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Temporal dynamics of the multi-omic 
response to endurance exercise training

MoTrPAC Study Group*

Regular exercise promotes whole-body health and prevents disease, but the underlying 

molecular mechanisms are incompletely understood1–3. Here, the Molecular 

Transducers of Physical Activity Consortium4 pro�led the temporal transcriptome, 

proteome, metabolome, lipidome, phosphoproteome, acetylproteome, 

ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid 

tissues in male and female Rattus norvegicus over eight weeks of endurance exercise 

training. The resulting data compendium encompasses 9,466 assays across 19 tissues, 

25 molecular platforms and 4 training time points. Thousands of shared and tissue- 

speci�c molecular alterations were identi�ed, with sex di�erences found in multiple 

tissues. Temporal multi-omic and multi-tissue analyses revealed expansive biological 

insights into the adaptive responses to endurance training, including widespread 

regulation of immune, metabolic, stress response and mitochondrial pathways. Many 

changes were relevant to human health, including non-alcoholic fatty liver disease, 

in�ammatory bowel disease, cardiovascular health and tissue injury and recovery.  

The data and analyses presented in this study will serve as valuable resources for 

understanding and exploring the multi-tissue molecular e�ects of endurance training 

and are provided in a public repository (https://motrpac-data.org/).

Regular exercise provides wide-ranging health benefits, including 

reduced risks of all-cause mortality1,5, cardiometabolic and neuro-

logical diseases, cancer and other pathologies2,6,7. Exercise affects 

nearly all organ systems in either improving health or reducing disease 

risk2,3,6,7, with beneficial effects resulting from cellular and molecular 

adaptations within and across many tissues and organ systems3. Vari-

ous ‘omic’ platforms (‘omes’) including transcriptomics, epigenomics, 

proteomics and metabolomics, have been used to study these events. 

However, work to date typically covers one or two omes at a single time 

point, is biased towards one sex, and often focuses on a single tissue, 

most often skeletal muscle, heart or blood8–12, with few studies consid-

ering other tissues13. Accordingly, a comprehensive, organism-wide, 

multi-omic map of the effects of exercise is needed to understand the 

molecular underpinnings of exercise training-induced adaptations. 

To address this need, the Molecular Transducers of Physical Activity 

Consortium (MoTrPAC) was established with the goal of building a 

molecular map of the exercise response across a broad range of tis-

sues in animal models and in skeletal muscle, adipose and blood in 

humans4. Here we present the first whole-organism molecular map 

of the temporal effects of endurance exercise training in male and 

female rats and provide multiple insights enabled by this MoTrPAC 

multi-omic data resource.

Multi-omic analysis of exercise training

Six-month-old male and female Fischer 344 rats were subjected to 

progressive treadmill endurance exercise training (hereafter referred to 

as endurance training) for 1, 2, 4 or 8 weeks, with tissues collected 48 h 

after the last exercise bout (Fig. 1a). Sex-matched sedentary, untrained 

rats were used as controls. Training resulted in robust phenotypic 

changes (Extended Data Fig. 1a–d), including increased aerobic capacity 

(VO2 max) by 18% and 16% at 8 weeks in males and females, respectively 

(Extended Data Fig. 1a). The percentage of body fat decreased by 5% in 

males at 8 weeks (Extended Data Fig. 1b), without a significant change 

in lean mass (Extended Data Fig. 1c). In females, the body fat percent-

age did not change after 4 or 8 weeks of training, whereas it increased 

by 4% in sedentary controls (Extended Data Fig. 1b). Body weight of 

females increased in all intervention groups, with no change for males 

(Extended Data Fig. 1d).

Whole blood, plasma and 18 solid tissues were analysed using genom-

ics, proteomics, metabolomics and protein immunoassay technologies, 

with most assays performed in a subset of these tissues (Fig. 1b and 

Extended Data Fig. 1e,f). Specific details for each omic analysis are 

provided in Extended Data Fig. 2, Methods, Supplementary Discussion 

and Supplementary Table 1. Molecular assays were prioritized on the 

basis of available tissue quantity and biological relevance, with the 

gastrocnemius, heart, liver and white adipose tissue having the most 

diverse set of molecular assays performed, followed by the kidney, 

lung, brown adipose tissue and hippocampus (Extended Data Fig. 1e). 

Altogether, datasets were generated from 9,466 assays across 211 com-

binations of tissues and molecular platforms, resulting in 681,256 

non-epigenetic and 14,334,496 epigenetic (reduced-representation 

bisulfite sequencing (RRBS) and assay for transposase-accessible chro-

matin using sequencing (ATAC-seq)) measurements, corresponding to 

213,689 and 2,799,307 unique non-epigenetic and epigenetic features, 

respectively.
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Differential analysis was used to characterize the molecular responses 

to endurance training (Methods). We computed the overall signifi-

cance of the training response for each feature, denoted as the training  

P value, where 35,439 features at 5% false discovery rate (FDR) comprise 

the training-regulated differential features (Fig. 1c and Supplementary 

Table 2). Timewise summary statistics quantify the exercise training 

effects for each sex and time point. Training-regulated molecules were 

observed in the vast majority of tissues for all omes, including a rela-

tively large proportion of transcriptomics, proteomics, metabolomics 

and immunoassay features (Fig. 1c). The observed timewise effects were 

modest: 56% of the per-feature maximum fold changes were between 

0.67 and 1.5. Permutation testing showed that permuting the group or 

sex labels resulted in a significant reduction in the number of selected 

analytes in most tissues (Extended Data Fig. 3a–d and Supplementary 

Discussion). For transcriptomics, the hypothalamus, cortex, testes and 

vena cava had the smallest proportion of training-regulated genes, 

whereas the blood, brown and white adipose tissues, adrenal gland 

and colon showed more extensive effects (Fig. 1c). For proteomics, the 

gastrocnemius, heart and liver showed substantial differential regula-

tion in both protein abundance and post-translational modifications 
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Fig. 1 | Summary of the study design and multi-omics dataset. a, Experimental 

design and tissue sample processing. Inbred Fischer 344 rats were subjected  

to a progressive treadmill training protocol. Tissues were collected from male 

and female animals that remained sedentary or completed 1, 2, 4 or 8 weeks  

of endurance exercise training. For trained animals, samples were collected 

48 h after their last exercise bout (red pins). b, Summary of molecular datasets 

included in this study. Up to nine data types (omes) were generated for blood, 

plasma, and 18 solid tissues, per animal: ACETYL: acetylproteomics; protein 

site acetylation; ATAC, chromatin accessibility, ATAC-seq data; IMMUNO, 

multiplexed immunoassays; METAB, metabolomics and lipidomics; METHYL, 

DNA methylation, RRBS data; PHOSPHO, phosphoproteomics; protein site 

phosphorylation; PROT, global proteomics; protein abundance; TRNSCRPT, 

transcriptomics, RNA-seq data; UBIQ, ubiquitylome, protein site ubiquitination. 

Tissue labels indicate the location, colour code, and abbreviation for each 

tissue used throughout this study: ADRNL, adrenal gland; BAT, brown adipose 

tissue; BLOOD, whole blood, blood RNA; COLON, colon; CORTEX, cerebral 

cortex; HEART, heart; HIPPOC, hippocampus; HYPOTH, hypothalamus; 

KIDNEY, kidney; LIVER, liver; LUNG, lung; OVARY, ovaries; PLASMA, plasma; 

SKM-GN, gastrocnemius (skeletal muscle); SKM-VL, vastus lateralis (skeletal 

muscle); SMLINT, small intestine; SPLEEN, spleen; TESTES, testes; VENACV, 

vena cava; WAT-SC, subcutaneous white adipose tissue. Icons next to each 

tissue label indicate the data types generated for that tissue. c, Number of 

training-regulated features at 5% FDR. Each cell represents results for a single 

tissue and data type. Colours indicate the proportion of measured features 

that are differential.
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(PTMs), with more restricted results in white adipose tissue, lung and 

kidney protein abundance. For metabolomics, a large proportion of 

differential metabolites were consistently observed across all tissues, 

although the absolute numbers were related to the number of metab-

olomic platforms used (Extended Data Fig. 1e). The vast number of 

differential features over the training time course across tissues and 

omes highlights the multi-faceted, organism-wide nature of molecular 

adaptations to endurance training.

Multi-tissue response to training

To identify tissue-specific and multi-tissue training-responsive gene 

expression, we considered the six tissues with the deepest molecu-

lar profiling: gastrocnemius, heart, liver, white adipose tissue, lung 

and kidney. In sum, 11,407 differential features from these datasets 

were mapped to their cognate gene, for a total of 7,115 unique genes 

across the tissues (Fig. 2a, Extended Data Fig. 4a and Supplementary 

Table 3). Most of the genes with at least one training-responsive fea-

ture were tissue-specific (67%), with the greatest number appearing 

in white adipose tissue (Fig. 2a). We identified pathways enriched by 

these tissue-specific training-responsive genes (Extended Data Fig. 4b) 

and tabulated a subset of highly specific genes to gain insight into 

tissue-specific training adaptation (Supplementary Table 4). Focusing 

on sexually conserved responses revealed tissue-dependent adapta-

tions. These included changes related to immune cell recruitment and 

tissue remodelling in the lung, cofactor and cholesterol biosynthesis 

in the liver, ion flux in the heart, and metabolic processes and striated 

muscle contraction in the gastrocnemius (Supplementary Discussion). 

A detailed analysis of white adipose tissue adaptations to exercise train-

ing is provided elsewhere14. We also observed ‘ome’-specific responses, 

with unique transcript and protein responses at the gene and pathway 

levels (Extended Data Fig. 4c,d, Supplementary Discussion and Sup-

plementary Tables 5 and 6).

2,359 genes had differential features in at least two tissues (Fig. 2a). 

Lung and white adipose tissue had the largest set of uniquely shared 

genes (n = 249), with predominantly immune-related pathway 

enrichments (Fig. 2b); expression patterns suggested decreased 

inflammation in the lung and increased immune cell recruitment in 

white adipose tissue (Supplementary Tables 2 and 3). Heart and gas-

trocnemius had the second-largest group of uniquely shared genes, 

with enrichment of mitochondrial metabolism pathways includ-

ing the mitochondria fusion genes Opa1 and Mfn1 (Supplementary  

Table 3).

Twenty-two genes were training-regulated in all six tissues, with 

particular enrichment in heat shock response pathways (Fig. 2c). Exer-

cise induces the expression of heat shock proteins (HSPs) in various 

rodent and human tissues15. A focused analysis of our transcriptomics 

and proteomics data revealed HSPs as prominent outliers (Extended 

Data Fig. 5a and Supplementary Discussion). Specifically, there was a 

marked, proteomics-driven up-regulation in the abundance of HSPs, 

including the major HSPs HSPA1B and HSP90AA1 (Extended Data 

Fig. 5b,c). Another ubiquitous endurance training response involved 

regulation of the kininogenases KNG1 and KNG2 (Supplementary 

Table 3). These enzymes are part of the kallikrein–kininogen system 

and have been implicated in the hypotensive and insulin-sensitizing 

effects of exercise16,17.

Transcription factors and phosphosignalling

We used proteomics and transcriptomics data to infer changes in 

transcription factor and phosphosignalling activities in response to 

endurance training through transcription factor and PTM enrich-

ment analyses (Methods). We compared the most significantly 

enriched transcription factors across tissues (Fig.  3a, Extended 

Data Fig. 6a and Supplementary Table 7). In the blood, we observed 

enrichment of the haematopoietic-associated transcription fac-

tors GABPA, ETS1, KLF3 and ZNF143; haematopoietic progenitors 

are proposed to be transducers of the health benefits of exercise18. 

In the heart and skeletal muscle, we observed a cluster of enriched 

Mef2 family transcription factor motifs (Fig. 3a). MEF2C is a muscle- 

associated transcription factor involved in skeletal, cardiac and 

smooth muscle cell differentiation and has been implicated in 

vascular development, formation of the cardiac loop and neuron  

differentiation19.

Phosphorylation signatures of key kinases were altered across many 

tissues (Fig. 3b and Supplementary Table 8). This included AKT1 across 

heart, kidney and lung, mTOR across heart, kidney and white adipose 

tissue, and MAPK across heart and kidney. The liver showed an increase 

in the phosphosignature related to regulators of hepatic regeneration, 

including EGFR1, IGF and HGF (Extended Data Fig. 6b, Supplemen-

tary Discussion). Increased phosphorylation of STAT3 and PXN, HGF 

targets involved in cell proliferation, suggest a mechanism for liver 

regeneration in response to exercise (Extended Data Fig. 6c). In the 

heart, kinases showed bidirectional changes in their predicted basal 
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Fig. 2 | Multi-tissue molecular endurance training responses. a, UpSet plot 

of the training-regulated gene sets associated with each tissue. Bars and dots 

indicating tissue-specific differential genes are coloured by tissue. Pathway 

enrichment analysis is shown for selected sets of genes in b,c as indicated by 

the arrows. b,c, Significantly enriched pathways (10% FDR) corresponding to 
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genes that are training-regulated in all six tissues considered in a (c). Redundant 

pathways (those with an overlap of 80% or greater with an existing pathway) 

were removed. ESR, oestrogen receptor; TH17, T helper 17.
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activity in response to endurance training (Extended Data Fig. 6d and 

Supplementary Discussion). Several AGC protein kinases showed a 

decrease in predicted activity, including AKT1, whereas tyrosine 

kinases, including SRC and mTOR, were predicted to have increased 

activity. The known SRC target phosphorylation sites GJA1 pY265 

and CDH2 pY820 showed significantly increased phosphorylation in 

response to training (Extended Data Fig. 6e). Notably, phosphorylation 

of GJA1 Y265 has previously been shown to disrupt gap junctions, key 

transducers of cardiac electrical conductivity20. This suggests that 

SRC signalling may regulate extracellular structural remodelling of the 

heart to promote physiologically beneficial adaptations. In agreement 

with this hypothesis, gene set enrichment analysis (GSEA) of extra-

cellular matrix proteins revealed a negative enrichment in response  

to endurance training, showing decreased abundance of proteins  

such as basement membrane proteins (Extended Data Fig. 6f–h and 

Supplementary Table 9).

Molecular hubs of exercise adaptation

To compare the dynamic multi-omic responses to endurance train-

ing across tissues, we clustered the 34,244 differential features with 

complete timewise summary statistics using an empirical Bayes graphi-

cal clustering approach (Methods). By integrating these results onto a 

graph, we summarize the dynamics of the molecular training response 

and identify groups of features with similar responses (Extended Data 

Fig. 7 and Supplementary Table 10). We performed pathway enrichment 

analysis for many graphically defined clusters to characterize putative 

underlying biology (Supplementary Table 11).

We examined biological processes associated with training using 

the pathway enrichment results for up-regulated features at 8 weeks 

of training (Extended Data Fig. 8, Supplementary Table 12 and Supple-

mentary Discussion). Compared with other tissues, the liver showed 

substantial regulation of chromatin accessibility, including in the 

nuclear receptor signalling and cellular senescence pathways. In the 

gastrocnemius, terms related to peroxisome proliferator-activated 

receptors (PPAR) signalling and lipid synthesis and degradation were 

enriched at the protein level, driven by proteins including the lipid 

droplet features PLIN2, PLIN4 and PLIN5. At the metabolomic level, 

terms related to ether lipid and glycerophospholipid metabolism were 

enriched. Together, these enrichments highlight the well-known abil-

ity of endurance training to modulate skeletal muscle lipid composi-

tion, storage, synthesis and metabolism. The blood displayed pathway 

a b

Tissue enrichment

z-score

–4 –2 0 2 4

Adjusted  P

<0.1

≥0.1

SP1
KLF3
SP5
SP2
KLF10
KLF4
SMAD2
CRE
ZNF143
ELK1
ELK4
FOXO3
ETV4
ETS1
ETV1
GABPA
ELF3
ERG
ETV2
EHF
ELF4
ZNF467
RUNX1
RUNX2
MITF
PU.1
IRF8
IRF3
ERRγ
PRDM1
ZBTB18
BATF
MEF2B
MEF2C
MEF2A
TATA box
MyoD
TBR1
SIX2
CLOCK
FOXM1
HOXA9
ASCL2
HEB
PTF1A
ZNF263
NF1 half site
HOXA11
MAFA
HOXB13

S
M

L
IN

T

L
U

N
G

B
A

T
W

A
T

-S
C

O
V

A
R

Y
A

D
R

N
L

C
O

L
O

N
B

L
O

O
D

S
P

L
E

E
N

K
ID

N
E

Y

H
E

A
R

T
S

K
M

-G
N

S
K

M
-V

L

Tissue

Sex

Female

Male

Timepoint

1 week

2 weeks

4 weeks

8 weeks

NES

–10 –5 0 5 10

0

  0.1

>0.2

CORTEX HEART KIDNEY LIVER LUNG SKM-GN WAT-SC

A
M

P
K

C
D

K
M

A
P

K
A

K
T

-M
T

O
R

P
a
th

w
a
y

AMPKA2
AMPKA1

CDK1
CDK5
CDK2
CDK4
CDK9
CDK7

ERK2
ERK1
P38B
P38D
P38G
TAK1
MAP3K8
P38A
MEK1
JNK1
JNK2
MKK4
ASK1
MAPKAPK2

MTOR
AKT2
AKT1

EGFR1
TIE2
Leptin
RAGE
T cell receptor
CRH
TWEAK
Kit receptor
Notch
Oxytocin
IL-6
MAPK signalling
Cell cycle
OSM
FSH
TSH
TNF
B cell receptor
FGF1
Prolactin
CCR7
TGFβ
IL-33
GLP1
IL-11
Gastrin
IL-2
IL-7
PI3K–AKT signalling
TSLP

Tissue

Sex

Timepoint

Adjusted  P

Fig. 3 | Regulatory signalling pathways modulated by endurance training. 

a, Transcription factor motif enrichment analysis of the training-regulated 

transcripts in each tissue. The heat map shows enrichment z-scores across the 

differential genes for the 13 tissues that had at least 300 genes after mapping 

transcript IDs to gene symbols. Transcription factors were hierarchically 

clustered by their enrichment across tissues. CRE, cAMP response element.  

b, Estimate of activity changes in selected kinases and signalling pathways using 

PTM signature enrichment analysis on phosphoproteomics data. Only kinases 

or pathways with a significant difference in at least one tissue, sex or time point 

(q value < 0.05) are shown. The heat map shows normalized enrichment score 

(NES) as colour; tissue, sex and time point combinations as columns, and  

either kinases or pathways as rows. Kinases are grouped by family; rows are 

hierarchically clustered within each group. FSH, follicle-stimulating hormone; 

TSH, thyroid-stimulating hormone.



178 | Nature | Vol 629 | 2 May 2024

Article

enrichments related to translation and organelle biogenesis and main-

tenance. Paired with the transcription factor analysis (Fig. 3a), this 

suggests increased haematopoietic cellular mobilization in the blood. 

Less studied tissues in the context of exercise training, including the 

adrenal gland, spleen, cortex, hippocampus and colon, also showed 

regulation of diverse pathways (Supplementary Discussion).

To identify the main temporal or sex-associated responses in each 

tissue, we summarized the graphical cluster sizes by tissue and time 

(Extended Data Fig. 7a). We observed that the small intestine and 

plasma had more changes at weeks 1 and 2 of training. Conversely, many 

up-regulated features in brown adipose tissue and down-regulated 

features in white adipose tissue were observed only at week 8. The 

largest proportion of opposite effects between males and females 

was observed at week 1 in the adrenal gland. Other tissues, including 

the blood, heart, lung, kidney and skeletal muscle (gastrocnemius and 

vastus lateralis), had relatively consistent numbers of up-regulated and 

down-regulated features.

We next focused on characterizing shared molecular responses in 

the three striated muscles (gastrocnemius, vastus lateralis and heart). 

The three largest graphical clustering paths of differential features in 

each muscle tissue converged to a sex-consistent response by week 

8 (Fig. 4a). Because of the large number of muscle features that were 

up-regulated in both sexes at week 8, we further examined the cor-

responding multi-omic set of analytes (Fig. 4b). Pathway enrichment 

analysis of the genes associated with these differential features dem-

onstrated a sex- and muscle-consistent endurance training response 

that reflected up-regulation of mitochondrial metabolism, biogen-

esis and translation, and cellular response to heat stress (Fig. 4c and  

Supplementary Table 11).

We used a network connectivity analysis to study up-regulated fea-

tures in the gastrocnemius at week 8 (Extended Data Fig. 9a,b, Methods 

and Supplementary Discussion). Mapping features to genes revealed 

overlaps between transcriptomic, chromatin accessibility, and pro-

teomic assays, but no overlaps with methylation. Three molecular 

interaction networks were compared (Methods), and BioGRID21 was 

used for further clustering analysis, which identified three clusters 

(Extended Data Fig. 9c and Supplementary Table 13). The largest cluster 

was significantly enriched for multiple muscle adaptation processes 

(Fig. 4d and Supplementary Table 14). This analysis illustrates the direct 

linkage among pathways and putative central regulators, emphasizing 
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the importance of multi-omic data in identifying interconnected net-

works and understanding skeletal muscle remodelling.

Connection to human diseases and traits

To systematically evaluate the translational value of our data, we inte-

grated our results with extant exercise studies and disease ontology 

(DO) annotations (Methods). First, we compared our vastus later-

alis transcriptomics results to a meta-analysis of long-term training 

gene-expression changes in human skeletal muscle tissue8, demon-

strating a significant and direction-consistent overlap (Extended Data 

Fig. 9d–g and Supplementary Discussion). We also identified a signifi-

cant overlap between differential transcripts in the gastrocnemius of 

female rats trained for 8 weeks and differentially expressed genes iden-

tified in the soleus in a study of sedentary and exercise-trained female 

rats selectively bred for high or low exercise capacity22 (Extended Data 

Fig. 9h). Similarly, adaptations from high-intensity interval training in 

humans23 significantly overlapped with the proteomics response in rats 

(Extended Data Fig. 9i), particularly for female rats trained for 8 weeks 

(Extended Data Fig. 9j). Finally, we performed DO enrichment analysis 

using the DOSE R package24 (Supplementary Table 15 and Methods). 

Down-regulated genes from white adipose tissue, kidney and liver 

were enriched for several disease terms, suggesting a link between the 

exercise response and type 2 diabetes, cardiovascular disease, obesity 

and kidney disease (5% FDR; Extended Data Fig. 9k and Supplemen-

tary Discussion), which are all epidemiologically related co-occurring 

diseases25. Overall, these results support a high concordance of our data 

from rats with human studies and their relevance to human disease.

Sex-specific responses to exercise

Many tissues showed sex differences in their training responses 

(Extended Data Fig. 10), with 58% of the 8-week training-regulated fea-

tures demonstrating sex-differentiated responses. Opposite responses 

between the sexes were observed in adrenal gland transcripts, lung 

phosphosites and chromatin accessibility features, white adipose tis-

sue transcripts and liver acetylsites. In addition, proinflammatory 

cytokines exhibited sex-associated changes across tissues (Extended 

Data Fig. 11a,b and Supplementary Table 16). Most female-specific 

cytokines were differentially regulated between weeks 1 and 2 of train-

ing, whereas most male-specific cytokines were differentially regulated 

between weeks 4 and 8 (Extended Data Fig. 11c).

We observed extensive transcriptional remodelling of the adrenal 

gland, with more than 4,000 differential genes. Notably, the largest 

graphical path of training-regulated features was negatively corre-

lated between males and females, with sustained down-regulation 

in females and transient up-regulation at 1 week in males (Extended 

Data Fig. 11d). The genes in this path were also associated with ster-

oid hormone synthesis pathways and metabolism, particularly those 

pertaining to mitochondrial function (Supplementary Table 11). Fur-

ther, transcription factor motif enrichment analysis of the transcripts 

in this path showed enrichment of 14 transcription factors (5% FDR; 
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Supplementary Table 17), including the metabolism-regulating factors 

PPARγ, PPARα and oestrogen-related receptor gamma (ERRγ). The 

gene-expression levels of several significantly enriched transcription 

factors themselves followed the same trajectory as this path (Extended 

Data Fig. 11e).

In the rat lung, we observed decreased phosphosignalling activity 

with training primarily in males (Fig. 3b). Among these, the PRKACA 

phosphorylation signature showed the largest sex difference at 1 

and 2 weeks (Extended Data Fig. 11f–h and Supplementary Table 8). 

PRKACA is a kinase that is involved in signalling within multiple cellular 

pathways. However, four PRKACA substrates followed this pattern 

and were associated with cellular structures (such as cytoskeleton 

and cell–cell junctions): DSP, MYLK, STMN1 and SYNE1 (Extended 

Data Fig. 11i). The phosphorylation of these proteins suggests a 

sex-dependent role of PRKACA in mediating changes in lung structure 

or mechanical function with training. This is supported as DSP and 

MYLK have essential roles in alveolar and epithelial cell remodelling in  

the lung26,27.

Immune pathway enrichment analysis of training-regulated tran-

scripts at 8 weeks showed limited enrichment in muscle (heart, gas-

trocnemius and vastus lateralis) and brain (cortex, hippocampus, 

hypothalamus), down-regulation in the lung and small intestine, and 

strong up-regulation in brown and white adipose tissue in males only 

(Fig. 5a, Extended Data Fig. 12a and Supplementary Table 11). Many of the 

same immune pathways (Supplementary Table 18) and immune-related 

transcription factors (Supplementary Table 19) were enriched in both 

adipose tissues in males. Furthermore, correlation between the tran-

script expression profiles of male-specific up-regulated features in 

the adipose tissues and immune cell markers from external cell-typing 

assays revealed a strong positive correlation for many immune cell 

types, including B, T and natural killer cells, and low correlation with 

platelets, erythrocytes and lymphatic tissue (Fig. 5b,c, Methods and 

Supplementary Table 20). These patterns suggest recruitment of 

peripheral immune cells or proliferation of tissue-resident immune 

cells as opposed to non-biological variation in blood or lymph content. 

Correlations at the protein level were not as marked (Extended Data 

Fig. 12b,c). Complementary analyses using CIBERTSORTx produced 

similar results (Extended Data Fig. 12d,e). In summary, our data sug-

gest an important role of immune cell activity in the adaptation of male 

adipose tissue to endurance training.

The small intestine was among the tissues with the highest enrich-

ment in immune-related pathways (Extended Data Fig. 12a), with 

down-regulation of transcripts at 8 weeks, and a more robust response 

in females (Fig. 5b). This transcript set was significantly enriched with 

pathways related to gut inflammation (Supplementary Table 11). We 

observed positive associations between these transcripts and markers 

of several immune cell types, including B, T, natural killer and dendritic 

cells, suggesting decreased abundance (Fig. 5c and Supplementary 

Discussion). Endurance training also decreased the expression of tran-

scripts with genetic risk loci for inflammatory bowel disease (IBD), 

including major histocompatability complex class II28, a finding that 

also emerged through the DO enrichment analysis (Supplementary 

Table 15). Endurance training is suggested to reduce systemic inflam-

mation, in part by increasing gut microbial diversity and gut barrier 

integrity29. In accordance, we observed decreases in Cxcr3 and Il1a with 

training (Extended Data Fig. 12f), both of which are implicated in the 

pathogenesis of IBD30,31. Together, these data suggest that endurance 

training improves gut homeostasis, potentially conferring systemic 

anti-inflammatory effects.

Multi-tissue changes in mitochondria and lipids

We summarized the organism-wide metabolic changes for metabo-

lomic datasets using RefMet metabolite classes (Fig. 6a and Supple-

mentary Table 21) and for non-metabolomics datasets using metabolic 

subcategories of KEGG pathways (10% FDR; Extended Data Fig. 13a and 

Supplementary Table 11). The liver showed the greatest number of 

significantly enriched metabolite classes, followed by the heart, lung 

and hippocampus (Fig. 6a and Supplementary Discussion). Inspection 

of individual metabolites and acylcarnitine groups revealed changes 

associated with functional alterations in response to training (Extended 

Data Fig. 13b–d and Supplementary Discussion). Of particular inter-

est, trimethylamine-N-oxide has been associated with cardiovascular 

disease32. We observed up-regulation of 1-methylhistidine, a marker of 

muscle protein turnover, in the kidney at 1, 2 and 4 weeks, which may 

indicate muscle breakdown and clearance through the kidney during 

early training time points. Cortisol levels were increased as expected 

from the physiological stress of training, and we observed a substantial 

increase in the kidney, again probably owing to renal clearance33. The 

liver showed up-regulation of 1-methylnicotinamide, which may have 

a role in inflammation34, at 8 weeks.

The heart showed enrichment of various carbohydrate metabolism 

subcategories across many omes (Extended Data Fig. 13a), and remark-

ably, all enzymes within the glycolysis–gluconeogenesis pathway 

showed a consistent increase in abundance, except for GPI, FBP2 and 

DLAT (Extended Data Fig. 13e). Oxidative phosphorylation was enriched 

in most tissues and is consistent with the joint analyses of the muscle tis-

sues (Fig. 4c), suggesting potential changes in mitochondria biogenesis. 

We estimated proportional mitochondrial changes to endurance train-

ing using mitochondrial RNA-sequencing (RNA-seq) reads (Extended 

Data Fig. 14a–c) and changes of mitochondrial functions through 

GSEA using gene expression, protein abundance and protein PTMs 

(Fig. 6b, Extended Data Fig. 14d and Supplementary Tables 22–25). 

Increased mitochondrial biogenesis was observed in skeletal muscle, 

heart and liver across these analyses. Moreover, sex-specific mito-

chondrial changes were observed in the adrenal gland, as described 

above, and in the colon, lung and kidney. These results highlight 

a highly adaptive and pervasive mitochondrial response to endur-

ance training; a more in-depth analysis of this response is provided  

elsewhere35.

In the liver, we observed substantial regulation of metabolic path-

ways across the proteome, acetylome and lipidome (Fig. 6a,b and 

Extended Data Fig. 13a). For example, there was significant enrichment 

in 12 metabolite classes belonging to ‘lipids and lipid-related com-

pounds’ (Fig. 6a and Supplementary Table 26). We therefore focused 

on the large group of features that increased in abundance over time 

for both sexes (Fig. 6c). Most of these liver features corresponded to 

protein abundance and protein acetylation changes in the mitochon-

drial, amino acid and lipid metabolic pathways (Fig. 6d and Supplemen-

tary Table 27). We also observed an increase in phosphatidylcholines 

and a concomitant decrease in triacylglycerols (Fig. 6e). Finally, there 

was increased abundance and acetylation of proteins from the peroxi-

some, an organelle with key functions in lipid metabolism (Extended 

Data Fig. 14e). To our knowledge, these extensive changes in protein 

acetylation in response to endurance training have not been described 

previously. Together, these molecular adaptations may constitute 

part of the mechanisms underlying exercise-mediated improvements 

in liver health, particularly protection against excessive intrahepatic 

lipid storage and steatosis36.

Discussion

Mapping the molecular exercise responses across a whole organism 

is critical for understanding the beneficial effects of exercise. Previ-

ous studies are limited to a few tissues, a narrow temporal range, or 

a single sex. Substantially expanding on the current work in the field, 

we used 25 distinct molecular platforms in as many as 19 tissues to 

study the temporal changes to endurance exercise training in male and 

female rats. Accordingly, we identified thousands of training-induced 

changes within and across tissues, including temporal and sex-biased 
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responses, in mRNA transcripts, proteins, post-translational modifi-

cations and metabolites. Each omic dataset provides unique insights 

into exercise adaptation, where a holistic understanding requires 

multi-omic analysis. This work illustrates how mining our data resource 

can both recapitulate expected mechanisms and provide novel  

biological insights.

This work can be leveraged to deepen our understanding of exercise- 

related improvement of health and disease management. The global 

heat shock response to exercise may confer cytoprotective effects, 

including in pathologies related to tissue damage and injury recovery37. 

Increased acetylation of liver mitochondrial enzymes and regulation of 

lipid metabolism may link exercise to protection against non-alcoholic 

fatty liver disease and steatohepatitis36. Similarly, exercise-mediated 

modulation of cytokines, receptors and transcripts linked to intes-

tinal inflammation or IBD may be associated with improved gut 

health. These examples highlight unique training responses illumi-

nated by a multi-omics approach that can be leveraged for future 

hypothesis-driven research on how exercise improves whole-body 

and tissue-specific health.

We note limitations in our experimental design, datasets and analyses 

(Supplementary Discussion). In short, samples were collected 48 h 

after the last exercise bout to capture sustained alterations, thereby 

excluding acute responses. Our assays were performed on bulk tissue 

and do not cover single-cell platforms. Our resource has limited omic 

characterization for certain tissues, and additional platforms with 

emerging biological relevance were not utilized, including microbiome 

profiling. Moreover, our results are hypothesis-generating and require 

biological validation; supporting this, we have established a publicly 

accessible tissue bank from this study.

This MoTrPAC resource provides future opportunities to enhance 

and refine the molecular map of the endurance training response. 

We expect that this dataset will remain an ongoing platform to trans-

late tissue- and sex-specific molecular changes in rats to humans. 

MoTrPAC has made extensive efforts to facilitate access, exploration 

and interpretation of this resource. We developed the MoTrPAC Data 

Hub to easily explore and download data (https://motrpac-data.org/), 

software packages to provide reproducible source code and facilitate 

data retrieval and analysis in R (MotrpacRatTraining6mo and Motrpa-

cRatTraining6moData38,39), and visualization tools for data explora-

tion (https://data-viz.motrpac-data.org). Altogether, this multi-omic 

resource serves as a broadly useful reference for studying the milieu 

of molecular changes in endurance training adaptation and provides 

new opportunities to understand the effects of exercise on health  

and disease.
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Methods

All methods are included in the Supplementary Information.

Reporting summary

Further information on research design is available in the Nature  

Portfolio Reporting Summary linked to this article.

Data availability

MoTrPAC data are publicly available via http://motrpac-data.org/

data-access. Data access inquiries should be sent to motrpac-helpdesk@

lists.stanford.edu. Additional resources can be found at http://motrpac.

org and https://motrpac-data.org/. Interactive data visualizations are 

provided through a website (https://data-viz.motrpac-data.org) and 

HTML reports summarizing the multi-omic graphical analysis results 

in each tissue40. Processed data and analysis results are additionally 

available in the MotrpacRatTraining6moData R package39 (https://

github.com/MoTrPAC/MotrpacRatTraining6moData). Raw and pro-

cessed data for were deposited in the appropriate public reposito-

ries as follows. RNA-seq, ATAC-seq and RRBS data were deposited at 

the Sequence Read Archive under accession PRJNA908279 and at the 

Gene Expression Omnibus under accession GSE242358; multiplexed 

immunoassays were deposited at IMMPORT under accession SDY2193; 

metabolomics data were deposited at Metabolomics Workbench under 

project ID PR001020; and proteomics data were deposited at MassIVE 

under accessions MSV000092911, MSV000092922, MSV000092923, 

MSV000092924, MSV000092925 and MSV000092931. We used the 

following external datasets: release 96 of the Ensembl R. norvegicus 

(rn6) genome (https://ftp.ensembl.org/pub/release-96/fasta/rattus_

norvegicus/dna/) and gene annotation (https://ftp.ensembl.org/pub/

release-96/gtf/rattus_norvegicus/Rattus_norvegicus.Rnor_6.0.96.gtf.

gz); RefSeq protein database (https://ftp.ncbi.nlm.nih.gov/refseq/R_

norvegicus/, downloaded 11/2018); the NCBI gene2refseq mapping files 

(https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2refseq.gz, accessed 18 

December 2020); RGD rat gene annotation (https://download.rgd.mcw.

edu/data_release/RAT/GENES_RAT.txt, accessed 12 November 2021); 

BioGRID v4.2.193 (https://downloads.thebiogrid.org/File/BioGRID/

Release-Archive/BIOGRID-4.2.193/BIOGRID-ORGANISM-4.2.193.tab3.

zip); STRING v11.5 (https://stringdb-downloads.org/download/protein.

physical.links.v11.5/10116.protein.physical.links.v11.5.txt.gz); GEN-

CODE release 39 metadata and annotation files (https://ftp.ebi.ac.uk/

pub/databases/gencode/Gencode_human/release_39/, accessed 20 

January 2022); MatrisomeDB (https://doi.org/10.1093/nar/gkac1009); 

MitoPathways database available through MitoCarta (https://personal.

broadinstitute.org/scalvo/MitoCarta3.0/); PTMSigDB v1.9.0 PTM set 

database (https://doi.org/10.1074/mcp.TIR118.000943); UniProt 

human proteome FASTA for canonical protein sequences (UniProtKB 

query “reviewed:true AND proteome:up000005640”, download 

date 3 March 2021); the CIBERSORT LM22 leukocyte gene signature 

matrix (https://doi.org/10.1007/978-1-4939-7493-1_12); published 

results from Amar et al.8, Bye et al.22 and Hostrup et al.23; and GTEx v8 

gene-expression data (dbGaP Accession phs000424.v8.p2). Details are 

provided in the Supplementary Information, Methods.

Code availability

Code for reproducing the main analyses is provided in the Motrpa-

cRatTraining6mo R package38 (https://motrpac.github.io/Motrpa-

cRatTraining6mo/). MoTrPAC data processing pipelines for RNA-seq, 

ATAC-seq, RRBS and proteomics are available in the following Github 

repositories: https://github.com/MoTrPAC/motrpac-rna-seq-pipeline41, 

https://github.com/MoTrPAC/motrpac-atac-seq-pipeline42, https://

github.com/MoTrPAC/motrpac-rrbs-pipeline43 and https://github.

com/MoTrPAC/motrpac-proteomics-pipeline44. Normalization and 

quality control scripts are available at https://github.com/MoTrPAC/

MotrpacRatTraining6moQCRep45.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Animal phenotyping and data availability.  

a-d) Clinical measurements before and after the training intervention in 

untrained control rats (SED), 4-week trained rats (4w), and 8-week trained rats 

(8w). Data are displayed pre and post for each individual rat (connected by a 

line), with males in blue and females in pink. Filled symbols (n = 5 per sex and 

time point) represent rats used for all omics analyses, whereas the rat utilized 

for proteomics only (n = 1 per sex and time point) is represented by a non-filled 

symbol. Significant results by ANOVA of the overall group effect (#, p < 0.05; 

##, p < 0.01) and interaction between group and time (§, p < 0.05; §§ p < 0.01) are 

indicated. Significant within-group differential responses from a Bonferroni 

post hoc test are indicated (*, q-value < 0.05; **, q-value < 0.01). a) Aerobic 

capacity through a VO2max test until exhaustion. Data are reported in  

ml/(kg.min) for all individual rats and time points. b) Body fat percentage.  

c) Percent lean mass. (b-c) were assessed through nuclear magnetic resonance 

spectroscopy. d) Body weight (in grams). e) Description of available datasets. 

Colored cells indicate that data are available for that tissue and assay. Individual 

panels and platforms are shown for metabolomics and the multiplexed 

immunoassays. f) Detailed availability of sample-level data across assays. Each 

column represents an individual animal, ordered by training group and colored 

by sex. Gray cells indicate that data were generated for that animal and assay; 

black cells indicate that data were not generated. Rows are ordered by ome and 

colored by assay and tissue.



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Quality control metrics for omics data. a) Proteomics 

multiplexing design using TMT11 reagents for isobaric tagging and a pooled 

reference sample. The diagram describes processing of a single tissue. Following 

multiplexing, peptides were used for protein abundance analysis, serial PTM 

enriched for phosphosite and optional acetylsite quantification, or ubiquitylsite 

quantification through enrichment of lysine-diglycine ubiquitin remnants.  

b) Total number of fully quantified proteins per plex in each global proteome 

dataset. c-e) The total number of fully quantified phosphosites (c), acetylsites 

(d), and ubiquitylsites (e) per plex in each dataset. f) Distributions of coefficients 

of variation (CVs) calculated from metabolomics features identified in pooled 

samples and analyzed periodically throughout liquid chromatography-mass 

spectrometry runs. CVs were aggregated and plotted separately for named and 

unnamed metabolites. g) Transcription start site (TSS) enrichment (top) and 

fraction of reads in peaks (FRiP, bottom) across ATAC-seq samples per tissue.  

h) Distributions of RNA integrity numbers (RIN, top) and median 5′ to 3′ bias 

(bottom) across samples in each tissue in the RNA-Seq data. i) Percent 

methylation of CpG, CHG and CHH sites in the RRBS data. For boxplots in  

(h,i): center line represents median; box bounds represent 25th and 75th 

percentiles; whiskers represent minimum and maximum excluding outliers; 

filled dots represent outliers. j) Number of wells across multiplexed 

immunoassays with fewer than 20 beads. Measurements from these 182 wells 

were excluded from downstream analysis. k) 2D density plot of targeted 

analytes’ mean fluorescence intensity (MFI) versus corresponding CHEX4 MFI 

from the same well for each multiplexed immunoassay measurement, where 

CHEX4 is a measure of non-specific binding.



Extended Data Fig. 3 | Permutation tests. a-b) Permutation tests of groups 

within males (a) and females (b). For each sex, the original group labels were 

shuffled to minimize the number of animal pairs that remain in the same group. 

Only the group labels were shuffled and all other covariates remained as in the 

original data. For each permuted dataset, the differential abundance pipeline 

was rerun and the number of transcripts that were selected at 5% FDR adjustment 

were re-counted. c-d) Permutation tests of sex within groups. For each group 

and each sex, half of the animals were selected randomly and their sex was 

swapped. Only the sex labels were shuffled and all other covariates remained  

as in the original data. For each permutation the differential analysis pipeline 

was rerun and the timewise summary statistics were extracted. A gene was 

considered sexually dimorphic if for at least one time point the z-score (absolute) 

difference between males and females was greater than 3. c) Counts of sexually 

dimorphic genes among the IHW-selected genes of the original data. d) Counts 

of sexually dimorphic genes among the 5% FDR selected genes within each 

permuted dataset. Each boxplot in (a-d) represents the differential abundance 

analysis results over 100 permutations of the transcriptomics data in a specific 

tissue. Center line represents median; box bounds represent 25th and 75th 

percentiles; whiskers represent minimum and maximum excluding outliers; 

open circles represent outliers. Added points represent the results of the true 

data labels, and their shape corresponds to the empirical p-value (●: p > 0.05; 

×: 0.01 < p < 0.05; *: p ≤ 0.01).
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Extended Data Fig. 4 | Correlations between proteins and transcripts 

throughout endurance training. a) Number of tissues in which each gene, 

including features mapped to genes from all omes, is training-regulated. Only 

differential features from the subset of tissues with deep molecular profiling 

(lung, gastrocnemius, subcutaneous white adipose, kidney, liver, and heart) 

and the subset of omes that were profiled in all six of these tissues (DNA 

methylation, chromatin accessibility, transcriptomics, global proteomics, 

phosphoproteomics, multiplexed immunoassays) were considered. Numbers 

above each bar indicate the number of genes that are differential in exactly the 

number of tissues indicated on the x-axis. b) Pathways significantly enriched by 

tissue-specific training-regulated genes represented in Fig. 2a (q-value < 0.1). 

KEGG and Reactome pathways were queried, and redundant pathways were 

removed (i.e., those with an overlap of 80% or greater with an existing pathway). 

c) Heatmaps showing the Pearson correlation between the TRNSCRPT and PROT 

timewise summary statistics (z- and t-scores, respectively) (top, gene-level) and 

pathway-level enrichment results (Gene Set Enrichment Analysis normalized 

enrichment scores) (bottom, pathway-level). d) Scatter plots of pathway GSEA 

NES of the TRNSCRPT and PROT datasets in the seven tissues for which these 

data were acquired. Pathways showing high discordance or agreement across 

TRNSCRPT and PROT and with functional relevance or general interest were 

highlighted.



Extended Data Fig. 5 | Heat shock response. a) Scatter plots of the protein 

t-scores (PROT) versus the transcript z-scores (TRNSCRPT) by gene at 8 weeks 

of training (8 W) relative to sedentary controls. Data are shown for the seven 

tissues for which both proteomics and transcriptomics was acquired. Red 

points indicate genes associated with the heat shock response, and the labeled 

points indicate those with a large differential response at the protein level.  

b-c) Line plots showing protein b) and transcript (c) log2 fold-changes relative 

to the untrained controls for a subset of heat shock proteins with increased 

abundance during exercise training. Each line represents a protein in a single 

tissue.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Regulatory signaling pathways modulated by 

endurance training. a) Heatmap of differences in TF motif enrichment in 

training-regulated genes across tissues. Each value reflects the average 

difference in motif enrichment for shared transcription factors. Tissues are 

clustered with complete linkage hierarchical clustering. b) (left) Filtered PTM-

SEA results for the liver showing kinases and signaling pathways with increased 

activity. (right) Heatmap showing t-scores for phosphosites within the HGF 

signaling pathway. c) Hypothetical model of HGF signaling effects during 

exercise training. Phosphorylation of STAT3 and PXN is known to modulate cell 

growth and cell migration, respectively. Error bars=SEM. d) Filtered PTM-SEA 

results for the heart showing selected kinases with significant enrichments in 

at least one time point. Heatmap shows the NES as color and enrichment p-value 

as dot size. Kinases are grouped by kinase family and sorted by hierarchical 

clustering. e) (top) Log2 fold-change of GJA1 and CDH2 protein abundance in 

the heart. No significant response to exercise training was observed for these 

proteins (F-test; q-value > 0.05). (bottom) Log2 fold-changes for selected Src 

kinase phosphosite targets, GJA1 pY265 and CDH2 pY820, in the heart. These 

phosphosites show a significant response to exercise training (F-test, 5% FDR). 

Error bars=SEM. f) Gene Set Enrichment Analysis (GSEA) results from the heart 

global proteome dataset using the matrisome gene set database. Heatmap 

shows NES as color and enrichment p-value as dot size. Rows are clustered 

using hierarchical clustering. g) Log2 fold-change for basement membrane 

proteins in heart. Proteins showing a significant response to exercise training 

are highlighted in orange (F-test; 5% FDR). Error bars=SEM. h) Log2 protein fold-

change of NTN1 protein abundance in heart. A significant response to exercise 

training was observed for these proteins (F-test; 5% FDR). Error bars=SEM.
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Extended Data Fig. 7 | Graphical representation of differential results.  

a) Number of training-regulated features assigned to groups of graphical states 

across tissues and time. Red points indicate features that are up-regulated in at 

least one sex (e.g., only in males: F0_M1; only in females: F1_M0; in both sexes: 

F1_M1), and blue points indicate features down-regulated in at least one sex 

(only in males: F0_M-1; only in females: F-1_M0; in both sexes: F-1_M-1). Green 

points indicate features that are up-regulated in males and down-regulated in 

females or vice versa (F-1_M1 and F1_M-1, respectively). Point size is proportional 

to the number of features. Point opacity is proportional to the within-tissue 

fraction of features represented by that point. Features can be represented in 

multiple points. The number of omes profiled in each tissue is provided in 

parentheses next to the tissue abbreviation. b) A schematic example of the 

graphical representation of the differential analysis results. Top: the z-scores 

of four features. A positive score corresponds to up-regulation (red), and a 

negative score corresponds to down regulation (blue). Bottom: the assignment 

of features to node sets and full path sets (edge sets are not shown for 

conciseness but can be easily inferred from the full paths). Node labels follow 

the [time]_F[x]_M[y] format where [time] shows the animal sacrifice week and 

can take one of (1w, 2w, 4w, or 8w), and [x] and [y] are one of (−1,0,1), corresponding 

to down-regulation, no effect, and up-regulation, respectively. c) Graphical 

representation of the feature sets. Columns are training time points, and rows 

are the differential abundance states. Node and edge sizes are proportional to 

the number of features that are assigned to each set.



Extended Data Fig. 8 | Key pathway enrichments per tissue. Key pathway 

enrichments for features that are up-regulated in both sexes at 8 weeks of 

training in each tissue. For display purposes, enrichment q-values were floored 

to 1e-10 (Enrichment FDR (−log10) = 10). Bars are colored by the number of  

omes for which the pathway was significantly enriched (q-value < 0.01) (lighter 

gray: 1 ome; darker gray: 2 omes; black: 3 omes). Pathways were selected from 

Supplementary Table 10.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Associations with signatures of human health and 

complex traits. a) Jaccard coefficients between gene sets identified by 

different omes in 8-week gastrocnemius up-regulated features (“X” marks 

overlap p > 0.05). b) Network connectivity p-values (Pathways, Biogrid, and 

string) among the gastrocnemius week-8 multi-omic genes and with the  

single-omic genes. c) Proportion of features from each ome represented in the 

gastrocnemius response clusters, identified by the network clustering analysis. 

d-g) Overlap between our rat vastus lateralis differential expression results  

and the meta-analysis of human long-term exercise studies by Amar et al. d-e) 

Spearman correlation (d) and its significance (e) between the meta-analysis fold-

changes and the log2 fold-changes foreach sex and time point. f) GSEA results. 

Genes were ranked by meta-analysis (−log10 p-value*log2 fold-change) and the rat 

training-differential, sex-consistent gene sets were tested for enrichment at the 

bottom of the ranking (negative scores) or the top (positive scores). g) Overlap 

between the rat gene sets from (f) and the high-heterogeneity human  

meta-analysis genes (I2 > 75%). h) -log10 overlap p-values (Fisher’s exact test), 

comparing rat female gastrocnemius and vastus lateralis week-8 differential 

transcripts from this study (p < 0.01) and the differential genes from the rat 

female soleus data of Bye et al. (p < 0.01). HCR: high capacity runners, LCR: low 

capacity runners. i) A comparison of rat gastrocnemius differential proteins 

from this study (p < 0.01) and the human endurance training proteomics 

results of Hostrup et al. (p < 0.01) using Fisher’s exact test. Left: -log10 overlap 

p-values. Right: -log10 sex concordance p-values. j) Statistics of the overlapping 

proteins from (i), week-8 female comparison (y: rat z-scores, x: human t-scores). 

k) DOSE disease enrichment results of the white adipose, kidney, and liver gene 

sets. DOSE was applied only on diseases that are relevant for each tissue. The 

network shows the results for the sex-consistent down-regulated features at 

week-8.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Characterization of the extent of sex difference in 

the endurance training response. The extent of sex differences in the training 

response were characterized in two ways: first, by correlating log2 fold-changes 

between males and females for each training-differential feature; second, by 

calculating the difference between the area under the log2 fold-change curve for 

each training-differential feature, including a (0,0) point (∆AUC, males - females). 

The first approach characterizes differences in direction of effect while the 

second approach characterizes differences in magnitude. Left plot for each 

tissue: density line plots of correlations from the first approach. Densities or 

correlations corresponding to features in each ome are plotted separately, 

with a label that provides the ome and the number of differential features 

represented. Right plot for each tissue: 2D density plot of ∆AUC against the 

correlation between the male and female log2 fold-changes for each training- 

differential feature used to simultaneously evaluate sex differences in the 

direction and magnitude of the training response. Points at the top-center of 

these 2D density plots represent features with high similarity between males 

and females in terms of both direction and magnitude; features on the right and 

left sides of the plots represent features with greater magnitudes of response 

in males and females, respectively.
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Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | Sex differences in the endurance training response. 

a) Heatmap of the training response of immunoassay analytes across tissues. 

Gray indicates no data. Bars indicate the number of training-regulated analytes 

in each tissue (top) and the number of tissues in which the analyte is training- 

regulated (right, 5% FDR). b) Training-differential cytokines across tissues.  

5, 24, and 9 cytokines were annotated as anti-, pro-, and pro/anti- inflammatory, 

respectively. Bars indicate the number of annotated cytokines in each category 

that are differential (5% FDR). c) Counts of early vs. (1- or 2-week) vs. late (4- or 

8-week) differential cytokines, according to states assigned by the graphical 

analysis, including all tissues. Cytokines with both early and late responses in 

the same tissue were excluded. d) Line plots of standardized abundances of 

training-differential features that follow the largest graphical path in the adrenal 

gland (i.e., 1w_F-1_M1 − >2w_F-1_M0 − >4w_F-1_M0 − >8w_F-1_M0 according to  

our graphical analysis notation). The black line represents the average value 

across all features. The closer a colored line is to this average, the darker it is 

(distance calculated using sum of squares). e) Line plots of transcript-level log2 

fold-changes corresponding to six transcription factors (TFs) whose motifs are 

significantly enriched by transcripts in (d). TF motif enrichment q-values are 

provided in the legend (error bars = SEM). f) Male versus female NES from 

PTM-SEA in the lung. Anticorrelated points corresponding to PRKACA NES are 

in dark red. g) Line plots of standardized abundances of training-differential 

phosphosites that follow the largest graphical edges of phosphosites in the lung 

(1w_F1_M-1 − >2w_F1_M-1 − >4w_F0_M-1). h) Top ten kinases with the greatest 

over-representation of substrates (proteins) corresponding to training- 

differential phosphosites in (g). MeanRank scores by library are shown, as 

reported by KEA3. i) Line plots showing phosphosite-level log2 fold-changes  

of PRKACA phosphosite substrates identified in the lung as differential with 

disparate sex responses (error bars = SEM).
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Extended Data Fig. 12 | Assessment of immune responses to endurance 

training. a) Heatmap of the number and percent of KEGG and Reactome 

immune pathways significantly enriched by training-regulated features at 8 

weeks. b) Line plots of standardized abundances of training-differential 

proteins in white adipose tissue up-regulated only in males at 8 weeks. Black 

line shows average across all features. c) Boxplots of the sample-level Pearson 

correlation between markers of immune cell types, lymphatic tissue, or cell 

proliferation and the average value of features in (b) at the protein level. Center 

line represents median; box bounds represent 25th and 75th percentiles; 

whiskers represent minimum and maximum excluding outliers; filled dots 

represent outliers. A pink point indicates that the marker is also one of the 

differential features plotted in (b). # indicates when the distribution of Pearson 

correlations for a set of at least two markers is significantly different from 0 

(two-sided one-sample t-test, 5% BY FDR). When only one marker is used to 

define a category on the y-axis, the gene name is provided in parentheses.  

d) Trajectories of mean absolute signal of various immune cell types in  

BAT or WAT-SC following deconvolution of bulk RNA-Seq with CIBERSORTx 

(error bars = SEM). e) Immune cell type enrichment analysis results of training- 

differentially expressed transcripts. Points represent significant enrichments 

(5% FDR, one-sided Mann-Whitney U test). f) Line plots showing the log2 fold- 

changes for Cxcr3 and Il1a transcripts in the small intestine (error bars = SEM).



Extended Data Fig. 13 | Metabolic effects of endurance training. a) Significant 

enrichments for relevant categories of KEGG metabolism pathways from 

features that are up- or down- regulated in both sexes at 8 weeks (8w_F1_M1 and 

8w_F-1_M-1 nodes, respectively). Triangles point in the direction of the response 

(up or down). Points are colored by ome. b) Log2 fold-change of metabolites 

regulated across many tissues (F-Test, 5% FDR, error bars=SEM). c) Log2 

fold-change of training-regulated metabolites: 1-methylhistidine in the kidney, 

cortisol in the kidney, and 1-methylnicotinamide in the liver (F-Test, 5% FDR, 

error bars = SEM). d) Volcano plots showing abundance changes (log2 fold- 

changes; logFC) and significance (-log10 nominal p-values) for acyl-carnitines. 

Features are colored based on the carnitine chain length. e) Protein abundance 

changes in the glycolysis and gluconeogenesis pathway in the heart tissue after 

8 weeks of training. Line plots show the log2 fold-changes over the training time 

course (error bars = SEM). Red and blue boxes indicate a statistically significant 

(F-test, 5% FDR) increase and decrease in abundance, respectively, for both 

males and females at 8 weeks.
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Extended Data Fig. 14 | Mitochondria and peroxisome adaptations to 

endurance training. a) Boxplots showing the percent of mitochondrial 

genome reads across samples in each tissue that map to the mitochondrial 

genome (% MT reads). b) Comparison of % MT reads between untrained 

controls and animals trained for 8 weeks. Plot shows tissues with a statistically 

significant change after 8 weeks in at least one sex (red asterisk, two-sided 

Dunnett’s test, 10% FDR). For boxplots in (b,c): center line represents median; 

box bounds represent 25th and 75th percentiles; whiskers represent minimum 

and maximum excluding outliers; filled dots represent outliers. c) Boxplots 

showing the percent of mitochondrial genome reads across tissue, sex, and 

time points. Center line represents median; box bounds represent 25th and 

75th percentiles; whiskers represent minimum and maximum excluding 

outliers; open circles represent outliers. Red asterisks indicate a significant 

change throughout the training time course (F-test, 5% FDR). Center line 

represents median; box bounds represent 25th and 75th percentiles; whiskers 

represent minimum and maximum excluding outliers; blue dots represent 

outliers. d) GSEA using the MitoCarta MitoPathways gene set database and 

transcriptome (TRNSCRPT) or phosphoproteome (PHOSPHO) differential 

analysis results. NES are shown for significant pathways (10% FDR) for all 

tissues, sexes, and time points within the heatmap. Mitochondria pathways 

(rows) are grouped using the parental group in the MitoPathways hierarchy.  

e) Protein abundance and protein acetylation level changes in the peroxisome 

KEGG pathway in the liver tissue after 8 weeks of training. Red boxes indicate an 

increase in abundance for both males and females, while red circles indicate an 

increase in at least one acetylsite within the protein (8w_F1_M1 cluster).
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