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ABSTRACT
This work presents a novel study for identifying alterations

in the control states of a desuperheater system based on real

closed-loop data from a coal-fired power plant operating under

various loads using linear and nonlinear system identification

techniques. Specifically, Transfer Functions (TFs) and Gaussian

Processes within a Nonlinear AutoRegressive eXogenous model

(GP-NARX) are utilized. The desuperheater system comprises

two units, north and south, each modeled as a single-input single-

output (SISO) system based on spray valve positions and outlet

temperatures. To identify changes in the control states using TFs,

deviations in the coefficients of three poles and two zeros transfer

functions are analyzed. Significant shifts in the control states

of the north desuperheater are observed when transitioning from

nominal to half and low loads, with deviations of up to four orders

of magnitude. Substantial changes in control states are also

observed for the south desuperheater when moving from nominal

to low load, with a deviation in the coefficients of up to five orders

of magnitude, whereas the transition from nominal to half load

shows a smaller deviation of up to three orders of magnitude. In

the GP-NARX approach, model uncertainties are used to indicate

the changes in the control states. The south desuperheater showed

a significant uncertainty of up to 8�� from the nominal to the

low load, evidencing a change in the control states. Regarding

the north desuperheater, increased uncertainty, up to 6��, is also

observed but in shorter time intervals when compared to the south

desuperheater. Ultimately, this work shows that both approaches

can be used as a basis for system identification, employing real

closed-loop power plant data.
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1. INTRODUCTION
A boiler system in a coal-fired power plant (see Fig. 1)

is mainly composed of a series of superheaters. After passing
by the final superheater, the steam generated flows into a high-
pressure turbine. The temperature of the superheated steam is
firstly controlled by the amount of coal combustion and the water
flow rate supplied to the boiler [1, 2]. However, during a tran-
sient operation when the generator load changes, controlling the
steam temperature at the desired set-point might be difficult due
to the inherent nonlinearity of boiler systems. This challenge in
controlling the steam temperature may lead to a steam temper-
ature above the set-point, which increases thermal and pressure
stresses on the system, thus accelerating component degradation
and failure.

To ensure control of the steam temperature, a desuperheater
is used to regulate the temperature of the superheated steam be-
tween the superheaters, aiming to achieve the desired turbine-inlet
temperature during both steady-state and transient operations. A
desuperheater consists of a device that sprays water into the su-
perheated steam coming from the boiler system. The desuper-
heated temperature is monitored to ensure accurate control of the
steam temperature through a thermowell installed after the desu-
perheater outlet and connected to the feedback control system
of the spray water. This design ensures the spray water evapo-
rates before reaching the thermowell, maintaining precise tem-
perature control. Nevertheless, due to the tight arrangement of
superheaters inside the boiler, this positioning of the temperature
sensors is not always possible, which may lead to unevaporated
cold droplets impinging on the thermowell [3]. This latter fact
results in the temperature reading being lower than the flowing
steam’s, affecting the steam temperature control. This may also
lead to accelerated component degradation and failure, reduc-
ing overall plant lifetime, lowering efficiency, and increasing fuel
consumption and emissions.
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FIGURE 1: Schematic representation of the boiler system with su-
perheaters, desuperheaters, and control elements.

Currently, conventional power plants are challenged to im-
prove operational flexibility and efficiency, especially due to the
penetration of renewables into the grid [4]. Identifying ways of
improving the operating conditions of these systems while they
are fully or partly under closed-loop feedback control brings addi-
tional challenges in terms of system identification. While system
identification techniques generally work well in open-loop cases,
the same is not true for closed-loop cases due to the potential
correlations between unmeasured noises and process inputs [5].
Closed-loop system identification techniques have been applied to
power plant systems [6]. However, the reported works on closed-
loop system identification have not addressed the desuperheater
system using both the Transfer Function (TF) and Gaussian Pro-
cess (GP) approaches. In this work, as a novel contribution, linear
and nonlinear system identification using Transfer Functions and
Gaussian Processes within a Nonlinear AutoRegressive eXoge-
nous model (GP-NARX) are employed to identify alterations in
the control states of a desuperheater system using real closed-
loop data from a coal-fired power plant operating at different
loads. Abrupt changes in control states can lead to reduced plant
lifetime and low efficiency when the power plant is subjected to
variations in the loading operating conditions. Real data from a
coal-fired power plant in closed-loop at full load (430 MW), 57%
load (242 MW) – referred to as “half load” hereinafter, and low
load of 20% (82 MW) are used. The proposed approaches can
then be used as a basis for system identification, employing real
closed-loop power plant data.

The remainder of this work is structured as follows: a sum-
mary of system identification is given in section 2 where linear
(2.1) and nonlinear (2.2) system identification techniques em-
ployed in this work are described; then, the proposed approach
using both system identification techniques are detailed in 3, fol-
lowed by the presentation and discussion of the obtained results in
section 4. Lastly, conclusions and suggestions for future research
directions are presented in section 5.

2. SYSTEM IDENTIFICATION
System identification involves building mathematical mod-

els of dynamic systems based on observed input-output data from

the system studied. The identification problem consists of giving
a set of input/output past observations to find a relationship to
predict future output values. This relationship can be presented
as a mapping of the input-output variations from the measured
data. The mapping, 5 , can be linear or nonlinear depending on
the nature of the model selected. System identification is an iter-
ative process and has a logical flow following the steps: (i) data
collection; (ii) model structure selection and (iii) training; (iv)
model validation; and (v) deciding which model will be used,
based on performance criteria such as goodness-of-fit, for ex-
ample. Returning to a previous step is possible at any step in
the identification process to improve the quality of the identi-
fied model [7]. In this work, two types of mappings for system
identification are addressed. Firstly, a linear system identifica-
tion technique using transfer functions is described in section 2.1.
Secondly, a nonlinear system identification approach employing
Gaussian Processes is described in section 2.2.

2.1 Linear System Identification
In linear system identification, it is assumed that the system

can be represented as a linear model, which implies that the
output results from a linear combination of the inputs and the
system’s internal states. The objective is to find the optimal
parameters of the linear system structure selected using input-
output data. As an example of a linear system identification
method, a transfer function establishes the relationship between
two variables within a physical process in the frequency domain
(B), in which one variable acts as the cause (input variable, -),
while the other serves as the effect (response or output variable,
. ) in the frequency domain [8]. The general form of a transfer
function is represented in Eqn. 1 below.

TF = ⌧ (B) = . (B)
- (B) (1)

Obtaining a transfer function consists of finding a ⌧ (B) rep-
resenting the system dynamic behavior by estimating the coeffi-
cients of a given set of regressors in the transfer function model
that best represents the input-output relationship. Estimations
of the coefficients are performed by applying optimization al-
gorithms that seek to minimize the differences between the re-
sponses of the model outputs and the real system outputs. If
the physics of the system is already known or can be depicted
using governing equations, then ⌧ (B) can be derived straight-
forwardly by converting these governing equations from the time
domain to the frequency domain using Laplace transforms. How-
ever, when the system’s underlying phenomena are not modeled,
and/or there is no or limited knowledge about the mathematical
relationship between the inputs/outputs, the number of possible
transfer functions representing the system can be large. Hence,
the TF modeling task becomes selecting which of the possible
transfer functions best represents the system behavior.

Transfer functions are usually defined by their number of
poles (I8) and zeros (?8), and its coefficients (1<) and (0<), in
which the denominator corresponds to the poles, and the numer-
ator corresponds to the zeros in Eqn. 2. As one can see in
this equation, both the denominator and numerator are just linear
combinations. It is worth mentioning that although the number
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of transfer functions that can represent the dynamic behavior may
be large, the number of zeros should not exceed the number of
poles, which means that = is always greater than or equal to <

(= � <). The main reason why this constraint is imposed on the
TF modeling task is that in a transfer function, poles are associ-
ated with the roots of the denominator polynomial, and zeros are
associated with the roots of the numerator polynomial [9]. If the
number of poles exceeds the number of zeros, this implies that
the system response depends on future inputs, thus violating the
causality principle [10]. Therefore, selecting a transfer function
can become a difficult task for two reasons: first, there is a large
number of possible combinations of transfer functions, and trying
all of them may become computationally expensive; and second,
if the data used to obtain the transfer functions is limited, there
is no guarantee that the obtained transfer function represents the
true system behavior for other regions not comprehended by the
data. These two transfer function characteristics will be better
observed in section 3.1.

⌧ (B) = 1<

0=

(B � I1) (B � I2) . . . (B � I<)
(B � ?1) (B � ?2) . . . (B � ?=)

(2)

2.2 Nonlinear System Identification
The general idea behind estimating the coefficients of a given

set of regressors for the linear system identification case in sec-
tion 2.1 is also considered in the nonlinear system identification
case. The general nonlinear structure considered is represented
in Eqn. 3, where ⌧ is some nonlinear function parametrized
by \, and the components of i(C) are the regressors. Nonlinear
system identification models can be divided into several groups
depending on the choice of the regressors. A few examples are
NFIR (Nonlinear Finite Impulse Response), NARX (Nonlinear
AutoRegressive eXogenous model), NOE (Nonlinear Output Er-
ror), NARMAX (Nonlinear Auto-Regressive Moving Average
model with eXogenous inputs), and others. A complete list and
description of nonlinear models for system identification can be
found in [11].

Ĥ(C | \) = ⌧ (i(C), \) (3)
The NARX models are of particular interest in this work.

NARX models use the input values, D(: � 8), and the measured
output values, H(:�8), as the regressors. The general structure of
a NARX model is presented in Eqn. 4, where = is the maximum
lag in the output values, < is the maximum lag in the input values,
and a is white Gaussian noise.

Ĥ(:) = 5 (H(: � 1), H(: � 2), . . . , H(: � =), D(:),
D(: � 1), . . . , D(: � <)) + a

(4)

2.2.1 Non-parametric Nonlinear System Identification.
As briefly mentioned above, the general idea behind nonlinear
system identification is estimating the coefficients of a given set
of regressors where ⌧ is some nonlinear function parametrized
by \, and the components of i(C) are the regressors. However,
it is also possible to consider ⌧ as a non-parametric function.
Non-parametric means not assuming a fixed number of regres-
sors to describe the function being modeled. Gaussian Processes

are an example of a non-parametric function. For the specific
case of the Gaussian Processes, the number of regressors grows
with the number of data points. This means that a set of fixed
regressors does not define the function, but instead, it is charac-
terized by a mean function (`) and a covariance function (⇠5 ),
as shown in Eqn. 5, that define the relationships between the
data points [12–14]. Of particular interest in this work is com-
bining non-parametric functions with nonlinear system identi-
fication structures such as the NARX. This combination opens
avenues for identifying several different types of dynamic sys-
tems with different time scales and degrees of nonlinearity, con-
sidering the prediction robustness feature of both nonlinear and
non-parametric models.

5 (x) ⇠ GP(`,⇠5 ) (5)

2.2.2 NARX models combined with Gaussian Processes
(GP-NARX). The main motivation for employing the GP-NARX
technique corresponds to the inherent and readily available un-
certainty prediction from GPs as discussed in the literature [12].
A Typical GP-NARX structure consists of using previous input,
D(: � 8), and measured output, H(: � 8), values to obtain out-
put predictions, Ĥ(:), as shown in Fig. 2. The implementation
considered in this work consists of using real plant data, on-site
experiments, or stored (historian) data to generate GP-NARX
predictors for each desired output for training. By considering
the same training data, validation is performed to assess the GP
model performance by observing the predicted mean and standard
deviation and the absolute error at each time step. Assuming that
the model performance is satisfactory, the trained model can then
be employed to investigate the system dynamics for data different
from the one used for training or to carry out multi-step-ahead
predictions for specific cases [13].

FIGURE 2: Flowchart illustrating the the GP-NARX structure.

3. PROPOSED METHODS
Fundamentally, the methods in this work propose ways of

identifying changes in the control states of a desuperheater system
in a coal-fired power plant using closed-loop data with the Trans-
fer Function and the GP-NARX schemes. The addressed power
plant boiler system is composed of two desuperheaters (north and
south) in a power plant with a nominal operating load of 430 MW.
A schematic representation of the boiler system containing the
two desuperheaters is shown in Fig. 1. The addressed scenario
is when operating at loads lower than the nominal, the water
spray valve positions traverse the entire range, achieving both
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extremes (fully open and fully closed positions) more frequently
as the steam pressure and electric load decrease. Consequently,
excursions in the desuperheater outlet temperature are observed
when the control valve is driven to these extremes. The overall
closed-loop control block diagram for the desuperheater system
is shown in Fig. 3. The main assumption is that the process (⌧?)
cannot change by itself without any generated disturbance, noise,
or different input values of the manipulated variables (-+ ) com-
ing from the actuator (⌧{) originated from the controller (⌧2).
Hence, if the controlled variable ()3,<) does not experience a
change, the hypothesis is that the control action from (⌧2) is not
sufficient to move the system to the desired set-points ()3,B?),
thus causing the excursions in the water spray valve positions.

FIGURE 3: Block diagram for the general process control loop.

3.1 System Identification with Transfer Functions
In this approach, alterations in the control states are deter-

mined by comparing the model structure (number of poles and
zeros) and their coefficients using transfer function identifica-
tion at multiple operating states. The manipulated variables and
controlled variables correspond to valve positions and outlet tem-
peratures of both north and south desuperheaters (see Figs. 1 and
3), respectively, as shown in Tab. 1.

The first step is selecting which transfer function struc-
ture best represents the system behavior among the different
possible transfer function structures. An automated approach
is implemented in MATLAB® using the MATLAB® System
Identification™ toolbox to decide on the best structure. The auto-
mated approach consists of varying the number of poles and zeros
to obtain different transfer function structures and automatically
selecting the one that best represents the system behavior, assum-
ing that the system operates at a specified nominal load. The
selection of the best transfer function is based on the Goodness-
of-fit (GoF) criterion using the Normalized Root Mean Square
Error (NRMSE) metric as the objective function. Although the
transfer function to be selected is the one that best fits the data, it is
important to mention that the main goal is not exclusively model
prediction capabilities but also to have a model that is sensible
to perform the control state change identification. Therefore, se-
lecting a simpler transfer function structure with a slightly lower
accuracy may be better suited to perform identification in the
control state change, considering that transfer functions used in
control instrumentation are typically of low order [15].

After obtaining the transfer function structure that best fits
the system dynamics at the nominal load, the selected TF struc-
ture is kept constant with respect to the number of poles and
zeros for the remaining load conditions. At this point, system

identification at different loads is performed, and the coefficients
of the newly identified functions are observed. Deviations are
calculated between the coefficients of the newly obtained transfer
functions at different loads and the coefficients of the fixed trans-
fer function at the nominal load. The observed deviations are
assessed and used as an index to quantitatively identify changes
in the control states of the system.

Process Manipulated Vari-
able Controlled Variable

North Desu-
perheater

North Spray Valve
Position (-#>AC⌘

+ )
[%]

Outlet Temperature
()31 ,<)[°F]

South Desu-
perheater

South Spray Valve
Position (-(>DC⌘

+ )
[%]

Outlet Temperature
()32 ,<)[°F]

TABLE 1: Manipulated and controlled variables

3.2 System Identification with Nonlinear Auto-Regressive
model structure with eXogenous inputs (GP-NARX)
Regarding the GP-NARX approach, the first step consists of

training a GP-NARX model based on the data from the system
operating at a selected nominal load. For this step, it is necessary
to have an appropriate dataset first. Given the inherent form of
NARX models, as shown in section 2.2, it is necessary to perform
a data table construction based on pre-specified input and output
lags. This step means that an additional number of columns,
equivalent to the number of lags, are added to both the input and
output data. Each column starts and ends at a different point in
time following the structure outlined for a GP-NARX problem in
Eqn. 4.

After the construction of the appropriate dataset and before
performing the training using a GP model, it is necessary to find
the initial values of the hyperparameters by computing the log
of the marginal likelihood for a given set of hyperparameters
and selecting which has the highest likelihood among them. At
this step, prior information parameters are provided, such as the
bound of hyperparameters, inference method, prior mean func-
tion, covariance function, likelihood function, and both input and
output data. The specifications on the prior information used in
this work are outlined in Tab. 2.

Lastly, the training is performed by informing the selected
initial set of hyperparameters and the same prior information
parameters used during the initialization procedure. The training
consists of the most time-consuming process regarding the use
of GP-NARX due to the required inversion of the covariance
matrix. After the training step, the optimal hyperparameters are
obtained, and the validation of the model against the training
data is the next step. Validation assessment can be performed
by visually inspecting how the obtained model fits the training
data and computing the GoF, for example. After performing
validation, the final analysis is carried out to compare how the
trained GP-NARX model can represent the system at different
loads by assessing the observed model uncertainty. If there is
large and extensive model uncertainty, this indicates an alteration
in the control states of the system.
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Parameter Value
Hyperparameter bounds [-4,4]

Inference method Exact
Mean function ` = 0

Covariance function Squared exponential ARD (Eq. 6)
Likelihood function Gaussian (Eq. 7)

TABLE 2: Informed GP parameters a priory

⇠5
�
x8 , x9

�
= f

2
5 exp

"
�1

2

⇡’
3=1

|3
�
G38 � G3 9

�2
#

(6)

% =
1�

2cf2�n/2

=÷
8=1

8>><
>>:

exp
266664
�1

2

 
H
(8) � b

5 (x,w)
f

!2377775
n

9>>=
>>;

(7)

where |3 and f5 are the hyperparameters of the covariance
function, ⇡ is the input dimension, f is the standard deviation,
= is the length of the dataset, H is the output value, x is the set of
input values, w is the set of parameters, b

5 is the model, and n is
the error.

4. RESULTS AND DISCUSSIONS
4.1 System Identification with Transfer Functions

The automated system identification approach for model
structure selection outlined in section 3.1 is used to identify which
transfer function structure best represents the input-output rela-
tionship for both north and south desuperheaters. A specific data
set with 322 points sampled each minute at the nominal state
(430 MW) is selected as the training set. The number of poles
and zeros specified for the transfer function structure selection
ranged between one and three, giving six possible combinations,
considering that the number of zeros could not exceed the number
of poles. The limitation for the range of the number of poles and
zeros up to three is imposed, considering that higher-order sys-
tems would lead not only to overfitted transfer functions but also
excessive computational time for training. The obtained transfer
function trends for each desuperheater are shown in Figs. 4 and
5, respectively.

Considering the results for the north desuperheater in Fig. 4,
it is possible to visualize that the best transfer function structure
corresponds to the one with three poles and two zeros, which has
a GoF equal to 47.98%. Other transfer functions evaluated have
also exhibited reasonable GoF except for the transfer function
with three poles and three zeros, which is shown to be completely
off from the true system behavior. Possible reasons for this com-
pletely off behavior were not investigated in detail since it would
defeat the purpose of this work. However, they are believed to be
related to inherent differences in the dynamic nature of the true
data and mathematical model characterized by the transfer func-
tion. Regarding the results for the south desuperheater in Fig. 5,
the transfer function structures with three poles outperform the
ones containing one or two poles. Among the ones with three
poles, the three poles and two zeros transfer function structure is

the one that would best represent the true system behavior with
a GoF corresponding to 43.34%. Among all the trained transfer
functions, the ones with the highest GoF values are selected to
represent the single-input single-output relationship for both the
north and south desuperheaters. Therefore, the structures with
three poles and two zeros are chosen to represent both north and
south desuperheaters for the control states change verification
step for the systems at different loads.

FIGURE 4: High-order transfer functions fitting with accuracy (GoF
results) for the north desuperheater.

FIGURE 5: High-order transfer functions fitting with accuracy (GoF
results) for the south desuperheater.

Before performing the control state change verification, the
selected transfer function structures are validated considering the
entire system behavior. The parameters of the obtained transfer
function structure are fitted again using the entire data with 8,392
points for both north and south desuperheaters. The validations
performed are shown in Figs. 6 and 7. The Goodness-of-fit for
both north and south desuperheaters for the whole dataset are
48.78% and 30.45%, respectively. Based on the observed GoF
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and visually inspecting the trends in Figs. 6 and 7, it is possible
to see that in both cases, the transfer functions obtained are able
to represent the system behavior at some regions. However,
for other parts, the obtained TF structure is not accurate. This
latter observation means that a close inspection and analysis of
such regions is needed to check if the hypothesis of a possible
control state change is indeed happening for the system at different
loads, such that the obtained transfer function cannot represent
the system anymore whenever a load change happens in the power
plant.

FIGURE 6: Three poles and three zeros transfer-function model val-
idation for the north desuperheater over the entire dataset.

FIGURE 7: Three poles and two zeros transfer-function model val-
idation for the south desuperheater over the entire dataset.

Next, the hypothesis of possible changes in the control states
is investigated. The transfer function structures obtained for both
north and south desuperheaters are fixed and used to predict
the system behavior at different loads from the nominal, half
(242",), and low (82",), as well as other load conditions

similar to the nominal (425", and 426",). The TF coeffi-
cients obtained at these other load conditions are compared to the
coefficients of the selected transfer functions evaluated from the
structure selection shown in Figs. 4 and 5. The comparison is
conducted by calculating the relative deviations between the coef-
ficients of the transfer functions. The magnitude of the observed
deviations indicates whether a possible control state change hap-
pens or not. All observed deviations in the coefficients for both
north and south desuperheaters are shown in Figs. 8 and 9.

Regarding the deviations observed in the transfer function
coefficients for the north desuperheater (Fig. 8), for loads similar
to the nominal (Fig. 8a), the maximum deviation observed is
approximately 600%, which in this work is considered a low
deviation and insignificant to evidence a control state change.
The observed low deviation is expected, considering that the
loads are about the same as the nominal load used to define the
fixed transfer function structure. Conversely, the deviations for
the half and low load cases (Figs. 8b-c) are shown in general to
be of higher order. The maximum deviation between the nominal
state and the half load is approximately 21, 000%, while between
the nominal state and the low load is approximately 80, 000%,
both being considered as high deviation values. Lastly, when
comparing the observed deviations shown in Figs. 8b-c between
the half and low load, it is possible to see that they both have about
the same order of magnitude. Overall, for the north desuperheater,
it can be seen that there is a clear control state change when going
from the nominal state to both the half and low loads, but not
from the half to the low load. Therefore, to account for this, the
re-tuning of the controller or the re-ranging of the control valve
might be desirable when going from the nominal to the half and
low loads, but it is not necessary when going from the half to the
low load.

Now, considering the deviations of the transfer function co-
efficients for the south desuperheater (Fig. 9), the deviation
observed from the nominal state to the half load (Fig. 9b) is of
approximately 2, 000%, while between the nominal state and the
low load (Fig. 9c) is approximately 120, 000%. In this case, it
can be seen that there is a clear control state change when going
from the nominal state to the low load but not from the nominal
to the half load. Comparing the deviations observed for loads
similar to the nominal (Fig. 9a), for most of the coefficients,
deviations are of low order, not exceeding 1, 000%, except for
12 where a deviation of 20, 000% is observed and treated as an
outlier. Overall, based on the observed deviations for the south
desuperheater, the re-tuning of the controller or the re-ranging of
the control valve might be required when going from the nominal
and half loads to the low load, but it might not be necessary when
going from the nominal to the half load scenario.

It is also important to mention that the control state changes
happened for both north and south desuperheaters but in different
ways. For the north desuperheater, the control state changes are
evidenced when going from the nominal to the half and low loads
but not when going from the half to the low load. Meanwhile,
control state changes are evidenced for the south desuperheater
when going from the nominal to the low load but not from the
nominal to the half load. Although the power plant owner of
the data used in this work did not disclose any details on the
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configuration of the desuperheaters, this difference in the control
state change behavior is believed to exist as a result of differences
between the heat exchange surface areas of each desuperheater
caused by maintenance and repairs over the years.

FIGURE 8: Transfer function coe�cient comparisons for full, half,
and low loads vs. nominal load for the north desuperheater.

FIGURE 9: Transfer function coe�cient comparisons for full, half,
and low loads vs. nominal load for the south desuperheater.

4.2 System Identification with Nonlinear Auto-Regressive
model structure with eXogenous inputs (GP-NARX)
The availability of high-performance machine learning tools,

such as Gaussian Processes, and their particular ability to quantify
uncertainty have motivated the second part of this study, in which
GPs are applied to verify changes in the control states. Following
the same approach as in section 4.1, initially, a single GP-NARX

FIGURE 10: GP-NARX for the north desuperheater controlled vari-
able with accuracy (GoF) and uncertainty shown.

FIGURE 11: GP-NARX for the south desuperheater controlled vari-
able with accuracy (GoF) and uncertainty shown.

to describe the input-output relationship for each desuperheater is
identified, and its prediction capabilities are assessed. The same
specific data sample with 322 points sampled each minute at the
nominal state is selected as the training data. Given the structure
of the GP-NARX model equations and discrete-time characteris-
tics, input and output lags must be specified (both are set equal to
2). Before performing the identification, prior informed parame-
ters are specified for the GP. The configuration set chosen can be
found in Tab. 2. Figs. 10 and 11 display the model identification
results, evidencing the capabilities of GP-NARX structures to
predict not only the average value of the real data (`) but also the
uncertainty region (` ± 2f). The GP-NARX model describing
the input-output relation for the north desuperheater is shown in
Fig. 10. Prediction accuracy is again evaluated using the GoF
with NRMSE as the cost function. It is possible to see that GP-
NARX fits the true system behavior with an accuracy of 91.34%.
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For the south desuperheater, the fit accuracy is 88.45%, as shown
in Fig. 11. Both GP-NARX models presented are within the
confidence bounds and exemplify how the GP has a higher accu-
racy in performing system identification when compared against
traditional system identification techniques, such as the transfer
function approach used in Section 4.1.

FIGURE 12: GP-NARX validation on identification data over the en-
tire dataset for the north desuperheater with accuracy (GoF) and
uncertainty shown.

FIGURE 13: GP-NARX validation on identification data over the en-
tire dataset for the south desuperheater with accuracy (GoF) and
uncertainty shown.

Next, the validation of the GP-NARX structure obtained is
performed considering the entire system behavior, similar to the
validation of the selected transfer function structures shown in
Figs. 6 and 7. For this step, the hyperparameters are re-optimized
using the entire system data with 8,392 points. The obtained re-
sults for the validation of the GP-NARX are shown in Figs. 12
and 13. The plots again show the high accuracy capabilities of GP
models when performing system identification. In Fig. 12, the ac-

curacy in prediction for the north desuperheater is 97.37%, while
for the south desuperheater, the prediction accuracy is 97.21%.
The higher accuracy values shown for the validation of the entire
system behavior are expected, considering that whenever more
data is given for the training of the GP model, the prediction
is usually more reliable. This latter result is another example
of the enhanced features that GP potentially offers. However,
it is also worth mentioning that whenever more data is given at
the identification step, more time is required for training due to
the computational complexity of the matrix inversion operations
when handling the covariance matrix at the GP training step.

FIGURE 14: GP-NARX validation at di�erent full loads for the north
desuperheater.

FIGURE 15: GP-NARX validation at di�erent full loads for the south
desuperheater

Considering similar (425", and 426",) and different
operating load scenarios (242", and 82",), the GP-NARX
models trained at the selected nominal state (430",) for both
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north and south desuperheaters are used to simulate these other
load operating conditions. The premise is that under different
system loads from the nominal, the uncertainty might enlarge due
to a change in the control state, while for similar load operating
conditions, the uncertainty is expected to shrink.

FIGURE 16: GP-NARX validation at both half and low loads for the
north desuperheater.

FIGURE 17: GP-NARX validation at both half and low loads for the
south desuperheater.

Figs. 14 and 15 show the prediction and uncertainty obtained
at operating loads similar to the nominal, for the north and south
desuperheaters, respectively. One can see that the GP-NARX
model has the prediction within the confidence bounds for most
of the data with a few outliers. The system trends and predictions
when operating at the half load (242",) are exhibited in Figs. 16
and 17. It is possible to observe that for the north desuperheater,
although most part of the data is within the confidence bounds,
offset and increased uncertainty are observed in the last part of
the data. Meanwhile, for the south desuperheater, an increased
uncertainty is observed for most of the data, and a mismatch

in the prediction occurred when compared to the true system
behavior. Inspecting the system trends and predictions when
operating at the low load (82",) in Figs. 16 and 17, it is
possible to see that for the north desuperheater, most part of
the data points are within the confidence bounds, but offset and
increased uncertainty are observed at the beginning. Meanwhile,
for the south desuperheater, enlarged uncertainty and mismatch
are observed for most of the data, with a substantial offset between
the prediction and the true system behavior in the first 20 minutes.

If the half and the low load conditions are compared for the
south desuperheater, it is possible to see that the uncertainty and
the offset for the GP-NARX predictions increase significantly.
This evidences a considerable change in the control state when
transitioning from the nominal to the low load conditions, while
for the half load, although the observed uncertainty is also en-
larged, the offset is not as significant as it is for the low load.
These latter observed results align according to what was seen
using the transfer function approach. Hence, for the south desu-
perheater, the re-tuning of the controller or the re-ranging of the
control valve might be required when going from the nominal
and half loads to the low load, but it might not be necessary
when going from nominal to the half load. Regarding the north
desuperheater, increased uncertainty and mismatches are only
observed at the beginning and the end in Fig. 16. However,
these observed mismatches are more significant in extension than
the ones observed when comparing loads similar to the nominal
load. Therefore, although not as strong as evidenced in the south
desuperheater, these observed uncertainties can also be exploited
in a control algorithm to inspect the maximum allowable variance
or standard deviation of the GP-NARX structure as a trigger for
re-tuning controllers when operating at different loads.

5. CONCLUSIONS
This work investigated the identification of possible control

state changes in a power plant system composed of two desuper-
heaters (i.e., north and south) using real closed-loop data from
a coal-fired power plant operated nominally at 430", . For
the transfer function approach, three poles and two zeros trans-
fer functions were used to identify distinct control states for the
desuperheaters. The control states of the north desuperheater
shifted when changed from the nominal to the half and low loads.
Regarding the south desuperheater, changes in the control states
were observed when going from the nominal state to the low load
but not from the nominal to the half load. Control state character-
ization using the GP-NARX scheme generated a consistent result
with the TF analysis, particularly for the south desuperheater, in
which a significant uncertainty and mismatch in prediction evi-
denced a change in the control state from the nominal to the low
load, while for the half load, it was not as significant as it was
for the low load. Regarding the north desuperheater, although
increased uncertainty and mismatches were observed at shorter
time intervals when compared to the south desuperheater, they
were more significant in extension than the ones observed when
comparing loads similar to the nominal load. Therefore, this work
shows that both approaches can be used to identify the control
state changes using closed-loop data from real coal power plants.
In future work, the approaches developed in this study can be used
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as a basis for online system identification, employing real power
plant data. Moreover, a control algorithm could be developed to
inspect the maximum coefficient deviation in the TF approach or
maximum allowable variance in the GP-NARX approach as pos-
sible triggers for re-tuning controllers when operating at different
loads.
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