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Abstract

We use hybrid molecular dynamics-multiparticle collision dynamics simulations (MD–

MPCD) to investigate the influence of chain stiffness on the transport of nanoparticles

(NPs) through solutions of semiflexible ring polymers. The NPs exhibit subdiffusive

dynamics on short time scales before transitioning to normal diffusion at longer times.

The terminal NP diffusivities decrease with increasing ring stiffness, similar to the be-

havior observed in solutions of semiflexible linear chains. The NP subdiffusive exponent

is found to be strongly correlated with that of the polymer center-of-mass (COM) for the

range of chain stiffnesses examined, which is at odds with the pronounced decoupling of

the NP and polymer COM motions previously observed upon increasing the stiffness of

linear chains. Our analysis indicates that these marked differences in the intermediate

dynamics are rooted in distinct structural changes that emerge with increasing bending

stiffness: stiffer ring polymers adopt increasingly circular conformations and stack into

transient tubes. The void space created near the ring centers is occupied by NPs and

other polymers, resulting in a strong dynamic coupling on short time scales.

1 Introduction

The transport of nanoparticles (NPs) through polymer solutions is encountered in appli-

cations ranging from hydrocarbon exploration1 to drug delivery2–7 to nanocomposite pro-

cessing.8–13 Transport through Newtonian fluids is well-described by the Stokes–Einstein

relation (SER), which predicts that the NP diffusivity is inversely proportional to the zero-

shear solution viscosity. The SER can be generalized to complex fluids by incorporating a

frequency-dependent solution viscosity.14,15 Both the SER and the generalized SER, however,

assume that the transported NPs are larger than the characteristic length scales associated

with heterogeneities in the background fluid. In complex fluids, this assumption breaks

down when the NP size is comparable to the polymer radius of gyration or mesh size, re-

sulting in measured dynamics that are faster than predicted from the solution’s zero-shear

viscosity.16–21
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The factors governing NP transport in this size regime have been investigated in several

computational22–29 and theoretical30–35 studies. Although most of these studies have focused

on flexible linear chains, polymers found in many settings often have other architectures and

different degrees of flexibility. Circular or ring-like architectures, for example, are commonly

used to model chromatin36–39 and are observed to form in semiflexible biopolymers such as

DNA.40–42 Ring polymers exhibit distinct structural and dynamical properties due to their

closed conformations.36,37,41–50 Examples include the faster relaxation of ring polymers com-

pared to linear chains of the same molecular weight44 due to the absence of free ends, which

allows ring polymers to avoid or delay entanglements.51 Additionally, inter-ring threadings,

or penetrations, can also lead to a topological glass transition in concentrated solutions and

melts, which has not been reported to occur for linear chains.52

The distinct properties of ring polymers and their effects on NP transport remain in-

completely understood. Simulation studies have investigated NP transport in entangled ring

polymer systems,39,53 finding faster NP motions in melts of ring polymers than in similar

systems of linear chains due to the absence of long-lived entanglement tubes in the former.

The effects of chain flexibility on the NP dynamics have been also compared in polymer

melts with linear and circular architectures. NP dynamics were found to be faster in melts

of stiff linear chains compared to rings with the same stiffness, but the opposite behavior

was observed for flexible systems.54 Langevin dynamics (LD) simulations have also been

performed to investigate the influence of NP size on transport in weakly entangled solutions

of ring and linear polymers.55 NPs were found to diffuse faster in solutions of ring polymers

than in solutions of linear polymers when the NP size was larger than the tube diameter.

For smaller NPs, however, the diffusivities were found to be comparable in ring and linear

polymer solutions, which was posited to be due to the similarity of the Rouse dynamics

on these length scales.55 Finally, increasing the concentration of NPs in ring polymer melts

was found to lead to a slowing of the dynamics of the ring polymers; further, the dynam-

ics decreased sharply at high NP concentrations as more monomers come into contact with
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multiple NPs.56

These prior studies provide insight into how polymer architecture and stiffness influence

NP dynamics in concentrated and/or entangled systems. However, much less is known about

their effects on NP transport in unentangled (semi)dilute solutions, which is characteristic of

many biological systems.57–59 At such concentrations, long-range hydrodynamic interactions

(HI) may also influence the dynamics, necessitating careful modeling of these effects.60–62

In our recent studies, we used a hybrid molecular dynamics–multiparticle collision dynamics

(MD–MPCD) scheme to perform hydrodynamic simulations of NP dynamics in unentangled,

semidilute solutions of polymers.26–28,63 NP dynamics were found to be remarkably insensitive

to the polymer architecture when compared in solutions of flexible linear chains and rings

with similar monomer concentrations.28 For both systems, the scaling behavior of the long-

time NP diffusivities was well-described by a recently developed polymer coupling theory

(PCT),30 which assumes that NP motions fully couple to the segmental Rouse dynamics of

the polymers. The short-time subdiffusive NP dynamics, by contrast, were found to be faster

than predicted by PCT. This finding was attributed to the NPs coupling to polymer center-

of-mass (COM) motions on short time scales, which is an additional coupling mechanism

that is not accounted for by PCT.28

Although the architecture of flexible polymers was not found to strongly influence NP

dynamics, our previous MD–MPCD study of semiflexible linear chains demonstrated that

polymer stiffness has an appreciable effect.27 As chain stiffness was increased, the long-

time NP diffusivities exhibited increasing deviations from PCT, which was developed for

fully flexible chains. The short-time subdiffusive NP dynamics also became increasingly

decorrelated with the polymer COM motions. These effects were hypothesized to arise from

changes in the segmental mobility as the stiffness of the chains increased.

To understand the combined effects of ring-shaped polymer topology and bending stiff-

ness, we have performed a complementary study of NP dynamics in solutions of semiflexible

ring polymers using MD–MPCD simulations. Similar to the behavior observed for semiflex-
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ible linear chains, the NP diffusivities decrease as polymer stiffness increases. In contrast

with the behavior observed for semiflexible linear chains, however, the NP and polymer COM

subdiffusive dynamics remain strongly correlated across the range of chain stiffnesses exam-

ined. Our analysis indicates that structural changes in the ring polymer solutions allow the

NP and polymer COM subdiffusive motions to remain highly coupled even as the segmental

motions change upon stiffening.

2 Methods

Hybrid MD–MPCD62,64,65 simulations of spherical NPs in solutions of semiflexible ring poly-

mers were performed using LAMMPS (ver. 22Aug18).66 For simplicity, we describe the model

parameters of the system using fundamental units �, m, and " for length, mass, and energy,

respectively. The corresponding unit of time is expressed in these fundamental units as

⌧ =
p
m�2/". All model parameters and physical quantities derived from the simulations

are reported in these units.

The model is similar to the one used in our prior study of NP dynamics in solutions

of flexible ring polymers.28 The ring polymers consist of Nm monomer beads, each with a

diameter of �m, whereas the NPs are modeled as single large beads of diameter �NP. Excluded

volume interactions between particles are modeled with a shifted Weeks–Chandler–Andersen

(sWCA)67 potential:

UsWCA(rij) =

8
>>><

>>>:

4"
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�ij

rij ��ij
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✓

�ij

rij ��ij
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+ ", rij  rcij

0, rij > rcij

, (1)

where rij is the distance between particles i and j, �ij is the shift parameter that ac-

counts for size differences between particles of different types, and rcij = 21/6�ij + �ij is

the cutoff distance. For monomer–monomer and NP–NP interactions, {�ij,�ij} = {�m, 0}

and {�ij,�ij} = {�NP, 0}, respectively. For NP–monomer interactions, �ij = �m and
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�ij = (�NP � �m)/2.

Bonds between neighboring monomers are modeled using the finitely extensible nonlinear

elastic (FENE) potential:68

UFENE(rij) =

8
>>><

>>>:

�1
2kr0

2 ln

"
1�

✓
rij
r0

◆2
#
, rij < r0

1, rij � r0

, (2)

where k = 30 and r0 = 1.5 are the spring constant and maximum bond extension length,

respectively. The equilibrium bond length with these parameters is b ⇡ 0.97. The stiffness

of rings is controlled by incorporating the bending potential,

Ubend(⇥ijk) = (1� cos⇥ijk) (3)

where ⇥ijk is the angle between the bond vectors connecting adjacent monomers {i, j} and

{j, k}, and  is the stiffness parameter.

We examined systems with Nm = 70, �m = 1, and �NP = 5. These choices ensure

that �NP ⇡ Rg,0 for highly flexible rings (  2), where Rg,0 is the radius of gyration at

infinite dilution (Table 1). To study the influence of ring flexibility, we varied the stiffness

parameter  = 0 � 70. The NP–polymer solutions were simulated in a cubic cell with edge

length L = 64, and periodic boundary conditions were applied in all directions. The number

of ring polymers NP in the simulation cell was varied from 93 to 1497, yielding solutions with

monomer concentrations c = NmNPL�3 ranging from 0.025 to 0.4 (Table 1). This range of

monomer concentrations is well below the typical value c ⇡ 0.9 found in melts of similar

polymer models,36,37,39,53 and thus corresponds to solution-like conditions. At sufficiently

high bending stiffness , ring polymers can exhibit transitions from isotropic to (discotic)

nematic or smectic phases, depending on, e.g., the concentration and ring stiffness.69 Since

we are primarily interested in the transport properties in the isotropic phase, we restrict the

maximum monomer concentration (at each investigated  value) to stay below this phase
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transition (Table 1). To model dilute NP conditions, only 20 NPs were simulated in each

ring polymer solution, corresponding to an NP volume fraction of approximately 0.005.

Using cluster analysis, we confirmed that these conditions are sufficiently dilute to minimize

NP–NP interactions and avoid NP aggregation.

Table 1: Properties of semiflexible ring polymer solutions

 Rg,0 cmin cmax

0 4.4 0.025 (0.13c⇤) 0.40 (2.07c⇤)
1.5 5.0 0.025 (0.19c⇤) 0.40 (2.97c⇤)
5 6.8 0.025 (0.46c⇤) 0.40 (7.39c⇤)
10 8.5 0.025 (0.91c⇤) 0.30 (10.95c⇤)
20 9.7 0.025 (1.37c⇤) 0.15 (8.22c⇤)
32 10.1 0.025 (1.56c⇤) 0.10 (6.22c⇤)
70 10.5 0.025 (1.74c⇤) 0.10 (6.95c⇤)

Notes: cmin and cmax are the minimum and maximum monomer concentrations investigated
in this study, and c⇤ = 3NP(4⇡R3

g,0)
�1 is the overlap concentration.

All simulations were performed at a reduced temperature T = 1.0, using a velocity-

Verlet scheme with a time step of 0.005 to integrate the equations of motion. The systems

were first equilibrated for ⇡ 106 time units using Langevin thermostats with LAMMPS

“damp” parameters of 3.0 and 0.9 for the NPs and monomers, respectively. This duration is

approximately 10 times longer than the relaxation time of the system at the highest  and

c examined, which exhibits the most sluggish dynamics. Next, the systems were simulated

using a hybrid MD–MPCD technique to incorporate solvent-mediated HI.26–28,62 The MPCD

parameters and implementation are identical to those employed in our previous studies26–28

and result in a coarse-grained solvent with dynamic viscosity ⌘s ⇡ 4.0 and Schmidt number

Sc ⇡ 12. The NP–polymer solutions were briefly equilibrated for ⇡ 5⇥ 104 time units with

the MD–MPCD scheme to allow the MPCD solvent to thermalize and then simulated for

a production period of ⇡ 2 ⇥ 106 time units, during which data are collected to compute

ensemble averages. Three independent simulations were performed to generate a total of

60 NP trajectories at each set of conditions examined. Static and dynamic properties were

calculated by averaging over the independent simulations. Complementary LD simulations
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were also performed for select systems using the Langevin thermostats described above to

investigate the behavior of the solutions in the absence of many-body HI.

Following our previous study of NP transport in solutions of flexible rings,28 the polymer

mesh size ⇠ was computed using the geometric pore size distribution defined in Ref. 70. In

this method, ⇠ is calculated as the spatial average of the local pore size h(r), which is defined

as the diameter of the largest spherical test probe that can be placed in the polymer system

such that it encompasses the point r without overlapping with the surrounding monomers

(points within a distance of 0.5 of a monomer center were considered overlapping). h(r) was

evaluated via the non-linear optimization approach described in Refs. 71,72. The resulting ⇠

provides an unambiguous geometric definition of mesh size that is consistent with intuition

for regular polymer networks72 and is universally applicable regardless of network topology,

monomer concentration, or polymer architecture.28

3 Results and Discussions

To investigate the dynamics of the NP–polymer solutions, we calculated the mean-squared

displacement (MSD) h�r2i for the monomers in the polymer COM reference frame, for the

polymer COM, and for the NPs as a function of the stiffness parameter . At short times

(�t < 103), the segmental dynamics of the fully flexible rings ( = 0) are hydrodynamically

coupled and exhibit h�r2i ⇠ t2/3 scaling behavior, as predicted by the Zimm model (Fig.

1(a)).73 Although this scaling behavior is observed for all , the magnitude of h�r2i at a

given lag time �t within this intermediate regime decreases as stiffness increases, indicating

a reduction in segmental mobility. This behavior is in agreement with those observed in

previous studies of semiflexible linear polymers in solution.27,74,75 On long times (�t > 104),

the MSD exhibits a terminal plateau h�r2i ⇡ 2R2
g,0 that arises from the constraints imposed

on the monomer motions by their connectivity (Fig. 1(a)). The height of the terminal plateau

increases with , consistent with stiffer rings exhibiting more expanded conformations and

larger Rg,0 (Table 1).
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Figure 1: Mean-squared displacements h�r2i for (a) monomers in the polymer COM refer-
ence frame, (b) polymer COM, and (c) the NPs in ring polymer solutions with monomer
c = 0.05 and different values of the stiffness parameter . Dashed line in (a) indicates Zimm
(⇠ t2/3) scaling. Solid and dashed lines in (b) and (c) indicate subdiffusive (⇠ t↵,↵ < 1)
and diffusive (⇠ t1) scaling, respectively.

The polymer COM and NP dynamics are also influenced by ring stiffness. The MSDs

for the polymer COM and NPs exhibit subdiffusive behavior on short time scales in which

h�r2i ⇠ t↵ with exponent ↵ < 1 but crossover to diffusive dynamics (↵ = 1) on longer

time scales. The magnitudes of the MSDs decrease across all time scales with increasing ,

mirroring the slowing of the segmental dynamics. This behavior is consistent with recent

simulations of semiflexible ring melts, where a dramatic increase in the zero-shear viscosity
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was found with increasing bending stiffness .76 Due to the increase in ring size (i.e., Rg)

with , the dynamical slowing is more pronounced for the polymer COM than for the NPs,

as expected from the SER. These trends are similar to those reported for NPs in solutions

of semiflexible linear chains.27

3.1 Short-time dynamics

To characterize the effects of ring stiffness on the short-time dynamics, we extracted the sub-

diffusive exponents ↵NP and ↵P for the NPs and polymer COM from their respective MSDs

(Figs. 2). We restrict our range of c and  to stay in the isotropic phase.69 The values of ↵NP

and ↵P can depend on the range of �t selected for the analysis. Thus, to avoid ambiguity,

we follow Ref. 39 and report the minimum values of ↵NP and ↵P attained in the subdif-

fusive regime. At low monomer concentration (e.g., c = 0.025), ↵NP gradually decreases

with increasing ring stiffness. As the monomer concentration increases, however, the rate

of decrease becomes significantly more pronounced. Although subdiffusion can arise from a

variety of physical mechanisms including transient caging in glassy colloidal suspensions,77–80

it is most commonly attributed to a coupling of probe dynamics to viscoelastic relaxations

in polymer solutions.20,30 These relaxations arise from a combination of segmental fluctua-

tions and COM translation of the polymer.26 Thus, the decrease in ↵NP with increasing 

and c indicates an enhancement in the strength of the dynamic coupling between particle

and polymer dynamics. Indeed, the subdiffusive exponent of the polymer COM ↵P exhibits

similar qualitative behavior to that of ↵NP (Fig. 2(b)). A similar decay of ↵P with increasing

bending stiffness was also observed in previous simulations of pure solutions of semiflexible

chains in the semidilute regime.75

According to PCT,30 the dynamics of the NPs depend on the ratio of the NP diameter to

polymer mesh size �NP/⇠. When the NPs are smaller than the mesh size (�NP/⇠ < 1), their

short-time motions are not constrained by the surrounding polymers. As a result, NPs are

freely diffusive on all time scales, so the exponent is ↵NP = 1. By contrast, when the NPs are
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Figure 2: Subdiffusive exponents of the (a) NPs (↵NP) and (b) polymer COM (↵P) as
functions of stiffness parameter  for different values of the monomer concentration c.

larger than the mesh size (�NP/⇠ > 1), they become caged by nearby polymer segments and

fully coupled to their relaxations. On length scales larger than ⇠, (semi)flexible polymers in

semidilute solutions can be regarded as Rouse chains of correlation blobs; the MSD of the

polymer segments scales as h�r2i ⇠ t1/2 at timescales below the Rouse relaxation time,73,74

leading to an expectation of ↵NP = 0.5.30 This prediction has been confirmed experimentally

for systems in which the NP–polymer dynamics are fully coupled by chemically bonding

the NPs to the polymer network.81 Previous simulations also showed that the NP dynamics

are purely diffusive in solutions of free (unpolymerized) monomers at similar values of c.28

These studies confirm that the NP subdiffusive dynamics, as predicted by PCT, arise from

coupling with polymer segmental relaxations with ↵NP = 0.5 in the limit of full coupling.

For the (semi)flexible ring polymer solutions, however, the short-time NP dynamics de-

viate from PCT predictions (Fig. 3). Rather than abruptly dropping from 1.0 to 0.5 at

�NP/⇠ ⇡ 1, as predicted by PCT, ↵NP gradually decreases as �NP/⇠ increases. Similar

11



deviations from PCT have been reported in experiments on NPs in solutions of linear poly-

mers.20 They have also been observed in our previous computational work on systems with

(semi)flexible linear chains26,27 and flexible ring polymers.28 In those previous studies, the

faster-than-expected subdiffusive NP dynamics suggested the presence of an additional mode

of NP–polymer coupling that is not accounted for in PCT. Indeed, the strong correlation

observed between the subdiffusive exponents ↵NP and ↵P indicated that the translational

COM motions of the NPs and polymers were coupled on short time scales. Thus, these

studies suggest that the NP subdiffusive dynamics in solutions of (semi)flexible linear chains

and flexible rings are coupled to both the polymer segmental relaxations and their COM

motions, whereas only the former coupling mode is described by PCT.
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Figure 3: Subdiffusive exponents of the NPs ↵NP as a function of the ratio of the NP
diameter to polymer mesh size �NP/⇠. Dashed line indicates the prediction from PCT.30

Closed and open symbols indicate data from hybrid MD–MPCD simulations (with HI) and
LD simulations (without HI), respectively.

Interestingly, for the semiflexible ring polymer solutions studied here, we observe that

↵NP and ↵P are strongly correlated for all values of  examined (Fig. 4). Results from

complementary LD simulations reveal these correlations are observed even when HI are

neglected (Fig. 4). This behavior indicates that the COM motions of the NPs and ring

polymers remain coupled even as the rings expand and their segmental dynamics slow as

chain stiffness is increased. This finding is in sharp contrast with the behavior observed
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in our analogous study of semiflexible linear chains, where it was found that ↵NP and ↵P

became increasingly decoupled as  was increased.27 The decoupling for the linear chains was

attributed to them becoming more rod-shaped, leading to increasingly anisotropic polymer

COM motions that alter the way in which the NPs and polymers dynamically couple on

short time scales. The nature of the NP–ring correlations, however, depends on stiffness,

with the NPs being more subdiffusive than polymers at low  but less subdiffusive at high .

As discussed below, we attribute this dependence to contributions from structural changes

in the polymer solutions.
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Figure 4: Correlation of NP and polymer COM subdiffusive exponents (↵NP and ↵P, re-
spectively) for different values of the stiffness parameter . Dashed-dotted line indicates
↵NP = ↵P. Closed and open symbols indicate data from hybrid MD–MPCD simulations
(with HI) and LD simulations (without HI), respectively.

3.2 Long-time dynamics

On longer time scales, both NPs and polymer COMs crossover to diffusive motion with

diffusivities (D and DP, respectively) that decrease monotonically with increasing  and c.

These trends match those observed for the subdiffusive exponents (Fig. 5), indicating that

the slowing of the segmental dynamics and changes in ring conformations upon increasing

bending stiffness (see Sec. 3.3) affect both the short- and long-time translational dynamics of

the NPs and polymer COM. Indeed, PCT assumes that the polymer segments surrounding
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the NPs present an infinite energy barrier to diffusion and that the segments must relax

before the NPs can escape their local cages. Specifically, PCT asserts that the segments must

relax over length scales comparable to the NP diameter, resulting in the scaling prediction

D/D0 ⇠ (�NP/⇠)� with exponent � = �2 for �NP/⇠ � 1, where D0 is the NP diffusivity in

the background solvent.
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Figure 5: Diffusion coefficients of the (a) NPs (D) and (b) polymer COM (DP) as functions
of stiffness parameter  for various monomer concentrations c.

The PCT scaling predicting for D/D0 has been confirmed in experimental20 and compu-

tational studies26 of NP diffusion in solutions of flexible linear chains; it has also been found

to be approximately consistent with results from simulations of flexible ring polymers.28 We

observe that D/D0 decreases with �NP/⇠ for �NP/⇠ � 1. Although this decreasing trend

is generally consistent with PCT, it is not possible to determine whether the decay follows

power-law behavior with the predicted scaling exponent of � = �2 due to the limited range

of �NP/⇠ accessible for these systems. The decrease in NP diffusivity starts at smaller �NP/⇠

with increasing , indicating that the NPs more readily experience local heterogeneities for
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stiffer rings. As  increases, the segmental dynamics slow and the time scale for the polymer

segments to relax over the NP surfaces increases. Hence, we posit that this slowing results in

a sharper decrease in D/D0 as the mesh size decreases and the NPs become more confined

by the surrounding polymers. Langevin dynamics simulations show that these qualitative

trends are largely insensitive to the inclusion of many-body HI, which is consistent with

our previous computational study of NPs in solutions of flexible linear chains.26 Lastly, we

observe that the terminal NP and polymer COM diffusivites are approximately linearly cor-

related for all  examined (Fig. 7). The linear correlation is consistent with the terminal

NP and polymer COM motions being strongly coupled to the bulk solution viscosity. In the

limit of full coupling, the SER would predict that D/DP / Rg/�NP. Accordingly, we find

that the slope of D versus DP increases as  increases due to the concomitant increase in

ring size (i.e., increase in Rg).
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Figure 6: Normalized diffusivity of NPs D/D0 as a function of ratio NP size and polymer
mesh size �NP/⇠. The solid lines denote the D/D0 ⇠ (�NP/⇠)�2 scaling behavior predicted by
PCT.30 Closed and open symbols indicate data from hybrid MD–MPCD simulations (with
HI) and LD simulations (without HI), respectively.

3.3 Structural effects

The observed changes to NP dynamics over short and long time scales indicate a unique cou-

pling to local heterogeneities in solutions of stiff rings. We therefore characterized structural
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Figure 7: Correlation of terminal NP and polymer COM diffusivities (D and DP, respec-
tively) for different values of the stiffness parameter . Closed and open symbols indicate
data from hybrid MD–MPCD simulations (with HI) and LD simulations (without HI), re-
spectively.

properties of the solutions to understand their potential influence on the NP and polymer

dynamics. To this end, we first analyzed the shape of the individual polymers by computing

the gyration tensor

G↵� =
1

Nm

X

i

(�ri,↵�rj,�). (4)

where �ri,↵ is the position of monomer i relative to the polymer COM, and ↵ and � denote

components along the Cartesian x, y, and z directions. Several descriptors can be calculated

from the gyration tensor, including the radius of gyration

Rg = (�1 + �2 + �3)
1/2, (5)

where �1 > �2 > �3 are the eigenvalues of the gyration tensor. The polymer shape can be

characterized via the asphericity,

a =
(�1 � �2)2 + (�2 � �3)2 + (�3 � �1)2

2(�1 + �2 + �3)2
, (6)
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which has limiting values of 0 and 1 for perfectly spherical (�1 = �2 = �3) and one-

dimensional objects (�2 = �3 = 0), respectively. For a three-dimensional random walk

with Nm ! 1, numerical calculations have found a = 0.039.82 For polymers with a > 0, the

nature of their asphericity can further be characterized using the prolateness,

p =
(2�1 � �2 � �3)(2�2 � �3 � �1)(2�3 � �1 � �2)

2(�2
1 + �2

2 + �2
3 � �1�2 � �2�3 � �3�1)3/2

, (7)

which has limiting values of 1 and -1 for perfectly prolate (rod-like) and oblate (disk-like)

objects, respectively.

The shape descriptors Rg, a, and p exhibit weak variations with monomer concentration c

(Fig. 8). Specifically, the Rg of rings with   5 decreases by about 15% as the concentration

increases from c = 0.025 to c = 0.4. This behavior aligns with the expected transition

from good solvent conditions in dilute solutions to theta-like conditions above the overlap

concentration (Table 1).83,84 This effect becomes much weaker with increasing , however,

because the conformations of stiff rings are primarily dictated by the intramolecular bending

energy and packing entropy.85–88 The radius of gyration Rg increases monotonically with ,

exhibiting an initial sharp rise over the range 0    10 followed by a much smaller growth

for  & 20. The expansion of the rings is accompanied by nonmonotonic changes in the

shape descriptors a and p, which both initially increase and then decrease for  � 10. The

sign of p changes from positive to negative at  ⇡ 20, indicating that rings transition from

prolate- to oblate-like objects as  increases. Whereas the probability density distributions

for Rg and a exhibit well-defined maxima for all , P (p) becomes almost flat at  = 20 (Fig.

9). This behavior reveals that fluctuations in p are maximized near  = 20 and that the

mean value of p ⇡ 0 results from averaging over the nearly uniform P (p) distribution at this

critical value of the stiffness parameter.

The changes in ring structure with  also affect the structural correlations between the

NP–polymer and polymer–polymer COM, as measured by the respective radial distribution
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Figure 8: (a) Radius of gyration Rg, (b) asphericity a, and (c) prolateness p of the ring
polymers as function of stiffness parameter  for different monomer concentrations c.

functions (RDFs) gNP�P(r) and gP�P(r) (Fig. 10). The RDFs for the solutions with fully

flexible rings ( = 0) are approximately zero for r  5 and exhibit single maxima in the range

r ⇡ 8�10 ⇡ 2Rg before decaying towards unity at larger r. The compact and isotropic nature

of the flexible rings results in effective short-ranged excluded volume interactions between

the NP–polymer and polymer–polymer COM, which prevent them from coming into close

proximity and lead to the formation of well-defined neighbor contact peaks in gNP�P(r) and

gP�P(r) at intermediate r ⇡ �NP + Rg and r ⇡ 2Rg, respectively. The RDF gNP�P(r) for

semiflexible rings with  = 10, by contrast, is nearly flat except for a slight upturn near
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Figure 9: Probability density distributions of the (a) radius of gyration Rg, (b) asphericity
a, and (c) prolateness p of the ring polymers at monomer concentration c = 0.1 for different
values of the stiffness parameter .

r = 0. This behavior suggests that the effective excluded volume interaction between the

NP and polymer COM vanishes, allowing a small fraction of the NPs to penetrate the center

of the rings such that the positions of their COM coincide. A similar interpenetration or

“threading” of the rings explains the increase in gP�P(r) at r = 0.85–88 Interestingly, gNP�P
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and gP�P(r) both flatten at  = 10, where the distributions of the ring shape descriptors Rg,

a, and p are also relatively broad (Fig. 9). This behavior suggests that large fluctuations in

ring shape allow interpenetration to occur, reducing excluded volume effects such that the

NP–polymer and polymer–polymer interactions become nearly ideal under these conditions.

As  increases further, the rings continue to expand and become increasingly oblate.

These conformational changes coincide with gNP�P(r) increasing in magnitude at low r and

developing a strong peak at r = 0. Similar trends are observed in gP�P(r) along with the

formation of a second peak at r ⇡ 3. Inspection of configurations from the simulations

confirm that the peaks at r = 0 signify an increased propensity for NPs and polymers to

occupy the “holes” created in the centers of the rings as they stiffen and expand (Figs. 10(b)

and 11). They also reveal that the second peak observed in gP�P(r) at r ⇡ 3 arises from the

local ordering of neighboring rings into stacked arrangements (Fig. 10(b)).76,85,87

Figure 10: Radial distribution functions for the (a) NP–polymer COM and (b) polymer–
polymer COM at monomer concentration c = 0.1 for different values of the stiffness param-
eter . The inset in (b) shows the threaded and stacked ring arrangements observed for
 = 70 at r ⇡ 0.1 and r ⇡ 3.0, respectively.
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We posit that the ring conformational changes observed upon varying  directly influence

the caging of the NPs. Specifically, the compact conformations of flexible rings have charac-

teristic dimensions similar to those of the NPs, allowing the rings to behave as soft crowders

that transiently cage the NPs. Consequently, the short-time NP dynamics couple to the ring

segmental relaxations and translational COM motions. As  increases, the polymers expand

and the segmental relaxations slow. In the case of semiflexible linear chains, chain stiffening

causes the polymer COM motions to become increasingly anisotropic and decoupled from

the NP dynamics. For semiflexible rings, by contrast, the short-time NP and polymer COM

dynamics remain strongly coupled due to transient caging of the NPs inside the “holes” near

the ring centers as they adopt more expanded conformations. Thus, although the NPs expe-

rience distinct local environments when caged by flexible rings with compact conformations

or within semiflexible rings with expanded conformations, both types of cages lead to strong

coupling of the NP and polymer COM dynamics on short time scales. As a result, coupling

of NP and polymer subdiffusive dynamics is observed across the full range of  examined.

4 Conclusions

We used hybrid MD–MPCD simulations to investigate the diffusion of NPs in solutions

of ring polymers with tunable stiffness. The NPs exhibit subdiffusive dynamics on short

time scales before transitioning to normal diffusion at longer times. The NP diffusivity

decreases as the ratio of the NP diameter to polymer mesh size �NP/⇠ becomes sufficiently

large. Although this decreasing trend is generally consistent with PCT, it is not possible to

determine whether the decay follows the predicted power-law behavior due to the limited

range of �NP/⇠ accessible for these systems. The NP subdiffusive exponents in solutions of

flexible rings are larger than those predicted by PCT and strongly correlated with those of

the polymer COM. These findings mirror those reported for NPs in solutions of flexible linear

chains,26 which exhibit similar dynamics to solutions of flexible ring polymers when compared

at the same monomer concentration.28 The faster-than-predicted subdiffusive dynamics in
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Figure 11: Ring polymers (chains of small spheres) around a central NP (large red sphere)
at monomer concentration c = 0.1 for different values of the stiffness parameter . Only
rings whose COM are within a separation distance of r = 10 from that of the central NP are
shown. Snapshots are rendered using Visual Molecular Dynamics 1.9.3.89

.

both cases arises from coupling between the NP and polymer COM motions on short time

scales, which is not accounted for by PCT.

As the rings become stiffer, the terminal NP diffusivity decreases. The short-time dy-

namics of the NPs also become slower, as evidenced by the decrease in their subdiffusive

exponent. These trends are reminiscent of those reported for solutions of semiflexible linear

chains and are attributed the reduced segmental mobility of stiff polymers.27 Interestingly,
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the NP and ring polymer COM subdiffusive exponents remain strongly correlated for all of

the examined semiflexible ring polymer solutions. This behavior is at odds with the pro-

nounced decoupling of the NP and polymer COM motions observed upon increasing the

stiffness of linear chains.27 Our analysis indicates that stiffer ring polymers adopt increas-

ingly circular conformations, accompanied by a distinct stacking into transient tubes. The

void space created near the ring centers is occupied by NPs and other polymers, resulting in

a strong coupling on short time scales between the dynamics of NPs and those of the polymer

centers-of-mass. These insights identify the unique transport properties of NPs in semidilute

solutions of ring polymers and serve as a starting model by which to predict transport in

(bio)macromolecule suspensions36–42 and, in future work, uncover the microstructural origins

of the coupling across broad ranges of particle and polymer size.
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