: i Bidi(x) + nz_: zn: Zx: Zx: By (x)éy(x;) + - - 9)

i=1 k=1 i=1 j=i+l k=1 I=1

Given the assumption
— — — 1242
0°0 111 =035, = =071 (10)

then the priors for the coefficients # are iid normal
B. ~N(0,0°%) (11)

where the notation - indicates an arbitrary index. While any kernel is amenable to a KL decom-
position and as such to the variable selection routine described below, the form of the BSS-A-
NOVA kernel as a sum of scaled terms (which separates the basis decomposition from the
hyperparameters) and its broad support make it particularly suitable for many applications,
and we restrict our analysis to this kernel for the remainder of the article.

Following [11] we generate the set {¢;} by producing x; for a dense grid consisting of 500
intervals on [0, 1], eigendecompose and fit to cubic splines. Fig 1 shows the first 6 basis func-
tions. These basis functions are nonparametric, pairwise orthogonal, and ordered: note the
increase in frequency and decrease in amplitude as the orders increase.

Variable selection

It’s clear from (9) that the number of terms in the expansion can increase rapidly, even for
low-dimensional input spaces. A key component of applying the GP to a modeling problem is

%107

0.2 0.01 0.01

0.02 ’
0.1 0 0 0
0 _0.02 '0.01 -
-0.02 -0.01 B

0 0.5 1 0 05 1 0 05 1 0 05 1 0 05 1 0 05 1

Fig 1. The first six basis functions of the KL-decomposed BSS-ANOV A kernel. The basis is nonparametric, spectral, pairwise
orthogonal and ordered.

https://doi.org/10.1371/journal.pone.0309661.g001
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thus the selection of terms. Effectively we seek to minimize the objective function
O(B) =1Z — o(x:B)I +L(B) (12)

where { is a penalty function which leads to a sufficiently sparse solution.

Indicator variable methods

Reich, et al. [11] took a hierarchical Bayesian approach to the problem, estimating a separate
variance 7° for each term in the expansion, which is in turn expressed in terms of an indicator
variable with a Bernoulli prior. This approach, like other ‘indicator variable’ methods, accom-
plishes the variable selection and the training simultaneously and comprehensively, at the cost
of requiring a large number of variables in the prior model and a computationally onerous
Markov chain Monte Carlo (MCMC) sampling procedure.

Other sparse optimization methods such as ridge regression or LASSO share the limitation
that many high-order terms must be included in the initial model before downselection
occurs.

Forward variable selection

The ordered and orthogonal nature of the basis functions suggests a forward variable selection
approach. Rewriting the model (9) for a basis function set of maximum order g,

B =t SN Bt + S S b)) o (13)

i=1 k=1 i=1 j=i+l k=1 I=1

then considering a model building procedure which increases g stepwise starting with g =1
reveals that each subsequent step adds # main effect terms (each depending on a single input

—n is the number of inputs), (g) [2(g — 1) + 1] two-way interactions, and (g) [3(g—1)" +

3(q — 1) + 1] three-way interactions. As the model order increases the L* truncation error for
the full kernel decreases as (for the case of a single input) [10]:

)= S ool < (3 ) (14)

i=q+1

Since the eigenvalues of the BSS-ANOVA kernel decomposition decrease quickly with increas-
ing order, an approach to the optimization problem (12) focusing on low-order models will
sacrifice little in the way of accuracy while realizing significant advantages in both training and
inference times.

The design and implementation of such an approach is the main contribution of this work.
It approaches the optimization of (12) with an iterative process, finding the most efficient trun-
cation of the system while evaluating the cost function only for candidate models with fewer
terms than the optimum truncation. The method is fully Bayesian, with a fast linear Bayes sam-
pling procedure at its core. As such the form of the cost function is also Bayesian in nature, tak-
ing the form of the Bayesian or Akaike information criteria (BIC/AIC), which incorporate L°
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penalties:

BIC=PInN—2InL (15)

AIC=2P—2InL (16)

where £ is the maximum of the likelihood function on the parameter space.

The following sections describe the components of the optimizer in detail and present the
implemented variable selection algorithm.

Linear Bayesian regression. Given a statistical model with a fixed number of terms

z, = 0,(x; B) + €(a?) (17)

with € a white noise observation error of variance 0” and & is a BSS-ANOVA model corre-
sponding to a given truncation to the KL expansion (9), the model is linear in the coefficients
B. Using priors that are conjugate to the likelihood for the coefficients and the observation
error variance, a Gibbs sampling methodology can quickly obtain the posterior for the
parameters.

The conjugate prior for f is zero-mean iid normal: f ~ N(0, 6*1°I) The conjugate prior
for o is inverse gamma: 0 ~ IG(a, b), with a and b the shape and scale parameters, respec-
tively; likewise the conjugate prior for 7* is inverse gamma: 7 ~ IG(a,, b,). The Gibbs sampler
functions iteratively, such that for fixed {0*, 7°}, B ~ N (i, ¥), with

= (X"X+1/72)'X"Z (18)

I (XTX v 1/121) B (19)

where X € R" is a matrix constructed from the basis functions appearing in the expansion.
Its rows correspond to instances and columns to terms in the expansion. For fixed {3, 7}, &
~ IG(a*, b*), with

a=a+N/2+P/2 (20)

b= bt [ BT OX 4D~ )+ 277 X7 (21)

For fixed {8, 0}, 1> ~ IG(a’, b’), with

) 7t

a.=a,+P/2 (22)

1
by =b,+5—B'B (23)
T T 20_2

For more details see [12].

Optimization via forward search. The algorithm constructs models with terms having
up to three-way interactions. The algorithm runs sequentially through stages labeled by an
integer index 7 initialized at 1. At each stage, a set of trial terms come in to the expansion for
which the sum over all basis functions appearing in the term add up to Z. Since there are many
permutations of basis functions that form this sum, and for any given set of function orders in
a term, different ways they can be permuted among the inputs, adding terms at each stage
occurs in substages. Each substage adds terms corresponding to a particular set of basis func-
tions, and includes all input permutations. For example: stage 1 adds only first order main
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effects: ¢;(x;) and ¢;(x,) for a two-input dataset. Stage 2 adds second order main effects and
first order two way interactions—,(x;), ¢»(x,) and ¢;(x;)¢;(x,)—in two substages. The sub-
stages occur such that terms involving lower-order basis functions come first. For the example
in the case of stage 2, this is the first order two-way interactions ¢, (x;)¢,(x,). Each substage
adds at once all combinations of inputs and all permutations among each combination, such

that each substage adds 2( g ) terms for two-way interactions and 6 ( g ) terms for three-way

interactions (for the case where all function orders are different; fewer when two or more are
the same). With trial terms added at a given substage, the sampler estimates model parameters
and calculates the BIC or AIC. The routine terminates at an optimum BIC or AIC. Because
there can be local minima, a “tolerance” setting controls how many substages the algorithm
can iterate through without finding a new minimum BIC or AIC before it terminates. The ter-
minated algorithm returns the optimum model.

Algorithm 1 BSS-ANOVA forward variable selection algorithm

1: procedure FuwpVarSeLecT (X, Z, ¢, tol)

2: > x 1s a matrix of inputs, columns are features and rows are
instances

3: > z is a column vector of data

4: > ¢ is an ordered set of basis functions

5: > tol is an integer tolerance

6: Form a column vector of ones R'sx=1

7 Set IT=1

8: Set count =0

9: while count < tol do

10: Set Z2={j€Z:0<;j<TI}

11: Set Q={(i€Z,jeZ keZ):i+j+k=1}

12: Order g€ Q s.t. g, < g, when max (g, < max(qg,)

13: for 1={1,2,---]1Q|} do

14: Set myg = {g;, 0, 0, -~} s.t. |myl = |x]|

15: Form M, = S(m,) > M, contains all permutations of my

16: > Each element of M, is a term in the expansion

17: Build Xy where X, = Hk:Md‘]k#](ﬁMd‘jk(xik)

18: Recursively concatenate: X = [XX4], M =[M;M]

19: Call the sampler: B, BIC = gibbs (X, z, ¢)

20: if the BIC is a minimum for all models then

21: count = 0

22: else

23: count = count + 1

24: I=7+1

25: Return M, B, BIC

Experiments: Dynamic system identification
Procedure

BSS-ANOVA regression—as is the case for other GPs—is most effective for tabular datasets
with continuous inputs and targets of moderate dimensionality. This suggests an application
in dynamic systems identification. Indeed BSS-ANOV A GPs have been utilized as components
of other models (“intrusively”) for this purpose in a number of applications [13-15]. We dem-
onstrate here that they may also be used directly to identify dynamics in more general cases,
without the aid of an accompanying model. In treating the dynamic systems application we
should be clear to make a distinction between the present approach in which the GP models
the static relationship between the time derivatives of states and the states and forcing func-
tions themselves, and other “dynamic GP” applications, e.g. [16].
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The procedure is a concurrent one, in that time derivatives estimated from the datasets are
modeled directly using BSS-ANOV A with forward variable selection, using the concurrent val-
ues of the system states and other inputs; for example a two-state system is modeled using two
separate GPs:

%, = 0,(x,,x,,u) (24)

Xy = 0,(x,, Xy, 1) (25)

The identified system is then integrated to yield predictions with uncertainty.

The procedure was demonstrated on two nonlinear dynamic datasets: a synthetic dataset
derived from the susceptible, infected, recovered model (SIR model) for infectious disease, and
the ‘Cascaded Tanks’ experimental benchmark dataset. In both cases comparisons were made
to long short term memory (LSTM) and gated recurrent unit (GRU) neural networks, along
with the sparse identification of nonlinear dynamical systems (SINDy) package [17] for time-
series prediction. In the case of the cascaded tanks benchmark comparisons were made against
random forest (RF), a residual neural network (ResNet) and the state-of-the-art OAK inducing
points scalable GP [9] for the static derivative estimation problem.

Experimental benchmark: Cascaded tanks

The cascaded tanks nonlinear benchmark dataset is an experimental nonlinear dynamic sys-
tem [18]. The experiment consists of a set of two tanks and a reservoir of water. An upper tank
is filled by a pump from the reservoir. An outlet in the upper tank empties into the lower tank,
which in turn empties through an outlet back into the reservoir. A signal sent to the pump
serves as the forcing function for the system, with the tank water level heights the two states of
the system.

Hyperparameters are an important component of any comparison of numerical methods.
While sometimes it is advantageous to perform hyperparameter optimization via sweeps or
other methods, it is also important to compare methods using reasonable values that are in the
neighborhood of commonly used defaults, with trial-and-error adjustments, as this is how
most users will approach the task. This is therefore the approach we took in the following com-
parisons. An exception is for the comparisons with the SINDy package, for which a sweep was
performed as described below.

We first compared the performance of BSS-ANOVA with RF, ResNet and OAK static
regressors. Derivatives were calculated via direct finite differences for the relatively noise-free
dataset, yielding 10000 instances. Each method was trained on concurrent values of both states
and the forcing function for each derivative. For the GP we used hyperparameters of a = 1000,

b=1.001, a, = 4 and b, = 55 for i, and 69.1 for h,, with tolerances of 3 for &, and 5 for f,, and
the AIC as discriminator. Inputs were normalized to [0, 1] using min-max scaling. Of 2000
draws the first 1000 were discarded. Only two-way interactions were required. For the RF 100
trees were used with a leaf size of 5. The ResNet had a depth of 6 (filter sizes ranging from 16
to 64) and in between each fully connected layer is a batch normalization and relu layer. The
mini batch size is 16, initial learn rate is 0.001, the data was shuffled every epoch for a total of
30 epochs, and the validation frequency was 1000. OAK was applied at a maximum dimension
of 3 and with the default value of 200 inducing points. The 5-fold cross-validated results appear
in Table 1. OAK performed best for both outputs, followed closely by BSS-ANOVA. Both GPs
outperformed the RF and the ResNet by clear margins.

The nature of the decomposed GP as a sum over terms pertaining explicitly to certain
inputs is a distinct advantage of the KL decomposition. The results indicate that the most
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Table 1. Cascaded tanks 5-fold cross validated accuracies: Derivatives, mean absolute error (MAE).

Method

h, (MAE/107%)

h, (MAE/107%)

OAK 17+4.7 36+2.4
BSS-ANOVA 18+6.5 39+3.6
ResNet 3614 6115
RF 30+9.4 49+4.9

https://doi.org/10.1371/journal.pone.0309661.t001

important factors in the timeseries model for tank 1 are the water levels in both tanks, with
tank 2 slightly more important. This is counter-intuitive, since the leve in tank 2 (the lower
tank) does not even appear in a naive physical model of the system [18]. The analysis shows
that the actual system contains significant feedback. For the dynamics of the level in tank 2, the
most important term is an interaction between the tank 2 level (second order basis function)
and the pump signal (first order).

Timeseries predictions follow for the GP via a 4™-order Runge-Kutta integration routine.
These were compared with LSTM and GRU recurrent neural networks (RNNs), along with
the SINDy package. For the LSTM there was one LSTM layer and a total of 128 hidden layers,
the data was shuffled every epoch for a maximum of 125 epochs, verbose was equal to 0, and
the sequence was padded to the left. The GRU had one GRU layer and 150 total hidden layers,
the data was shuffled every epoch for a total of 150 epochs, verbose was equal to zero and the
sequence was padded to the left. The 5-fold cross-validated results (datapoints were not ran-
domized before creating the folds so as to preserve the timeseries order) appear in Table 2.
BSS-ANOVA is most accurate, followed by the LSTM and the GRU. Fig 2 shows the predic-
tions of the GP and the LSTM for the upper tank for one of the test folds. The GP predictions
are superior near the sharp inflection and critical points where nonlinearities are strongest.
Note that the first 50 points of each test set, which were provided to the LSTM and GRU as a
start-up set in the prediction phase, were removed from the calculation of error for both
methods.

To evaluate the SINDy performance on the Cascading Tanks task, an exploratory analysis
was performed over the hyperparameters (optimizer, threshold, alpha, and basis function
libraries). Optimizers were first tested using default alpha (0.05) and basis functions (2nd
order polynomials), and a threshold of 0.001 due to the small coefficients of the model terms.
Of the 8 optimizers tested, 2 produced errors and were not able to be evaluated. Of the 6
remaining optimizers, all produced similar results. STLSQ, SR3, and Constrained SR3 were
marginally the best performing models and were used for basis function evaluation.

Ist, 2nd, 3rd, and 5th order polynomials, and 3rd order polynomials with the addition of
Fourier functions were tested successfully. The largest improvement was seen moving to 3rd
order polynomials with an additional small improvement adding in the Fourier functions. 4th

Table 2. Cascaded tanks 5-fold cross validated accuracies: Timeseries, mean absolute error (MAE).

Method h, (MAE) h, (MAE)

BSS-ANOVA 0.1167+0.0382 0.1577+0.0334
SINDy 0.13910.0631 0.1768+0.0695
LSTM 0.2345+0.1006 0.2296+0.0378
GRU 0.3243+0.1092 0.2481+0.0402

https://doi.org/10.1371/journal.pone.0309661.t002
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Fig 2. (a) BSS-ANOVA and (b) LSTM predictions vs. test set data for the water level height in tank 1 of the cascaded
tanks dataset. Shaded regions in (a) are 95% confidence bounds estimated from a draw of 40 curves.

https://doi.org/10.1371/journal.pone.0309661.9002
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order polynomials and 2nd/4th order polynomials with Fourier functions all failed to
converge.

The three chosen optimizers were used with 3rd degree polynomials with Fourier functions
in a threshold parameter search to find the best results with a default alpha of 0.05. The opti-
mum occurred at a threshold of 0.0001 using the STLSQ optimizer. Lastly, a search was per-
formed over alpha to determine the optimal value which occurred at 0.05 (default).

While it is reasonable to expect that OAK with 200 inducing points would outperform
BSS-ANOVA in the time integration, it was not practical to make this comparison for reasons
of computing time. A comparison with a reduced number of inducing points and increased
time step in the integrator was made—results are discussed below.

Comparing the results of the sparse KL-decomposed BSS-ANOVA method with other pub-
lished treatments of the same benchmark is difficult because of the lack of rigorous separation
between training and test data in most applications. One study of note is that of La Cava, et al.
[19], who used an approach to reconstructing the dynamic system from a predetermined set of
parametric terms using a version of genetic programming. Assuming clear separation in this
study between test and train sets, the approach described in this paper outperforms the “Epige-
netic Linear Genetic Programming” approach by over an order of magnitude in mean square
error, while also outperforming the NARX-NN approach (a lightly parameterized recurrent
neural network) offered as comparison in [19] by approximately one order of magnitude.

Synthetic benchmark: Susceptible, infected, recovered model

The susceptible, infected, recovered model (SIR model) is a common simulation for infectious
disease. Though there are several versions, the simplest is three states, only two of which are
independent. The system is written

§ = —BIS/N, (26)
I = BIS/N, — yI (27)
R=yI (28)

where S(?) is the susceptible population, I(¢) the infected, R(f) the recovered, B(t) is the trans-
missibility (which we utilize as a forcing function), y is the recovery rate (which we leave fixed
at 0.5) and Np is the total population. Because Np is fixed and S + I + R = Np, only two states
are independent, so the system dynamics can be captured by modeling only two of the three.
We chose I(t) and R(t).

The training data consists of 58 curves. All curves in the training set have a fixed B value
ranging from 0.5 to 9, in six intervals of 1.7. For each value of B there are 8-10 siumulations
corresponding to different initial conditions designed in such a way to provide coverage of the
state space. (Exact initial conditions used appear in the supplement.) Each simulation used Np
=1000.

The test data consists of 24 curves, each of which features a temporally changing transmissi-
bility B(t). There are three initial By values: 1.35, 4.75 and 8.15. For each starting point there
are two types of transmissibility curves: a ramp and a sinusoid. The By = 1.35 and By, = 4.75
starting points have ramps with a positive slope of 1, while the By = 8.15 curves have a slope of
-1. All ramps run from ¢ = 0 to t = 4, where they level off. The sinusoids have amplitudes
between 0.5 and 3 and a period of 1.

Hyperparameters for BSS-ANOVA were: a = a, = 4 for both states, b, = 8.95and b, ; =
72.1, while b; = 1.25 and by = 20. 2000 draws were taken and the first 1000 discarded. The
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Table 3. SIR test set results for BSS-ANOVA and SINDy: Mean absolute error (MAE).

Method I (MAE) R (MAE)
BSS-ANOVA 5.2739+4.0183 11.8345+21.7337
SINDy 1.8722+4.1736 8.0659+22.2364

https://doi.org/10.1371/journal.pone.0309661.t003

tolerance was 6. Hyperparameters for SINDy, LSTM and GRU were the same as for the Cas-
caded Tanks.

Results for BSS-ANOVA and SINDy are shown in Table 3. SINDy performed better (in
average) on both state predictions. Statistics were not calculated for the GRU and LSTM as
each failed to replicate the dynamics in most test cases and were obviously inferior to both
BSS-ANOVA and SINDy in every instance. A graphical comparison for a selected number of
curves from the test set are shown in Fig 3. The largest overall term in the model for the
infected population was a two-way interaction between the infected state and recovered state,
consisting of second and third order basis functions.

Training and inference times

Training and inference times for BSS-ANOVA were fast, with a mean total train time of 6.3
seconds for the cascaded tanks and 10.8 seconds for the SIR, with 8,000 and 20,000 training
data points, respectively, on a 2019 6-core i7 processor with 16 GB of RAM. The routines were

implemented in MATLAB, but not parallelized or optimized for speed. Models for /1, contain

between 23 and 41 terms, while sz has between 38 and 57 terms. Prediction times for 2000
static points for the cascaded tanks averages 0.5437 s, and the time for evaluating integrals over
the test set averages 20.22 s. For the SIR model the I model had 81 terms and the R model 9
terms, with a mean integration time of 5.3 s. Analyses have shown that the rate limiting step in
BSS-ANOVA build algorithms are the O(NP) construction of the X matrix from the inputs
and basis functions. The neural networks were native MATLAB functions, parallelized and
optimized for speed. Nonetheless train times were considerably longer, with mean train times
of 130s for the ResNet and 175 and 123 s, respectively, for training the LSTM and GRU for the
cascaded tanks. This is to be expected given that the number of weights in the neural nets are
on the order of 10*,

It was not feasible to integrate OAK at the level of 200 inducing points to the same standard
as that of BSS-ANOV A because of time considerations. A reduced set of 40 inducing points
yielded accuracies in the static estimation problem that were approximately the same as
BSS-ANOVA. A reduced time step (500 vs. 20,000 integration steps) brought the integration
time down to 51 minutes for OAK, with MAE/MAPE of 0.1554/6.3 for h; and 0.2378/9.1 for
h,. Reducing the integration step to the same level as BSS-ANOVA (where we could expect
comparable integration accuracies) would require approximately 33 hours.

Discussion

The results show that the forward variable selection methodology makes the KL-decomposed
GP a viable option for dynamic systems—competitive in these preliminary results with state-
of-the-art routines in both static and dynamic modeling tasks—due to its combination of
speed and accuracy. In addition the Bayesian nature of the method yields estimates of uncer-
tainty in the predictions, which can be useful in design of experiments and optimization. It
also creates opportunities for fast Bayesian model updates in a control context, wherein only
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new data need be taken into account due to the presence of a strong prior probability distribu-
tion constructed from previously-utilized data.

The neural networks were not able to obtain the dynamics in the SIR test because the RNNs
map the recurrent inputs to outputs directly on the Hilbert space of time-dependent states and
control functions. That is, if the specific type of time-dependent control function behavior
found in the test set does not appear in the training set—as is the case in the SIR task—then
the test set is out-of-distribution for the RNN. SINDy and BSS-ANOV A by contrast construct
static models of the system in the (much more tractable) Euclidean state/control function
space. Since the test set forcing function never exceeds the bounds of the training set in that
Euclidean space, the test set is in-distribution for both methods.

More speculatively, the performance difference between SINDy and BSS-ANOVA on the dif-
ferent tasks may arise from the relative suitability of the basis to the different types of datasets rep-
resented. The nonparametric GP basis was better suited to the experimental benchmark (where
the dynamics are nonparametric) while the 3*-order polynomial SINDy basis excelled in the
synthetic case that arises from dynamics which are in fact generated from first, second and third-
order polynomials. It will be interesting to explore this hypothesis further in future experiments.

There are several ways in which future work might improve on the current algorithm. A
more discerning selection of terms at each substage in the variable selection routine—adding
some, but not necessarily all terms at each stage—may improve performance by limiting over-
fitting while also automatically selecting features. Here we have been exploring the use of simu-
lated annealing and Markov Chain Monte Carlo approaches modified to retain the speed
advantages of fast Gibbs sampling as potential innermost optimization processes. Such poten-
tial improvements along with code optimization and GPU acceleration will be included in
future versions of the method.

Conclusion

A new forward variable selection algorithm has made the scalable Gaussian process BSS-A-
NOVA a fast and accurate method for nonparametric regression of tabular data on continuous
input spaces. The speed and accuracy for this type of dataset makes it an advantageous method
for dynamic system identification. Favorable comparisons with successful and popular sparse
basis and neural network approaches for timeseries problems were made in prediction tasks
for a pair of nonlinear synthetic and experimental dynamic datasets.
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