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A tendency to perceive illusory streaks or clumps in random sequences of data—the hot hand phenomenon—has
been identified as a human universal tied to our evolutionary history of foraging for clumpy resources. We
explored how this misperception of randomness and, more generally, ecologically relevant statistical thinking
develops ontogenetically. Based on previous work with adults, we developed three tablet-based decision-making

foragin X X . ; ;
hot iangd tasks that assessed how 3- to 10-year-old children in the U.S. and Germany decide whether sequential events will
randomness continue in a streak or not, their understanding of randomness, and their ability to reason about randomness in

spatially dependent terms. Our analyses suggest that children, like adults, hold strong expectations of clumpy
resources when they search through and reason about 1- and 2-dimensional statistical distributions. This evolved
psychological default to clumped resources decreases somewhat with age. Future research should explore
possible early interventions to improve statistical literacy and minimize the detrimental effects that (mis)per-
ceptions of streaks and patterns can have on everyday life.

1. Introduction
1.1. Humans as intuitive statisticians

The world is full of statistical patterns. Distributions of objects and
events in space and time are generated by underlying processes that are
partly ordered, partly stochastic. For example, sequences of coin tosses
show elements of order as well as randomness—no sequence is exactly
predictable, but certain aggregate properties are, such as the expected
proportion of heads and tails. The same holds for natural processes in
space and time including weather, the distributions of plants and ani-
mals, and human social behavior. A large and growing literature in
psychology has examined how humans and other animals grasp this
statistical nature of the world and use it in their judgments and decisions
(e.g., Anderson & Schooler, 1991; Brase et al., 1998; Cosmides & Tooby,
1996; Gigerenzer & Hoffrage, 1995; Gigerenzer & Murray, 1987;
Pacheco-Cobos et al., 2019; Petersen & Beach, 1967; Simon, 1956). This

literature considers humans as “intuitive statisticians,” revealing ways in
which our intuitions conform to, and sometimes depart from, principles
of sound statistical inference and decision making (e.g., Brase, 2002;
Fawcett et al., 2014; Haselton et al., 2009; Hertwig et al., 2019; Wilke &
Todd, 2012). Importantly, this literature includes comparative di-
mensions, examining facets of intuitive statistics across species (e.g.,
Rakoczy et al., 2014; Stephens, 2008), across human societies (e.g., Pica
et al., 2004; Uskul et al., 2008; Wilke & Barrett, 2009), and across the
human lifespan, including, crucially, studies of intuitive statistics in
infants and children (e.g., Gopnik & Schulz, 2004; Johnson, 2020; Xu &
Garcia, 2008). However, these developmental and comparative studies
are orders of magnitude sparser than the vast literature on college-
educated human adults (c.f. Nielsen et al., 2017). In particular, the
growing literature on the development of intuitive statistics, while
empirically impressive, has only begun to explore how the diverse and
many-faceted aspects of adult statistical intuitions originate in child-
hood (e.g., Gopnik, 2012; Kushnir et al., 2010; Schulz et al., 2019). We
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propose to expand our understanding of this aspect of development.

Intuitive statistics in human adults has been described as comprising
a “toolbox” of different mechanisms and processes that we bring to bear
in understanding and making use of the statistical nature of the world
(Gigerenzer et al., 1999). What this means is that statistical thinking in
adults is not a consistent, uniform entity generated by a single, under-
lying process (Kahneman, 2013). Instead, human adults bring to bear
both data-driven processes, such as statistical learning and Bayesian
inference (e.g., Gopnik & Tenenbaum, 2007), as well as a variety of
heuristics that embody assumptions about the statistical structure of the
world (e.g., Gigerenzer & Goldstein, 1996). Importantly, many of these
heuristics appear to be “ecologically rational”: they embody assump-
tions about statistical distributions that allow for rapid and efficient
decision making in environments where those assumptions hold true (e.
g., Pleskac & Hertwig, 2014; Todd et al., 2000; Wilke & Todd, 2012).
There is an evolutionary component here, because these heuristics are
likely to have been selected and tuned over the course of human evo-
lution to take advantage of robust statistical patterns that are wide-
spread over space and time. They are thus not only ecologically but also
evolutionary rational, operating adaptively when used in appropriate
environments (e.g., Fawcett et al., 2014). A downside of this, of course,
is that when these statistical assumptions are not met in particular en-
vironments, using heuristics that rely on them may produce judgments
and behavior that appear “irrational,” maladaptive, or incorrect.

A case that we and others have explored at length is judgments about
randomness, and randomness of a particular kind. A key distinction in
formal statistics is the distinction between independent and non-inde-
pendent events. Many statistical techniques assume the statistical inde-
pendence of events being sampled, meaning that any given event has no
connection to and hence no predictive information regarding any other
event; this is a basic staple of introductory statistics courses, with coin
tosses often used as a canonical example. One can expect sets of coin
tosses, for example, to conform in the aggregate to binomial (Poisson)
distributions precisely because of the independence of each toss, which
does not affect or predict the outcome of the next. A large literature,
however—to which we have contributed, and which we review briefly
below—suggests that adult humans and animals rarely assume this in-
dependence is the case. Instead, we much more frequently assume that
events in the world exhibit some mutual dependence, e.g., autocorrela-
tion, either positive or negative (e.g., Falk & Konold, 1997; Schei-
behenne et al., 2011). For example, if we catch a fish in a pond we might
cast our line again, assuming there will be more, and if the first person
we encounter in a village speaks our language we might assume that
others will too. From an ecological rationality perspective, this makes
perfect sense if we evolved in a world where events tend not to be
completely independent (at least the events that have impacted our
fitness).

However, in settings where events are largely independent, these
intuitions will lead to mistakes. The intuitions we have just described
reflect an assumption of positive autocorrelation of events. This
assumption will fail—indeed, it is “irrational’—in some situations,
including where events are statistically independent. In such cases, our
hunches should instead rely only on the overall base rates of events and
should not be biased by any prior observation. For example, if the
occurrence of water in a particular location in the desert is an inde-
pendent event, then observing a pool should not cause us to increase our
estimate of the probability of another pool nearby above the base rate of
pools (c.f. Wang, 1996).

1.2. The misperception of randomness

Human adults are often very poor at making judgments about ran-
domness—that is, about independent events (terms we use inter-
changeably here). As we and others have found, human adults robustly
assume that events tend to be autocorrelated, usually positively. We
expect that events come in “streaks,” or “clumps” (see Wilke & Barrett,
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2009) and often see patterns that simply are not present in the data that
is inspected (e.g., Bar-Hillel & Wagenaar, 1991; Scheibehenne et al.,
2011).

This is revealed in a phenomenon that has been well described in the
judgment and decision-making literature, known as the hot hand effect
(see Gilovich et al., 1985). Empirically, the hot hand effect occurs when
humans expect sequentially occurring (binary) events to be positively
autocorrelated (e.g., a basketball player’s chance of hitting a shot is
perceived to be greater following a successful shot than a miss), even
when in fact these sequential events are independent (see Reifman,
2011). This finding can be considered a form of “illusory pattern
detection”, or “misperception of randomness” as it reveals an implicit
assumption of streaks, clumps or aggregation in these sequential events.
The hot hand expectation has been found to be very robust in adults,
across many contexts and across cultures (cf. Wilke & Barrett, 2009). In
recent years, psychologists have further explored the proximate mecha-
nisms of the hot-hand phenomenon (e.g., Oskarsson et al., 2009; Yu
etal., 2018) and looked at the role of the hot hand bias in other sports (e.
g., Morgulev & Avugos, 2023; Raab et al., 2012), its role in gambling
behavior and finance (e.g., Croson & Sundali, 2005; Wilke et al., 2014),
its occurrence in other age groups such as older adults (Castel et al.,
2012), and the statistical limitations of Gilovich’s original findings (e.g.,
Miller & Sanjurjo, 2017).

A second well-known confusion about randomness has been reported
by Falk and Konold (1997). Their results inform us that people not only
perceive spatial clumps in random 1-dimensional binary sequences—as
in the hot hand phenomenon—but also in random 2-dimensional
resource patterns. Falk and Konold (1997) elegantly showed this with
a set of 10 x 10 grids in which half of the 100 squares were empty and
half were filled. Each pattern was generated according to an alternation
rate p(A) that specified the probability that the next square would differ
from the previous one. Whereas grids with an alternation rate p(A) near
0.5 are least predictable (and most random), lower alternation rates
create clusters or clumps of empty or full squares and higher alternation
rates lead to more dispersion. But when asked to rate the randomness of
the visual grid arrangements, participants did not give the highest rat-
ings to grids with alternation rate near 0.5—they chose grids which were
more dispersed (with a p(A) around 0.60-0.65) as they thought they saw
non-random patterns in grids with p(A) values near 0.5. Thus, as in one-
dimensional sequences, the least predictable two-dimensional random
grid arrangements were nonetheless perceived as having clusters of re-
sources (see Falk & Konold, 1997; cf. Falk et al., 2009).

We have argued that this apparent irrationality regarding random
distributions results from an assumption that is ecologically rational in
many natural contexts—that events come in clumps—but that leads to
errors in experimental or real-world contexts where events truly are
random, as in computer-generated random sequences used in psychol-
ogy experiments, in sequences of coin tosses, or in casino gambling
(Gaissmaier et al., 2016; Yu et al., 2018).

1.3. An evolutionary perspective to the problem

Research on the ultimate function of the hot hand phenomenon and
the misperception of random data sets suggests that these behaviors
reflect an underlying adaptive human universal, tied to an evolutionary
history of foraging for clumpy resources, rather than an erroneous
cognitive fallacy that only occurs in sports or financial settings.

Wilke and Barrett (2009) found that the hot hand phenomenon oc-
curs in both Western and traditional foraging cultures (i.e., the Shuar of
Ecuador) when participants predict hits and misses foraging for natural
and man-made artificial resources, and that it seems to be a psycho-
logical default which is only partly erased by experience with true
randomizing mechanisms like coin tosses. Blanchard et al. (2014)
showed that rhesus macaques, a non-human primate species with a
similar foraging history shares our proclivity for seeing positive recency
(clumps) in independent sequential events too—either by homology (i.e.,
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a common ancestor of primates showed the hot hand phenomenon and
now modern descendants do too) or by convergence (i.e., because similar
patchy foraging environments selected for a misperception of random-
ness in disparate species). Thus, such possible ancient homology in-
creases the likelihood that the misperception of randomness is a genuine
human universal and could predict a robust and canalized develop-
mental trajectory, possibly appearing in early childhood (see Barrett,
2015).

Aggregation in space and time, rather than randomness, is likely to
have been common for most of the natural resources humans encoun-
tered over evolutionary time. Resources that primates forage for (e.g.,
plants and animals) rarely distribute themselves in a random manner in
their natural environment, because individual organisms are not inde-
pendent from another (Taylor, 1961; Taylor et al., 1978; cf. Hutchinson
et al., 2008). While deviations from randomness could go either in the
direction of aggregation (forming clusters) or in the direction of greater
dispersal (being spread out), more often these deviations are toward
aggregation, because aggregation offers considerable benefits to indi-
vidual organisms coming together for mating, parenting, habitat
exploration, and group foraging (see Bell, 1991; Krause & Ruxton,
2002). We propose that our species’ long history as hunters and gath-
erers pushed our evolved psychology to take such aggregated resource
distributions as the default (Tooby & DeVore, 1987). Wilke et al. (2018)
found empirical support for the claim that many resources are clumps by
investigating the exact ecological spatial patterns of different classes of
resources in the environment. After observing and coding 15 different
resources from both developed and natural domains—such as seats
taken at a café and in a restaurant, occupied parking spots, groupings of
geese and cows, and patterns of wilderness, wild forest, and water—the
results showed that natural resource domains (e.g., animal distributions,
habitat structures) and many human-developed resource domains
contain aggregation. Random distributions occurred much less
frequently than aggregated ones and dispersed distributions were very
rare. Agent-based simulation models and behavioral multi-person
foraging tasks support this argument by demonstrating that patchy
structures in environments may have coevolved with the emergence of
cognition for searching and exploiting such patches (Legge et al., 2012;
Luthra et al., 2020; Talbot et al., 2009; Wilke & Barrett, 2009).

Thus, assuming clumpiness is adaptive in contexts where clumps
exist but dispersal is rare, as in natural foraging settings. It is beneficial,
because when trying to predict the best foraging site, using a strong prior
expectation for clumped resources is likely to provide better predictions
than a random prior (c.f. error management theory; see Haselton &
Nettle, 2006; Haselton et al., 2009). At the same time, it is not more
costly than other assumptions in random environments: When faced
with sequences of independent and equiprobable events, specific
“cognitive biases” like hot hand do not decrease accuracy, because all
strategies produce chance-level performance (see Scheibehenne et al.,
2011). This means that what has been seen as a systematic error in our
decision-making apparatus may actually be a design feature of our
cognitive system to help us find the locations of forageable resources in
physical environments. This explanation also highlights the role of
ecological (and evolutionary) rationality as introduced above—the prin-
ciple that there is a match between the statistical structure of objects and
information of current (and past) environments and the judgment and
decision-making strategies of humans and other organisms (e.g., Brase
et al., 1998; Griffiths et al., 2018; Rosati, 2017; Todd et al., 2012; Wang,
1996).

1.4. A developmental perspective to the problem

Little is known about the perception of randomness in human infants
or children. Some early work tried linking children’s reasoning about
randomness producing physical devices to distinct stages of cognitive
development (see Piaget & Inhelder, 1975), but these studies neither
involved sequential foraging tasks nor reflected on the statistical
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distributions of the natural environment that our minds evolved to
respond to (cf. Hoemann & Ross, 1971; Kuzmak & Gelman, 1986; Metz,
1998). What has been shown in recent years, however, using cleverly
designed empirical studies, is that human babies and children are
impressive intuitive statisticians in multiple ways. The statistical in-
tuitions of infants can be examined by, for example, showing them a
sample stimulus (e.g., balls being drawn from an urn containing a larger
sample of balls), and then measuring their reactions when, for instance,
the rest of the urn is revealed (e.g., are they surprised or not at the
features of the larger distribution?). Using methods of this kind, Xu and
Garcia (2008) showed that infants are able to make inferences about the
statistical properties of a larger population from a small sample of that
population, and even base their expectations on whether or not the
sample was drawn randomly (cf. Xu & Denison, 2009). Using similar
methods, Téglas et al. (2007) showed that 12-month old infants can
reason about probabilities without observing outcomes, forming in-
tuitions about the probabilities of future events from small samples of
events. Furthermore, computational models using infant data suggest
that babies conform to principles of Bayesian statistical inference (e.g.,
Téglas et al., 2011). Work by Gopnik and colleagues shows that babies
and children are able to draw sound causal inferences from data, and
even that they operate as “little scientists,” conducting interventions
targeted at revealing statistical causal relationships (e.g., Bonawitz
et al., 2014; Gopnik, 2012; Gopnik et al., 2001; Gopnik & Schulz, 2004).
And work by Johnson and colleagues shows that human babies and
children are good statistical learners, using the statistical properties of
sequences of information, such as speech patterns, to learn the statistical
properties of that information (see Marcus et al., 2007; for an overview,
Johnson, 2020). What is lacking in this literature, to our knowledge, is
any systematic investigation of possible departures from an ecological
statistical rationality in young children, to complement the large liter-
ature in adults and, more importantly, to begin a developmental map of
how and when the deployment of various statistical heuristics used by
adults begins in childhood. We are, therefore, proposing an initial
investigation of this kind.

Prior studies of statistical reasoning in young children did not
explore the hot hand intuitions commonly seen in adults. Would young
children show the same expectations of clumps in sequences as adults
do? If not—if young children do not expect clumps but adults do—then
this would raise questions regarding how and why these intuitions
appear in adulthood: It could be that hot hand beliefs are acquired
through experience, via a relatively slow developmental process, or
alternatively that while hot hand thinking is an evolved bias it only
appears later—for reasons to be further investigated—via maturation. If
hot hand thinking is present in children, however, particularly at very
young ages, then this suggests that hot hand intuitions either develop
very early and do not require a lifetime of experience, or that hot hand
thinking is an evolved default setting, present at birth. Of course, it is
also possible that children may exhibit a hot hand effect that is weaker
than that seen in adults, again arguing for a role of learning. Thus, by
examining a relatively wide age range, we should be able to examine
whether there is any evidence for developmental change during this
time. Children aged 3 to 6 years, for instance, are of particular interest
as, ethnographically-speaking, this age window is when children first
begin to become autonomously active beyond the household and,
sometimes, beyond adult supervision. In many traditional foraging so-
cieties, for example, children begin to forage by age 5 (often in multi-
aged groups of children; see Bird & Bird, 2002; Hawkes et al., 1995).

With the present study we aim to explore answers to the following
open questions: 1) Do young children exhibit the hot hand effect when
presented with random resource distributions? 2) How does their
perception of randomness develop ontogenetically? 3) At what age do
they start to grasp spatial dependencies such as clustering and
dispersion?
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2. Methods
2.1. Participants

We tested children in two locations to obtain a large total sample as
well as adequately-sized subsamples for inspection of developmental
trends by age group across our experimental paradigms. The data
collection setting for one location was geographically small and rural
(Potsdam, NY, USA) while the other was large and urban (Berlin, Ger-
many). For the present study, we focused on testing children 3-10 years
of age. The Potsdam sample consisted of n = 160 children (girls: 73,
boys: 87, average age = 5 years and 9 months) and the Berlin sample of
n = 186 (girls: 93, boys: 93, average age = 6 years and 9 months). Since
there were no meaningful statistical differences between the samples in
preliminary analyses (and the present study did not aim to be cross-
cultural), we merged the data from both locations into one combined
sample of N = 346 children (girls: 166, boys: 180, average age: 6 years
and 5 months). Table 1 shows subsample sizes across each age group.

Children were tested at daycare facilities (e.g., SUNY Potsdam’s
Child Care Center, Potsdam, NY; Kinder Academy Learning Center,
Potsdam, NY; Canton Daycare Center, Canton, NY), at science museums
(i.e., the North Country Children’s Museum, Potsdam, NY; Natural
History Museum Berlin, Germany), at a zoo (i.e., the Berlin Zoological
Garden, Berlin, Germany), and in psychological laboratories (i.e., the
Evolution and Cognition Lab at Clarkson University, Potsdam, NY; the
Max Planck Institute for Human Development, Berlin, Germany). While
parents had to provide written consent for their children’s participation
ahead of time, children provided their consent orally to the research
assistant at the beginning of the study. All children received a comple-
tion certificate and a stuffed toy animal for their participation.

We also collected data from a group of adults N = 85 that were made
up of a convenience sample of Introductory Psychology students at
Clarkson University (women: 43, men: 42, average age: 19 years and 8
months). Students provided written consent and received course credit
for their study completion.

Institutional Review Board approval for the study was granted by
both Clarkson University (#20-03) and by the Ethics Committee at the
Max Planck Institute for Human Development (#i2019-05).

Table 1
Means and standard deviations of subjective alternation probability scores (Task
1).

Sample n Full pvs. 1st half 2nd half p
sequence 0.5 difference
0.47 0.48 0.46

3-year olds 49 (0.10) .034 (0.15) (0.11) 525
0.44 0.44 0.43

4-year olds 56 (0.15) .002 (0.16) (0.19) .666
0.40 < 0.40 0.38

5-year olds 54 (0.13) .001 0.17) 0.17) .487
0.39 < 0.42 0.36

6-year olds 47 (0.12) .001 (0.16) (0.16) .047
0.40 < 0.43 0.35

7-year olds 46 (0.11) .001 0.14) (0.15) .008
0.49 0.53 0.44

8-year olds 47 (0.12) .235 (0.13) (0.15) .005
0.49 0.54 0.43

9-year old 22 (0.10) .540 0.14) (0.16) .016
0.51 0.56 0.45

10-year olds 25 (0.11) .630 0.12) 0.14) .003

Combined 0.44 < 0.47 0.41

kids 346  (0.13) .001 (0.16) (0.16) <.001

0.52 0.56 0.49

Adults 85 0.12) 973 0.13) 0.19) .003

Note. Standard deviations are presented in parentheses; p-values testing the
subjective alternation probability for the full sequence against the objective
alternation probability of 0.5 are left-tailed tests; p-values testing difference
between first and second half of sequences are two-tailed.
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2.2. Tasks and testing procedures

Children were tested individually on all three tasks in one session. A
research assistant read out the instructions for each of the tasks to the
children and explained, if needed, on how to navigate the touchscreen
interfaces. All tasks were presented on iPad Pro tablets. Children’s
behavioral choice data was saved via local Wi-Fi networks into a secure
database along with their age, gender and participant number infor-
mation. Each testing session took about 20 min. Full video walk-
throughs of each task can be found among the materials that were
uploaded along with the raw data to the Open Science Framework (OSF;
see link in Supplementary Materials section).

2.2.1. Task 1 (sequential search): The animal foraging task

Through helping an animal rabbit friend named Maxi to find food,
children had the opportunity to either predict the presence of a plant
resource (a hit) or the absence of it (a miss) at a sequence of locations,
one location at a time. Choices were made by tapping one of two possible
outcome buttons (i.e., carrot/hit vs. no carrot/miss). The touchpad
software recorded the binary choice, provided the feedback animation
(correct prediction or not) and showed the rabbit moving to the next
location. Children were told that Maxi knows that half of the spots have
carrots in them and half are empty, but that Maxi does not know where
those carrots are. Children were also told that their task was to help Maxi
guess if there is something to eat or nothing to eat under each spot. Each
child saw one training location at the beginning of the task that con-
tained a resource hit. Based on pilot data collection that focused on
attention and fatigue effects—specifically for the young children—we
chose 40 predictable locations as an adequate length of the resource
foraging path. Fig. 1 (top) shows two task screenshots.

2.2.2. Task 2 (randomness perception): The raindrop task

Children were told that a group of friends were playing basketball on
a playground. When it suddenly started to get cloudy outside and then
began to rain, the friends left to head home. Children were instructed
that their task is to show us where they think each of the raindrops were
falling. To do so, children tapped with a finger each specific location on
a grey basketball court area that they thought will be hit by a raindrop.
The task ended after the child placed 50 raindrops inside the dedicated
area. The task software recorded the spatial location of each raindrop as
well as their respective time stamps. Placed raindrops only remained
visible on the screen for a very short period of time (1 s) before they
disappeared. Pilot testing revealed that the basketball court area needed
to be displayed without any line markings or hoops to not introduce
spatial demand effects. Fig. 1 (middle) shows task screenshots along
with a child’s data from the pilot study.

2.2.3. Task 3 (spatial dependency): The tree task

Children were asked to place 10 individual resources on a tree that
had 24 empty zones. The resources were initially located at the bottom
of the screen where they could be picked up one at a time, with a finger,
and moved to a tree location. The same resource could be picked up and
dropped in a location repeatedly, but only until a new resource was
chosen from the resource stack. All participants performed two different
task conditions, presented counterbalanced, in which they either indi-
cated where apples will grow on a tree or where birds will build their
nests. Children were instructed that the apples like to grow close to the
sun to get lots of sunlight (positive spatial dependency) and that the
birds like to build their nests away from each other (negative spatial
dependency). Counterbalanced within each condition was the addi-
tional placement of a sun or a cloud in the sky. Fig. 1 (bottom) shows
task screenshots along with a child’s data from the pilot study.
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Let's help Maxi guess
if there is eat Start game

or nothing under each spot.
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Fig. 1. Screenshots and select pilot data for three iPad decision-making tasks: The animal foraging task (top row images), the raindrop task (middle row images) and
the tree task (bottom row images). Shown z-scores indicate spatial pattern type of pilot data (see main text for details).

3. Results
3.1. Task 1 (sequential search): The animal foraging task

To answer whether the children exhibited the hot hand effect in our
sequential search task, we need to assess whether or not they subjec-
tively expected to find resources in clumps, akin to a hot hand streak.
The touchpad software showed each child a different random sequence
with an objective alternation probability p(A) = 0.5 that had a length of
40 locations (with 20 of these locations containing carrots/hits). Based
on the choices that the children made at each location (after receiving
feedback about the previous location), we can compute their subjective
alternation probability p(A) and compare it to the random 0.5 alterna-
tion probability that they actually encountered (see Wilke & Barrett,
2009 for methodological details on computing alternation

probabilities). As in the 2-dimensional grid case described above, here,
in a 1-dimensional sequential path case, lower subjective alternation
probabilities [e.g., p(A) = 0.4] indicate an assessment of clumpiness or
streakiness that is not present in the data, and higher subjective alter-
nation probabilities [e.g., p(A) = 0.6] indicate an assessment of
dispersion and more frequent alternations than expected by chance.
Fig. 2 shows histograms for our sample of young children (blue bars)
and adult comparison sample (red bars). As can be seen, the distribution
of subjective alternation probabilities for the children is shifted some-
what to the left of the vertical dashed red line indicating the objective
randomness threshold of p(A) = 0.5. The distributions of child and adult
data are also significantly different from each other such that the adults,
at least for the sequences in the present study, were able to more or less
accurately perceive, on average, that the sequences were random.
Overall, children’s subjective alternation probabilities had an average p
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Fig. 2. Histograms showing individual subjective alternation probabilities p(A) computed for a foraging path of 40 locations for children (N = 346, blue bars) and
adults (N = 85, red bars) in Task 1. Randomness threshold with objective alternation probability of p(A) = 0.5 is plotted as dashed vertical line. Shown p-value tests
for sample difference. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(A) of 0.44, showing that many children perceived the random se-
quences to be more clumpy/streaky than they truly were.

There are important differences, however, when we break down this
distribution into distinct age groups. As seen in Table 1, the shift toward
the left side of the threshold was mostly driven by the subgroups aged
3-7 years. Children aged 8, 9 or 10 years, on average at least, did not
misperceive these sequences of 40 resource locations to be streaky.
Based on earlier results in adults (see Scheibehenne et al., 2011; Wilke &
Barrett, 2009), we also split the full length of the foraging path into two
subsets of the first 20 and the last 20 locations to check if the subjective
perception of the encountered (random) pattern changes over time.
Here, older children aged 6-10 years have lower subjective alternation
probabilities in the second half of the sequence indicating that their
perception of streakiness increases with longer presentations of random
data. More specifically, for the 6- and 7-year olds, existing perceptions of
clumpiness become more extreme over time, whereas for the 8-10 year
olds, a fairly accurate understanding of randomness turns into seeing
clumps and streaks when the full sequence is explored further. We found
no differences across gender.

3.2. Task 2 (randomness perception): The raindrop task

Past psychological research on investigating why humans are so
prone to misunderstand random data has typically focused on empirical
resource distributions of equal base rates as described and analyzed for
Task 1. In 2-dimensional cases of this problem, researchers typically use
square (or rectangular) arrangements—such as a 10 x 10 grid of resource
locations with 50 resources/tokens in it—and again compute alternation
probabilities that indicate the degree of spatial aggregation, random-
ness, or dispersion (see above). In this case, alternation probabilities
have to be computed for each row and column of data separately and
then get averaged into one alternation probability for the entire grid (see
Falk & Konold, 1997; cf. Wilke et al., 2015). Most natural spatial
resource distributions, however, do not occur with such regular features.
If our hunter-gatherer past shaped our evolved psychology toward a
default assumption of aggregation—and not randomness—then we must
be able to also look at stimuli and resource distributions of the natural
world in which binary patterns have unequal base rates and irregular
arrangements. To overcome these methodological limitations, we incor-
porate a more robust statistical methodology from the spatial ecology
literature (see Wilke et al., 2018).

Spatial autocorrelation measures are widely used in ecological data
analysis. One of these methods—the Join Count Statistic (JCS; see Fortin
et al., 2002)—was developed for describing spatial patterns of binary
data (e.g., the presence and absence of a particular resource, voting for

one of two parties across different counties, etc.). This statistic uses
counts of which neighboring regions belong to the same binary category
(e.g., presence-presence or absence-absence) and which adjacent re-
gions are not in the same category (e.g., presence-absence or absence-
presence). The JCS makes it possible then to deduce the degree and
direction of positive or negative spatial dependency by describing the
underlying nature of the distribution according to three types that are
interpreted via a common z-score distribution: aggregation (z-scores <
—1.96), randomness (z-scores from —1.96 to 1.96) or dispersion (z-
scores >1.96). While Wilke et al. (2018) applied this statistical tech-
nique to analyze real-world resource distributions such as people, plants
and animals to determine how commonly clumpiness and aggregation
occur in nature, the same technique allows us here to explore children’s
perception of randomness in more realistic (and less constrained) spatial
configurations. With the JCS, the placement of 50 raindrops in our 2-
dimensional randomness perception task can be turned into a single
spatial coefficient irrespective of how close or far apart certain clusters
of raindrops appear within the grid that is placed on top of all rain lo-
cations. Fig. 1 (middle right) shows the coding of a pilot data plot ob-
tained from the first-author’s older daughter when testing protocols for
children were still limited by the restrictions imposed by COVID-19. In
the plot, each small dot represents a raindrop she placed that gets
translated into a distinct zone that is either in presence or absence to
another nearby raindrop. If more than one raindrop fell into the same
zone, neighboring zones equal to the surplus got translated into another
zone with a presence (see Wilke et al., 2018 for a detailed visualization
and explanation of the coding process). Taking as a whole, her raindrop
pattern can then be analyzed with regard to what distribution type it
indicates (here, a clumpy raindrop pattern as the computed z-score is
less than —1.96).

The upper part of Fig. 3 shows histograms for the two calculated JCS
score distributions—the children sample (blue bars) and the adult
comparison sample (red bars). As explained above, all scores fall into
one of three distinct spatial distribution categories—aggregation (with
patterns where raindrops where placed into clumps and clusters),
randomness (with patterns of raindrops that are non-systematic), and
dispersion (with patterns of raindrops that spread out more evenly than
expected by chance). The two vertical dashed red lines indicate the
lower and upper bound of the raindrop distributions that get categorized
as random based on their z-score. As can be seen, a very large majority of
the raindrop patterns that children created fell left of this lower bound
indicating that their understanding of falling rain is such that raindrops
cluster into clumps (and in many instances very strongly so). While some
raindrop patterns fell into the random range, not a single dispersed
pattern was created by any child. The distribution of children and adult
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Fig. 3. Histograms (top subplot) showing individual join count statistic (JCS) coefficients computed for each distribution of raindrops placed by either children (N =
346, blue bars) or adults (N = 85, red bars) in Task 2. Lower and upper randomness threshold at z = £1.96 shown in dashed vertical lines. JCS scores can indicate
aggregation (A), randomness (R) or dispersion (D). Shown p-value tests for sample difference. Stacked bar plots (bottom subplot) showing join count statistic (JCS)
coefficients in Task 2. Each age group is shown by a separate bar showing the percentage of JCS scores that fall into the dispersed (D), random (R) or aggregated (A)
range. Sample sizes for each age group are shown in Table 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

data is again significantly different such that adults more frequently
produce raindrop patterns that are indeed random. Nevertheless, many
adults still produce clumpy raindrop patterns and dispersion remains
essentially absent.

Table 2 shows the average JCS scores and standard deviations for
both samples overall, and also for the subgroups of children by age.
While every age subgroup distribution is significantly below the lower
randomness threshold, the youngest age groups show the very lowest
JCS scores (and therefore the most strongly clumped raindrop distri-
butions). With increasing age, the strength of this effect weakens with
JCS scores shifting higher even though most individual scores still
remain falling largely below of the lower threshold.

The lower part of Fig. 3 shows the percentage of JCS scores within
each age group falling into each of three spatial distribution categories.
Complementary to the data in Table 2, young children essentially pro-
duce only clumps and clusters of raindrops when asked to decide how
(random) rain would fall onto a basketball court area. Older children
seem to acquire a better understanding of these 2-dimensional distri-
butions and can represent randomness somewhat more accurately. In

Table 2

Means and standard deviations of join count statistic coefficients (Task 2).
Sample n JCS p lower p upper
3-year olds 49 —6.47 (2.28) <.001 1
4-year olds 56 —6.32 (2.69) <.001 1
5-year olds 54 —5.73 (2.71) < .001 1
6-year olds 47 —5.51 (2.39) <.001 1
7-year olds 46 —4.46 (2.95) <.001 1
8-year olds 47 —4.45 (2.49) <.001 1
9-year old 22 —3.97 (3.13) 003 1
10-year olds 25 —3.98 (3.11) 002 1
Combined kids 346 —5.33(2.97) < .001 1
Adults 85 —2.64 (2.78) .014 1

Note. Standard deviations are presented in parentheses; p-values are testing JCS
values against aggregation (below —1.96, lower bound) and dispersion (above
1.96, upper bound) thresholds.
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the oldest age group we tested, 10-year-old children, the spatial distri-
bution percentages start to approximate the data we see in adults. Dif-
ferences in the motor capacities of younger versus older children may
partially contribute to these improvements. We again found no differ-
ences for gender. Additional analyses on time effects for subsequently
placed raindrops or time taken to complete the task did not produce
meaningful insights. Other spatial distance measures—such as
Euclidean distance—also did not reveal systematic patterns regarding
how children place raindrops early on and then systematically shift to
different distribution types later.

3.3. Task 3 (spatial dependency): The tree task

In addition to absolute distributional assessments (e.g., is the ob-
tained z-score low enough to indicate an aggregated, clumpy distribu-
tion?), the JCS can also allow us to make relative distributional
comparisons when responses from multiple empirical distributions are
collected from the same child (e.g., is the z-score obtained from one

Apples condition
) T
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condition larger than the score from another condition?). Fig. 1 (bot-
tom), for instance, shows again the coding of a pilot data subplot under
COVID-19 restrictions. Here, a young girl of 3 years was asked to place
birds on a tree in such a way that the bird nests spread out (i.e., negative
spatial dependency condition). While the resulting z-score did not fall
above the upper threshold for randomness—therefore not indicating a
truly dispersed distribution—the score can be compared to the same
child’s z-score from a condition in which apples were supposed to be
placed close together (i.e., positive spatial dependency condition) to see
if the former arrangement of nests was more dispersed than the latter
arrangement of apples.

The upper part of Fig. 4 visualizes these comparisons following the
same logic for our data from Task 2. As before, histograms for our
children sample (blue bars) are plotted against the data from the adult
comparison sample (red bars). Each subplot shows one of two condi-
tions, the positive spatial dependency condition (i.e., apples, upper plot)
in which JCS scores were expected to fall left of the lower bound and the
negative spatial dependency condition (i.e., bird nests, lower plot) in
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Fig. 4. Histograms (top two subplots) showing individual join count statistic (JCS) coefficients computed for each of two conditions (apples vs. birds) placed by
either children (N = 346, blue bars) or adults (N = 85, red bars) in Task 3. Lower and upper randomness threshold at z = +1.96 shown in dashed vertical lines. JCS
scores can indicate aggregation (A), randomness (R) or dispersion (D). Shown p-values test for sample differences. Stacked bar plots (bottom two subplots) showing
join count statistic (JCS) coefficients for each of two conditions (apples vs. birds) in Task 3. Each age group is shown by a separate bar showing the percentage of JCS
scores that fall into the dispersed (D), random (R) or aggregated (A) range. Sample sizes for each age group are shown in Table 3. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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which scores were expected to be right of the upper bound. Lower and
upper bounds for the range of random distributions are indicated again
by vertical red dashed lines. As seen, children had an easier time
correctly moving resources closer together on the tree (upper plot) than
they had with spreading them out across the tree (lower plot): Close to
half of the JCS scores in the apple condition fell into the aggregated
category range, but only very few JCS scores in the bird condition fell
into the dispersed distribution range. While many scores in the positive
dependency condition fell into the random range, many more—almost
all of them—fell into the random range in the negative dependency
condition. JCS score classifications for dispersed distributions are indeed
more frequent in the birds condition, but nevertheless quite rare in
either condition. Thus, while overall the spatial distribution classifica-
tions in both conditions did not fall by majority into the predicted ranges
in absolute terms, there are some clear relative shifts between the con-
ditions that indicate that participants treated the conditions differently
and adjusted their placement behavior across conditions correctly.

For both of the overall children and adult samples as well as the
subgroups by age, we can compute the average obtained JCS scores for
each condition. Table 3 shows these averages and their standard de-
viations along with statistical tests checking for a difference in condi-
tions. In both samples, children and adults had significantly lower JCS
scores in the positive dependency condition. This finding also holds
when inspecting individual children’s age groups. There was no sys-
tematic trend in the JCS score averages across age subgroups in either
condition, but what appears noteworthy is that the percentage of indi-
vidually correct JSC score pairs differs (i.e., when an individual’s JCS
score from the apple condition is lower, and therefore more clumpy,
than their corresponding JCS score from the bird condition). This per-
centage of correct relative score pairs goes up with age as shown in the
right-most column.

Breaking down the JCS scores in each condition by distributional
type and age in the lower part of Fig. 4 indicates that while the under-
standing of resources clumping together in space does not systematically
change across age subgroups (upper plot), there may be more learning
with age of what spreading out means (lower plot) and an improved
concept of negative spatial dependency, which could be what drives the
increasingly correct relative pair proportions with age. There were no
differences across gender. Additional analyses looking for the existence
of left- or right-side biases with regard to how and where resources were
placed upwards from the resource stack onto the tree did not produce
meaningful insights. There were also no meaningful differences in the
underlying distribution types when analyzing and comparing the first 5
placed resources against the second 5 placed ones. There were no order
effects for condition.

4. Discussion

An important part of foraging cognition for some species is a learning

Table 3

Means and standard deviations of join count statistic coefficients (Task 3).
Sample n JCS apples JCS birds p difference %A <B
3-year olds 49 —1.64 (1.69) —1.04 (1.75) < .001 53.1
4-year olds 56 —-1.73 (2.01) —0.49 (1.63) <.001 58.9
5-year olds 54 -2.10(2.13) —0.17 (1.85) <.001 64.8
6-year olds 47 —1.22(2.65) 0.55 (0.97) <.001 59.6
7-year olds 46 -1.16 (2.32) 0.64 (0.84) <.001 67.4
8-year olds 47 —1.38(2.51) 0.46 (1.01) <.001 66.0
9-year old 22 —1.08 (2.36) 0.81 (1.02) < .001 72.7
10-year olds 25 -1.73(2.30) 0.08 (1.69) .003 76.0
Combined kids 346 —1.54 (2.24) 0.03 (1.53) < .001 63.3
Adults 85 —2.18 (2.40) 1.27 (1.00) <.001 87.1

Note. Standard deviations are presented in parentheses; p-values testing for
group condition are two-tailed; percentages show proportion of correct JCS
score pairs with values for apples (A) being lower than birds (B).
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mechanism that adjusts decision-making parameters based on experi-
ence (e.g., how clumpy a resource is or not). Such a mechanism would
likely be adaptive for omnivores (like humans) and other primates that
face multiple and variable statistical foraging environments. Further-
more, a learning system that started with broadly ecologically appli-
cable priors would likely be selected over one with no defaults. In terms
of the statistical regularities of environments (see Wilke et al., 2018),
our previous research has shown that human adults indeed possess such
default expectations of clumpiness, but that these expectations can be
somewhat altered by experience with independent (non-clumpy)
resource distributions (see Wilke & Barrett, 2009). Further, this default
expectation of clumps appears very robust: it is present in adults across
different cultures, it is present in another species of primate, and is
difficult to experimentally reverse by manipulating the type of resource
(see Blanchard et al., 2014; Scheibehenne et al., 2011; Wilke & Barrett,
2009). Moreover, its impacts in daily life are important: The expectation
of clumps can influence peoples’ behavior in other high-stakes situations
such as gambling (Wilke et al., 2014), financial markets (e.g., Kahneman
& Riepe, 1998), meteorological predictions and insurance market pur-
chases (Doidge et al., 2019), responses to social media posts (e.g., Gar-
imella & West, 2019), and general worldviews that people hold (van
Prooijen et al., 2018). Thus, hot hand thinking is both relevant and
pervasive in adult everyday decision making.

What has not been previously examined, however, is how this prior
expectation develops ontogenetically and if the assumption of clumpi-
ness—hot hand thinking—could be part of a developmental program
that manifests later in life or if it is already present in early life (c.f.
Panchanathan & Frankenhuis, 2016). Our findings here from children in
the age window of 3 to 10 years across three different tasks indicate that
these expectations of clumpiness are indeed operating at very young
ages and are typically stronger than those found in adults. Children
subjectively perceive more streaky patterns in 1-dimensional sequences
(as in our animal foraging task), produce more clumps and patterns
when asked to generate non-systematic 2-dimensional distributions (as
in our raindrop task), and show—ontogenetically speaking—an earlier
readiness for an understanding of a positive autocorrelation than they do
for the concept of a negative autocorrelation (as in our tree task). Across
the three tasks, we find evidence that an understanding of randomness
and dispersion improves with age. However, notions of clumpiness and
streakiness are very common, appear harder to learn the limits of, and
remain widespread at each age group we studied in this project.

Our findings point to multiple possibilities for future research. First,
it would be informative to look at the presence of hot hand thinking even
earlier, including during infancy, to investigate what expectations of
clumpiness look like with relatively minimal experience and exposure to
socio-cultural context. Second, investigating these expectations of
clumpiness also later in childhood, toward adolescence, could inform
the limited empirical research on youth gambling and youth gambling
addictions (see Felsher et al., 2004; Griffiths, 1989). Jeff Derevensky
et al. (1996), for example, found children as young as 9 years begin to
gamble for money. Some adolescents may be more prone to experience
illusory patterns in random data than others, and this could in turn be
related to gambling risk for them too (as we have found to be true for
adults before; see Wilke et al., 2014; Gaissmaier et al., 2016). Third, our
findings could inform better methods of science education for helping
students to more accurately recognize what are likely to be reliable
patterns and what is random. A sound understanding of randomness is
central to teaching statistics, informs our decision-making processes,
and provides guidance when facing judgments under risk and uncer-
tainty. Targeted statistical literacy interventions could systematically
address the detrimental effects that misperceptions of randomness have
and provide young adults with an additional skillset to make better life
choices. Lastly, ongoing research by our team currently looks at the
adaptivity that adults and children show when they have to differentiate
among different objective alternation probabilities of various kinds,
specifically when events are non-random and do indeed contain
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statistical regularities that can be exploited (Wilke et al.). Such research
will complement prior studies on exploitation-exploration trade-offs and
how children direct their search behavior (e.g., Meder et al., 2021;
Rosetti et al., 2017) and shed further light on why human partic-
ipants—children and adults alike—persist in seeing patterns where none
exist.
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