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Regular exercise promotes whole-body health and prevents disease, but the underlying
molecular mechanisms are incompletely understood' . Here, the Molecular
Transducers of Physical Activity Consortium* profiled the temporal transcriptome,
proteome, metabolome, lipidome, phosphoproteome, acetylproteome,
ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid
tissues in male and female Rattus norvegicus over eight weeks of endurance exercise
training. The resulting data compendium encompasses 9,466 assays across 19 tissues,
25 molecular platforms and 4 training time points. Thousands of shared and tissue-
specific molecular alterations were identified, with sex differences found in multiple
tissues. Temporal multi-omic and multi-tissue analyses revealed expansive biological
insights into the adaptive responses to endurance training, including widespread
regulation ofimmune, metabolic, stress response and mitochondrial pathways. Many

changes were relevant to human health, including non-alcoholic fatty liver disease,
inflammatory bowel disease, cardiovascular health and tissue injury and recovery.
The data and analyses presented in this study will serve as valuable resources for
understanding and exploring the multi-tissue molecular effects of endurance training
and are providedina publicrepository (https://motrpac-data.org/).

Regular exercise provides wide-ranging health benefits, including
reduced risks of all-cause mortality'®, cardiometabolic and neuro-
logical diseases, cancer and other pathologies*®’. Exercise affects
nearly allorgan systemsin eitherimproving health or reducing disease
risk***7, with beneficial effects resulting from cellular and molecular
adaptations within and across many tissues and organ systems®. Vari-
ous ‘omic’ platforms (‘omes’) including transcriptomics, epigenomics,
proteomics and metabolomics, have been used to study these events.
However, work to date typically covers one or two omes at asingle time
point, is biased towards one sex, and often focuses on asingle tissue,
most often skeletal muscle, heart or blood® ™2, with few studies consid-
ering other tissues'. Accordingly, acomprehensive, organism-wide,
multi-omic map of the effects of exercise is needed to understand the
molecular underpinnings of exercise training-induced adaptations.
To address this need, the Molecular Transducers of Physical Activity
Consortium (MoTrPAC) was established with the goal of building a
molecular map of the exercise response across a broad range of tis-
sues in animal models and in skeletal muscle, adipose and blood in
humans*. Here we present the first whole-organism molecular map
of the temporal effects of endurance exercise training in male and
female rats and provide multiple insights enabled by this MoTrPAC
multi-omic data resource.

Multi-omic analysis of exercise training

Six-month-old male and female Fischer 344 rats were subjected to
progressive treadmill endurance exercise training (hereafter referred to
asendurance training) for1,2,4 or 8 weeks, with tissues collected48 h

after thelastexercise bout (Fig.1a). Sex-matched sedentary, untrained
rats were used as controls. Training resulted in robust phenotypic
changes (Extended Data Fig.1a-d), including increased aerobic capacity
(VO,max) by 18% and 16% at 8 weeks in males and females, respectively
(Extended DataFig.1a). The percentage of body fat decreased by 5% in
males at 8 weeks (Extended Data Fig. 1b), without a significant change
inlean mass (Extended Data Fig. 1c). In females, the body fat percent-
age did not change after 4 or 8 weeks of training, whereas it increased
by 4% in sedentary controls (Extended Data Fig. 1b). Body weight of
femalesincreasedinallintervention groups, with no change for males
(Extended Data Fig. 1d).

Wholeblood, plasmaand 18 solid tissues were analysed using genom-
ics, proteomics, metabolomics and proteinimmunoassay technologies,
with most assays performed in a subset of these tissues (Fig. 1b and
Extended DataFig. 1e,f). Specific details for each omic analysis are
providedin Extended DataFig. 2, Methods, Supplementary Discussion
and Supplementary Table 1. Molecular assays were prioritized on the
basis of available tissue quantity and biological relevance, with the
gastrocnemius, heart, liver and white adipose tissue having the most
diverse set of molecular assays performed, followed by the kidney,
lung, brown adipose tissue and hippocampus (Extended Data Fig. 1e).
Altogether, datasets were generated from 9,466 assays across 211 com-
binations of tissues and molecular platforms, resulting in 681,256
non-epigenetic and 14,334,496 epigenetic (reduced-representation
bisulfite sequencing (RRBS) and assay for transposase-accessible chro-
matin using sequencing (ATAC-seq)) measurements, corresponding to
213,689 and 2,799,307 unique non-epigenetic and epigenetic features,
respectively.

*A list of authors and their affiliations appears at the end of the paper.
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Fig.1|Summary ofthe study design and multi-omics dataset. a, Experimental
design and tissue sample processing. Inbred Fischer 344 rats were subjected

to aprogressive treadmill training protocol. Tissues were collected from male
and female animals that remained sedentary or completed1, 2,4 or 8 weeks

of endurance exercise training. For trained animals, samples were collected

48 haftertheirlast exercise bout (red pins). b, Summary of molecular datasets
includedinthisstudy. Up to nine datatypes (omes) were generated for blood,
plasma, and 18 solid tissues, per animal: ACETYL: acetylproteomics; protein
siteacetylation; ATAC, chromatin accessibility, ATAC-seq data; IMMUNO,
multiplexedimmunoassays; METAB, metabolomics and lipidomics; METHYL,
DNA methylation, RRBS data; PHOSPHO, phosphoproteomics; proteinsite
phosphorylation; PROT, global proteomics; protein abundance; TRNSCRPT,
transcriptomics, RNA-seq data; UBIQ, ubiquitylome, protein site ubiquitination.

Differential analysis was used to characterize the molecular responses
to endurance training (Methods). We computed the overall signifi-
cance ofthe training response for each feature, denoted as the training
Pvalue, where 35,439 features at 5% false discovery rate (FDR) comprise
thetraining-regulated differential features (Fig. 1cand Supplementary
Table 2). Timewise summary statistics quantify the exercise training
effects for each sex and time point. Training-regulated molecules were
observed in the vast majority of tissues for all omes, including a rela-
tively large proportion of transcriptomics, proteomics, metabolomics
andimmunoassay features (Fig. 1c). The observed timewise effects were

intestinal

Tissuelabelsindicate thelocation, colour code, and abbreviation for each
tissue used throughout this study: ADRNL, adrenal gland; BAT, brown adipose
tissue; BLOOD, whole blood, blood RNA; COLON, colon; CORTEX, cerebral
cortex; HEART, heart; HIPPOC, hippocampus; HYPOTH, hypothalamus;
KIDNEY, kidney; LIVER, liver; LUNG, lung; OVARY, ovaries; PLASMA, plasma;
SKM-GN, gastrocnemius (skeletal muscle); SKM-VL, vastus lateralis (skeletal
muscle); SMLINT, smallintestine; SPLEEN, spleen; TESTES, testes; VENACV,
vena cava; WAT-SC, subcutaneous white adipose tissue. Icons next to each
tissuelabelindicate the datatypes generated for that tissue. ¢, Number of
training-regulated features at 5% FDR. Each cell represents results for asingle
tissue and datatype. Coloursindicate the proportion of measured features
thatare differential.

modest: 56% of the per-feature maximum fold changes were between
0.67 and 1.5. Permutation testing showed that permuting the group or
sexlabelsresultedinasignificant reductioninthe number of selected
analytesin most tissues (Extended Data Fig. 3a-d and Supplementary
Discussion). For transcriptomics, the hypothalamus, cortex, testes and
vena cava had the smallest proportion of training-regulated genes,
whereas the blood, brown and white adipose tissues, adrenal gland
and colonshowed more extensive effects (Fig. 1c). For proteomics, the
gastrocnemius, heartand liver showed substantial differential regula-
tionin both protein abundance and post-translational modifications
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Fig.2|Multi-tissue molecular endurance training responses. a, UpSet plot
ofthe training-regulated gene sets associated with each tissue. Bars and dots
indicating tissue-specific differential genes are coloured by tissue. Pathway
enrichmentanalysisis shown for selected sets of genesinb,casindicated by
thearrows. b, ¢, Significantly enriched pathways (10% FDR) corresponding to
genes thatare differentialinboth LUNG and WAT-SC datasets (b) and the 22
genesthataretraining-regulatedin all six tissues considered ina (c). Redundant
pathways (those with an overlap of 80% or greater with an existing pathway)
wereremoved. ESR, oestrogenreceptor; T, 17, T helper17.

(PTMs), with more restricted results in white adipose tissue, lung and
kidney protein abundance. For metabolomics, a large proportion of
differential metabolites were consistently observed across all tissues,
although the absolute numbers were related to the number of metab-
olomic platforms used (Extended Data Fig. 1e). The vast number of
differential features over the training time course across tissues and
omes highlights the multi-faceted, organism-wide nature of molecular
adaptations to endurance training.

Multi-tissue response to training

To identify tissue-specific and multi-tissue training-responsive gene
expression, we considered the six tissues with the deepest molecu-
lar profiling: gastrocnemius, heart, liver, white adipose tissue, lung
and kidney. In sum, 11,407 differential features from these datasets
were mapped to their cognate gene, for a total of 7,115 unique genes
across the tissues (Fig. 2a, Extended Data Fig. 4a and Supplementary
Table 3). Most of the genes with at least one training-responsive fea-
ture were tissue-specific (67%), with the greatest number appearing
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in white adipose tissue (Fig. 2a). We identified pathways enriched by
these tissue-specific training-responsive genes (Extended Data Fig. 4b)
and tabulated a subset of highly specific genes to gain insight into
tissue-specific training adaptation (Supplementary Table 4). Focusing
on sexually conserved responses revealed tissue-dependent adapta-
tions. Theseincluded changes related toimmune cell recruitment and
tissue remodelling in the lung, cofactor and cholesterol biosynthesis
intheliver, ion fluxinthe heart, and metabolic processes and striated
muscle contractionin the gastrocnemius (Supplementary Discussion).
Adetailed analysis of white adipose tissue adaptations to exercise train-
ingis provided elsewhere'. We also observed ‘ome’-specific responses,
with unique transcriptand proteinresponses at the gene and pathway
levels (Extended Data Fig. 4¢,d, Supplementary Discussion and Sup-
plementary Tables 5 and 6).

2,359 genes had differential featuresin at least two tissues (Fig. 2a).
Lung and white adipose tissue had the largest set of uniquely shared
genes (n=249), with predominantly immune-related pathway
enrichments (Fig. 2b); expression patterns suggested decreased
inflammation in the lung and increased immune cell recruitment in
white adipose tissue (Supplementary Tables 2 and 3). Heart and gas-
trocnemius had the second-largest group of uniquely shared genes,
with enrichment of mitochondrial metabolism pathways includ-
ing the mitochondria fusion genes Opal and MfnlI (Supplementary
Table 3).

Twenty-two genes were training-regulated in all six tissues, with
particularenrichmentin heat shock response pathways (Fig. 2c). Exer-
cise induces the expression of heat shock proteins (HSPs) in various
rodentand human tissues®. A focused analysis of our transcriptomics
and proteomics data revealed HSPs as prominent outliers (Extended
Data Fig. 5a and Supplementary Discussion). Specifically, there was a
marked, proteomics-driven up-regulation in the abundance of HSPs,
including the major HSPs HSPA1B and HSP90AAI (Extended Data
Fig. 5b,c). Another ubiquitous endurance training response involved
regulation of the kininogenases KNG1 and KNG2 (Supplementary
Table 3). These enzymes are part of the kallikrein-kininogen system
and have been implicated in the hypotensive and insulin-sensitizing
effects of exercise’®".

Transcription factors and phosphosignalling

We used proteomics and transcriptomics data to infer changes in
transcription factor and phosphosignalling activities in response to
endurance training through transcription factor and PTM enrich-
ment analyses (Methods). We compared the most significantly
enriched transcription factors across tissues (Fig. 3a, Extended
Data Fig. 6a and Supplementary Table 7). In the blood, we observed
enrichment of the haematopoietic-associated transcription fac-
tors GABPA, ETSI, KLF3 and ZNF143; haematopoietic progenitors
are proposed to be transducers of the health benefits of exercise’s.
In the heart and skeletal muscle, we observed a cluster of enriched
Mef2 family transcription factor motifs (Fig. 3a). MEF2C is a muscle-
associated transcription factor involved in skeletal, cardiac and
smooth muscle cell differentiation and has been implicated in
vascular development, formation of the cardiac loop and neuron
differentiation®.

Phosphorylationsignatures of key kinases were altered across many
tissues (Fig.3band Supplementary Table 8). Thisincluded AKT1across
heart, kidney and lung, mTOR across heart, kidney and white adipose
tissue, and MAPK across heart and kidney. The liver showed anincrease
inthe phosphosignature related to regulators of hepatic regeneration,
including EGFRI, IGF and HGF (Extended Data Fig. 6b, Supplemen-
tary Discussion). Increased phosphorylation of STAT3 and PXN, HGF
targets involved in cell proliferation, suggest a mechanism for liver
regeneration in response to exercise (Extended Data Fig. 6¢). In the
heart, kinases showed bidirectional changes in their predicted basal
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b, Estimate of activity changesin selected kinases and signalling pathways using

activity inresponse to endurance training (Extended Data Fig. 6d and
Supplementary Discussion). Several AGC protein kinases showed a
decrease in predicted activity, including AKT1, whereas tyrosine
kinases, including SRC and mTOR, were predicted to have increased
activity. The known SRC target phosphorylation sites GJA1 pY265
and CDH2 pY820 showed significantly increased phosphorylationin
response totraining (Extended DataFig. 6e). Notably, phosphorylation
of GJA1Y265 has previously been shown to disrupt gap junctions, key
transducers of cardiac electrical conductivity®. This suggests that
SRCsignalling may regulate extracellular structural remodelling of the
heartto promote physiologically beneficial adaptations. Inagreement
with this hypothesis, gene set enrichment analysis (GSEA) of extra-
cellular matrix proteins revealed a negative enrichment in response
to endurance training, showing decreased abundance of proteins
such as basement membrane proteins (Extended Data Fig. 6f-h and
Supplementary Table9).

Molecular hubs of exercise adaptation

To compare the dynamic multi-omic responses to endurance train-
ing across tissues, we clustered the 34,244 differential features with

PTMsignature enrichment analysis on phosphoproteomics data. Only kinases
or pathways with asignificant differencein atleastone tissue, sex or time point
(gvalue <0.05) are shown. The heat map shows normalized enrichment score
(NES) as colour; tissue, sex and time point combinations as columns, and
eitherkinases or pathways as rows. Kinases are grouped by family; rows are
hierarchically clustered within each group. FSH, follicle-stimulating hormone;
TSH, thyroid-stimulating hormone.

complete timewise summary statistics using an empirical Bayes graphi-
cal clustering approach (Methods). By integrating these results ontoa
graph, we summarize the dynamics of the molecular training response
andidentify groups of features with similar responses (Extended Data
Fig.7 and Supplementary Table 10). We performed pathway enrichment
analysis for many graphically defined clusters to characterize putative
underlying biology (Supplementary Table 11).

We examined biological processes associated with training using
the pathway enrichment results for up-regulated features at 8 weeks
oftraining (Extended DataFig. 8, Supplementary Table 12 and Supple-
mentary Discussion). Compared with other tissues, the liver showed
substantial regulation of chromatin accessibility, including in the
nuclear receptor signalling and cellular senescence pathways. In the
gastrocnemius, terms related to peroxisome proliferator-activated
receptors (PPAR) signalling and lipid synthesis and degradation were
enriched at the protein level, driven by proteins including the lipid
droplet features PLIN2, PLIN4 and PLINS. At the metabolomic level,
termsrelated to etherlipid and glycerophospholipid metabolism were
enriched. Together, these enrichments highlight the well-known abil-
ity of endurance training to modulate skeletal muscle lipid composi-
tion, storage, synthesis and metabolism. The blood displayed pathway
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Fig.4 | Temporal patterns of the molecular training response. a, Graphical
representation of training-differential features in the three muscle tissues:
gastrocnemius (SKM-GN), vastus lateralis (SKM-VL) and heart. Each node
represents one of nine possible states (rows) at each of the four training time
points (columns). Triangles to the left of row labels map states to symbols used
inFig.5a.Edgesrepresent the path of differential features over the training
time course (see Extended DataFig. 7 for a detailed explanation). Each graph
includesthethreelargest paths of differential featuresin that tissue, with edges
splitby datatype.Bothnode and edge size are proportional to the number of
featuresrepresented. The node corresponding to features that are up-regulated
inboth sexes at 8 weeks of training (8w_F1_M1) iscircledineach graph.b, Line

enrichmentsrelated to translation and organelle biogenesis and main-
tenance. Paired with the transcription factor analysis (Fig. 3a), this
suggestsincreased haematopoietic cellular mobilizationin the blood.
Less studied tissues in the context of exercise training, including the
adrenal gland, spleen, cortex, hippocampus and colon, also showed
regulation of diverse pathways (Supplementary Discussion).

To identify the main temporal or sex-associated responses in each
tissue, we summarized the graphical cluster sizes by tissue and time
(Extended Data Fig. 7a). We observed that the small intestine and
plasma had more changes at weeks 1and 2 of training. Conversely, many
up-regulated features in brown adipose tissue and down-regulated
features in white adipose tissue were observed only at week 8. The
largest proportion of opposite effects between males and females
was observed at week 1in the adrenal gland. Other tissues, including
theblood, heart, lung, kidney and skeletal muscle (gastrocnemius and
vastus lateralis), had relatively consistent numbers of up-regulated and
down-regulated features.

We next focused on characterizing shared molecular responses in
the three striated muscles (gastrocnemius, vastus lateralis and heart).
The three largest graphical clustering paths of differential features in
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each muscle tissue converged to a sex-consistent response by week
8 (Fig. 4a). Because of the large number of muscle features that were
up-regulated in both sexes at week 8, we further examined the cor-
responding multi-omic set of analytes (Fig. 4b). Pathway enrichment
analysis of the genes associated with these differential features dem-
onstrated a sex- and muscle-consistent endurance training response
that reflected up-regulation of mitochondrial metabolism, biogen-
esis and translation, and cellular response to heat stress (Fig. 4c and
Supplementary Table 11).

We used a network connectivity analysis to study up-regulated fea-
turesinthe gastrocnemius at week 8 (Extended Data Fig. 9a,b, Methods
and Supplementary Discussion). Mapping features to genes revealed
overlaps between transcriptomic, chromatin accessibility, and pro-
teomic assays, but no overlaps with methylation. Three molecular
interaction networks were compared (Methods), and BioGRID* was
used for further clustering analysis, which identified three clusters
(Extended DataFig. 9cand Supplementary Table 13). The largest cluster
was significantly enriched for multiple muscle adaptation processes
(Fig.4d and Supplementary Table 14). This analysisillustrates the direct
linkage among pathways and putative central regulators, emphasizing
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Fig. 5| Training-induced immuneresponses. a, Enrichment analysis results of
the training-differential transcripts at 8 weeks in Kyoto Encyclopedia of Genes
and Genomes (KEGG) immune system pathways (10% FDR). NK, natural killer.

b, Line plots of standardized abundances of selected training-differential
transcripts. Brown and white adipose tissue show male-specific up-regulation
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theimportance of multi-omic datainidentifyinginterconnected net-
works and understanding skeletal muscle remodelling.

Connection to human diseases and traits

To systematically evaluate the translational value of our data, we inte-
grated our results with extant exercise studies and disease ontology
(DO) annotations (Methods). First, we compared our vastus later-
alis transcriptomics results to a meta-analysis of long-term training
gene-expression changes in human skeletal muscle tissue®, demon-
strating asignificant and direction-consistent overlap (Extended Data
Fig.9d-gand Supplementary Discussion). We also identified a signifi-
cant overlap between differential transcripts in the gastrocnemius of
femalerats trained for 8 weeks and differentially expressed genesiden-
tifiedinthe soleusinastudy of sedentary and exercise-trained female
ratsselectively bred for high or low exercise capacity® (Extended Data
Fig.9h).Similarly, adaptations from high-intensity interval training in
humans?significantly overlapped with the proteomics response in rats
(Extended DataFig. 9i), particularly for female rats trained for 8 weeks
(Extended DataFig.9j). Finally, we performed DO enrichment analysis
using the DOSE R package?* (Supplementary Table 15 and Methods).
Down-regulated genes from white adipose tissue, kidney and liver
were enriched for several disease terms, suggesting alink between the
exercise response and type 2 diabetes, cardiovascular disease, obesity
and kidney disease (5% FDR; Extended Data Fig. 9k and Supplemen-
tary Discussion), which are all epidemiologically related co-occurring

offeaturesinbatthetranscriptlevel. A pink dotindicates that the markeris
alsoone of the differential features plotted inb. A pound signindicates that
the distribution of Pearson correlations for aset of at least two markersis
significantly different from O (two-sided one-sample t-test, 5% FDR). When only
onemarkeris usedtodefineacategory ontheyaxis, thegene nameis provided
in parentheses.Inbox plots, the centre line represents median, box bounds
represent 25thand 75th percentiles, whiskers represent minimum and maximum
excluding outliers and blue dots represent outliers.

diseases®. Overall, these results supportahigh concordance of our data
from rats with human studies and their relevance to human disease.

Sex-specific responses to exercise

Many tissues showed sex differences in their training responses
(Extended DataFig.10), with 58% of the 8-week training-regulated fea-
tures demonstrating sex-differentiated responses. Opposite responses
between the sexes were observed in adrenal gland transcripts, lung
phosphosites and chromatin accessibility features, white adipose tis-
sue transcripts and liver acetylsites. In addition, proinflammatory
cytokines exhibited sex-associated changes across tissues (Extended
DataFig. 11a,b and Supplementary Table 16). Most female-specific
cytokines were differentially regulated between weeks1and 2 of train-
ing, whereas most male-specific cytokines were differentially regulated
between weeks 4 and 8 (Extended Data Fig. 11¢).

We observed extensive transcriptional remodelling of the adrenal
gland, with more than 4,000 differential genes. Notably, the largest
graphical path of training-regulated features was negatively corre-
lated between males and females, with sustained down-regulation
in females and transient up-regulation at 1 week in males (Extended
Data Fig. 11d). The genes in this path were also associated with ster-
oid hormone synthesis pathways and metabolism, particularly those
pertaining to mitochondrial function (Supplementary Table 11). Fur-
ther, transcription factor motif enrichment analysis of the transcripts
in this path showed enrichment of 14 transcription factors (5% FDR;
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Supplementary Table17), including the metabolism-regulating factors
PPARy, PPARa and oestrogen-related receptor gamma (ERRy). The
gene-expression levels of several significantly enriched transcription
factorsthemselves followed the same trajectory as this path (Extended
DataFig.1le).

In the rat lung, we observed decreased phosphosignalling activity
with training primarily in males (Fig. 3b). Among these, the PRKACA
phosphorylation signature showed the largest sex difference at 1
and 2 weeks (Extended Data Fig. 11f-h and Supplementary Table 8).
PRKACA s akinase thatisinvolved insignalling within multiple cellular
pathways. However, four PRKACA substrates followed this pattern
and were associated with cellular structures (such as cytoskeleton
and cell-cell junctions): DSP, MYLK, STMN1 and SYNE1 (Extended
Data Fig. 11i). The phosphorylation of these proteins suggests a
sex-dependentrole of PRKACA inmediating changesinlung structure
or mechanical function with training. This is supported as DSP and
MYLK have essential roles in alveolar and epithelial cell remodelling in
the lung®?%,

Immune pathway enrichment analysis of training-regulated tran-
scripts at 8 weeks showed limited enrichment in muscle (heart, gas-
trocnemius and vastus lateralis) and brain (cortex, hippocampus,
hypothalamus), down-regulation in the lung and small intestine, and
strong up-regulation in brown and white adipose tissue in males only
(Fig.5a, Extended DataFig.12a and Supplementary Table 11). Many of the
same immune pathways (Supplementary Table 18) and immune-related
transcription factors (Supplementary Table 19) were enriched inboth
adipose tissues in males. Furthermore, correlation between the tran-
script expression profiles of male-specific up-regulated features in
the adipose tissues and immune cell markers from external cell-typing
assays revealed a strong positive correlation for many immune cell
types, including B, T and natural killer cells, and low correlation with
platelets, erythrocytes and lymphatic tissue (Fig. 5b,c, Methods and
Supplementary Table 20). These patterns suggest recruitment of
peripheral immune cells or proliferation of tissue-resident immune
cellsas opposed to non-biological variationin blood or lymph content.
Correlations at the protein level were not as marked (Extended Data
Fig.12b,c). Complementary analyses using CIBERTSORTx produced
similar results (Extended Data Fig. 12d,e). In summary, our data sug-
gestanimportantrole ofimmune cell activity in the adaptation of male
adipose tissue to endurance training.

The small intestine was among the tissues with the highest enrich-
ment in immune-related pathways (Extended Data Fig. 12a), with
down-regulation of transcripts at 8 weeks, and amore robust response
infemales (Fig.5b). This transcript set was significantly enriched with
pathways related to gut inflammation (Supplementary Table 11). We
observed positive associations between these transcripts and markers
of severalimmune cell types, including B, T, natural killer and dendritic
cells, suggesting decreased abundance (Fig. 5c and Supplementary
Discussion). Endurance training also decreased the expression of tran-
scripts with genetic risk loci for inflammatory bowel disease (IBD),
including major histocompatability complex class 11*, a finding that
also emerged through the DO enrichment analysis (Supplementary
Table 15). Endurance training is suggested to reduce systemic inflam-
mation, in part by increasing gut microbial diversity and gut barrier
integrity®. Inaccordance, we observed decreasesin Cxcr3and ll1a with
training (Extended Data Fig. 12f), both of which are implicated in the
pathogenesis of IBD**. Together, these data suggest that endurance
training improves gut homeostasis, potentially conferring systemic
anti-inflammatory effects.

Multi-tissue changes in mitochondria and lipids

We summarized the organism-wide metabolic changes for metabo-
lomic datasets using RefMet metabolite classes (Fig. 6a and Supple-
mentary Table 21) and for non-metabolomics datasets using metabolic
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subcategories of KEGG pathways (10% FDR; Extended Data Fig. 13aand
Supplementary Table 11). The liver showed the greatest number of
significantly enriched metabolite classes, followed by the heart, lung
and hippocampus (Fig. 6aand Supplementary Discussion). Inspection
of individual metabolites and acylcarnitine groups revealed changes
associated with functional alterationsin response to training (Extended
Data Fig. 13b-d and Supplementary Discussion). Of particular inter-
est, trimethylamine-N-oxide has been associated with cardiovascular
disease®. We observed up-regulation of 1-methylhistidine, a marker of
muscle protein turnover, in the kidney at 1, 2 and 4 weeks, which may
indicate muscle breakdown and clearance through the kidney during
early training time points. Cortisol levels were increased as expected
fromthe physiological stress of training, and we observed a substantial
increase in the kidney, again probably owing to renal clearance®. The
liver showed up-regulation of 1-methylnicotinamide, which may have
aroleininflammation®, at 8 weeks.

The heartshowed enrichment of various carbohydrate metabolism
subcategories across many omes (Extended Data Fig.13a), and remark-
ably, all enzymes within the glycolysis-gluconeogenesis pathway
showed a consistent increase in abundance, except for GPI, FBP2 and
DLAT (Extended DataFig.13e). Oxidative phosphorylation was enriched
inmost tissues and is consistent with the joint analyses of the muscle tis-
sues (Fig.4c), suggesting potential changesin mitochondriabiogenesis.
We estimated proportional mitochondrial changes to endurance train-
ing using mitochondrial RNA-sequencing (RNA-seq) reads (Extended
Data Fig. 14a-c) and changes of mitochondrial functions through
GSEA using gene expression, protein abundance and protein PTMs
(Fig. 6b, Extended Data Fig. 14d and Supplementary Tables 22-25).
Increased mitochondrial biogenesis was observed in skeletal muscle,
heart and liver across these analyses. Moreover, sex-specific mito-
chondrial changes were observed in the adrenal gland, as described
above, and in the colon, lung and kidney. These results highlight
a highly adaptive and pervasive mitochondrial response to endur-
ance training; a more in-depth analysis of this response is provided
elsewhere®.

In the liver, we observed substantial regulation of metabolic path-
ways across the proteome, acetylome and lipidome (Fig. 6a,b and
Extended DataFig.13a). For example, there was significant enrichment
in 12 metabolite classes belonging to ‘lipids and lipid-related com-
pounds’ (Fig. 6a and Supplementary Table 26). We therefore focused
on the large group of features that increased in abundance over time
for both sexes (Fig. 6¢). Most of these liver features corresponded to
protein abundance and protein acetylation changes in the mitochon-
drial, amino acid and lipid metabolic pathways (Fig. 6d and Supplemen-
tary Table 27). We also observed an increase in phosphatidylcholines
and aconcomitant decreasein triacylglycerols (Fig. 6e). Finally, there
wasincreased abundance and acetylation of proteins from the peroxi-
some, an organelle with key functions in lipid metabolism (Extended
Data Fig. 14e). To our knowledge, these extensive changes in protein
acetylationinresponse to endurance training have not been described
previously. Together, these molecular adaptations may constitute
part of the mechanisms underlying exercise-mediated improvements
inliver health, particularly protection against excessive intrahepatic
lipid storage and steatosis’®.

Discussion

Mapping the molecular exercise responses across a whole organism
is critical for understanding the beneficial effects of exercise. Previ-
ous studies are limited to a few tissues, a narrow temporal range, or
asingle sex. Substantially expanding on the current work in the field,
we used 25 distinct molecular platforms in as many as 19 tissues to
study the temporal changes to endurance exercise training in male and
femalerats. Accordingly, weidentified thousands of training-induced
changes withinand acrosstissues, including temporal and sex-biased
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Fig. 6| Training-induced changesin metabolism. a, RefMet metabolite class
enrichment calculated using GSEA with the —log,, training Pvalue. Significant
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forsignificant pathways (10% FDR). Mitochondrial pathways shown asrows are
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oxidative phosphorylation. ¢, Line plots of standardized abundances of liver
training-differential features acrossall data types that are up-regulated inboth

responses, in MRNA transcripts, proteins, post-translational modifi-
cations and metabolites. Each omic dataset provides unique insights
into exercise adaptation, where a holistic understanding requires
multi-omicanalysis. This work illustrates how mining our dataresource
can both recapitulate expected mechanisms and provide novel
biological insights.

Thiswork canbe leveraged to deepen our understanding of exercise-
related improvement of health and disease management. The global
heat shock response to exercise may confer cytoprotective effects,
includingin pathologies related to tissue damage and injury recovery?.
Increased acetylation of liver mitochondrial enzymes and regulation of
lipid metabolism may link exercise to protection against non-alcoholic
fatty liver disease and steatohepatitis®. Similarly, exercise-mediated
modaulation of cytokines, receptors and transcripts linked to intes-
tinal inflammation or IBD may be associated with improved gut
health. These examples highlight unique training responses illumi-
nated by a multi-omics approach that can be leveraged for future
hypothesis-driven research on how exercise improves whole-body
and tissue-specific health.

We note limitationsin our experimental design, datasets and analyses
(Supplementary Discussion). In short, samples were collected 48 h
after the last exercise bout to capture sustained alterations, thereby

Sterol esters
Triacylglycerols

sexes, withalater response in females (LIVER:1w_FO_M1->2w_FO_M1->4w_
FO_M1->8w_F1_MI).Theblacklinerepresents the average valueacrossall
features. d, Network view of pathway enrichment results corresponding to
featuresinc.Nodesindicate significantly enriched pathways (10% FDR); edges
connectnodesifthereisasimilarity score of atleast 0.375between the gene
setsdriving each pathway enrichment. Node coloursindicate omesin which
theenrichmentwas observed. e, log, fold changes (logFC) relative to sedentary
controls for metabolites within the ‘Lipids and lipid related compounds’
categoryinthe 8-week liver. Heat map colour represents fold change (red,
positive; blue, negative). Compounds are grouped into columns based on
category (coloured bars).

excluding acute responses. Our assays were performed on bulk tissue
and do not cover single-cell platforms. Our resource has limited omic
characterization for certain tissues, and additional platforms with
emerging biological relevance were not utilized, including microbiome
profiling. Moreover, our results are hypothesis-generating and require
biological validation; supporting this, we have established a publicly
accessible tissue bank from this study.

This MoTrPAC resource provides future opportunities to enhance
and refine the molecular map of the endurance training response.
We expect that this dataset will remain an ongoing platform to trans-
late tissue- and sex-specific molecular changes in rats to humans.
MoTrPAC has made extensive efforts to facilitate access, exploration
and interpretation of this resource. We developed the MoTrPAC Data
Hubto easily explore and download data (https://motrpac-data.org/),
software packagesto provide reproducible source code and facilitate
dataretrievaland analysisin R (MotrpacRatTrainingémo and Motrpa-
cRatTrainingémoData®?*), and visualization tools for data explora-
tion (https://data-viz.motrpac-data.org). Altogether, this multi-omic
resource serves as a broadly useful reference for studying the milieu
of molecular changes in endurance training adaptation and provides
new opportunities to understand the effects of exercise on health
and disease.
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Article

Methods

Allmethods are included in the Supplementary Information.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

MoTrPAC data are publicly available via http://motrpac-data.org/
data-access. Dataaccessinquiries should be sentto motrpac-helpdesk@
lists.stanford.edu. Additional resources can be found at http://motrpac.
organd https://motrpac-data.org/. Interactive data visualizations are
provided through a website (https://data-viz.motrpac-data.org) and
HTML reports summarizing the multi-omic graphical analysis results
in each tissue*’. Processed data and analysis results are additionally
available in the MotrpacRatTrainingémoData R package® (https://
github.com/MoTrPAC/MotrpacRatTrainingémoData). Raw and pro-
cessed data for were deposited in the appropriate public reposito-
ries as follows. RNA-seq, ATAC-seq and RRBS data were deposited at
the Sequence Read Archive under accession PRJNA908279 and at the
Gene Expression Omnibus under accession GSE242358; multiplexed
immunoassays were deposited at IMMPORT under accession SDY2193;
metabolomics datawere deposited at Metabolomics Workbench under
project IDPR001020; and proteomics datawere deposited at MassIVE
under accessions MSV000092911, MSV000092922, MSV000092923,
MSV000092924, MSV000092925 and MSV000092931. We used the
following external datasets: release 96 of the Ensembl R. norvegicus
(rn6) genome (https://ftp.ensembl.org/pub/release-96/fasta/rattus_
norvegicus/dna/) and gene annotation (https://ftp.ensembl.org/pub/
release-96/gtf/rattus_norvegicus/Rattus_norvegicus.Rnor_6.0.96.gtf.
gz); RefSeq protein database (https://ftp.ncbi.nim.nih.gov/refseq/R_
norvegicus/,downloaded 11/2018); the NCBI gene2refseq mapping files
(https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2refseq.gz, accessed 18
December 2020); RGD rat gene annotation (https://download.rgd.mcw.
edu/data_release/RAT/GENES RAT.txt, accessed 12 November 2021);
BioGRID v4.2.193 (https://downloads.thebiogrid.org/File/BioGRID/
Release-Archive/BIOGRID-4.2.193/BIOGRID-ORGANISM-4.2.193.tab3.
zip); STRING v11.5 (https://stringdb-downloads.org/download/protein.
physical.links.v11.5/10116.protein.physical.links.v11.5.txt.gz); GEN-
CODE release 39 metadata and annotation files (https://ftp.ebi.ac.uk/
pub/databases/gencode/Gencode_human/release_39/, accessed 20
January2022); MatrisomeDB (https://doi.org/10.1093/nar/gkac1009);
MitoPathways database available through MitoCarta (https://personal.
broadinstitute.org/scalvo/MitoCarta3.0/); PTMSigDB v1.9.0 PTM set
database (https://doi.org/10.1074/mcp.TIR118.000943); UniProt
human proteome FASTA for canonical protein sequences (UniProtkKB
query “reviewed:true AND proteome:up000005640”, download
date 3 March 2021); the CIBERSORT LM22 leukocyte gene signature
matrix (https://doi.org/10.1007/978-1-4939-7493-1_12); published
results from Amar et al.5, Bye et al.”? and Hostrup et al.”*; and GTEx v8
gene-expressiondata (dbGaP Accession phs000424.v8.p2). Details are
provided in the Supplementary Information, Methods.

Code availability

Code for reproducing the main analyses is provided in the Motrpa-
cRatTrainingémo R package®® (https://motrpac.github.io/Motrpa-
cRatTrainingémo/). MoTrPAC data processing pipelines for RNA-seq,

ATAC-seq, RRBS and proteomics are available in the following Github
repositories: https://github.com/MoTrPAC/motrpac-rna-seq-pipeline*,
https://github.com/MoTrPAC/motrpac-atac-seq-pipeline*?, https://
github.com/MoTrPAC/motrpac-rrbs-pipeline* and https://github.
com/MoTrPAC/motrpac-proteomics-pipeline**. Normalization and
quality control scripts are available at https://github.com/MoTrPAC/
MotrpacRatTrainingémoQCRep™®.
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Extended DataFig.1|Animal phenotyping and dataavailability.

a-d) Clinical measurements before and after the traininginterventionin
untrained control rats (SED), 4-week trained rats (4w), and 8-week trained rats
(8w). Dataaredisplayed pre and post for eachindividual rat (connected by a
line), with males inblue and females in pink. Filled symbols (n =5 per sex and
time point) represent rats used for allomics analyses, whereas the rat utilized
for proteomics only (n =1per sex and time point) is represented by anon-filled
symbol. Significant results by ANOVA of the overall group effect (#, p < 0.05;
##,p <0.01) and interaction between group and time (§, p <0.05; §§ p <0.01) are
indicated. Significant within-group differential responses from a Bonferroni
posthoctestareindicated (*, g-value < 0.05; **, q-value < 0.01). a) Aerobic

capacity through a VO,max test until exhaustion. Dataare reportedin
ml/(kg.min) for allindividual rats and time points. b) Body fat percentage.

c) Percentlean mass. (b-c) were assessed through nuclear magnetic resonance
spectroscopy. d) Body weight (in grams). e) Description of available datasets.
Colored cellsindicate that data are available for that tissue and assay. Individual
panelsand platforms are shown for metabolomics and the multiplexed
immunoassays. f) Detailed availability of sample-level data across assays. Each
columnrepresents anindividual animal, ordered by training group and colored
by sex. Gray cellsindicate that datawere generated for that animal and assay;
black cellsindicate that datawere not generated. Rows are ordered by ome and
colored by assay and tissue.
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Extended DataFig. 2| Quality control metrics for omics data. a) Proteomics
multiplexing designusing TMT11reagents forisobaric tagging and a pooled
reference sample. The diagram describes processing of asingle tissue. Following
multiplexing, peptides were used for protein abundance analysis, serial PTM
enriched for phosphosite and optional acetylsite quantification, or ubiquitylsite
quantification through enrichment of lysine-diglycine ubiquitin remnants.

b) Total number of fully quantified proteins per plexin each global proteome
dataset. c-e) The total number of fully quantified phosphosites (c), acetylsites
(d), and ubiquitylsites (e) per plexin each dataset. f) Distributions of coefficients
ofvariation (CVs) calculated from metabolomics featuresidentified in pooled
samples and analyzed periodically throughout liquid chromatography-mass
spectrometry runs. CVs were aggregated and plotted separately for named and
unnamed metabolites. g) Transcription start site (TSS) enrichment (top) and

fraction of reads in peaks (FRiP, bottom) across ATAC-seq samples per tissue.
h) Distributions of RNA integrity numbers (RIN, top) and median 5’ to 3’ bias
(bottom) across samplesin eachtissueinthe RNA-Seq data.i) Percent
methylation of CpG, CHG and CHH sites in the RRBS data. For boxplotsin
(h,i): center line represents median; box bounds represent 25thand 75th
percentiles; whiskers represent minimum and maximum excluding outliers;
filled dots represent outliers.j) Number of wells across multiplexed
immunoassays with fewer than 20 beads. Measurements from these 182 wells
were excluded from downstream analysis. k) 2D density plot of targeted
analytes’mean fluorescence intensity (MFI) versus corresponding CHEX4 MFI
from the same well for each multiplexed immunoassay measurement, where
CHEX4 is ameasure of non-specific binding.
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Extended DataFig. 3 | Permutation tests. a-b) Permutation tests of groups
within males (a) and females (b). For each sex, the original group labels were
shuffled to minimize the number of animal pairs that remain in the same group.
Onlythegrouplabels were shuffled and all other covariates remained asinthe
original data. For each permuted dataset, the differential abundance pipeline
was rerunand the number of transcripts that were selected at 5% FDR adjustment
werere-counted. c-d) Permutation tests of sex within groups. For eachgroup
and each sex, half of the animals were selected randomly and their sex was
swapped. Only the sex labels were shuffled and all other covariates remained
asintheoriginal data. For each permutation the differential analysis pipeline
wasrerun and the timewise summary statistics were extracted. Agene was

considered sexually dimorphicifforatleast one time point the z-score (absolute)
difference between males and females was greater than 3. ¢) Counts of sexually
dimorphic genes among the IHW-selected genes of the original data. d) Counts
of sexually dimorphic genes amongthe 5% FDR selected genes within each
permuted dataset. Each boxplotin (a-d) represents the differential abundance
analysis results over 100 permutations of the transcriptomics datainaspecific
tissue. Center line represents median; box bounds represent 25thand 75th
percentiles; whiskers represent minimum and maximum excluding outliers;
opencirclesrepresentoutliers. Added points represent the results of the true
datalabels, and their shape corresponds to the empirical p-value (@: p > 0.05;
x:0.01<p<0.05;* p<0.01).
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Extended DataFig. 4 |Correlations between proteins and transcripts
throughout endurance training. a) Number of tissuesin which each gene,
including features mapped to genes fromall omes, is training-regulated. Only
differential features from the subset of tissues with deep molecular profiling
(lung, gastrocnemius, subcutaneous white adipose, kidney, liver, and heart)
and the subset of omes that were profiled in all six of these tissues (DNA
methylation, chromatin accessibility, transcriptomics, global proteomics,
phosphoproteomics, multiplexed immunoassays) were considered. Numbers
above eachbarindicate the number of genes that are differential in exactly the
number of tissues indicated on the x-axis. b) Pathways significantly enriched by

KEGG and Reactome pathways were queried, and redundant pathways were
removed (i.e., those with an overlap of 80% or greater with an existing pathway).
¢) Heatmaps showing the Pearson correlation between the TRNSCRPT and PROT
timewise summary statistics (z-and t-scores, respectively) (top, gene-level) and
pathway-level enrichment results (Gene Set Enrichment Analysis normalized
enrichmentscores) (bottom, pathway-level). d) Scatter plots of pathway GSEA
NES of the TRNSCRPT and PROT datasets in the seven tissues for which these
datawereacquired. Pathways showing high discordance or agreementacross
TRNSCRPT and PROT and with functional relevance or general interest were
highlighted.

tissue-specific training-regulated genes represented in Fig. 2a (q-value < 0.1).
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Extended DataFig. 6 |See next page for caption.
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Extended DataFig. 6 | Regulatory signaling pathways modulated by
endurance training. a) Heatmap of differencesin TF motifenrichmentin
training-regulated genesacross tissues. Each valuereflects the average
difference in motif enrichment for shared transcription factors. Tissues are
clustered with complete linkage hierarchical clustering. b) (left) Filtered PTM-
SEAresults for the liver showing kinases and signaling pathways withincreased
activity. (right) Heatmap showing t-scores for phosphosites within the HGF
signaling pathway. ¢) Hypothetical model of HGF signaling effects during
exercise training. Phosphorylation of STAT3 and PXN is known to modulate cell
growth and cell migration, respectively. Error bars=SEM. d) Filtered PTM-SEA
results for the heart showing selected kinases with significant enrichmentsin
atleast one time point. Heatmap shows the NES as color and enrichment p-value
asdotsize.Kinases are grouped by kinase family and sorted by hierarchical

clustering. e) (top) Log, fold-change of GJAland CDH2 proteinabundancein
the heart. No significant response to exercise training was observed for these
proteins (F-test; g-value > 0.05). (bottom) Log, fold-changes for selected Src
kinase phosphosite targets, GJA1pY265 and CDH2 pY820, in the heart. These
phosphosites show asignificant response to exercise training (F-test, 5% FDR).
Error bars=SEM.f) Gene Set Enrichment Analysis (GSEA) results from the heart
global proteome dataset using the matrisome gene set database. Heatmap
shows NES as color and enrichment p-value as dot size. Rows are clustered
using hierarchical clustering. g) Log, fold-change for basement membrane
proteinsinheart. Proteins showing asignificant response to exercise training
are highlighted in orange (F-test; 5% FDR). Error bars=SEM. h) Log, protein fold-
change of NTN1proteinabundanceinheart. Asignificant response to exercise
training was observed for these proteins (F-test; 5% FDR). Error bars=SEM.
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Extended DataFig.7|Graphical representation of differential results.

a) Number of training-regulated features assigned to groups of graphical states
across tissues and time. Red pointsindicate features that are up-regulatedin at
leastonesex (e.g., onlyin males: FO_M1; only in females: F1_MO; in both sexes:
F1_M1),and blue pointsindicate features down-regulatedin atleast one sex
(onlyinmales: FO_M-1; only in females: F-1_MO; inboth sexes: F-1_M-1). Green
pointsindicate features thatare up-regulated in males and down-regulated in
females or vice versa (F-1_M1and F1_M-1, respectively). Point size is proportional
to the number of features. Point opacity is proportional to the within-tissue
fraction of features represented by that point. Features canberepresentedin
multiple points. The number of omes profiledineachtissueis providedin
parentheses nextto thetissue abbreviation. b) Aschematicexample of the
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graphical representation of the differential analysis results. Top: the z-scores
of four features. A positive score corresponds to up-regulation (red), and a
negative score corresponds to downregulation (blue). Bottom: the assignment
of features tonode sets and full path sets (edge sets are not shown for
conciseness but can be easily inferred from the full paths). Node labels follow
the [time]_F[x]_M[y]format where [time] shows the animal sacrifice week and
cantake one of (1w, 2w, 4w, or 8w), and [x] and [y] are one of (-1,0,1), corresponding
to down-regulation, no effect,and up-regulation, respectively. c) Graphical
representation of the feature sets. Columns are training time points, and rows
arethedifferential abundance states. Node and edge sizes are proportional to
thenumber of features that are assigned to each set.
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Extended DataFig.9|Associations withsignatures of human healthand
complex traits. a) Jaccard coefficients between gene sets identified by
different omesin 8-week gastrocnemius up-regulated features (“X” marks
overlap p>0.05).b) Network connectivity p-values (Pathways, Biogrid, and
string) among the gastrocnemius week-8 multi-omic genes and with the
single-omic genes. c) Proportion of features from eachomerepresentedinthe

gastrocnemiusresponse clusters, identified by the network clustering analysis.

d-g) Overlap between our rat vastus lateralis differential expression results
and the meta-analysis of human long-term exercise studies by Amar et al. d-e)

Spearman correlation (d) and its significance (e) between the meta-analysis fold-

changes and the log, fold-changes foreach sex and time point.f) GSEA results.
Geneswere ranked by meta-analysis (-log,, p-value*log, fold-change) and the rat
training-differential, sex-consistent gene sets were tested for enrichment at the
bottom of the ranking (negative scores) or the top (positive scores). g) Overlap

betweentheratgenesetsfrom (f) and the high-heterogeneity human
meta-analysis genes (I* > 75%). h) -log,, overlap p-values (Fisher’s exact test),
comparingrat female gastrocnemius and vastus lateralis week-8 differential
transcripts from this study (p < 0.01) and the differential genes from the rat
female soleus data of Bye et al. (p < 0.01). HCR: high capacity runners, LCR: low
capacity runners.i) A comparison of rat gastrocnemius differential proteins
from thisstudy (p < 0.01) and the humanendurance training proteomics
results of Hostrup et al. (p < 0.01) using Fisher’s exact test. Left: -log,, overlap
p-values. Right:-log,, sex concordance p-values. j) Statistics of the overlapping
proteins from (i), week-8 female comparison (y: rat z-scores, x: human t-scores).
k) DOSE disease enrichment results of the white adipose, kidney, and liver gene
sets. DOSE was applied only on diseases that arerelevant for each tissue. The
network shows the results for the sex-consistent down-regulated features at
week-8.
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Extended DataFig.10|See next page for caption.
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Extended DataFig.10|Characterization of the extent of sex differencein
theendurance training response. The extent of sex differencesin the training
response were characterized in two ways: first, by correlating log, fold-changes
between males and females for each training-differential feature; second, by
calculating the difference between the areaunder the log, fold-change curve for
eachtraining-differential feature, includinga (0,0) point (A,,c, males - females).
Thefirstapproach characterizes differencesin direction of effect while the
second approach characterizes differences in magnitude. Left plot for each
tissue: density line plots of correlations from the first approach. Densities or
correlations correspondingto features ineach ome are plotted separately,

withalabel that provides the ome and the number of differential features
represented. Right plot for each tissue: 2D density plot of A, c against the
correlationbetween the male and female log, fold-changes for each training-
differential feature used to simultaneously evaluate sex differencesin the
directionand magnitude of the training response. Points at the top-center of
these 2D density plots represent features with high similarity between males
and femalesintermsofbothdirection and magnitude; features onthe rightand
leftsides of the plots represent features with greater magnitudes of response
inmales and females, respectively.
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Extended DataFig.11|Sex differencesinthe endurance training response.
a) Heatmap of the training response of immunoassay analytes across tissues.
Grayindicates no data. Barsindicate the number of training-regulated analytes
ineachtissue (top) and the number of tissues in which the analyte is training-
regulated (right, 5% FDR). b) Training-differential cytokines across tissues.
5,24,and 9 cytokines were annotated as anti-, pro-, and pro/anti-inflammatory,
respectively. Barsindicate the number of annotated cytokines ineach category
thatare differential (5% FDR). c) Counts of early vs. (1- or 2-week) vs. late (4- or
8-week) differential cytokines, according to states assigned by the graphical
analysis, including all tissues. Cytokines withboth early and late responsesin
the sametissue were excluded. d) Line plots of standardized abundances of
training-differential features that follow the largest graphical path in the adrenal
gland (i.e.,1w_F-1_M1->2w_F-1_MO - >4w_F-1_MO - >8w_F-1_MO according to
our graphical analysis notation). The blackline represents the average value

acrossallfeatures. The closer acolored lineis to this average, the darkeritis
(distance calculated using sum of squares). e) Line plots of transcript-level log,
fold-changes corresponding tosix transcription factors (TFs) whose motifs are
significantly enriched by transcripts in (d). TF motif enrichment g-values are
providedinthelegend (error bars = SEM).f) Male versus female NES from
PTM-SEAinthelung. Anticorrelated points corresponding to PRKACA NES are
indarkred. g) Line plots of standardized abundances of training-differential
phosphosites that follow the largest graphical edges of phosphositesin the lung
(Iw_F1_M-1->2w_F1_M-1->4w_FO_M-1).h) Top tenkinases with the greatest
over-representation of substrates (proteins) corresponding to training-
differential phosphositesin (g). MeanRank scores by library are shown, as
reported by KEA3.1i) Line plots showing phosphosite-level log, fold-changes
of PRKACA phosphosite substratesidentified in the lung as differential with
disparate sex responses (error bars=SEM).
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Extended DataFig. 14 |Mitochondriaand peroxisome adaptations to
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controlsand animals trained for 8 weeks. Plot shows tissues with a statistically
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and maximum excluding outliers; filled dots represent outliers. ¢) Boxplots
showing the percent of mitochondrial genome reads across tissue, sex, and
time points. Center line represents median; box bounds represent25thand
75th percentiles; whiskers represent minimum and maximum excluding
outliers; opencirclesrepresent outliers. Red asterisks indicate a significant
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KEGG pathwayinthelivertissue after 8 weeks of training. Red boxes indicate an
increaseinabundance for both males and females, while red circlesindicate an
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|Z| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX 0O 0O 00 0 ool

|Z| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The following software were used for the MoTrPAC RNA-seq pipeline (https://github.com/MoTrPAC/motrpac-rna-seq-pipeline, v1.0.0): star
(v2.7.0d); cutadapt (v1.18); picard tools (v2.8.16); samtools (v1.3.1); rsem (v1.3.1); multigc (v1.6); bowtie2 (v2.3.4.3); fastqc (v0.11.8); subread
(v1.6.3); ucsc-gtftogenepred (v366). The following software were used for the MoTrPAC RRBS Pipeline (https://github.com/MoTrPAC/
motrpac-rrbs-pipeline, v1.1): fastqc (v0.11.8); cutadapt (v1.18); trim_galore (v0.5.0); samtools (v1.3.1); bowtie2 (v2.3.4.3); multigc (v1.6);
bismark (v0.20.0). The ENCODE ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-seg-pipeline, v1.7.0) was used to process ATAC-seq
data; custom post-processing scripts are available at https://github.com/MoTrPAC/motrpac-atac-seg-pipeline. The following software were
used for the MoTrPAC proteomics pipeline (https://github.com/MoTrPAC/motrpac-proteomics-pipeline): MASIC (v3.2.7901); MSGFPlus
(v2021.09.06); Mzid2Tsv (v1.4.3); PHRP (v1.5.7458); PlexedPiper (v0.3.6); PPMErrorCharter (v1.2.7632); AScore (v1.0.8315). For untargeted
metabolomics data processing, the following software were used: TraceFinder (v3.3); Progenesis Ql (2021); Profinder (v8.0); Agilent
Masshunter Qualitative Analysis (v7.0); Agilent Mass Profiler Pro (v8.0); Masshunter Qualitative Analysis; Binner (v1.0.0); Compound
Discoverer (v3.0). For targeted metabolomics data processing, the following software were used: Sciex OS (v1.6.1); TargetLynx (v4.1.1.0);
SoftMax Pro (v5.4); Discovery Workbench; NeolLynx (v4.0.6.0); Xcalibur Quant (v4.5.445.18); MassHunter Quant.
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Data analysis QA/QC was performed using the MotrpacBicQC R package (https://github.com/MoTrPAC/MotrpacBicQC/, v0.6.7). Normalization and QC
scripts are available at https://github.com/MoTrPAC/MotrpacRatTrainingémoQCRep. Code used to perform the main computational analyses
presented in the manuscript are provided in the MotrpacRatTrainingémo R package (https://motrpac.github.io/MotrpacRatTrainingémo/,
v1.6.4). Specific R package dependencies for this package are available at https://github.com/MoTrPAC/MotrpacRatTrainingémo/blob/main/
DESCRIPTION. These dependencies include but are not limited to: DESeq2, edgeR, limma, IHW, multcomp, metafor, repfdr, gprofiler2, igraph,
ssGSEA2. Additional R packages used include: mclust, graphite, pSl, pracma, DOSE. The specific version of R and R packages used were analyst-
dependent. Additional software used include: HOMER (v4.11.1), BLAST+ (v2.11.0), CIBERSORTx (v1.05).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

MoTrPAC data are publicly available via http://motrpac-data.org/data-access. Data access inquiries should be sent to motrpac-helpdesk@lists.stanford.edu.
Additional resources can be found at http://motrpac.org and https://motrpac-data.org/. Interactive data visualizations are provided through a website (https://
data-viz.motrpac-data.org) and HTML reports summarizing the multi-omic graphical analysis results in each tissue. Processed data and analysis results are
additionally available in the MotrpacRatTrainingémoData R package (https://github.com/MoTrPAC/MotrpacRatTrainingémoData).

Raw and processed data for each ome were also deposited in the appropriate public repositories as follows. RNA-Seq, ATAC-seq, and RRBS: SRA (PRINA908279) and
GEO (GSE242358); multiplexed immunoassays: IMMPORT (SDY2193); metabolomics: Metabolomics Workbench (Project ID PRO01020); proteomics: MassIVE
(MSV000092911, MSV000092925, MSV000092922, MSV000092924, MSV000092923, MSV000092931).

We used the following external datasets: release 96 of the Ensembl Rattus norvegicus (rn6) genome (https://ftp.ensembl.org/pub/release-96/fasta/
rattus_norvegicus/dna/) and gene annotation (https://ftp.ensembl.org/pub/release-96/gtf/rattus_norvegicus/Rattus_norvegicus.Rnor_6.0.96.gtf.gz); RefSeq
protein database (https://ftp.ncbi.nlm.nih.gov/refseq/R_norvegicus/, downloaded 11/2018); NCBI's “gene2refseq” mapping files (https://ftp.ncbi.nlm.nih.gov/gene/
DATA/gene2refseq.gz, accessed 12/18/2020); RGD rat gene annotation (https://download.rgd.mcw.edu/data_release/RAT/GENES_RAT.txt, accessed 11/12/2021);
BioGRID v4.2.193 (https://downloads.thebiogrid.org/File/BioGRID/Release-Archive/BIOGRID-4.2.193/BIOGRID-ORGANISM-4.2.193.tab3.zip); STRING v11.5 (https://
stringdb-downloads.org/download/protein.physical.links.v11.5/10116.protein.physical.links.v11.5.txt.gz); GENCODE release 39 metadata and annotation files
(https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_39/, accessed 1/20/2022); MatrisomeDB (https://doi.org/10.1093/nar/gkac1009);
MitoPathways database available through MitoCarta (https://personal.broadinstitute.org/scalvo/MitoCarta3.0/); PTMSigDB v1.9.0 PTM set database (https://
doi.org/10.1074/mcp.TIR118.000943); UniProt human proteome FASTA for canonical protein sequences (UniProtkB query "reviewed:true AND
proteome:up000005640", download date 02/03/2021); CIBERSORT's LM22 leukocyte gene signature matrix (https://doi.org/10.1007%2F978-1-4939-7493-1_12);
published results from Amar et al. (https://doi.org/10.1038/s41467-021-23579-x), Bye et al. (https://doi.org/10.1152/physiolgenomics.90282.2008), and Hostrup et
al. (https://doi.org/10.7554/elife.69802); GTEx v8 gene expression data (dbGaP Accession phs000424.v8.p2). See details in the Methods (Supplementary
Information).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A - no human participants

Population characteristics N/A - no human participants
Recruitment N/A - no human participants
Ethics oversight N/A - no human participants

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were dictated by a combination of resource limitations and assay-specific expertise given that biological replicates were from an
inbred strain.

Data exclusions 98 (1.0%) of 9466 samples were identified as outliers and excluded from downstream analysis. For metabolomics datasets, we calculated each
sample's median correlation value against the other N-1 samples and selected a threshold to designate outliers as those with below-threshold
median correlation values. For immunoassay data, measurements for analytes with fewer than 20 beads in a well were removed due to lack
of accuracy; samples with more than 50% missing values were removed due to high missingness; features with at least two missing values for
a single experimental group (e.g., males trained for 2 weeks) were removed due to lack of power. For all proteomics, transcriptomics, RRBS,
and ATAC-seq datasets, we examined the top three principal components of each tissue separately. Samples were flagged if they fell outside
of three times the interquartile range for at least one of the first three principal components. All identified outliers were manually inspected
before removal from the final dataset used for downstream analysis. Specific reasons for excluding each sample are provided in
Supplementary Table 1.

Replication 3-6 biological replicates were analyzed per sex/tissue/time point combination. Additionally, we found moderate agreement between our
results and comparable existing mouse and human studies (Amar et al., Bye et al., Hostrup et al.). Given the scale of the animal experiment
and resulting dataset, it would have been prohibitively expensive to replicate the study.

Randomization Following the initial acclimation period, rats went through a 12-day treadmill familiarization protocol to expose the rats to the treadmill and to
identify potential non-compliant rats. Those rats that were unable to run on the treadmill for 5 minutes at a speed of 10 m/min and grade of
0° were classified as non-compliant and removed from the study. Rats that successfully completed the 12-day familiarization protocol were
entered in the rat database and randomized into a control or training group so that mean body weight of the groups were equal. The 8-week
rats were randomly assigned to control or training within sex and tertile of weight. 4-week rats were assigned to control without
randomization. 1- and 2- week rats were randomly assigned to 1- or 2-week training within sex and tertile of weight.

Blinding Each Chemical Analysis Site had a single Batching Officer with access to the unblinded phenotypic data, which was necessary to determine
batches of samples that were well-balanced in terms of sex, intervention group, and time point. Otherwise, investigators were blinded to the
experimental group during sample collection and sample processing. As this is a discovery study, investigators were not blinded to phenotypic
data for computational analyses.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
|:| Clinical data

|:| Dual use research of concern

XXOXNX[s

Antibodies

Antibodies used Levels of 54 cytokines and hormones were measured in rat samples using five Luminex® panels: MILLIPLEX MAP Rat Cytokine/
Chemokine Magnetic Bead Panel (Millipore, RECYTMAG-65K); MILLIPLEX MAP Rat Myokine Magnetic Bead Panel (Millipore,
RMYOMAG-88K); MILLIPLEX MAP Rat Metabolic Hormone Magnetic Bead Panel (Millipore, RMHMAG-84K); MILLIPLEX MAP Rat
Putuitary Magnetic Bead Panel (Millipore, RPTMAG-86K); MILLIPLEX MAP Rat Adipokine Magnetic Bead Panel (Millipore,
RADPKMAG-80K). Luminex® Magnetic Beads are antibody-conjugated beads in solution (capture or primary antibody), with premixed
formats available for select kits.

Validation Custom Assay CHEX control beads (Radix BioSolutions, Georgetown, Texas) were added to all wells to monitor instrument
performance, application of the detection antibody, application of the fluorescent reporter, and nonspecific binding (CHEX1, CHEX2,
CHEX3, and CHEX4, respectively) (Montoya et al., 2017).
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Adult male and female Fischer 344 (F344) inbred rats were obtained from the National Institute on Aging (NIA) rodent colony. All
animals were 6 months old at the beginning of the intervention.

Wild animals The study did not involve wild animals.
Reporting on sex Equal numbers of male and female animals were included in the study. Sex-biased results are described extensively.
Field-collected samples  The study did not involve samples collected from the field.

Ethics oversight All animal procedures were approved by the Institutional Animal Care and Use Committee at the University of lowa.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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