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Abstract

Unlike ordinal-utility matching markets, which are well-developed from the viewpoint of both theory
and practice, recent insights from a computer science perspective have left cardinal-utility matching
markets in a state of flux. The celebrated pricing-based mechanism for one-sided cardinal-utility matching
markets due to Hylland and Zeckhauser [1979](HZ), which had long eluded efficient algorithms, was
finally shown to be intractable; the problem of computing an approximate equilibrium is PPAD-complete
(Vazirani and Yannakakis [2021], Chen et al. [2022]).

This led us to ask the question: is there an alternative, polynomial time, mechanism for one-sided
cardinal-utility matching markets which achieves the desirable properties of HZ, i.e. (ex-ante) envy-
freeness (EF) and Pareto-optimality (PO)?

We show that the problem of finding an EF+PO lottery in a one-sided cardinal-utility matching
market is by itself already PPAD-complete. However, a (2 + ǫ)-approximately envy-free and (exactly)
Pareto-optimal lottery can be found in polynomial time using the Nash-bargaining-based mechanism of
Hosseini and Vazirani [2022]. Moreover, the mechanism is also (2+ǫ)-approximately incentive compatible.

We also present several results on two-sided cardinal-utility matching markets, including non-existence
of EF+PO lotteries as well as existence of justified-envy-free and weak Pareto-optimal lotteries.

1 Introduction

Since the invention of the internet and the rise in mobile computing, one-sided and two-sided matching
markets have become an important part of the economy, driving innovation in the field of matching-based
market design; see Echenique et al. [2023] for a detailed overview. Prominent commercial examples of such
markets include Google’s AdWords market (matching advertisers to user search queries), ride-hailing services
(Uber, Lyft), food delivery (Doordash, Uber Eats), freelancing (Taskrabbit, Upwork), and vacation rentals
(Airbnb, VRBO).

Additionally, there are also many useful matching markets without monetary transfers which are the
focus of this paper. Markets of this kind arise in a variety of scenarios where payments are impractical or
even immoral. Well-known examples include the kidney donor market (matching kidney donors to trans-
plant recipients), the National Resident Matching Program (matching doctors to hospitals), school choice
(matching students to primary or secondary schools), and course allocation (matching students to courses).

In what we call a one-sided matching market, we are simply given a set G of goods and a set A of agents
with |A| = |G|. Agents have preferences over the goods and each agent is to be assigned exactly one good.
The goal is to design a mechanism that takes in the preferences of the agents and finds a perfect matching
such that certain desirable properties—most notably efficiency, fairness, and incentive compatibility—are
achieved.

Since each agent must get exactly one good, it is generally not possible to assign indivisible goods in a
fair way. For this reason, it is customary to study probability distributions—or lotteries—over matchings
instead and to consider notions of ex-ante fairness, efficiency, etc.
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Such matching markets can be broadly distinguished into two classes based on the kind of preferences the
agents have over the goods. In an ordinal-utility matching market, each agent i represents their preferences
via a total (or sometimes partial) order ≺i⊆ G2, whereas in a cardinal-utility matching market, each agent
i has a vector (uij)j∈G of rational, non-negative utilities instead.

Ordinal preferences are more restrictive which makes them easier to elicit and also makes it easier to
design incentive compatible mechanisms for them. Several well-known mechanisms such as Probabilistic
Serial (Bogomolnaia and Moulin [2001]) and Random Priority1 (Abdulkadiroglu and Sönmez [1998]) have
been developed in the ordinal setting.

A significant limitation of ordinal preferences is their inability to express the magnitude to which an agent
likes a certain good and this can lead to a significant loss of efficiency. For a simple example, consider a
course allocation problem in which students rank courses that they wish to take. Student A ranks course 1 as
10/10 and course 2 as 1/10 whereas student B ranks course 1 as 10/10 and course 2 as 9/10. If there is only
one remaining slot in each course, it makes sense to assign student A to course 1 and student B to course 2
in order to greatly increase the combined social welfare of the students. However, from the perspective of an
ordinal mechanism, both students have identical preferences and the only reasonable solution is to randomly
assign the students to the courses.

In the previous example, we can improve the social welfare by using cardinal utilities, but this would come
at the cost of envy-freeness: student A envies student B. Immorlica et al. [2017] provide an even stronger
example of the power of cardinal utilities. There are instances with n agents and goods in which all agents
have identical ordinal preferences and, as such, the goods would be evenly distributed among the agents
under any reasonable ordinal mechanism. But, remarkably, another allocation exists which is envy-free and
improves the cardinal utilities of every agent by a factor of θ(logn).

Accordingly, cardinal utilities have found several applications in the real world. The popular fair division
website Spliddit2 uses cardinal utilities for all of its tools to allow users to split goods, chores, rent, etc.
among themselves in a fair and efficient way (Caragiannis et al. [2019b]). Several academic conferences
within theoretical computer science crucially rely on a cardinal-utility matching market for their review
process by asking their committee members to rank papers on a scale (e.g. -20 to 20) in order to assign
papers to committee members for review. Cognomos3 successfully incorporates cardinal utilities to find
course allocations for universities in a fair and efficient way (Budish et al. [2017]).

When it comes to cardinal utilities, the most notable mechanism is that of Hylland and Zeckhauser
[1979], which is based on a pricing approach. It results in allocations which are (ex-ante) envy-free (EF)
and Pareto-optimal (PO), thus satisfying the most common notions of fairness and efficiency respectively.
Later, He et al. [2018] showed that the HZ mechanism is also incentive compatible in the large. Note no
mechanism is EF, PO, and also incentive compatible in the traditional sense, i.e. without the “in the large”
restriction (Zhou [1990]). We review the HZ mechanism in Section 2.

However, a core issue with the approach is that computing an HZ equilibrium is hard in theory and
in practice. Vazirani and Yannakakis [2021] recently showed that there are instances in which every HZ
equilibrium is irrational. They also showed that the problem of finding an approximate HZ equilibrium is in
PPAD and conjectured that it is PPAD-complete. This conjecture was confirmed by Chen et al. [2022] who
proved the corresponding hardness result.

This motivates the search for alternative mechanisms that can achieve some or all of the desirable prop-
erties of HZ while being implementable in polynomial time. In particular, we pose the question: is it
possible to compute an envy-free and Pareto-optimal lottery in a one-sided cardinal-utility matching market
in polynomial time?

Beyond one-sided matching markets and HZ, there are also two-sided matching markets in which we
are matching agents to other agents. For example, this would apply to the aforementioned school choice
market if we allow the schools to also have preferences over students, e.g. via aptitude scores. Except for
a few highly restricted special cases (Bogomolnaia and Moulin [2004], Roth et al. [2005]), it was not known

1also known as Random Serial Dictatorship
2www.spliddit.org
3www.cognomos.com
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whether envy-free and Pareto-optimal lotteries even exist in this setting.

1.1 Our Contributions

One-Sided Matching Markets

Our most significant contribution is that we resolve the question regarding the complexity of finding EF+PO
allocations by showing that the problem is PPAD-hard. Together with a recent result by Caragiannis et al.
[2023] this shows that this problem is already PPAD-complete.

Theorem (Section 2.2). The problem of finding an EF+PO allocation in a one-sided cardinal-utility match-
ing market is PPAD-hard.

Our proof works through a polynomial reduction of approximate HZ to the problem of finding EF+PO
allocations which is inspired by the fact that HZ allocations and EF+PO allocations coincide in certain
continuum markets involving infinitely many agents and goods (Ashlagi and Shi [2016]). The key idea is
to take an HZ instance and add agents and goods so as to approximate such a continuum market with-
out perturbing the HZ equilibria in the instance too much. However, the fact that this yields a working
reduction is nonetheless surprising and requires additional ideas since it was already known that EF+PO
allocations need not be approximately HZ, even in markets that converge to a continuum market in the limit
(Miralles and Pycia [2016]).

Along the way, we will also provide a simple polyhedral proof that there are always rational EF+PO
allocations. This of course follows from the PPAD membership proof given by Caragiannis et al. [2023] but
our argument does not rely on the substantial amount of machinery inherent to proving PPAD membership.

Lastly, we show that the Nash-bargaining-basedmechanisms for matching markets introduced by Hosseini and Vazirani
[2022] satisfy an approximate notion of envy-freeness and incentive compatibility.

Theorem (Section 2.3). The Nash bargaining solution for one-sided cardinal utility matching markets is
2-envy-free and 2-incentive compatible.

Together with the algorithms given by Panageas et al. [2021], this makes for a polynomial time mechanism
that is (2 + ǫ)-envy-free, (2 + ǫ)-incentive compatible and Pareto optimal. We remark that HZ is (1 + ǫ)-
incentive compatible, however this requires the assumption of a “large market” in which every agent has many
copies (He et al. [2018]). Our results establish the Nash-bargaining-based mechanism as a more practical
alternative mechanism for one-sided cardinal-utility matching markets. We believe that this is an important
development in the growing field of matching-based market design.

Two-Sided Matching Markets

For two-sided markets, the only cases in which it was previously known that EF+PO allocations exist are
when the utilities are in {0, 1} and symmetric, i.e. each pair of agents either finds their match mutually
agreeable or mutually disagreeable. In Section 3.2, we provide counterexamples that show that both of
these conditions are necessary: if agents have {0, 1, 2} utilities or asymmetric {0, 1} utilities, then EF+PO
allocations may not exist.

Given this non-existence result, we give a notion of justified envy-freeness (JEF) which is related to—but
to the best of our knowledge different from—notions of fractional stability from the stable matching literature.
We show existence of rational JEF + weak PO allocations via a limiting argument, an equilibrium notion
introduced by Manjunath [2016], and similar polyhedral techniques as we used for one-sided markets.

Theorem (Section 3.3). In any two-sided cardinal-utility matching market, a rational JEF + weak PO
allocation always exists.

The Nash-bargaining-based approach by Hosseini and Vazirani [2022] and the efficient algorithms by
Panageas et al. [2021] also extend to two-sided markets. However, in Section 3.4, we give a counterexample
to show that in a Nash bargaining solution, agents can have θ(n)-factor justified envy toward other agents.
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1.2 Related Work

Our work builds on the existing literature surrounding the Hylland Zeckhauser mechanism (Hylland and Zeckhauser
[1979]) and the complexity of computing HZ equilibria. Alaei et al. [2017] give an algorithm to compute HZ
equilibria which is based on the algebraic cell decomposition technique (Basu et al. [1995]). However, this

algorithm needs to enumerate at least n5n2

cells and is thus highly impractical even for small values of n.
Vazirani and Yannakakis [2021] give a polynomial time algorithm that computes HZ equilibria for {0, 1}
utilities. They also show FIXP membership for the problem of computing HZ equilibria and PPAD mem-
bership for the problem of computing approximate HZ equilibria. Chen et al. [2022] show the corresponding
PPAD-hardness result, though it remains open whether finding an exact equilibrium is FIXP-hard.

The notion of envy-freeness comes from fair division where it was originally introduced in the context of
dividing a single resource amongst the agents (Foley [1967], Varian [1974]), a problem that is now referred
to as the cake cutting problem. It also features prominently in the literature on fair division of indivisible
goods. Since it is generally impossible to achieve envy-freeness with indivisible goods, relaxations such as
envy-freeness up to one good (EF1) (Budish [2011]) or envy-freeness up to any good (EFX) (Caragiannis et al.
[2019b]) are studied instead.

Cole and Tao [2021] recently showed that envy-free and Pareto-optimal lotteries exist in a large class
of (one-sided) fair division problems that in particular includes our setting. Building on this and recent
results by Filos-Ratsikas et al. [2023], Caragiannis et al. [2023] established PPAD membership for this class
of problems, though they leave open the question of showing PPAD-hardness which we resolve here. They also
show that maximizing social welfare over the set of envy-free lotteries is NP-hard, though their construction
relies on a more general problem than the matching markets discussed in this paper.

Markets with a continuum of agents were introduced by Aumann [1964]. Zhou [1992] showed that in
such continuum markets and under locally non-satiating utilities, envy-free and Pareto-optimal allocations
coincide with allocations that come from competitive equilibria with equal incomes. In matching markets,
the local non-satiation condition is not satisfied, but Ashlagi and Shi [2016] show a similar equivalence for
HZ. However, Miralles and Pycia [2016] show that this holds only in the limit: for “large“ markets, EF+PO
allocations may not be supported by competitive equilibria from approximately equal incomes.

In order to deal with the intractability of HZ, Hosseini and Vazirani [2022] recently proposed an alter-
native, Nash-bargaining-based mechanism for matching markets. Their approach works for one-sided and
two-sided settings with both linear and non-linear utilities. Importantly, they show that their Nash bargain-
ing solutions can be computed very efficiently in practice even on instances with thousands of agents. The
idea of operating markets via Nash bargaining instead of pricing goes back to Vazirani [2012] who used this
approach for the linear Arrow Debreu market. We will introduce the Nash-bargaining-based mechanism in
more detail in Section 2.3.

Panageas et al. [2021] give algorithms for Nash bargaining in matching markets based on multiplicative
weights update and conditional gradient descent which are efficient in practice and provide provable running
times bounded by poly(n, 1/ǫ). Aziz and Brown [2020] show a reduction from HZ to Nash bargaining in the
setting with {0, 1} utilities. They also note that Nash bargaining is not envy-free in general, though, as we
will show, it is so in an approximate sense.

For two-sided markets, there have been several attempts at extending the equilibrium notion of Hylland
and Zeckhauser. Manjunath [2016] as well as Echenique et al. [2021] introduce equilibrium notions. In both
cases, personalized prices are required, i.e. each agent on one side sees a potentially different set of prices
for all other agents on the other side. In Manjunath’s equilibrium we will see that we can still get a kind of
justified envy-freeness.

Restricted to symmetric {0, 1} utilities, HZ-like equilibria do exist as shown by Bogomolnaia and Moulin
[2004] for bipartite markets and Roth et al. [2005] for non-bipartite markets. A polynomial time algorithm
to compute such equilibria and therefore EF+PO allocations was later given by Li et al. [2014].

Beyond this, two-sided markets have been mostly studied under ordinal preferences where stable match-
ing, as introduced by Gale and Shapley [1962], is the dominant solution concept. A notable exception is
the work by Caragiannis et al. [2019a] who study the problem of finding a fractional stable matching under
cardinal utilities that (approximately) maximizes social welfare.
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2 One-Sided Matching Markets

In a one-sided matching market we are given a set A of agents and a set G of goods. We assume that
|A| = |G| = n since our goal is to assign exactly one good to each agent (a perfect matching) in a way that
satisfies certain desirable properties. In this paper we will focus on cardinal preferences, that is each agent
i ∈ A has non-negative utilities (uij)j∈G for every good. The most notable result in the study of cardinal
matching markets is the celebrated Hylland-Zeckhauser mechanism (Hylland and Zeckhauser [1979]) which
we will briefly review here.

Hylland and Zeckhauser note that under cardinal utilities it is possible to reduce the case of indivisible
goods to the case of divisible goods via the Birkhoff-von-Neumann theorem.

Theorem 1 (Birkhoff [1946], Von Neumann [1953]). Given a fractional perfect matching (xij)i∈A,j∈G,
there are O(n2) integral perfect matchings y(1), . . . , y(l) and non-negative coefficients λ1, . . . , λ

l such that
∑l

k=1 λk = 1 and x =
∑l

k=1 λky
(k). Moreover, both the matchings and the coefficients can be found in

polynomial time.

This means that if we find a fractional perfect matching x, we can simply decompose it into a convex
combination of integral perfect matchings and run a lottery over these matchings. The expected utility of
agent i is then ui · xi =

∑

j∈G uijxij . Hence, we will—as Hylland and Zeckhauser did—concern ourselves
primarily with fractional perfect matchings and linear utilities (which we will also just refer to as allocations)
and their properties.

Given that we are now in the case of divisible goods with linear utilities, the key insight of Hylland and
Zeckhauser is to employ the power of pricing by implementing a pseudomarket. Each agent is given one unit
of fake currency and we determine prices on the goods as well as an allocation that together form a market
equilibrium.

Definition 2. A fractional assignment of goods to agents (xij)i∈A,j∈G and non-negative prices (pj)j∈G form
an HZ equilibrium if and only if:

• x is a fractional perfect matching,

• each agent i spends at most their budget, i.e.
∑

j∈G pjxij ≤ 1, and

• each agent i gets a cheapest4 utility-maximizing bundle, i.e.

ui · xi = max







ui · y

∣

∣

∣

∣

∣

∣

∑

j∈G

yj = 1, p · y ≤ 1







,

pj · xi = min







p · y

∣

∣

∣

∣

∣

∣

∑

j∈G

yj = 1, ui · y ≥ ui · xi







.

Theorem 3 (Hylland and Zeckhauser [1979]). An HZ equilibrium always exists. Moreover, if (x, p) is an
HZ equilibrium, then x is envy-free and Pareto-optimal.

Throughout this paper we are always referring to ex-ante envy-freeness and Pareto-optimality. The
formal definitions are given below.

Definition 4. Given some allocation x, agent i has envy towards agent i′ if ui · xi < ui · xi′ . x is envy-free
if no agent has envy towards any other agent.

Definition 5. Given two allocations x and y, y is Pareto-better than x if ui · yi ≥ ui ·xi for all agents i and
ui · yi > ui · xi for some agent i. x is Pareto-optimal if no other allocation is Pareto-better than it.

4The condition that the bundle be cheapest among all utility-maximizing bundles is a technical sublety. It is required in
order to ensure that the resulting equilibrium allocations are Pareto-optimal.
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2.1 Rationality

As mentioned earlier, there are instances on which the unique Hylland-Zeckhauser equilibrium requires an
irrational allocation and prices (Vazirani and Yannakakis [2021]). In contrast, we will show in this section
that there are always EF+PO allocations which are rational. This follows from the PPAD membership proof
given by Caragiannis et al. [2023], however our argument is simpler and introduces some basic facts that will
be useful in later sections. The core observation is that fractional perfect matchings which are envy-free and
Pareto-optimal can be characterized polyhedrally.

Let us start by considering the polytope PPM of all fractional perfect matchings in the given market.

PPM :=







(xij)i∈A,j∈G

∣

∣

∣

∣

∣

∣

∑

j∈G xij = 1 ∀i ∈ A,
∑

i∈A xij = 1 ∀j ∈ G,
xij ≥ 0 ∀i ∈ A, j ∈ G.







It is well-known that Pareto-optimality can be characterized in terms of maximizing along a vector with
strictly positive entries (Zadeh [1963]). Since agents’ utilities are linear and the feasible region is a polytope,
one can obtain the corresponding vector in polynomial time using linear programming.

Lemma 6. x⋆ ∈ PPM is Pareto-optimal if and only if there exist positive (αi)i∈A such that x⋆ maximizes
φ(x) :=

∑

i∈A αiui · xi over all x ∈ PPM. Moreover, if x⋆ is rational, α can be computed in polynomial time.

See Appendix A for the proof. Lemma 6 characterizes the Pareto-optimal allocations. Moreover, the
envy-free allocations themselves form the polytope PEF shown below.

PEF :=















(xij)i∈A,j∈G

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈G xij = 1 ∀i ∈ A,
∑

i∈A xij = 1 ∀j ∈ G,
ui · xi − ui · xi′ ≥ 0 ∀i, i′ ∈ A,

xij ≥ 0 ∀i ∈ A, j ∈ G.















Theorem 7. There is always an EF+PO allocation which is a vertex of PEF and is thus rational.

Proof. We know that at least one EF+PO allocation x⋆ exists since the HZ equilibrium allocation has these
properties. By Lemma 6, x⋆ maximizes φ(x) :=

∑

i∈A αiui · xi over PPM for some strictly positive α vector.
Now consider the linear program max{φ(x) | x ∈ PEF}. PEF is a polytope so let x be a vertex solution

to this LP. Clearly x is envy-free since x ∈ PEF. But since x⋆ is also in PEF and PEF ⊆ PPM, we know that
φ(x) = φ(x⋆). Therefore, by the other direction of Lemma 6, x is Pareto-optimal.

2.2 PPAD-Hardness of Computing EF+PO

We now turn to our main result:

Theorem 8. The problem of finding an EF+PO allocation in a one-sided matching market with linear
utilities is PPAD-hard.

Our proof will reduce the problem of finding an approximate HZ equilibrium to that of finding an EF+PO
allocation. The former was shown to be PPAD hard recently.

Theorem 9 (Chen et al. [2022]). For any c > 0, the problem of finding an ǫ-approximate HZ equilibrium is
PPAD-hard for ǫ ≤ 1/nc.

There are various reasonable notions of ǫ-approximate HZ equilibria which are polynomially equivalent.
We will use the following definition. 5

Definition 10. An assignment (xij)i∈A,j∈G together with non-negative prices (pj)j∈G are an ǫ-approximate
HZ equilibrium if and only if

5Vazirani and Yannakakis [2021] give a proof that this notion is indeed equivalent to the one used by Chen et al. [2022].
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• each agent i satisfies
∑

j∈G xij ∈ [1− ǫ, 1],

• each good j satisfies
∑

i∈A xij ∈ [1− ǫ, 1],

• each agent i spends at most 1, i.e. p · xi ≤ 1,

• each agent i gets a bundle which is at most ǫ worse than an optimal bundle, i.e.

ui · xi ≥ max







ui · y

∣

∣

∣

∣

∣

∣

∑

j∈G

yj = 1, p · y ≤ 1







− ǫ.

Note that Chen et al. assume that all utilities lie in [0, 1] and we will do the same for now. Additionally,
we remark that there is no requirement that the bundle of an agent be (approximately) cheapest. This
condition is necessary to guarantee some form of approximate Pareto-optimality. However, it is not needed
for the hardness proof and removing it only makes the theorem stronger.

Overview of the Reduction

The general strategy of the reduction consists of the following five steps.

Step 1: We will modify the instance to make sure that all EF+PO allocations are approximate HZ
equilibria while making sure that HZ equilibria are not perturbed too much.

Step 2: Starting with an EF+PO allocation x in the modified instance, we will find prices p and budgets
b that make x into a competitive equilibrium using a version of the Second Welfare Theorem.

Step 3: We will use the envy-freeness of x to prove that agents with almost-equal utilities have almost-
equal budgets in a quantifiable sense.

Step 4: Then, we will exploit the structure of our modified instance and the linearity of the agents’
utilities to prove that all budgets are almost equal which makes (x, p) an approximate HZ-
equilibrium.

Step 5: Finally, we will transform (x, p) to an approximate HZ equilibrium (x̂, p̂) in the original in-
stance, finishing the reduction.

Steps 1, 2, and 5 can be carried out in polynomial time as is required in order to get a polynomial
reduction from approximate HZ to EF+PO. Steps 3 and 4 are the crux of the correctness proof. If two
agents have equal utilities and are non-satiated, i.e. they are not getting 1 unit of their maximum utility
goods, it is not hard to see that their budgets must be equal. Otherwise, the agent with the smaller budget
would necessarily envy the budget with the larger budget. Of course, these conditions are very strong and
not typically satisfied between two arbitrary agents in an arbitrary instance which is why a modified instance
and additional ideas are needed.

Step 1: Construction of the Modified Instance

Our modified instance is going to ensure that between any two agents i and i′, there is a sequence of agents
i = i(0), . . . , i(l) = i′ such that the utilities of i(t) and i(t+1) are almost the same for all t. If we can show
that i(t) and i(t+1) must have almost the same budget for all t, then perhaps we can show that i and i′ must
have almost the same budget. Moreover, we will ensure that no agent can be satiated. In order to carry
out this construction without perturbing approximate HZ equilibria too much, we will need to create many
copies of identical agents and identical goods.

Definition 11. If two agents have identical utilities for all goods, we say that they are of the same type.
Likewise, two goods are of the same type if all agents have identical utilities for them.
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Fix a positive integer k ∈ N
+ and some ǫ > 0 such that k is divisible by n and k ≥ n3

ǫ
. Then we will

create a new instance I ′ = (A′, G′, u′) as follows.

1. For each good in G, we add k identical copies of said good to G′. Likewise, for each agent in A, we add
k identical copies of said agent to A′. These copies will allow us to add small amounts of new agents
and goods without perturbing the HZ equilibria in the instance.

2. Add k/n identical goods for which every agent has utility 2 which is double of what they can get from
goods in G. For this reason, we call these awesome goods and their limited quantity is going to prevent
satiation.

3. For each pair {i, i′} of distinct agents in A, we create a sequence of interpolating agents. Order the
types of goods in some arbitrary way {t1, . . . , tn}. Now add up to 1

ǫ
agents by starting with with the

utilities of agent i and slowly increasing / decreasing the utility for t1 goods in steps of ǫ until we reach
the utility that i′ has for t1 goods. Repeat this process for t2, . . . , tn. The final result of this procedure
will be at most n

ǫ
additional agents which slowly interpolate between the utilities of i and i′, one type

of good at a time. See Figure 1.

4. Finally, add dummy agents to A′ until |A′| = |G′|. These agents have identical utilities for all goods.

Note that we added fewer interpolating agents than awesome goods since k > n3

ǫ
.

i

i′

j

j′

uij

uij′

ui′j

ui′j′

ǫ

ǫ

Figure 1: For each pair of agents i and i′ (large red dots) we add interpolating agents (small black dots) to
transition between the utility vector ui and ui′ in small steps. This is done coordinate-wise and this figure
depicts an example with only two goods j and j′.

Lemma 12. Let n′ = |A′| = |G′| be the number of agents / goods in the modified instance. Then n′ ≤ 2kn.

Proof. We add kn goods through identical copies of the agents in A and k/n ≤ kn awesome goods.

Step 2: Finding Prices and Budgets

In the following assume that we are given a rational EF+PO allocation x on I ′ which is encoded with a
polynomial number of bits. Our goal will be to construct an approximate HZ solution on I. We now carry
out Step 2 by finding budgets and prices that make x a competitive equilibrium on I ′. Recall that by
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Lemma 6, there exist positive αi for all i ∈ A′ such that x solves

max
∑

i∈A′

αiui · xi

s.t.
∑

i∈G′

xij = 1 ∀i ∈ A′,

∑

j∈A′

xij = 1 ∀j ∈ G′,

xij ≥ 0 ∀i ∈ A′, j ∈ G′.

Moreover, we can find such αi in polynomial time since we obtained them using an LP in the proof of
Lemma 6. Consider now an optimal solution (p, q) to the dual.

min
∑

i∈A′

qi +
∑

j∈G′

pj

s.t. qi + pj ≥ αiuij ∀i ∈ A′, j ∈ G′

and define bi := αiui ·xi−qi to be budget of agent i. Note that we may assume that p, q ≥ 0 since all utilities
are non-negative. As shown in Lemma 13, x really is a competitive equilibrium with prices p and budgets b.

Lemma 13. For every agent i, we have that bi ≥ 0 and xi is an optimum solution to

max ui · xi

s.t.
∑

j∈G′

xij ≤ 1,

p · xi ≤ bi,

xi ≥ 0.

Proof. First, observe that

∑

j∈G′

pjxij =
∑

j∈G′

(αiuij − qi)xij = αiui · xi − qi = bi

using complimentary slackness and the fact that
∑

j∈G′ xij = 1. So xi is at least feasible and clearly bi ≥ 0
since prices are non-negative.

Now take any feasible solution (yj)j∈G′ of the LP. Then

∑

j∈G′

uijyj ≤
∑

j∈G′

pj + qi
αi

yj ≤
bi + qi
αi

= ui · xi

by dual feasibility and the definition of bi.

Step 3: Almost Equality of Budgets via Envy-Freeness

Our goal will now be to use envy-freeness in order to show that agents’ budgets are approximately equal.
First, we need to prove several simple lemmas which ultimately allow us to prove that no agent is satiated
(in a quantifiable way).

Lemma 14. If j and j′ are goods of the same type, then pj = pj′ .

Proof. Note that every good is fully matched. But if the prices were different, then any agent matched to
the more expensive good would be violating Lemma 13.
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Lemma 15. For any non-dummy agent i, ui · xi ≤ 1.6. In particular i is not satiated.

Proof. If this were not the case, i would need to get at least 0.6 units of an awesome good. But then any
other non-dummy agent must get at least 0.1 units of an awesome good by envy-freeness. Since there are
much more non-dummy agents than awesome goods, this is a contradiction.

Lemma 16. There exists at least one non-dummy agent i with bi > 0.

Proof. There must be at least one non-dummy agent i who buys a positive fraction of an awesome good.
This is because if a non-dummy agent received any amount of an awesome good, this would violate Pareto-
optimality since they could swap goods with a non-dummy agent. But since i is not satiated by Lemma 15,
the price of said awesome good must be positive and so must the agent’s budget.

In particular, we can rescale all α, p, q, and b so that the maximum budget of any non-dummy agent is
exactly 1. In the remainder of this section, we assume that this is the case.

Lemma 17. If i and i′ are agents of the same type, then bi = bi′ .

Proof. Note that by Lemma 15, no agent receives their maximum possible utility. So if bi 6= bi′ , assume
wlog. that bi < bi′ . Then since i′ is optimally spending bi′ and both agents agree on the utilities of all goods,
both agents agree that i′ is getting a higher utility bundle than i. Thus i would be envious.

Now that we have established several basic facts about the budgets and bundles of the agents, we will
turn to our main objective: show that the budgets are almost equal. As mentioned in our high level plan,
we will first show that two agents whose utility vectors are almost equal, must have almost equal budgets.
This is done in Lemmas 18 and 19 below.

Lemma 18. For any non-dummy agent i we have αi ≤ 5n2.

Proof. Consider an awesome good j⋆. By dual feasibility, we know that pj⋆ + qi ≥ αiuij⋆ = 2αi. But on the
other hand, note that

qi = αiui · xi − bi ≤ αiui · xi ≤ 1.6αi

using Lemma 13 and Lemma 15. Comining these inequalities we get pj⋆ ≥ 0.4αi.
Lastly, we note that the k/n awesome goods can only be sold to the non-dummy agents of which there

are at most 2kn and each of which has a budget of at most 1 after rescaling. So the price of the awesome
goods must be at most 2n2 which finishes the proof.

Lemma 19. Let i, i′ be two non-dummy agents whose utilities are identical except for the goods of one type
where they differ by at most ǫ. Then |bi − bi′ | ≤ 5n2ǫ.

Proof. Note that since the ui and ui′ disagree only by epsilon, we have

ui · xi′ ≥ ui′ · xi′ − ǫ ≥ ui′ · xi − ǫ ≥ ui · xi − 2ǫ

using envy-freeness. In fact, depending on whether ui or ui′ has the higher utility, we can only lose an ǫ in
the first or the last inequality. So we actually get ui · xi′ ≥ ui · xi − ǫ.

Now we can compute

bi′ =
∑

j∈G

xi′jpj

=
∑

j∈G

xi′j(αiuij − qi)

= αiui · x
′
i − qi

≥ αiui · x
′ − ǫαi − qi

= bi − ǫαi

and using symmetry and Lemma 18 we conclude |bi − bi′ | ≤ ǫmax{αi, αi′} ≤ 5n2ǫ.
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Lemma 19 is enough to show that the difference in budgets between “close” agents tends to zero for an

inverse-polynomial ǫ. However, between any two distinct agents i, i′ ∈ A, it takes us up to n2

ǫ
agents to

interpolate between them and therefore we cannot give any non-trivial bound on the difference in budget
between arbitrary agents. It seems as if we have not won anything!

Step 4: Bounding the Budget Changes for Interpolating Agents

The key argument that makes our construction work is as follows: we are going to show that along any
chain of interpolating agents, the budgets cannot change more than O(n2) many times due to the linearity
of the utilities. Before we prove this in full generality, it is insightful to consider a simpler situation in which
agents do not have the matching constraint. Without the matching constraint, the optimal thing to do for
any agent is to spend their entire budget on whichever goods have the maximum “bang per buck”, i.e. those
goods j that maximize

uij

pj
.

It is not hard to see that when two agents agree on which goods are maximum bang per buck, then their
budgets must be equal. Otherwise, the agent with the larger budget would be able to buy more of those
goods and thus would be envied by the agent with the smaller budget. When we modify the utility of one
good, the set of maximum bang per buck goods can only change twice. See Figure 2.

u/p

j1 j2 j3 j4

Figure 2: Shown is an agent who is interested in goods j1 to j4 which are plotted by their bang per buck.
If we change only the utility of good j1 (red) and leave the rest the same, there are only three possible sets
of maximum bang per buck goods: {j4}, {j1, j4}, and {j1}. So along any chain of interpolating agents where
we change only the utility for j1 (monotonically), there will be at most two times that the set of maximum
bang per buck goods and with it the budget of the agent can change.

Unfortunately, once we add in the matching constraint which is crucial to our setting, this simple char-
acterization no longer works. The core issue is that with the matching constraint, the optimal bundles of an
agent depend not just on the utilities and prices of the goods but also on the budget of the agent. Since our
goal is to show that agents have identical budgets, this easily leads to circular reasoning. The way around
this is to instead assume that agents have the same optimal bundles for all potential budgets.

Definition 20. For any agent i, define a function θi(t) which maps any t ≥ 0 to the set of all goods j ∈ G
such that yj can be positive in an optimum solution to

max ui · y

s.t.
∑

j∈G′

y ≤ 1,

p · y ≤ t,

y ≥ 0.

(1)

11



In other words, θi(t) are the goods which can participate in an optimal bundle for agent i at budget t.

Lemma 21. Let i, i′ be two agents with θi = θi′ , then bi = bi′ .

Proof. Assume otherwise and let bi < bi′ wlog. We will show that i must envy i′.
Consider LP (1) with t = bi′ which maximizes the utility of agent i but under the higher budget of agent

i′. We claim that y = xi′ is an optimum solution of this LP. To see this, consider the dual as well:

min µ+ ρbi

s.t. µ+ pjρ ≥ uij ,

µ, ρ ≥ 0.

(2)

Now, for any j, we know that if xi′j > 0, then j ∈ θi′ by definition. But since θi′ = θi, this implies
that there is some optimal primal solution with yj > 0. By complementary slackness, this implies that
µ + pjρ = uij . Therefore, xi′ is a feasible solution to the LP which, together with µ and ρ, satisfies the
complementary slackness conditions and is therefore optimal.

Finally, since no agent is satiated (Lemma 15), increasing the budget always increases the optimum value
of the LP, implying that ui · xi < ui · xi′ . This contradicts envy-freeness.

Lemma 22. Let i1, . . . , im be a set of agents such that all agents agree on all utilities except for possibly
one type of good. Then |{θi1 , . . . , θim}| ≤ 2n+ 1.

Proof. We will give a geometric proof of this fact. First, we will need to understand the behavior of any
particular θi(t). We are interested in the goods which can be used in an optimum solution y to (1). By
complementary slackness these are the goods for which the corresponding dual constraint is tight in the dual
(2).

p

u

t

H

Figure 3: Depicted is H and its relationship to optimal bundles. Each point represents a good or collection
of goods with identical price and utility. Gray points are dominated and will never be part of an optimal
bundle. Points on H can be part of an optimal bundle depending on the budget t. A typical case is shown
in which θi(t) consists of the three red goods that lie on the edge of H which corresponds to the tight dual
constraints at budget t.

Now let us interpret this dual geometrically in R
2. The expression µ + ρt represents a line in t with

non-negative slope. The condition that µ + pjρ ≥ uij means that this line lies above the point (pj , uij). In
other words, the dual objective function for a fixed t is optimized by a line which is as low as possible at
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t and yet lies above all the points (pj , uij). This characterizes precisely the upper boundary of the convex
hull of the point set

{(0, 0)} ∪ {(pj , uij) | j ∈ G′} ∪ {(∞,max
j∈G′

uij)}

which we will denote by H.
And together with what we already know from complementary slackness, this gives a nice geometric

characterization of θi. For a given t, consider the point (t, v) ∈ H. If (t, v) is a vertex of the convex hull,
i.e. corresponds to (pj , uij) for some good j ∈ G′, then only this good—or more precisely only goods with
identical price and utility—can participate in an optimum bundle. On the other hand, if (t, v) is not a vertex,
then it lies on some line L that bounds the convex hull (determined by at least two linearly independent
tight dual constraints). θi(t) will then consist of all those goods j such that (pj , uij) lies on L. See Figure 3.

Let us now return to the agents i1, . . . , im and consider what happens to H when we shift a single point
along the y-axis. By the characterization of θ, the only thing we need to know to uniquely determine θ is
which goods lie on H and out of these which goods are vertices of H. Call this data the structure of H.

Let j be the type of good for which the agents have differing utilities. When we remove j, we can
construct a convex hull H′ on the rest of the goods (corresponding to optimal bundles without type j).
Finally, observe that the structure of H only depends on the relationship (below, intersecting, above) which
(pj , uij) has with the at most n lines that bound H′. Since there are only 2n+ 1 possible ways in which a
point can relate to n lines, this proves the claim. See Figure 4.

p

u

H′

H

Figure 4: Shown are several convex hulls H (red) as the red good’s utility is changed. Note that the
structure of H only changes when we cross one of the bounding lines of H – the convex hull without the red
good.

Lemma 23. Let i, i′ be two non-dummy agents. Then |bi − bi′ | ≤ 5ǫn4.

Proof. Consider the chain of interpolating agents between i and i′. There can be at most n types of goods
on which i and i′ have different utilities. So we can divide these agents into at most n groups inside of which
the agents differ only on one good. By Lemma 22, inside each group there are at most 2n + 1 different θ
functions. By Lemma 21, the budgets of agents who have identical θ functions must be identical. And so
there are at most 2n opportunities for θ to change inside each group, totaling to 2n2 changes overall. Each
of these changes in θ corresponds to two agents that differ in their utilities by at most ǫ on one good, thus
Lemma 19 applies and we get |bi − bi′ | ≤ 2n2 · 5ǫn2.
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Step 5: Contracting to the Original Instance

To finish the proof, let us construct our approximate HZ equilibrium (x̂, p̂) on the original instance by
contracting the allocation along the copies of goods and agents. For any i ∈ A, j ∈ G let x̂ij be the average
over all xi′j′ where i′ are the k identical copies of i and j′ are the k identical copies of j in I ′. The parts of
x going to the dummy agents, interpolating goods, and awesome goods are simply dropped.

Theorem 24. If ǫ ≤ 1
5n5 , then (x̂, p̂) is a 3

n
-approximate HZ equilibrium in the original instance I.

Proof. First, observe that as there are k copies of each agent i and only k/n awesome goods, we have that
∑

j∈G x̂ij = [1− 1
n
, 1]. Likewise, the total number of interpolating and dummy agents is k/n and there are k

copies of each good j so
∑

i∈A x̂ij = [1− 1
n
, 1]. This establishes that x̂ is an approximately perfect fractional

matching.
Moreover, it is clear that no agent overspends as no non-dummy agent spends more than 1 in I ′ and we

have only removed allocations during the contraction.
Finally, we need to show that no agent is far from their optimum bundle. For that, let y be an optimum

solution to

max ui · y

s.t.
∑

j∈G

y = 1,

p · y ≤ 1,

y. ≥ 0

By Lemma 23, we know that bi ≥ 1− 1
n
. And so ui ·xi ≥ (1− 1/n)ui · y since we could otherwise scale down

y and violate Lemma 13. Note that it is important here that xi was optimal even among bundles that get
at most one unit of good.

Lastly, we know that ui · x̂i ≥ ui · xi −
2
n
since the only thing that was lost when contracting were up to

1
n
awesome goods as mentioned above. Thus

ui · x̂i ≥ (1− 1/n)ui · y −
2

n
≥ ui · y −

3

n

finishing the proof.

Proof of Theorem 8. If we choose ǫ = 1
5n5 and k = 5n8, then the constructed instance has at most 10n9 agents

by Lemma 12. Given a rational EF+PO allocation with polynomial encoding length, we can construct (x̂, p̂)
as above in polynomial time and get a 3

n
-approximate HZ equilibrium. By Theorem 9, the latter problem is

PPAD-hard.

Lastly, we remark that Theorem 8 can be slightly strengthed to show hardness of computing approxi-
mately envy-free and Pareto-optimal solutions with inverse polynomial ǫ. Lemmas 19 and 21 require minor
modifications for the proof to go through.

2.3 2-EF and 2-IC via Nash Bargaining

Now that we have seen that finding EF+PO allocations is PPAD-hard, this raises the question: what is the
best that we can actually do in polynomial time? It turns out that Nash bargaining comes to the rescue
here. Von Neumann [1953] studied the problem of two or more agents bargaining over a common outcome,
for example how they should split up certain goods amongst themselves. He showed that there is a unique
point that satisfies certain axioms6 and moreover that this point is characterized as maximizing the product
of the agents’ utilities, i.e. the Nash social welfare.

6The four axioms are Pareto-optimality, symmetry, invariance under affine transformations of utilities, and independence of
irrelevant alternatives.
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In our case, this means that the Nash bargaining solution is given by the solution to

max
∏

i∈A

ui · xi

s.t.
∑

j∈G

xij = 1 ∀i ∈ A,

∑

i∈A

xij = 1 ∀j ∈ G,

xij ≥ 0 ∀i ∈ A, j ∈ G.

(3)

Since the objective function is log-concave, general purpose convex programming techniques can be
used to find approximate solutions to this program which is a stark difference to HZ. For this reason,
Hosseini and Vazirani [2022] proposed Nash bargaining as an alternate solution concept for cardinal-utility
matching markets of various kinds. We strengthen the case for Nash bargaining as an HZ alternative by
showing that Nash bargaining points are approximately envy-free and approximately incentive compatible.

Definition 25. An allocation (xij)i∈A,j∈G is α-approximately envy-free or just α-EF if for every i, i′ ∈ A
we have ui · xi ≥

1
α
ui · xi′ . In other words, no agent envies another agent by more than a factor of α.

Theorem 26. Let x be an optimum solution to (3). Then x is 2-EF.

Proof. Assume otherwise, i.e. that there are agents i, i′ ∈ A such that ui · xi′ = αui · xi and α > 2. Then we
consider what happens when we swap some ǫ-fraction of the bundle that i gets with the bundle that i′ gets.
This maintains feasibility.

By doing so, the product of the agents’ utilities changes by a factor of

(ui · xi(1− ǫ) + αui · xiǫ)(ui′ · xi′ (1− ǫ) + ui′ · xiǫ)

(ui · xi)(ui′ · xi′)
.

We now evaluate the derivative of this expression wrt. to ǫ at ǫ = 0 and get

(α− 1)(ui · xi)(ui′ · xi′) + (ui · xi)(ui′ · xi − ui′ · xi′)

(ui · xi)(ui′ · xi′ )
≥ α− 2.

But since α > 2, this implies the derivative is positive, i.e. for small enough ǫ the product of the agents’
utilities is increasing. This contradicts the fact that x is an optimum solution to (3).

We remark that this bound is tight since Aziz and Brown [2020] give an instance in which an agent envies
another agent by a factor of 2. See Figure 5.

i′

i

j′

j

Figure 5: Shown is an example instance which demonstrates that 2-EF is tight for Nash bargaining. Dashed
edges have utility 1, solid edges have utility 2, and missing edges have utility 0. Clearly both agents prefer
j to j′. A simple calculation shows that in the Nash bargaining solution, i will get all of j and thus i′ will
envy i by a factor of 2.
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Definition 27. Consider some mechanism M which maps utility profiles (ui)i∈A to allocations (xi)i∈A.
Then M is called α-incentive compatible or just α-IC if, whenever utilities u and û differ only on agent i,
said agent does not improve by more than a factor of α wrt. to utilities u, i.e. ui ·M(u)i ≥

1
α
ui ·M(û)i. This

means that no agent stands to gain more than a factor of α by misreporting their utilities.

Theorem 28. Any mechanism which maps u to some maximizer of (3) is 2-IC.

Proof. The proof of this result is quite similar to the proof of Theorem 26. Consider the original utility profile
u and a modified utility profile û which differs only on one agent, say agent l ∈ A. Let x be a maximizer of
(3) under utilities u and y a maximizer of (3) under utilities û. Assume that ul · yl = αul · xl. Our goal is
to show that α ≤ 2.

For small ǫ, we now consider the new allocations (1−ǫ)x+ǫy. This allocation cannot increase the product
of the utilities û compared to x by the maximality of x. Thus the derivative wrt. to ǫ of

∏

i∈A

(ui · xi(1− ǫ) + ui · yiǫ)

must be non-positive at ǫ = 0. Performing this computation yields

∑

i∈A

ui · yi − ui · xi

ui · xi

∏

i′∈A

ui · xi ≤ 0

and therefore
∑

i∈A\{l}

(

ui · yi
ui · xi

− 1

)

≤ 1−
ulyl
ulxl

= 1− α.

The same argument applies to the allocation ǫx + (1 − ǫ)y and the utilities û by symmetry, giving the
inequality

∑

i∈A\{l}

(

ûi · xi

ûi · yi
− 1

)

≤ 1−
ûlxl

ûlyl
≤ 1.

Finally note that for all i ∈ A\ {l} we have that ui = ûi so after summing up the two inequalities we get:

∑

i∈A\{j}

(

ui · yi
ui · xi

+
ui · xi

ui · yi
− 2

)

≤ 2− α.

By the AM-GM inequality, we know that a
b
+ b

a
≥ 2 for all a, b > 0 and so this implies that 2−α ≥ 0 which

is precisely what we wanted to show.

This bound is also tight as shown by the following family of instances. See Figure 6 for an example.

Theorem 29. Any mechanism which maps u to some maximizer of (3) is not (2− ǫ)-IC for any ǫ > 0.

Proof. Consider the following instance with n agents and n goods. Let there be n − 1 desirable goods and
one undesirable good. Agent 1 (the agent who will be incentivized to lie) has utility 2 for the desirable goods
and utility 1 for the undesirable good whereas all other agents have utility 1 for the desirable goods and
utility 0 for the undesirable good. See Figure 6 for n = 4.

Let x be the amount that agent 1 is matched to the desirable goods. By symmetry7, all other agents
must be matched n−1−x

n−1 = 1− x
n−1 to the desirable goods. The product of agents’ utilities is therefore

(2x+ (1− x))

(

1−
x

n− 1

)n−1

7One can easily see that in optimum solutions to (3), agents with equal utility vectors must have the same overall utility.
Otherwise the product of their utilities can be improved.
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i j

Figure 6: Shown is an example instance from the proof of Theorem 29 with n = 4. Dashed edges have
utility 1, solid edges utility 2, and missing edges have utility 0. Agent i will be fully allocated to good j by
Nash bargaining even though they would prefer the “desirable” goods. However, agent i can misrepresent
their utilities to look like the other agents therefore get a significant fraction of the desirable goods.

and one may check that this is uniquely maximized at x = 0. In other words, agent 1 gets nothing from the
desirable goods and their utility is 1.

Now agent 1 misreports their utilities as having utility 1 for the desirable good and utility 0 for the
undesirable good, i.e. they report the same utilities as all the other agents. But then, by symmetry, this
means that agent 1 now gets an equal amount of the desirable goods as all the other agents, i.e. they get n−1

n

desirable goods. Thus their actual utility is 2n−1
n

+ 1
n
. Finally, as n → ∞, this implies that any mechanism

based on Nash-bargaining cannot be better than 2-IC.

Panageas et al. [2021] give simple, practical algorithms for computing (1 + ǫ)-approximate8 Nash bar-
gaining points in O(poly(n, 1/ǫ)) time and so we get the following corollary.

Corollary 30. There is a (2 + ǫ)-EF, PO, (2 + ǫ)-IC mechanism for one-sided cardinal-utility matching
markets which runs in O(poly(n, 1/ǫ)) time.

Finally, note that Hosseini and Vazirani [2022] and Panageas et al. [2021] also deal with more general
settings in which the agents’ utilities are not necessarily linear but given by more general (piecewise-linear)
concave functions. The above proofs can be adapted to work for non-linear concave utility functions as well,
though this is beyond the scope of this paper.

3 Two-Sided Matching Markets

A second interesting class of matching markets is that of two-sided markets in which instead of matching
goods to agents we match agents to other agents. These markets can be distinguished based on two cri-
teria: whether the underlying graph is bipartite or not and whether the agents’ utilities are symmetric or
asymmetric.

In a bipartite matching market, we have two sets A,B of agents with |A| = |B| = n and our goal is to
match each agent in A to an agent in B. Every i ∈ A has non-negative utilities uij over j ∈ B and, likewise,
every j ∈ B has non-negative utilities wji over i ∈ A. A classic example of this is school choice: students
have preferences over schools and schools have preferences over students (e.g. based on test scores). By a
slight abuse of notation we use wj · xj to mean

∑

i∈A wjixij .
As mentioned in the introduction, there are also non-bipartite matching markets in which we are simply

given a set of 2n agents and each agent may have utilities over all other agents. In this case one has to be
careful with allowing fractional allocations since fractional perfect matchings cannot always be decomposed
into integral perfect matchings. Still, these markets are a direct generalization of the bipartite case and so

8Approximate in the sense that all utilities are within (1 + ǫ) of the Nash bargaining point.
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our negative results apply to them as well. In the remainder of this section, we will only consider bipartite
two-sided matching markets.

The definitions of Pareto-optimality and envy-freeness extend naturally to this setting.

Definition 31. An allocation in a two-sided matching market is Pareto-optimal if there is no way to increase
the utility of any agent (on either side) without decreasing the utility of another agent (on either side).

Definition 32. An allocation in a two-sided matching market is envy-free if no agent prefers another agent’s
bundle (on their own side) to their own.

Lastly, we will say that a two-sided market has symmetric utilities if uij = wji for all i ∈ A, j ∈ B. This
is mostly of interest when dealing with {0, 1} utilities, in which case a pair of agents is either considered
acceptable or not by both parties.

Bogomolnaia and Moulin [2004] showed that in the case of a symmetric, bipartite two-sided matching
market with {0, 1} utilities, rational EF+PO allocations exist. Computability is not directly addressed in
their paper, though the algorithm by Vazirani and Yannakakis [2021] can be adapted for this setting. This
result was extended to the non-bipartite case by Roth et al. [2005] who proved existence and Li et al. [2014]
who gave a polynomial time algorithm.

3.1 Rationality

As was the case for one-sided markets, we can show that if an EF+PO allocation exists, there must be a
rational EF+PO allocation. The proofs are essentially identical to those in Section 2.1 so we will not restate
them here.

Lemma 33. x⋆ ∈ PPM is Pareto-optimal if and only if there exist positive (αi)i∈A and (βj)j∈B such that
x⋆ maximizes φ(x) :=

∑

i∈A αiui · xi +
∑

j∈B βjwj · xj over all x ∈ PPM. Moreover, if x⋆ is rational, α and
β can be computed in polynomial time.

The set of all envy-free allocations is given by the polytope P2EF:

P2EF :=























(xij)i∈A,j∈G

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈G xij = 1 ∀i ∈ A,
∑

i∈A xij = 1 ∀j ∈ G,
ui · xi − ui · xi′ ≥ 0 ∀i, i′ ∈ A,
wj · xj − wj · xj′ ≥ 0 ∀j, j′ ∈ B,

xij ≥ 0 ∀i ∈ A, j ∈ G.























Theorem 34. If an instance of a two-sided bipartite matching market admits an EF+PO allocation, then
it there is one which is a vertex of P2EF and is thus rational.

We will also need the following characterization in Section 3.3. Note that an allocation is weak Pareto-
optimal if there is no other allocation that improves on the utility of every agent. For a proof see Appendix B.

Lemma 35. x⋆ ∈ PPM is weak Pareto-optimal if and only if there exist non-negative (αi)i∈A and (βj)j∈B

such that
∑

i∈A αi +
∑

j∈B βj > 0 and x⋆ maximizes φ(x) :=
∑

i∈A αiui · xi +
∑

j∈B βjwj · xj over all
x ∈ PPM.

3.2 Non-Existence of EF+PO Solutions

Given that we know that rational EF+PO allocations exist in various matching markets, even two-sided non-
bipartite markets with {0, 1}-utilities, an interesting question is whether such allocations exist for any larger
classes of instances. We will answer this question in the negative by giving rather limiting counterexamples
below.

Per Theorem 34, if an EF+PO allocation exists, then it must be a vertex of the polytope P2EF. Such
allocations can often be found heuristically: repeatedly pick random vectors α ∈ (0, 1]A and β ∈ (0, 1]B and
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maximize
∑

i∈A αiui ·xi+
∑

j∈B βjwj ·xj over P2EF using an LP solver. This produces a candidate solution
x which is Pareto-optimal among the envy-free allocations. We can then check whether x is Pareto-optimal
among all solutions by solving the LP

max
∑

i∈A

ui · yi +
∑

j∈B

wj · yj

s.t.
∑

j∈B

yij = 1 ∀i ∈ A,

∑

i∈A

yij = 1 ∀j ∈ B,

ui · yi ≥ ui · xi ∀i ∈ A,

wj · yj ≥ wj · xj ∀j ∈ B,

yij ≥ 0 ∀i ∈ A, j ∈ B.

In most instances, this finds an EF+PO allocation relatively quickly. By enumerating small instaces we
found the examples below which have the fewest positive entries in their utility matrices.

We remark that given the polyhedral nature of the problem, it is possible to design an exact algorithm
which can determine in finite time whether an instance has an EF+PO allocation and return it: simply
enumerate all vertices of P2EF and test each one for Pareto-optimality using the LP approach mentioned
above. However, this is quite slow in practice due to the exponential number of vertices that P2EF generally
has.

Theorem 36. For two-sided matching markets under asymmetric utilities, an EF+PO allocation does not
always exist, even for the case of {0, 1}-utilities.

Proof. Consider the instance shown in Figure 7a and the Pareto-optimal fractional perfect matching y
depicted in that figure. Let x be some allocation in this instance and assume that x is envy-free. We will
show that y is strictly Pareto-better than x.

First let us show that x24 = 1
3 . Note that we must clearly have x24 ≥ 1

3 as otherwise x25 > 1
3 or x26 > 1

3
and in those cases agent 4 would envy agent 5 or 6 respectively. On the other hand, assume that x24 = 1

3 + ǫ.
Then u2 · x2 ≤ 2

3 − ǫ. But then agent 2 envies either agent 1 or agent 3 since among these three, one must
get at least 2

3 of agents 5 and 6. Thus x24 = 1
3 as claimed.

Next we claim that x14 = 1
3 . Again, we clearly have x14 ≥ 1

3 as otherwise agent 1 would envy agent 2 or
agent 3. But in the other direciton, if x14 = 1

3 + ǫ, then x15 + x16 = 2
3 − ǫ. By the previous claim, we know

that x25 + x26 = 2
3 and so x35 + x36 = 2

3 + ǫ which would imply that agent 2 envies agent 3. Thus x14 = 1
3 .

Finally, since x24 = 1
3 and x14 = 1

3 , we can see that y is Pareto-better than x (regardless of how x assigns
the other edges). In particular, it strictly improves the utility of agent 1 and weakly improves the utility of
all other agents.

Theorem 37. For two-sided matching markets under symmetric utilities, an EF+PO allocation does not
always exist, even in the case of {0, 1, 2}-utilities.

Proof. Consider the instance shown in Figure 7b together with the depicted Pareto-optimal allocation y.
Let x be some envy-free allocation. We aim to show that y is Pareto-better than x.

First, we can see that x12 = x24 because if x12 > x24, then agent 2 would envy agent 1 and if x24 > x12,
then agent 1 would envy agent 2. Next, observe that x24 ≤ 1

3 since otherwise either agent 5 or 6 would envy
agent 4. However, if x24 < 1

3 , then the total utility that agent 4 gets (i.e. w4 ·x4) is strictly less than 1 (since
x14 = x24). But since w41+w42 = 3, at least one agent j ∈ {5, 6} must satisfy w4 ·xj > 1 and agent 4 would
envy that agent. Thus x24 = 1

3 .
Finally, we must have that x25 = x26 = 1

3 since otherwise agent 5 would envy agent 6 or vice versa. This
determines x on all the edges with positive utility. But now observe that y is Pareto-better than x since it
strictly improves the utility of agent 1 and weakly improves the utility of all other agents.
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(a) Each arrow represents a utility 1-edge from one
side (and utility 0 from the other side).
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(b) Dashed edges have utility 1, whereas solid edges
have utility 2.

Figure 7: Shown are counterexamples for {0, 1} asymetric (a) and {0, 1, 2} symmetric utilities. In both
cases the edge labels show a Pareto-optimal solution y and edges which are not drawn have utility 0 (assume
that y is extended to a fractional perfect matching by filling up with utility 0 edges).

3.3 Justified Envy-Freeness

As we have seen in the previous section, in two-sided markets we generally cannot get EF+PO allocations
unless we are using symmetric {0, 1} utilities. Intuitively, the issue is that agents have different entitlements.
Consider a market in which an agent i ∈ A is liked by everyone in B whereas i′ ∈ A is hated by everyone in
B. It will be difficult to avoid a situation in which i envies i′ without sacrificing efficiency.

A way to get around this is to simply formalize this notion of entitlement. In the following, fix some
bipartite two-sided matching market with |A| = |B| = n and utilities u,w.

Definition 38. In an allocation x, agent i ∈ A has strong justified envy towards i′ ∈ A if wji ≥ wji′ for all
j ∈ B and ui · xi < ui · xi′ . Strong justified envy is defined symmetrically for agents in B. An allocation in
which there is no strong justified envy is said to be weak justified envy-free (weak JEF).

Weak justified envy-freeness is a reasonable notion in many settings. For example, in school choice a
student who scores higher on all relevant tests should not envy a student who scores lower. However, it is
somewhat unsatisfying that i is only justified in their envy of i′ when all agents prefer i to i′, even agents
that i does not care about. For this reason, we define a stronger notion of justified envy-freeness.

Definition 39. In an allocation x, agent i ∈ A has justified envy towards i′ ∈ A if

ui · xi <
∑

j∈B
wji≥wji′

uijxi′j

and likewise for agents in B. An allocation in which there is no justified envy is justified envy-free (JEF).

Clearly, strong justified envy implies justified envy and therefore JEF implies weak JEF. We remark that
in the case of an integral matching, being JEF is equivalent to being a stable matching. We will show the
following.

Theorem 40. There always exists a rational allocation which is JEF and weak PO.

The proof uses a limit argument based on an equilibrium notion introduced by Manjunath [2016]. This
equilibrium is conceptually similar to an HZ equilibrium with three crucial differences:

• While each agent is endowed with some amount of fake currency, the value of this currency is not
normalized. Instead there is a price pm that determines the “price of money”.

• Prices are double-indexed, i.e. an agent in B may have different prices for every agent in A.
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• Prices can be negative. They effectively represent transfers between the two sides of agents.

We do not need the full generality of the equilibrium notion of Manjunath and will give a slightly
simplified definition assuming linear utilities. Each agent i ∈ A (and likewise for agents in B) has some
initial endowment ωi > 0 of “money” and they will receive not just an allocation (xij)j∈B but also some
money mi ≥ 0. We assume that their utility is given by ui · xi +mi. Likewise for the agents in B.

Definition 41. An double-indexed price (DIP) equilibrium consists of an assignment (xij)i∈A,j∈B, money
assignments (mk)k∈A∪B, individualized prices (pij)i∈A,j∈B and (qji)j∈B,i∈A, and the price of money pm
satisfying:

1. x is a fractional matching (but not necessarily perfect).

2. The money is redistributed exactly, i.e.
∑

i∈A∪B ωi =
∑

i∈A∪B mi.

3. Each agent i ∈ A (and likewise for agents in B) receives an optimal bundle in the sense that (xi,mi)
maximizes

max ui · xi +mi

s.t.
∑

j∈B

xij ≤ 1,

pi · xi + pmmi ≤ pmωi,

xij ≥ 0 ∀j ∈ B.

4. pij = −qji for all i ∈ A, j ∈ B.

Theorem 42 (Manjunath [2016]). As long as every agent has a positive endowment of money (i.e. ωi > 0),
a DIP equilibrium always exists.

Theorem 43 (Manjunath [2016]). The allocation in a DIP equilibrium is Pareto-optimal.

We require the allocation to be a fractional perfect matching. It is possible to modify the proof of
Theorem 42 directly but in order to be self-contained, we will give a short proof which uses Theorem 42 as
a black box.

Lemma 44. As long as every agent has a positive endowment of money (i.e. ωi > 0), a DIP equilibrium in
which x is a fractional perfect matching always exists.

Proof. For each k ∈ N
+, consider a modified instance in which every zero utility is replaced by 1

k
. Each of

these instances has some DIP equilibrium and clearly in each of these equilibria, the allocation must be a
fractional perfect matching since otherwise this would immediately violate Pareto-optimality.

Since the prices are scale invariant, we can rescale them so that the maximum price is bounded by 1. Then
both allocations, money assignments, and prices are bounded so by compactness one can find a convergent
subsequence of these DIP equilibria. The limiting point is a DIP equilibrium in the original instance with
an allocation which is a fractional perfect matching.

Lemma 45. If ωi =
ǫ
2n for all i ∈ A ∪ B, and (x,m, p, q, pm) is a DIP equilibrium for these budgets, then

for all i, i′ ∈ A (and likewise for agents in B) we have

ui · xi ≥
∑

j∈B
wji≥wji′

uijxi′j − ǫ.
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Proof. Let i, i′ ∈ A. Consider j ∈ B with xi′j > 0 and wji ≥ wji′ . Then we can see that pij ≤ pi′j . If
this were not the case, then since qji = −pij and qji′ = −pi′j , we would have qji < qji′ and thus j could
redistribute some of their bundle from i′ to i decreasing their total expenditure withiout decreasing their
utility. This is a contradiction to the fact that j gets an optimal bundle since they could then increase mj

to get a strictly better bundle.
This means that

∑

j∈B
wji≥wji′

pijxi′j ≤
∑

j∈B
wji≥wji′

pi′jxi′j ≤ pm(ωi′ −mi′) ≤ pmωi′ = pmωi

where we used that all agents have equal endowments of money in the last equality. But since i maximizes
their utility among all bundles which cost at most pmωi, this implies that

ui · xi +mi ≥
∑

j∈B
wji≥wji′

uijxi′j .

Finally note that mi ≤
∑

k∈A∪B mk =
∑

k∈A∪B ωk = ǫ and this finishes the proof. By symmetry the
same holds for all pairs of agents in B.

Proof of Theorem 40. First, let us show that a JEF and weak PO allocation exists. By Lemma 45, we can
pick a sequence x(k) of Pareto-optimal allocations such that

ui · x
(k)
i ≥

∑

j∈B
wji≥wji′

uijx
(k)
i′j − ǫk

for all i, i′ ∈ A (likewise for agents in B) and ǫk → 0. Since the set of all fractional perfect matchings is
compact, we can find a convergent subsequence. Without loss of generality, assume that x(k) converges to
some x⋆. Clearly x⋆ is itself a fractional perfect matching.

The limit point of a sequence of Pareto-optimal allocations is a weak Pareto-optimal allocation. Further-
more, it is easy to see that x⋆ is justified envy-free.

Lastly, we can use a similar argument as in the proof of Theorem 7 to show that a rational JEF + weak
PO allocation exists as well. Simply pick α, β according to Lemma 35 and then find a vertex solution which
maximizes

∑

i∈A αiui · xi +
∑

j∈B βjwj · xj over the polytope of all justified envy-free allocations.

3.4 Justified Envy for Nash Bargaining

As shown in Section 2.3, Nash bargaining yields an approximately envy-free and Pareto-optimal allocation
in the case of one-sided matching markets. One might reasonably conjecture that it achieves approximately
justified envy-freeness in the two-sided setting. We give a counterexample below based on a similar example
due to Panageas et al. [2021] that shows this not to be the case.

Theorem 46. There are instances on n vertices such that in the Nash bargaining solution x, there are agents
i, i′ ∈ A such that all agents in B prefer i to i′ and yet ui · xi =

1
n
ui · xi′ .

Proof. Our instance has three special agents: i, i′ ∈ A and j ∈ B. All agents in B \ {j} have utility 1 for i
but 0 for everyone else in A, including i′. Agents i and i′ both have utility 1 for agent j and utility 0 for all
other agents. The agents in A \ {i, i′} are dummy agents and have identical utility for all agents in B. See
Figure 8.

Consider a Nash bargaining solution x. The agents in B \ {j} must all be allocated an equal amount of
agent i, since otherwise we could increase the product of the agents’ utilities by making them equal. Let y
be this amount. Then we must have xij = 1− (n− 1)y and xi′j = (n− 1)y. Therefore y must maximize

(1 − (n− 1)y) · (n− 1)y · yn−1

which implies that y = n
n2−1 . Then we can compute that ui · xi =

1
n+1 whereas ui · xi′ =

n
n+1 .
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i

i′ j

Figure 8: Shown is an instance (n = 8) with strong justified envy for Nash bargaining. Agents i and i′

compete for j but all agents in B \{j} want i so i gets only a small fraction of j. The gray agents are dummy
agents and have identical utilities for all agents in B.

4 Conclusion

We have resolved the question of whether we can obtain polynomial time mechanisms which give EF+PO
lotteries in cardinal-utility matching markets: we can not unless FP = PPAD. However, this leaves several
interesting open questions:

• Is there a polynomial time algorithm to find α-approximately JEF+PO lotteries in two-sided markets,
for any constant α?

• Is Nash bargaining the best we can do for one-sided markets or is there a way to compute an α-envy-free
and Pareto-optimal lottery for α < 2 in polynomial time?

• Is there a way to compute an envy-free lottery in polynomial time which satisfies some relaxed notion
of Pareto-optimality?
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A Characterization of Pareto-Optimality

Proof of Lemma 6. Clearly if x⋆ maximizes φ(x), then it is a Pareto-optimal allocation since any Pareto-
better allocation x would satisfy φ(x) > φ(x⋆) since α is strictly positive.

For the other direction, note that by Pareto-optimality, x⋆ is a maximizer of the linear program:

max
∑

i∈A

ui · xi

s.t. ui · xi ≥ ui · x
⋆
i ∀i ∈ A,

∑

j∈G

xij = 1 ∀i ∈ A,

∑

i∈A

xij = 1 ∀j ∈ G,

xij ≥ 0 ∀i ∈ A, j ∈ G.

Consider a solution (a, q, p) to the dual program:

min
∑

i∈A

aiui · x
⋆
i +

∑

i∈A

qi +
∑

j∈G

pj (4a)

s.t. aiuij + qi + pj ≥ uij ∀i ∈ A, j ∈ G, (4b)

ai ≤ 0 ∀i ∈ A. (4c)

Then by strong duality
∑

i∈A

ui · x
⋆
i =

∑

i∈A

aiui · x
⋆
i +

∑

i∈A

qi +
∑

j∈G

pj . (5)

Define αi := 1 − ai. Then clearly αi > 0 for all i since ai ≤ 0. Now we want to show that x⋆ is a
maximizer of

max
∑

i∈A

αiui · xi

s.t.
∑

i∈G

xij = 1 ∀i ∈ A,

∑

j∈A

xij = 1 ∀j ∈ G,

xij ≥ 0 ∀i ∈ A, j ∈ G.

But this follows immediately from the fact that (q, p) is an optimal dual solution to this LP: (4b) implies
feasibility and (5) implies optimality.

B Characterization of Weak Pareto-Optimality

Proof of Lemma 35. The proof is quite similar to the proof of Lemma 6. Clearly if x⋆ maximizes φ(x), then
it is a Pareto-optimal allocation since any strong Pareto-better allocation x would satisfy φ(x) > φ(x⋆) since
at least one αi or βj is positive.
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For the other direction, note that by weak Pareto-optimality, (x⋆, 0) is a maximizer of the linear program:

max t

s.t. ui · xi − t ≥ ui · x
⋆
i ∀i ∈ A,

wj · xj − t ≥ wj · x
⋆
j ∀j ∈ B,

∑

j∈B

xij = 1 ∀i ∈ A,

∑

i∈A

xij = 1 ∀j ∈ B,

xij ≥ 0 ∀i ∈ A, j ∈ B,

t ≥ 0.

Consider an optimum solution (α, β, p, q) to the dual program:

min
∑

i∈A

qi +
∑

j∈B

pj −
∑

i∈A

αiui · xi −
∑

j B

βjwj · xj

s.t. qi + pj − αiuij − βjwji ≥ 0 ∀i ∈ A, j ∈ B,
∑

i∈A

αi +
∑

j∈B

βj ≥ 1,

αi ≥ 0 ∀i ∈ A,

βi ≥ 0 ∀j ∈ B

Then we may see that x⋆ is an optimum solution to

max
∑

i∈A

αiui · xi +
∑

j∈B

βjwj · xj

s.t.
∑

i∈B

xij = 1 ∀i ∈ A,

∑

j∈A

xij = 1 ∀j ∈ B,

xij ≥ 0 ∀i ∈ A, j ∈ B.

since (p, q) gives an optimum dual solution.
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