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Abstract

The Shifted Boundary Method (SBM) is applied to compressible Euler flows, with and without shock disconti-
nuities. The SBM belongs to the class of unfitted (or immersed, or embedded) finite element methods and avoids
integration over cut cells (and the associated implementation/stability issues) by reformulating the original boundary
value problem over a surrogate (approximate) computational domain. Accuracy is maintained by modifying the orig-
inal boundary conditions using Taylor expansions. Hence the name of the method, that shifts the location and values
of the boundary conditions. We specifically discuss the advantages the proposed method offers in avoiding spurious
numerical artifacts in two scenarios: (a) when curved boundaries are represented by body-fitted polygonal approxi-
mations and (b) when the Kutta condition needs to be imposed in immersed simulations of airfoils. An extensive suite
of numerical tests is included.
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1. Introduction

In this article, the Shifted Boundary Method (SBM) is applied to compressible Euler equations, first in the case
of smooth flows problems without discontinuities and then in the case of flows with strong shocks. The SBM falls in
the category of immersed (or embedded, or unfitted) finite element methods, in which the computational grids do not
conform to the geometry of the shapes to be simulated. The idea of immersing shapes in computational grids can be
beneficial when the geometrical complexity becomes a dominant factor in simulations.

Immersed methods for compressible flow have been widely used in the context of finite difference and finite
volume methods, after the initial developments in the context of the incompressible Navier-Stokes equations [1–3].
We attempt to mention the most relevant contributions to this work, knowing that ours could only be an incomplete
account: we focus almost exclusively on contributions on compressible flows, because of the immense literature on
immersed/embedded methods.

Cartesian Cut-Cell finite volume methods [4–8] became popular in the late ’90s, as a way to attack very complex
geometry computations of compressible and incompressible flows. At about the same time, so-called Discrete Forcing
Methods [9] were proposed. In Discrete Forcing Methods, the immersed boundary is modeled through appropriate
forcing terms that sharply enforce the embedded boundary conditions, as an alternative of the Immersed Boundary
Method of Peskin [1]. Shortly after the Ghost-Cell Method was proposed [10, 11], in which boundary conditions are
applied using fictitious cells in proximity of the embedded boundary. Parallel to these developments are Cartesian
Embedded Methods [12–14], which share some similarity in the implementation. In a different thread of develop-
ments, Overset Grids Methods [15, 16] (akin the Chimera Method [17–19] implemented in the NASA OVERFLOW
solver [20]) were extended to compressible flow problems. While most of the previous developments utilize Cartesian
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or mapped Cartesian grids, the FIVER algorithm [21–23] is a prime example of embedded finite volume methods
constructed on fully unstructured grids.

The literature is much scarcer in the context of finite element methods for compressible flows. The Implicit Bound-
ary Method, a type of CutFEM method, was recently explored [24, 25]. CutFEM discretizations, although appeared
earlier than the Implicit Boundary Method, have only recently been applied to systems of hyperbolic conservation
laws, typically leveraging the Discontinuous Galerkin (DG) framework [26–28]. CutFEMs proposed to date rely on
XFEM-type data structures to integrate the governing equations on cut cells, a strategy that produces a number of
challenging situations. First, if particularly small cut cells are produced, cutFEMs may induce numerical instabilities
that need stabilization or linear system of equations that have poor condition numbers. To obviate the occurrence of
these numerical instabilities in unfitted finite element methods, Burman [29] introduced the ghost penalty method,
in which the variational form is stabilized by introducing a penalization of the solution gradients at the interface
separating cut and uncut elements. A different approach introduced for B-spline variational formulations, known as
Extended B-splines [30, 31], involves eliminating via an extrapolation procedure cut B-splines with small support.
This technique was applied to the Navier-Stokes equations for moving boundary problems in [32] and [33]. One
additional challenge for cutFEM method is somewhat complex data structures and integration procedures on the cut
cells, where the canonical finite element approaches need to be forfeited. Sub-triangulations and adaptive quadratures
are often used [34, 35], leading to a non-negligible portion of the overall wall-clock time is spent in the treatment of
the embedded/immersed boundary.

To obviate the problematic issues mentioned in the application of the cutFEM paradigm, the SBM eliminates cut
cells altogether from the simulation. In the SBM, the location where boundary conditions are applied is shifted from
the true to a surrogate boundary, and, at the same time, modified (shifted) boundary conditions are applied in order to
avoid a reduction in the convergence rates of the overall formulation. In fact, if the boundary conditions associated to
the true domain are not appropriately modified on the surrogate domain, only first-order convergence is to be expected.
The appropriate (modified) boundary conditions are then applied weakly, using a Nitsche strategy. This process yields
a method which is simple, robust, accurate and efficient.

The SBM was proposed for the Poisson and Stokes flow problems in [36] and was generalized in [37] to the
advection-diffusion and Navier-Stokes equations. The SBM was extended to problems involving internal interfaces
in [38], and the benefits of its application in the context of reduced order modeling was analyzed in [39–41]. Further
rigorous mathematical analysis was pursued in [42, 43] for the Poisson and the Stokes flow problems, and in [42]
for the treatment of general domains with corners. A high-order version of the SBM was presented in [44], together
with its mathematical analysis, for the Poisson and Stokes flow problems. An arbitrary-order penalty-free version of
the SBM for Poisson and linear elasticity problems appeared in [45]. The SBM was extended to complex-geometry
problems in linear and nonlinear elasticity in [46, 47] and to Iso-Geometric Analysis (IGA) in [48].

For problems involving hyperbolic systems of equations, much less work has been done. A recent effort in this
direction [49] extended the SBM to the equations of acoustics and shallow water flows. In this reference, the authors
documented the handling of various types of wave structures at the embedded boundaries and tested the SBM for
problems with relatively weak discontinuities.

As already mentioned, the present work is focused on the Euler equations of inviscid compressible flow, with par-
ticular emphasis on the interplay between the SBM and the hyperbolic wave structure near boundaries. For example,
we numerically analyze for the first time how strong shocks interact with the geometrically complex features of the
SBM approximate boundary.

The baseline numerical method we use is the stabilized finite element method (FEM) described in [50, 51], which
relies on globally continuous, piecewise-linear basis functions. The possible presence of strong shocks is controlled by
means of two of the most popular and recent discontinuity capturing approaches [52] for finite elements: the entropy
viscosity proposed by Guermond et al. [53, 54] and a Lax-type viscosity equipped with a modified Ducros sensor [55,
56]. We compare the SBM results with benchmark conforming mesh computations (CMC, i.e., computations using
body-fitted grids). An extensive suite of numerical examples shows that the SBM and CMC yield very similar results
if the mesh resolution is comparable, whether the artificial viscosity is active or not. Similar results can be expected
when problem-specific and more sophisticated discontinuity-capturing operators are used when flux limiting strategies
are used. We want to stress that it is not the aim of this article to find the most accurate discontinuity-capturing operator
to be combined with the SBM, but instead to show that the SBM performs with the same accuracy and robustness of
a body-fitted FEM on grids of similar resolutions.
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We also discuss additional advantages of the SBM framework, even when the grids are conforming (body-fitted).
First of all, the SBM can improve the accuracy of lower-order body-fitted discretizations in the presence of curved
boundaries. A polygonal interpolation of the boundary might induce spurious effects, but the SBM can easily cure
those, by perturbing the boundary conditions and keeping into account the true geometry of boundaries. More details
are offered in Section 3.5 and the numerical examples in Section 4.3 and Section 4.4. Second, the solution of inviscid
compressible flows may lose uniqueness at a geometrical singularity, such as at the trailing edge of an airfoil. In
conventional aerodynamics, one often needs to deliberately impose the Kutta condition [57] of flow continuity at the
trailing edge, either implicitly, aligning body-fitted grids with the camber line, or explicitly, using additional numerical
instruments [58]. In the SBM, instead, we implement the Kutta condition on arbitrary immersed grids by extending
the camber line of an airfoil as a slip interface beyond the trailing edge (see Section 4.5 for more details).

This paper is organized as follows: Section 2 briefly reviews the governing equations and the underlying FEM
for conforming mesh computations with weak enforcement of various boundary conditions; Section 3 presents the
general framework of the SBM and the detailed derivation of shifted wall boundary conditions, as well as the use
of the SBM to improve the accuracy of CMCs over curved geometries (SBM+CMC); Section 4 assesses the numer-
ical performance of the proposed method, by comparing the SBM, the CMC, and the SBM+CMC for a number of
challenging benchmark tests and, finally, Section 5 summarizes conclusions and future directions.

2. Governing equations, a baseline body-fitted variational formulation, and boundary conditions

2.1. Governing equations
Let Ω be a connected open set in Rd with Lipschitz boundary Γ = ∂Ω, and let nnn denote the outer-pointing normal

to Γ. The first-order form of the hyperbolic system of the compressible Euler equations reads:

UUU ,t +∇ · (UUU ⊗uuu(UUU)+GGG(UUU))+BBB = 000 , (2.1)

where UUU(xxx, t) : Ω×R+ 7→Rm is the vector of conserved variables, with m = d+2 and aaa⊗bbb = aaabbbT , that is (aaa⊗bbb)i j =
ai b j. Here, uuu = uuu(UUU) ∈ Rd denotes the advection velocity, GGG = GGG(UUU) ∈ Rm×d the non-advective part of the flux, and
BBB = BBB(xxx, t;UUU) ∈Rm a source term. In particular, the divergence ∇· of a matrix CCC ∈Rm×d applies to the second index,
that is ∇ ·CCC = ∂ jCi j. UUU and GGG are defined as

UUU =


ρ

ρuuu
ρE

 =



ρ

ρu1
...

ρud
ρE


, GGG(UUU) =

 000T

pIIId
puuuT

 , (2.2)

where curly brackets indicate vectors and square brackets indicate matrices. We favor the vector notation to encompass
both the two- and three-dimensional cases, that will both be explored in the numerical examples. More specifically,
ρ is the density, uuu ∈ Rd is the velocity, E is the specific total energy, IIId ∈ Rd×d is the identity matrix in dimension d,
and wwwT indicates the row-vector transpose of a column-vector www ∈ Rd .

The total energy is the sum of the internal and kinetic energy according to E = e+ uuu · uuu/2. The specific internal
energy e, the density ρ , and the pressure p are related by the equation of state p = p(ρ,e) of the fluid, assumed for
simplicity to be an ideal gas:

p = (γ −1)ρe , (2.3)

with γ the isentropic exponent. Equation (2.1) can be more compactly written as:

UUU t +∇ ·FFF(UUU)+BBB = 000 , (2.4)

with FFF(UUU) :=UUU ⊗uuu(UUU)+GGG(UUU), but we prefer the former to the latter in this work.
Initial conditions at t = 0 can be specified for the solution vector field UUU , in terms of an initial velocity uuu0, and two

fields out of the triplet initial pressure p0, density ρ0, and internal energy e0, which are connected by (2.3). Namely:

UUU(xxx, t = 0) =UUU0 . (2.5)

The discussion about boundary conditions, which is central to the present paper, is postponed until Section 2.3.
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2.2. Baseline body-fitted variational formulation
As a point of departure in the discussion, we consider now a Galerkin formulation constructed on a computational

grid fitted to all boundaries (body-fitted grid/mesh) of the domain Ω. Let T h be an admissible and shape-regular
tessellation of Ω, on which the following piecewise-linear, globally continuous, finite element trial space S h and test
space V h are defined:

S h = V h = {WWW h ∈ (C (Ω))m : WWW h
|T ∈ (P1(T ))m, ∀T ∈ T h} , (2.6)

where P1(T ) is the set of linear polynomials over the element T and (C (Ω))m is the set of functions with values in
Rm that are continuous over the closure of the set Ω. We choose the trial space S h to coincide with the test space V h

since boundary conditions will be enforced weakly. In particular, we consider the following variational formulation
of (2.2):

Find UUUh : R+ 7→ V h such that for all t ∈ R+ and WWW h ∈ S h:

(WWW h,UUUh
,t)Ω − (∇WWW h,UUUh ⊗uuu(UUUh)+GGG(UUUh))Ω +(WWW h, BBBh)Ω +Bbc(WWW h,UUUh)

+Bdc(WWW h,UUUh)+Bvms(WWW h,UUUh) = 0 , (2.7)

in which integration by parts has been applied to the flux term. The bilinear forms Bbc, Bdc, and Bvms implement,
respectively, the boundary conditions/contributions, a shock/discontinuity-capturing operator, and the variational mul-
tiscale stabilization (or VMS term, required for the numerical stabilization of equal-order interpolation approxima-
tions).

2.3. Boundary conditions
We consider next the imposition of various boundary conditions. Let the boundary be partitioned with the non-

overlapping decomposition ∂Ω = ΓI ∪ΓO ∪ΓS ∪ΓF , where the subscripts “I”, “O”, “S”, and “F” stand for inlet,
outlet, slip, and far-field boundaries, respectively. Furthermore, ΓI = ΓI;sub ∪ΓI;sup and ΓO = ΓO;sub ∪ΓO;sup, where
the subscript “sub” indicates that flow is subsonic (i.e., ||uuu|| < cs with cs = cs(UUU) =

√
γ p/ρ the isentropic speed of

sound) while the subscript “sup” indicates that the flow is supersonic (i.e., ||uuu||> cs).
Far-field boundary conditions are introduced to prevent undesirable wave reflections at a distance from bodies that

are immersed in an airflow, like airfoils. In the far field there may not be a fixed number of characteristics traversing
the boundary and we handle this situation by introducing a numerical flux between the numerical solution and a
prescribed ambient fluid state vector. This procedure is similar to what is usually done in finite volume methods [59]
or residual redistribution methods [60].

Then, the boundary term Bbc(·, ·) can be decomposed as

Bbc(·, ·) = BI;sub(·, ·)+BI;sup(·, ·)+BO;sub(·, ·)+BO;sup(·, ·)+BS(·, ·)+BF(·, ·) , (2.8)

where each term is discussed below:

• At a supersonic inlet ΓI;sup, all characteristics leave the domain and the full fluid state vector is specified, as

UUU =UUUb , ∀xxx ∈ ΓI;sup , (2.9)

with the corresponding boundary term given by:

BI;sup(WWW h,UUUh) = ⟨WWW h, (UUUb ⊗uuu(UUUb)+GGG(UUUb))nnn⟩ΓI;sup . (2.10)

• At a subsonic inlet ΓI;sub, all but one characteristic exit the boundary, and consequently all but one of the
associated Riemann invariants need to be specified. Thus, we impose the boundary condition

ρ = ρb , uuu = uuub , ∀xxx ∈ ΓI;sub , (2.11)

with the corresponding boundary term given by

BI;sub(WWW h,UUUh) =

〈
WWW h ⊗nnn ,


ρb

ρb uuub
γ p(UUUh)

γ−1 + ρb uuub·uuub
2

⊗uuub +


000T

p(UUUh) IIId
p(UUUh)uuuT

b


〉

ΓI;sub

. (2.12)
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• At a supersonic outlet ΓO;sup, all characteristics exit the boundary and consequently no boundary data is re-
quired. The boundary term is simply a result of integration-by-part of the flux term

BO;sup(WWW h,UUUh) = ⟨WWW h ⊗nnn ,UUUh ⊗uuu(UUUh)+GGG(UUUh)⟩ΓO;sup . (2.13)

• At a subsonic outlet ΓO;sub, only one characteristic exits the boundary and a single Riemann invariant needs to
be specified. Common choices involve imposing the pressure or the dynamic pressure (the latter is especially
favored in many aerodynamics applications). Here we illustrate the idea by specifying

p = pb , ∀xxx ∈ ΓO;sub , (2.14)

so that the boundary term now reads

BO;sub(WWW h,UUUh) =

〈
WWW h ⊗nnn ,


ρ(UUUh)

ρ(UUUh)uuu(UUUh)
γ pb
γ−1 +

ρ(UUUh)uuu(UUUh)·uuu(UUUh)
2

⊗uuu(UUUh)+

 000T

pb IIId
pb uuu(UUUh)T


〉

ΓO;sub

. (2.15)

• At a slip boundary ΓS, the normal component of the velocity is specified:

uuu ·nnn = un , ∀xxx ∈ ΓS . (2.16)

Such boundary conditions include a fixed wall, a plane of symmetry with un ≡ 0, or a moving boundary,
either rigid or prescribed by structural motion in the context of fluid-structure interaction problems. Unlike the
previous boundary conditions, we also introduce a penalty term, to improve numerical stability [61]:

BS(WWW h,UUUh) =

〈
WWW h, un UUUh +αslip cs(UUUh)


0

ρ(UUUh)(uuu(UUUh) ·nnn−un)nnn
0

+


0

p(UUUh)nnn
p(UUUh)un


〉

ΓS

. (2.17)

Here cs(UUUh) is the local speed of sound and αslip = O(1) is a parameter that is fixed to αslip = 0.2 in all tests,
unless otherwise stated.

• Lastly, at a far-field boundary ΓF , we assume the entire ambient fluid state vector UUUb is prescribed and the
boundary term is given by

BF(WWW h,UUUh) =
〈

WWW h, FFFRoe(UUUh,UUUb; nnn)
〉

ΓF
, (2.18)

where FFFRoe(·, ·;nnn) is the classical Roe flux in the direction nnn [62]. Alternatively, other numerical fluxes can be
used instead of the Roe flux, see for example the text on approximated Riemann solvers [59].

2.4. The discontinuity-capturing operator

As shocks appear frequently in compressible inviscid flows, we use artificial viscosities to capture discontinuities,
implemented as

Bdc(WWW h,UUUh) = (∇WWW h, νh∇UUUh)Ω , (2.19)

where νh is the artificial viscosity that scales also with the local element size h. Two recently proposed artificial
viscosities are considered in this work. For most computations we adopt the residual-consistent entropy viscosity
proposed by Guermond et al. [53, 54], which is strong in the vicinity of shocks and vanishes in smooth regions of
the flow, where second-order accuracy is then maintained. However, when there are complex wave structure or very
intense shocks, the residual-consistent entropy viscosity requires specific tuning, and we preferred in this case to use
a simpler Lax-type viscosity, equipped with a modified Ducros sensor/limiter [55, 56]. This specific sensor/limiter
targets the viscosity only in regions where the flow is compressive. We describe these two approaches next.
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2.4.1. The entropy viscosity

Denote the entropy of Euler flow by S = ρ

γ−1 log
(

p
ργ

)
, then (S,Suuu) is an entropy pair and the entropy residual:

ResS = St +∇ · (Suuu)+(S,UUU )T BBB (2.20)

is zero in smooth-flow region and it is positive across a shock. At the semi-discrete level, for each element T ∈ T h

we compute the semi-discrete entropy residual:

Resh
S(xxxT ) := S(UUUh(xxxT )),t +∇ · (S(UUUh(xxxT ))uuu(UUUh(xxxT )))+(S,UUU (UUUh(xxxT )))

T BBBh , (2.21)

where xxxT is the centroid of T . The approximation to the temporal derivative in the first term on the right hand side
follows the same procedure in the predictor/multi-corrector method described later in Section 2.5. A provisional
viscosity νent

h is then calculated for the element T as:

ν
ent
h = ν

ent
T :=

centh2
T

∣∣Resh
S(xxxT )

∣∣∣∣∣∣S−S
∣∣∣∣

∞

, (2.22)

where S =
∫

Ω
S(UUUh(xxx))dxxx/ |Ω| is the mean entropy over the entire domain and

∣∣∣∣S−S
∣∣∣∣

∞
= maxA

∣∣S(UUUh(xxxA))−S
∣∣,

with A running over all nodes in Ω and xxxA the nodal coordinates. In general, the tunable parameter cent = O(1)
depends on the choice of entropy pair and for the one used here we fix cent = 4.0 in all computations. To avoid
overly large artificial viscosity at strong shocks due to large entropy residual and to avoid large artificial viscosity
in a single layer of elements, the provisional viscosity is first capped by the classical Lax viscosity νLax

h = νLax
T :=

1
2 hT

[∣∣∣∣uuu(UUUh(xxxT ))
∣∣∣∣+ cs(UUUh(xxxT ))

]
and then smoothened to obtain the final entropy viscosity:

νh = S(ν̃h) , ν̃h = min
(
ν

ent
h ,νLax

h
)
. (2.23)

Here S is a smoothing operator defined as follows. First, we compute at each node A a nodal viscosity ν̂A that is the
maximum of all ν̃h|T such that A is a vertex of the element T ; next the smoothed elemental viscosity νT is computed
as the average of nodal viscosities ν̂A, where A is a vertex of T .

2.4.2. The Lax viscosity with a Ducros-type sensor/limiter
While the entropy residual viscosity does an excellent job in localizing the discontinuity capturing operator near

shocks, in our experience it is too aggressive for problems with complex wave structure and very strong shocks, and
requires more sophisticated tuning. In these cases, we prefer a more conservative artificial viscosity that activates the
Lax viscosity in compressive flow regions (which includes shocks), using a Ducros-type sensor:

νh = max

0,
∇ ·uuu√

(∇ ·uuu)2 + |cs|2

cLaxh(||uuu||+ cs) , (2.24)

where cLax ≤ 0.5 is a tunable parameter.

Remark 2.1 (On the use of artificial viscosities). We point out that the object of our contribution is not to find the
perfect artificial viscosity to use in computations, but to show the performance of the shifted boundary approach in
combination with the prevailing shock capturing operators for finite element discretizations.

2.5. Explicit predictor/multi-corrector time marching method
Let tn and tn+1 = tn +∆tn be two consecutive times instants in the simulation. Denoting the discrete solution at t j

by UUUh
j , with j = n,n+1, we describe below an explicit predictor/multi-corrector (PMC) time marching method. The

iterate UUUh;(k)
n+1 is recursively constructed for iteration k = 0,1, · · · ,kmax, according to(

WWW h,
UUUh;(k+1)

n+1 −UUUh
n

∆tn

)
Ω

− (∇WWW h,UUUh;(k)
n+1/2 ⊗uuu(k)n+1/2 +GGG(UUUh;(k)

n+1/2))Ω +(WWW h, BBB(k)
n+1/2)Ω
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+Bvms(WWW h,UUUh;(k)
∗ )+Bdc(WWW h,UUUh;(k)

n+1/2)+Bbc(WWW h,UUUh;(k)
n+1/2) = 0 , (2.25)

where UUUh;(0)
n+1 = UUUh

n, UUUh;(k)
n+1/2 = (UUUh;(k)

n+1 +UUUh
n)/2, uuu(k)n+1/2 = uuu(UUUh;(k)

n+1/2), and BBB(k)
n+1/2 is defined similarly. In this work,

kmax = 3 is used for all numerical tests. The asterisk in Bvms(WWW h,UUUh;(k)
∗ ) indicates that Bvms(WWW h, ·) depends on

an appropriate nonlinear expression depending on UUUh
n and UUUh;(k)

n+1 , as shown in the next section. The time step ∆tn is
determined by the standard Courant condition:

∆tn = αcfl min
T∈T h

 min
A∈N (T )

h2
T

ν2
T +

√
ν2

T +(
∣∣∣∣uuu(UUUh

n;A)
∣∣∣∣+ cs(UUUh

n;A))
2h2

T

 , (2.26)

where the first minimum runs over all elements T in the mesh, the second minimum runs over the set N (T ) of nodes
A of element T , hT denotes the size of element T computed as the diameter of the largest circle/sphere inscribed to
the element, νT is the artificial viscosity computed for the element T (see the previous section), UUUh

n;A is the numerical
solution at node A and time instant tn, and cs is the speed of sound, previously defined. The parameter αcfl designates
the user-specified Courant number with a range between zero and one for an explicit time integrator. This formula is
motivated by the one derived and studied in [50], and we pick αcfl = 0.9 for all numerical tests in the current work.

2.6. The variational multiscale stabilization term

The Variational Multiscale Stabilization (VMS) was originally designed to stabilize standard Galerkin discretiza-
tions of the transport equations [63–66]. Later on, it was applied to the compressible Euler equations and hyperbolic
systems of conservation laws, including moving boundaries [50, 51, 67–77]. The basic idea is to take into account the
effect of an under-resolved component of the solution UUU ′ in the flux term FFF(UUUh;(k)

n+1/2). In particular, instead of using

FFF(UUUh;(k)
n+1/2) =UUUh;(k)

n+1/2 ⊗uuu(UUUh;(k)
n+1/2)+GGG(UUUh;(k)

n+1/2), one considers FFF(UUUh;(k)
n+1/2 +UUU ′), introducing the linearization

(∇WWW h, FFF(UUUh;(k)
n+1/2 +UUU ′))Ω ≈ (∇WWW h, FFF(UUUh;(k)

n+1/2))Ω +(∇WWW h, FFF ,UUU (UUU
h;(k)
n+1/2)UUU

′) .

By scaling arguments and in analogy with a posteriori error estimation, a typical model for UUU is given as

UUU ′ =− ∆tn
2αcfl

Res(UUUh;(k)
∗ ) . (2.27)

Here αcfl ∈ (0, 1) is the Courant number that is used to compute the time step size (hence ∆tn/αcfl is approximately the
element size times the maximum characteristic speed), and Res(UUUh;(k)

∗ ) is the residual of the Euler equations, written
only in terms of the coarse-scale component of the solution UUUh;(k)

∗ , namely:

Res(UUUh;(k)
∗ ) =

UUUh;(k)
n+1 −UUUh

n

∆tn
+∇ ·FFF(UUUh;(k)

n+1/2)+BBB(k)
n+1/2 (2.28)

Hence the VMS term in (2.7) is given by:

Bvms(WWW h,UUUh;(k)
∗ ) =

(
∇WWW h,

∆tn
2αcfl

FFF ,UUU (UUU
h;(k)
n+1/2)Res(UUUh;(k)

∗ )

)
Ω

. (2.29)

3. The Shifted Boundary Method

We describe now the general strategy by which immersed boundary condition are enforced with the SBM, and the
implementation of boundary conditions specific to the Euler equations.
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Γ̃h

Ω̃h

Ω

Γ

Ω\ Ω̃h

Ω̃h ⊂ Ω

(a) The true domain Ω, the surrogate domain Ω̃h ⊂ Ω and their boundaries
Γ̃h and Γ.

Γ̃h Γ

ddd nnn

τττ

(b) The distance vector ddd, the true
normal nnn and the true tangent τττ .

Figure 3.1: The surrogate domain, its boundary, and the distance vector ddd.

3.1. The true domain, the surrogate domain and maps
Recall that Ω is a connected open set in Rd of Lipschitz boundary Γ = ∂Ω with normal nnn and consider a closed

domain D such that clos(Ω)⊆D . We introduce a family T h of admissible and shape-regular tessellations of D (note
that before T h was used to indicate a family of tessellations of Ω). We indicate by hT the size of element T ∈T h and
by h the piecewise constant function such that h|T = hT . We restrict each triangulation by selecting those elements
that are contained in clos(Ω), i.e., we form

T̃h := {T ∈ T h : T ⊂ clos(Ω)} ,

which identifies the surrogate domain

Ω̃
h := int

 ⋃
T∈T̃h

T

⊆ Ω ,

with surrogate boundary Γ̃h := ∂ Ω̃h and outward-oriented unit normal vector ñnn to Γ̃h. Obviously, T̃h is an admissible,
shape-regular triangulation of Ω̃h (see Figure 3.1a). We now introduce a mapping

MMMh : Γ̃
h → Γ , (3.1a)

x̃xx 7→ xxx , (3.1b)

which associates to any point x̃xx ∈ Γ̃h on the surrogate boundary a point xxx = MMMh(x̃xx) on the physical boundary Γ.
Whenever uniquely defined, the closest-point projector of x̃xx upon Γ is a natural choice for MMMh, as shown e.g. in
Figure 3.1b. Note that, in general, nnn(MMMh(x̃xx)) , ñnn(x̃xx). Through MMMh, a distance vector function dddMMMh can be defined as

dddMMMh(x̃xx) = xxx− x̃xx = [MMMh − III ](x̃xx) . (3.2)

For the sake of simplicity, we set ddd = dddMMMh where ddd = ∥ddd∥ννν and ννν is a unit vector. Similarly, we will write nnn instead
of nnn(MMMh(x̃xx)) and ñnn instead of ñnn(x̃xx), whenever there is no ambiguity.

Remark 3.1. If xxx = MMMh(x̃xx) does not belong to corners or edges, then the closest-point projection implies ννν = nnn, where
nnn was defined as the outward pointing normal to Γ. More sophisticated choices may be locally preferable in the
presence of corners or edges and we refer to [42] for more details.

Remark 3.2. The map MMMh and the distance ddd can be defined with strategies other than the closest-point projection,
such as level sets, for which ddd is defined by means of a signed distance function.
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In case the boundary is partitioned as Γ = clos
(
∪N

j=1Γ j

)
, with Γ j ∩ Γk = /0 for any j , k, also the surrogate

boundary is partitioned as Γ̃h = clos
(
∪Ñ

j=1Γ̃h
j

)
, with Γ̃h

j ∩ Γ̃h
k = /0 for any j , k, using again the map MMMh:

Γ̃
h
j = {ẽ ⊆ Γ̃

h : MMMh(ẽ) ⊆ Γ j} , (3.3)

where ẽ is an edge/face of the grid on the surrogate domain. It will also be convenient to introduce the projections of
a vector www along the normal nnn and tangent τττ to the true boundary, namely:

πππnnn(www) := (www ·nnn)nnn , πππτττ(www) := www−πππnnn(www) , ∀www ∈ Rd . (3.4)

3.2. General strategy

In the SBM, the governing equations are discretized in Ω̃h rather than in Ω, with the challenge of accurately
imposing boundary conditions on Γ̃h. To this end, boundary conditions are shifted from Γ to Γ̃h, by performing a
Taylor expansion of the variable of interest at the surrogate boundary. Under the assumption that u is sufficiently
smooth in the strip between Γ̃h and Γ, let

Di
ddduuu = ∑

ααα∈Nn,|ααα|=i

i!
ααα!

∂ iuuu
∂xxxααα

dddααα

denote the ith-order directional derivative along ddd. Then, we can write

uuu(xxx) = uuu(x̃xx+ddd(x̃xx)) = uuu(x̃xx)+
m

∑
i=1

Di
ddd uuu(x̃xx)

i!
+(Rm(uuu,ddd))(x̃xx) , (3.5)

where the remainder Rm(uuu,ddd) satisfies |Rm(uuu,ddd)|= o(∥ddd∥m) as ∥ddd∥→ 0.
In this work, we consider piece-wise linear approximations of the solution fields, and for this reason we limit the

Taylor expansions to the first two terms, that is,

uuu(xxx)≈ Sddduuu(x̃xx) , (3.6)

where
Sddduuu(x̃xx) := uuu(x̃xx)+ddd ·∇uuu (3.7)

is the shift operator for every x̃xx ∈ Γ̃h.
It is now important to make an observation, in the context of compressible Euler equations: the far-field boundary

is usually rather regular in shape, and it makes less sense to treat it as immersed. Hence, we will not consider the case
of embedded far-field boundary conditions, and the shifted boundary terms in the variational formulation becomes:

Bbc(·, ·) = BI/O/F/S(·, ·)+ B̃I/O/S(·, ·) , (3.8)

where BI/O/F/S(·, ·) := BI;sub(·, ·)+BI;sup(·, ·)+BO;sub(·, ·)+BO;sup(·, ·)+BF(·, ·)+BS(·, ·) and B̃I/O/S(·, ·) =
B̃I;sub(·, ·)+B̃I;sup(·, ·)+B̃O;sub(·, ·)+B̃O;sup(·, ·)+B̃S(·, ·). In Section 3.3, we will discuss in detail how to construct
the slip-wall shifted boundary conditions. Other types of shifted boundary conditions are addressed, in less detail,
in Section 3.4 (see also [49]).

3.3. Enforcing the slip boundary condition at a surrogate boundary

The main idea is to shift the slip boundary condition uuu · nnn = un on ΓS to a condition for uuu · ñnn on its surrogate
Γ̃S, using Taylor expansions and the projections given in (3.4). In particular, letting x̃xx ∈ Γ̃S, assuming sufficient
smoothness in the velocity field uuu, we have:

uuu(xxx) = uuu(x̃xx+ddd)≈ uuu(x̃xx)+ddd ·∇uuu(x̃xx)

9



and consequently

uuu(x̃xx) · ñnn = [πππnnn(uuu(x̃xx))+πππτττ(uuu(x̃xx))] · ñnn = (uuu(x̃xx) ·nnn)(nnn · ñnn)+πππτττ(uuu(x̃xx)) · ñnn
≈ [uuu(xxx) ·nnn− (ddd ·∇uuu(x̃xx)) ·nnn] (nnn · ñnn)+πππτττ(uuu(x̃xx)) · ñnn
= [un − (ddd ·∇uuu(x̃xx)) ·nnn] (nnn · ñnn)+πππτττ(uuu(x̃xx)) · ñnn .

Here we use the short-hand notation xxx = MMMh(x̃xx), ñnn = ñnn(x̃xx), nnn = nnn(MMMh(x̃xx)), and ddd = ddd(x̃xx). Note that both ∇uuu(x̃xx) and
πππτττ(uuu(x̃xx)) can be computed by processing the discrete solutions on the surrogate boundary. Hence, the shifted slip
boundary condition is given by:

uuu · ñnn = ũn := unnnn · ñnn− [(ddd ·∇uuu) ·nnn] (nnn · ñnn)+πππτττ(uuu) · ñnn , on Γ̃S , (3.9)

and the boundary term B̃S is:

B̃S(WWW h,UUUh) =

〈
WWW h, ũnUUUh +αslipcs(UUUh)


0

ρ(UUUh)(uuu(UUUh) · ñnn− ũn)ñnn
0

+


0

p(UUUh)ñnn
p(UUUh)ũn


〉

Γ̃S

. (3.10)

As a last note, one may argue that (3.9) will not approximate uuu ·nnn = un well if nnn · ñnn is close to zero; however, this will
rarely happen for triangular or tetrahedral elements, see for example the analysis in [42].

3.4. Enforcing other types of boundary conditions at a surrogate boundary
Here we list the boundary terms at a surrogate boundary for other types of boundary conditions.

• At a supersonic inlet ΓI;sup, the full fluid state vector UUUb is prescribed. At a quadrature point on the correspond-
ing surrogate boundary x̃xx ∈ Γ̃I;sup we shift the boundary condition as

UUU(x̃xx) = ŨUUb :=UUUb −ddd ·∇UUU(x̃xx)

and, setting ũuub := uuu(ŨUUb) for simplicity, the boundary term B̃I;sup is given by

B̃I;sup(WWW h,UUUh) = ⟨WWW h, (ŨUUb ⊗ ũuub + G̃GGb)ñnn⟩Γ̃I;sup
. (3.11)

• At a subsonic inlet ΓI;sub, the flow density ρb and the flow velocity uuub are prescribed. We define the shifted data
at every x̃xx ∈ Γ̃I;sub as:

ρ(x̃xx) = ρ̃b := ρb −ddd ·∇ρ(x̃xx) ,

uuu(x̃xx) = ũuub := uuub −ddd ·∇uuu(x̃xx) .

Then, the boundary term B̃I;sub is given by:

B̃I;sub(WWW h,UUUh) =

〈
WWW h, ũuub · ñnn


ρ̃b

ρ̃bũuub
γ p(UUUh)

γ−1 + ρ̃bũuub·ũuub
2

+


0

p(UUUh)ñnn
p(UUUh)ũuub · ñnn


〉

Γ̃I;sub

. (3.12)

• At a supersonic outlet ΓO;sup, no data is prescribed and the shifted boundary term is essentially the same as in
body-fitted case:

B̃O;sup(WWW h,UUUh) = ⟨WWW h, (UUUh ⊗uuu(UUUh)+GGG(UUUh))ñnn⟩
Γ̃O;sup

. (3.13)

• At a subsonic outlet ΓO;sub, the pressure pb is prescribed and the boundary condition is shifted to x̃xx ∈ Γ̃O;sub as

p(x̃xx) = p̃b := pb −ddd ·∇p(x̃xx) .

Hence, the boundary term is

B̃O;sub(WWW h,UUUh) =

〈
WWW h, uuu(UUUh) · ñnn


ρh

ρhuuu(UUUh)
γ p̃b
γ−1 +

ρhuuu(UUUh)·uuu(UUUh)
2

+


0

p̃bñnn
p̃buuu(UUUh) · ñnn


〉

Γ̃O;sub

. (3.14)
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3.5. Enhancing computations with body-fitted grids at curved boundaries

For computations with both body-fitted and embedded grids, we adopt quadrature rules that integrate exactly cubic
functions, that is, the two-point Gauss-Legendre quadrature for edges and the four-point quadrature rule for triangles.
Here we briefly discuss the potential of using the SBM to improve the accuracy in the case when boundaries are curved
and are represented by body-fitted, affine grids (e.g., when the piecewise-linear finite elements described in Section 2
are used).

To explain the idea, let us consider a two-dimensional edge with its two end points lying on a curved portion C
of the slip boundary ΓS, as shown in Figure 3.2. In the same figure, the two Gauss-Legendre quadrature points are
marked by solid dots. We assume that the location of C is known: for example, it can be given in analytical form, by a
much finer boundary grid, or a CAD geometry representation. In the body-fitted computation, the boundary condition

(a) Boundary normals for a body-fitted grid. (b) Boundary normals computed with the SBM.

Figure 3.2: Comparing boundary integrations between a classical method with body-fitted grids and the SBM: • - quadrature points; ××× - points at
which the slip boundary condition is enforced (i.e., normals and velocity values).

is enforced weakly at the points marked by ××× in Figure 3.2a, which coincide with the quadrature points. Instead, in
the case of the SBM, due to the shifting mechanism, we actually weakly enforce the boundary condition on the true
geometry (up to second-order accuracy), at the point marked by ××× in Figure 3.2b.

We also want to point out an additional issue, which was previously discussed in [78] and addressed in the context
of high-order discontinuous Galerkin methods. Because the body-fitted grid matches the actual boundary C only at
the nodes, it enforces the normal velocity in a direction that is orthogonal to the edge AB, indicated by nnn in Figure 3.2a.
In contrast, the SBM takes the exact normal to C into consideration, again indicated by nnn in Figure 3.2b. We will
assess the performance improvement of this strategy with specific numerical tests in the next section.

4. Numerical tests

In this section, we assess the numerical performance of the SBM for both transient and steady problems. All tests
are run with a CFL condition αcfl = 0.9. In the case of transient computations, kmax = 3 corrector steps are used in the
PMC time integrator. Steady solutions are computed by integrating in time from an initial state and, since temporal
accuracy is not important, only a single corrector step is used (kmax = 1). In all tests except the double Mach reflection
problem (Section 4.6), the discontinuity capturing operator is defined by the entropy viscosity in Section 2.4.1 with
cent = 4.0; instead, the Lax viscosity with Ducros-type sensor with cLax = 0.1, as described in Section 2.4.2, is
chosen for the double Mach reflection problem of Section 4.6. The computations presented in Section 4.1, 4.2, 4.3,
and 4.4 were performed on an in-house workstation that is equipped with a 32-core 2.8 GHz Intel Xeon Scalable
Platinum 8362 processor. The computations presented in Section 4.5, 4.6, and 4.7 were performed on a mid-range
high-performance cluster composed of 32 nodes with 24 Intel Xeon E5-2650v4 2.2GHz cores.

4.1. The two-dimensional Taylor-Green vortex test

The two-dimensional Taylor-Green vortex problem [51] is defined on the square domain Ω = [0, 1]2 depicted
in Figure 4.1. The fluid has a specific heat capacity ratio γ = 5/3 and the source term in the governing equations is
given by

BBB(xxx, t) =


0
000

−ρ(xxx, t) 3π

8 (cos(3πx)cos(πy)− cos(πx)cos(3πy))

 . (4.1)
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(a) Mesh 2 of Sequence I. (b) Mesh 2 of Sequence II. (c) Mesh 2 of Sequence III.

Figure 4.1: Two-dimensional Taylor-Green vortex test. Examples of grids from Sequence I, II, and III. True boundaries are marked in blue and
surrogate domains Ω̃ are shaded in gray.

Table 1: Two-dimensional Taylor-Green vortex test. Mesh information of the three sequences of triangular grids described in Figure 4.1 and Sec-
tion 4.1: total area, number of nodes, and number of elements in the surrogate domain.

Sequence I Sequence II Sequence III

Area Nodes Elements Area Nodes Elements Area Nodes Elements

Mesh 1 0.917336 120 198 0.85983 100 162 0.82204 145 256
Mesh 2 0.917336 437 792 0.85983 361 648 0.873417 609 1,088
Mesh 3 0.979051 1,772 3,378 0.95802 1,521 2,888 0.9553 2,517 4,760
Mesh 4 0.988189 6,994 13,658 0.95802 5,929 11,552 0.983397 9,941 19,600
Mesh 5 0.993284 27,808 54,958 0.983397 24,025 47,432 0.990421 40,041 78,960
Mesh 6 0.994818 110,784 220,254 0.996321 96,721 192,200 0.997496 159,613 318,096

Shifted slip-wall boundary conditions (uuu · nnn = 0) are set along the entire perimeter of the square domain and are
enforced according to the discussion in Section 3.3. This problem admits a smooth and time-independent solution
given by

ρ(xxx, t) = 1 , uuu(xxx, t) =

{
sin(πx)cos(πy)
−cos(πx)sin(πy)

}
, p(xxx, t) =

cos(2πx)+ cos(2πy)
4

+1 , (4.2)

which will be used to compute the norm of the numerical errors.
We performed a series of tests to assess the performance of the SBM, its mesh-independence, and the impact of

artificial viscosity. In particular, we consider three sequences of triangular grids, as illustrated in Figure 4.1 and Ta-
ble 1, and solve the problem until T = 0.5. The first sequence (Sequence I) contains six unstructured triangular grids
with (approximate) size ranging from h = 10−1 to h = 3× 10−3. The next two sequences (Sequence II and III) are
both obtained from a base sequence of uniform quadrilateral grids (i.e., square elements), again with element size
ranging from h = 10−1 to h = 3×10−3. In particular, grids in Sequence II are obtained by dividing each base square
element into two triangles, whereas meshes in Sequence III are obtained by dividing each base square element into
four triangles. Note that the surrogate boundary Γ̃ tends to be smooth in Sequence II but it could be very rough in
Sequence III.

Remark 4.1. It is important to realize that grids in Sequence III are not of good quality, from a mesh generation
perspective, since they alternate nodes with a 4-element connectivity with nodes with an 8-element connectivity,
producing widely oscillating patterns in the entries of the mass and stiffness matrices associated with the FEM dis-
cretization. We also show numerical results for these grids to test the effectiveness of shifted boundary conditions
even when the topology of the grids is suboptimal.

In order to demonstrate the effect of incorporating the distance vector ddd, we consider the following three numerical
methods: (1) the SBM as described in Section 3, (2) a first-order SBM (FSBM) in which a zeroth-order Taylor series is
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(c) L1-error on Sequence III.
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(d) L2-error on Sequence I.
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(e) L2-error on Sequence II.
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(f) L2-error on Sequence III.
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(g) L∞-error on Sequence I.
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(h) L∞-error on Sequence II.
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(i) L∞-error on Sequence III.

Figure 4.2: Two-dimensional Taylor-Green vortex test. L1-norms (upper row), L2-norms (middle row), and L∞-norms (lower row) of the numerical
errors plotted in logarithmic scale against a representative element size for the three sequences of grids. The legends are as follows: SBM indicates
the Shifted Boundary Method described in Section 3; FSBM indicates the Shifted Boundary Method with zeroth-order Taylor series expansion
(ddd = 000); and SEC indicates a simple embedded computation, in which the FSBM is implemented enforcing nnn = ñnn.

used, and (3) a simple embedded computation (SEC) in which the boundary terms of the body-fitted formulation (2.7)
are integrated on the surrogate boundary rather than the true boundary. For each method, we consider computations
that have the discontinuity-capturing operator turned on and off, respectively.
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(a) Mesh 1 of the sequence of the CMC grids. (b) Mesh 1 of the sequence of the SBM grids.

Figure 4.3: Channel flow test. Examples of grids used for the CMC and the SBM simulations described in Section 4.2. In the SBM grid (right
panel), the true boundary is described by the blue box and the surrogate domain is represented by the shaded region. Detailed information on the
grids is summarized in Table 2.

Remark 4.2. With respect to the definition of the SBM variational formulation of Section 3, the FSBM is equivalent
to setting ddd = 000 and the SEC is equivalent to setting both ddd = 000 and nnn = ñnn.

The L1-norms, L2-norms, and L∞-norms of the numerical errors obtained with the SBM, the FSBM, and the SEC
are plotted in logarithmic scale in Figure 4.2 for the three sequences of grids. Computations are performed with
and without discontinuity-capturing, to highlight differences. The representative element size in the horizontal axis
is computed as the square root of the average area of elements in the surrogate domain. Note that the L1-norms of
the errors are qualitatively similar to the L2-norms; thus in the remaining tests we only consider the L2-norm and the
L∞-norm.

Looking at the L2-norms of the errors in Figure 4.2d–Figure 4.2f first, the error curves for the SBM are generally
second-order accurate on all three sequences of grids, whether the artificial viscosity is applied or not, as expected. In
contrast, both the FSBM (blue curves) and the SEC (red curves) demonstrate at best first-order convergence and are
much less accurate than the SBM computations, with or without the artificial viscosity. The FSBM and the SEC also
show strong mesh dependency, especially on Sequence II and Sequence III. Particularly, depending on the refinement
level, Sequence III contains grids with either zigzagging (see Figure 4.1c) or straight surrogate boundaries and, as a
consequence, both FSBM and SEC produce non-monotone convergence curves as shown in Figure 4.2f. In contrast,
the L1-norms and L2-norms of errors computed by SBM decrease monotonically on all sequences of grids.

Now let us focus on the L∞-norms of the errors depicted in Figure 4.2g–Figure 4.2i. Overall, the L∞-errors are
larger than the L2-errors, but have very similar behaviors, except in the situations described next. On Sequence III,
the L∞-error curve by SBM is non-monotone, just like FSBM and SEC; this is again due to the fact that on Sequence
III, the surrogate interface switches between straight lines and zigzagging ones as the mesh is refined. Nevertheless, if
we compare the L∞-errors computed over coarsest and finest grids of Sequence III, we observe that the SBM appears
to show second-order convergence, while the FSBM and SEC are at best first-order accurate.

Lastly, we mention that when using Sequence II, the straight surrogate boundaries imply ñnn = nnn and thus the FSBM
and the SEC compute exactly the same solutions (see the middle column of Figure 4.2); the same happens on a number
but not all grids in Sequence III, as shown in the right column of Figure 4.2.

The conclusion that can be drawn from this first battery of tests is that the SBM is the most accurate and robust
approach, whether the discontinuity-capturing operator is active or not.

4.2. Flows in a straight channel

In this second test, we consider horizontal flows in a straight channel, which is given by the rectangular domain
[−2, 2]× [0, 1]. Particularly, we first consider a “patch” test for the SBM, solving uniform subsonic and supersonic
flows, and then a convergence test for subsonic inlet and outlet boundaries. In all tests, the upper and lower sides
of the rectangular domain are slip walls and the left and right edges are inlet and outlet with appropriate boundary
conditions to be specified later. For the convergence test, we compare the performance of both the conforming mesh
computation (or the CMC) and the SBM on two sequences of six unstructured grids with comparable resolutions. The
first grid of each sequence is shown in Figure 4.3, with the shaded region designating the surrogate domain in the
case of the SBM; mesh information of all grids is summarized in Table 2. For the uniform-flow tests, we only present
results obtained by the SBM on the two coarsest grids (see Figure 4.3b).
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Table 2: Channel flow test. Mesh information of the two sequences of triangular grids described in Section 4.2 and Figure 4.3: total area, number
of nodes, and number of elements in the surrogate domain.

CMC Meshes SBM Meshes

Area Nodes Elements Area Nodes Elements

Mesh 1 4.0 146 240 3.76889 130 214
Mesh 2 4.0 526 950 3.98011 470 844
Mesh 3 4.0 1,944 3,686 3.97349 1,775 3,358
Mesh 4 4.0 7,568 14,734 3.98204 6,919 13,452
Mesh 5 4.0 29,872 58,942 3.98734 27,629 54,486
Mesh 6 4.0 119,046 236,490 3.99729 109,935 218,325

Table 3: The L2-norm of errors computed by the SBM for uniform subsonic and supersonic flows in a straight channel, with and without disconti-
nuity capturing.

M = 0.3 w.o. DC M = 0.3 with DC M = 1.3 w.o. DC M = 1.3 with DC

Mesh 1 7.859910940971e-16 6.720757895425e-16 1.987480817517e-15 1.784232331159e-15
Mesh 2 1.037911364231e-15 9.092033378590e-16 4.286117123925e-15 4.074105818579e-15

4.2.1. Uniform subsonic and supersonic flows
First we use the SBM to solve a Mach 0.3 flow and a Mach 1.3 flow going from left to right of the domain, with

and without the artificial viscosity. The initial (and thus exact) solution is given by:

ρ(xxx, t) = 1.4 , uuu(xxx, t) =

{
M
0

}
, p(xxx, t) = 1.0 , (4.3)

where M is the Mach number of the problem. The subsonic inlet and outlet for the Mach 0.3 flow and the supersonic
inlet and outlet for the Mach 1.3 flow are applied at the left boundary and right boundary, respectively, as described
in Section 3.4. The L2-norms of the numerical errors are summarized in Table 3 and are at the level of machine
precision.

4.2.2. Smooth flow with subsonic inlet and outlet
This test is motivated by [49], where we use the method of manufactured solutions and consider a smooth unsteady

flow with specific heat capacity ratio γ = 1.4 and the source term:

BBB(xxx, t) = λπ



sin(πt)sin(πx)− cos(πx)[1+ cos(πt)]−λ cos(πt)sin(2πx)
−B1[cos(πx)B2 − sin(πt)sin(πx)]

0

−cos(πx){28+B2
1[1+λ cos(πt)sin(πx)]}−B2

1[sin(πt)sin(πx)− cos(πx)B2]

2


(4.4)

where B1 = 1+λ sin(πx) and B2 = 2+ cos(πt)+3λ cos(πt)sin(πx), so that the smooth flow solution is given by:

ρ(xxx, t) = 1+λ sin(πx)cos(πt) , uuu(xxx, t) =

{
1+λ sin(πx)

0

}
, p(xxx, t) = 4 . (4.5)

When λ = 0.1, the flow is subsonic everywhere in the channel and we specify the subsonic inlet condition

ρb(−2, t) = 1 , uuub(−2, t) =

{
1
0

}
, (4.6)
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(a) Computations without artificial viscosity.
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(b) Computations with artificial viscosity.

Figure 4.4: Channel flow test. The L2-norms and the L∞-norms of the numerical errors of the test described in Section 4.2, plotted in logarithmic
scale against the representative element sizes. CMC: conforming mesh computation; SBM: the Shifted Boundary Method.

at x =−2 and the subsonic outlet condition (prescribed pressure)

pb(2, t) = 4 , (4.7)

at x = 2. See also Section 2.3 and Section 3.4 for more details about the implementation of the boundary conditions
on the body-fitted case and the SBM case, respectively.

Figure 4.4 shows the L2-norms and the L∞-norms of the numerical errors obtained with the CMC and the SBM,
with and without artificial viscosity, in logarithmic scale. As shown in the plots, the numerical accuracy of the SBM
is similar to the CMC, whether the artificial viscosity is applied or not. Particularly, if the artificial viscosity is not
applied, we obtain second-order convergence for both the SBM and the CMC in all norms. If instead the artificial
viscosity is applied, the convergence of L2-errors is close to second-order and about first-order for the L∞-errors.

4.3. Isentropic supersonic vortex in an annulus
Next we consider the stationary flow that describes an isentropic supersonic vortex inside a quarter of an annu-

lus [78] with inner radius Ri = 1.0 and outer radius Ro = 1.384, shown in Figure 4.5a. We use the sequences of
triangular grids depicted in Figure 4.5b and Figure 4.5c. The analytical stationary solution is smooth, and given by

ρ(xxx, t) =

[
1+

γ −1
2

M2

(
1− R2

i

|xxx|2

)] 1
γ−1

, uuu(xxx, t) =


yM

|xxx|2

− xM

|xxx|2

 , p(xxx, t) =
ρ(xxx, t)γ

γ
, (4.8)

where M = 2.25 is the Mach number on the inner circular wall. Nonetheless, we will still consider computations with
the artificial viscosity both active and inactive. The fluid state vector is initialized with the exact values (4.8) and
numerical computations are driven to a steady state, until maxA

∣∣∣∣(UUUn+1
A −UUUn

A)/∆tn
∣∣∣∣

∞
≤ 10−10, where A runs over all

active nodes and UUUn+1
A and UUUn

A are the solution vectors at this node at tn+1 and tn, respectively.
In all computations, the supersonic inlet and the supersonic outlet boundary conditions are specified at the left

vertical edge and the lower horizontal edge, respectively, and slip-wall boundary conditions are specified at the inner
and outer circular walls. These boundary conditions are implemented either in the body-fitted or SBM fashion,
according to the discussion in Section 2.3, Section 3.3, and Section 3.4.

4.3.1. Fitted and embedded curved boundaries
First, we assess the accuracy of the SBM in the presence of curved boundaries, with particular emphasis on the

discussion in Section 3.5. The numerical performance of three strategies with piecewise-linear finite elements is com-
pared: (1) geometrically conforming (i.e., body-fitted) mesh computations (CMC); (2) conforming mesh computations
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(a) Domain and boundary conditions. (b) Mesh 1 of the SBM grids used in Section 4.3.1. (c) Mesh 1 of the SBM grids used in Section 4.3.2.

Figure 4.5: Isentropic supersonic vortex in an annulus. Computational domain and examples of the sequences of grids used in computations where
the circular walls are embedded (Section 4.3.1) or the inlet and outlet are embedded (Section 4.3.2). The true boundaries are indicated by the blue
curves and the surrogate domains by the shaded regions shaded in gray.

Table 4: Isentropic supersonic vortex in an annulus. Mesh information (area, number of nodes, and number of elements in the surrogate domain)
of the three sequences of triangular grids; the CMC grids are used for both tests discussed in Section 4.3.1 and Section 4.3.2.

CMC/CMC-SBM SBM (Section 4.3.1) SBM (Section 4.3.2)

Area Nodes Elements Area Nodes Elements Area Nodes Elements

Mesh 1 0.719023 234 396 0.642321 233 393 0.695393 236 402
Mesh 2 0.719004 863 1,584 0.674759 901 1,650 0.707707 886 1,631
Mesh 3 0.718999 3,309 6,336 0.69603 3,578 6,860 0.712723 3,423 6,564
Mesh 4 0.718998 12,953 25,344 0.707748 14,235 27,882 0.71565 13,457 26,348
Mesh 5 0.718998 51,249 101,376 0.713146 56,767 112,362 0.717431 53,375 105,618
Mesh 6 0.718997 203,873 405,504 0.715838 226,711 451,084 0.718225 212,580 422,895

enhanced with the SBM to treat the curved geometry (CMC-SBM) as described in Section 3.5; and (3) the SBM. All
methods are tested on a sequence of six successively refined grids; the grids used for the SBM are shown in Figure 4.5
and, correspondingly, body-fitted grids of analogous sizes are employed for the CMC and the CMC-SBM. The mesh
information is summarized in Table 4.

The L2-norm and the L∞-norm of the error of the time-converged solutions are plotted in logarithmic scale in Fig-
ure 4.6, with the left and right panels showing the plots for computations without and with artificial viscosity, respec-
tively. Figure 4.6a shows that both the SBM and the CMC-SBM are more accurate than the CMC. In particular, the
CMC-SBM provides numerical errors that are at least one order of magnitude smaller than the CMC, while the SBM
has errors in between the previous two. Both the CMC-SBM and the SBM produce second-order convergence rates,
thanks to the accurate capturing of the curved geometry by the shifted boundary condition.

We can obtain essentially the same conclusions for computations with the artificial viscosity included, see Fig-
ure 4.6b. Both the SBM and the CMC-SBM produce second-order solutions, whereas the CMC solutions show slower
convergence due to polygonal approximation of the curved boundaries.

Remark 4.3. In practice, one can use a different (generally more accurate) quadrature rule on edges of the surrogate
boundary from the one used for interior edges. For the test under consideration, the 3-point Gauss-Legendre quadra-
ture rule gives very similar results to the default 2-point quadrature rule, for the CMC-SBM. This is possibly due to
the circular geometry of the true boundary. If the geometries are more complex, like those with curvature spanning
a large range of values, the CMC-SBM offers an attractive strategy to accurately capture the boundary’s geometrical
features with relatively coarse background grids. Further investigation is warranted to fully confirm this point.
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(a) Computations without artificial viscosity.
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(b) Computations with artificial viscosity.

Figure 4.6: Isentropic supersonic vortex in an annulus. The L2-norms and the L∞-norms of the numerical errors in Section 4.3.1 plotted in
logarithmic scale against a representative element size. CMC: conforming mesh computation; SBM: the Shifted Boundary Method on embedded
grids; CMC-SBM: conforming mesh computation with SBM-enhanced boundary conditions.
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(a) Computations without artificial viscosity.
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Figure 4.7: Isentropic supersonic vortex in an annulus. The L2-norms and the L∞-norms of the numerical errors for the computations described
in Section 4.3.2, plotted in logarithmic scale against a representative element size. CMC: conforming mesh computations with piecewise linear
elements; SBM: the Shifted Boundary Method on embedded grids.

4.3.2. Fitted and embedded supersonic inlets and outlets
In this second version of the supersonic vortex problem, we consider embedded computations of the inlet and out-

let. To minimize the impact on the error of the curved walls, they are treated by conformal grids and enhanced by the
SBM. The grids used in the SBM computations share similar resolution with the meshes used in previous conforming
computations; the first of this sequence is illustrated in Figure 4.5c and the mesh information is summarized in the
last columns of Table 4. As the inlet and outlet are straight lines, we do not consider the CMC-SBM in this test. The
convergence plots for the CMC are identical to the CMC-SBM ones reported in Section 4.3.2 and the SBM plots are
shown in Figure 4.7a and Figure 4.7b, for computations without and with artificial viscosity, respectively. It is quite
clear that the SBM computation delivers very similar results to the CMC results.

4.4. Subsonic flow past a stationary cylinder
In this test, a uniform flow impinges on a stationary cylinder until it reaches steady state. Due to the symmetry of

the problem, only the upper half of the computational domain is considered. Specifically, the computational domain
consists of a rectangle [−12, 12]× [0, 12] with a cylinder of radius 1 sitting at the origin, as shown in Figure 4.8a.
A sample grid for embedded computations is shown in Figure 4.8b, with element size approximately h = 0.2 near
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(a) Flow past cylinder problem setup. (b) An embedded grid with h = 0.2 near the cylinder. (c) Zoomed view near the cylinder.

Figure 4.8: Subsonic flow past a cylinder. Problem configuration. Left panel: domain setup, with a view box in magenta. Middle panel: an
embedded domain with reference element length h = 0.2 near the cylinder. Right panel: the zoomed view around the embedded geometry.

the cylinder and h = 1.0 near the outer boundaries and a zoomed view around the embedded geometry is provided
in Figure 4.8c. This grid is for demonstration only, since finer grids are actually used in computations.

A slip wall boundary condition is enforced at the lower edges [−12,−1]×{0} and [1, 12]×{0}, to respect
symmetry, and the three exterior boundaries {−12}× [0, 12], {12}× [0, 12], and [−12, 12]×{12} have the far-field
condition (2.18) specified with the ambient fluid-state vector given by a Mach 0.3 flow. The cylinder surface is either
treated as a conforming slip wall, in the CMC computations, or an embedded slip wall, in the SBM and the CMC-SBM
computations. The heat capacity ratio is γ = 1.4 and at time t = 0.0 the initial data is given by a uniform Mach 0.3
flow. Namely:

ρ∞ = 1.4, uuu∞ =

{
0.3
0.0

}
, p∞ = 1 . (4.9)

After a transient, a steady-state flow is achieved and is determined when maxA
∣∣∣∣(UUUn+1

A −UUUn
A)/∆tn

∣∣∣∣
∞
≤ 10−10, where

A runs over all active nodes.
In the subsonic regime considered here, the steady flow is symmetric about x = 0; however, the artificial viscosity

tends to tilt the Mach contours towards the right, especially on coarser grids. In fact, it is well-known that p-refinement
is much more effective than h-refinement for this test [78, 79]. Hence it is expected to observe asymmetry in all
numerical solutions presented here. Nevertheless, our goal is to assess how the SBM handles embedded boundaries,
and we compare in Figure 4.9 the time-converged flow computed with the CMC, the SBM, and the CMC-SBM, on
grids of comparable resolution. Because the converged Mach number plots are very similar for all methods, we present
the results of the most accurate simulations (i.e., the CMC-SBM on the finest grid) in Figure 4.9a, together with the
relative discrepancy of the CMC and SBM with respect to the CMC-SBM (on both the coarse and fine grids), which
is defined as

|M−Mref|
||Mref||∞

. (4.10)

Here Mref is a resampling of the reference CMC-SBM solution on the grid of the CMC or SBM simulation under
consideration, and M is the Mach number of the CMC or SBM simulation, interpolated at each cell centroid (see also
the caption of Figure 4.9).

First of all, we see that due to the effect of artificial viscosity, the accuracy is largely determined by the mesh
resolution, see the discussion before Remark 4.3. Second, the relative discrepancy on the fine grids are ten times
smaller than that on the coarse grids. This, however, should not be treated as the actual numerical error as the
reference solution itself is computed on the fine grid; nevertheless, it makes our point that the numerical error due to
the SBM treatment at the embedded boundary is comparable to that of the conformal grid computation. A similar
conclusion can be obtained by comparing the pressure coefficient

Cp =
p− p∞

1
2 ρ∞ ||uuu∞||2

(4.11)

along the cylinder surface, shown in Figure 4.10. Note that Cp is computed at the nodes on the boundary for the CMC,
while in the case of the SBM and the CMC-SBM a Taylor extrapolation of the pressure is evaluated at quadrature
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(a) Reference (CMC-SBM, near-body h ≈ 0.1).

(b) Relative discrepancy (CMC, near-body h ≈ 0.2). (c) Relative discrepancy (CMC, near-body h ≈ 0.1).

(d) Relative discrepancy (SBM, near-body h ≈ 0.2). (e) Relative discrepancy (SBM, near-body h ≈ 0.1).

Figure 4.9: Subsonic flow past a cylinder: contours of the Mach number and relative discrepancies. The reference solution (Figure 4.9a) is
computed by the CMC-SBM using the fine mesh (h ≈ 0.1 near the cylinder), whereas the relative discrepancy in all the other plots is computed
with (4.10). The actual range of the Mach relative discrepancy in each test is given by the corresponding legend on top of the plot.

points on the surrogate boundary. Specifically, we extrapolate the pressure from a quadrature point x̃xx on the surrogate
surface to its projection MMMh(x̃xx) on the true boundary geometry according to

p(MMMh(x̃xx))≈ p(x̃xx)+(MMMh(x̃xx)− x̃xx) ·∇p(x̃xx) , (4.12)
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Figure 4.10: Subsonic flow past cylinder. The pressure coefficient along the cylinder surface computed by the CMC, the SBM, and the CMC-SBM.
For the SBM and the CMC-SBM, pressures are extrapolated on the exact geometry from close-by surrogate boundaries, as discussed at the end
of Section 4.4. Note that the curves of the CMC and the CMC-SBM are almost overlapped, for both grids.

(a) A grid for the SBM with h = 0.02 near the airfoil and h = 2.0 in the far field.
(b) Zoomed views of the CMC grid (above) and the SBM grid (below, with the
dark-gray shaded region indicating the surrogate domain).

Figure 4.11: Transonic flow past a NACA 2412 airfoil: computational grids. Left panel: an embedded grid with h = 0.02 near the airfoil and
h = 2.0 in the far-field Right panel: zoomed view (in the region [−0.3, 1.3]× [−0.3, 0.3] of the the magenta box in the left panel. On the top, a
body-fitted grid used in the CMC simulations, On the bottom, the surrogate domain (dark gray) associated with the active elements of the SBM
simulations. Details are presented in Table 5.

where the gradient is computed the same way as in Section 3.

4.5. Transonic flow past a NACA 2412 airfoil

To assess the numerical performance of the SBM in the transonic regime, we consider a flow at Mach 0.8 past a
NACA 2412 airfoil at zero angle of attack. The computational domain is Ω = [−12, 12]2 and the airfoil chord lies
along the segment [0, 1]×{0}. The heat capacity ratio is γ = 1.4, and the initial condition at time T = 0.0 is given by

ρ∞ = 1.4 , uuu∞ =

{
0.8
0.0

}
, p∞ = 1 , (4.13)

which exactly corresponds to a Mach number of 0.8. The fluid state vector (4.13) is also used to enforce a far-
field boundary condition at all four exterior edges; the airfoil surface is treated with a slip-wall boundary condition.
Heterogeneous grids are employed for both the CMC and the SBM computations, with element size near the airfoil
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(a) Projection to closest points on the airfoil (left) and on the airfoil with extended camber line (right). The green arrows denote the distance vectors from quadrature
points on the surrogate boundary to closest points on the true geometry. Without an extended camber line (left), two quadrature points project to the trailing edge;
whereas with the extended camber line (right), the same two quadrature points project to the camber line extension.

(b) Converged pressure near the trailing edge computed by the SBM without extended camber line (left) and with extended camber line (right).

Figure 4.12: Comparison between the SBM computations without (left) and with (right) enhancement for the Kutta condition. The upper row
demonstrates the different computations of the projection to true geometry at the trailing edge and the lower row compares the pressure computed
by the SBM at the trailing edge.

Table 5: Transonic flow past a NACA 2412 airfoil: mesh information, in terms of the number of nodes and number of elements in the computational
domain for three pairs of grids.

CMC Meshes SBM Meshes

Nodes Elements Nodes Elements

Mesh 1 32,607 65,071 32,935 65,716
Mesh 2 130,773 261,262 131,693 263,079
Mesh 3 527,067 1,053,567 526,672 1,052,732

about 100 times smaller than in the far field. We consider three pairs of grids (up to one million elements) with
resolution h = 0.02, h = 0.01, and h = 0.005 near the airfoil, respectively. In Figure 4.11 we present sample grids
with near-body resolution h = 0.02 used for the CMC and the SBM and the full grid information is summarized
in Table 5.

When simulating the aerodynamics of airfoils, the Kutta condition at the trailing edge requires a matching of the
velocity direction of the flows coming from the upper and lower surfaces, or equivalently, continuity of the pressure.
Modern mesh generators can produce body-fitted grids that implicitly satisfy the Kutta condition, by aligning an edge
of the grid with the camber line of the airfoil (H-grids, C-grids patterns). The SBM, instead, provides the flexibility
of defining an “imaginary tail” at the trailing edge that extends the camber line, for the purpose of the enforcement
of the Kutta condition. In particular, this strategy modifies how the projection, distance, and the normal vector are
computed at quadrature points on a few edges of the surrogate boundary, as shown in Figure 4.12a. Note that the
surrogate boundary Γ̃ is still computed according to the airfoil geometry, and the extended camber line is only utilized
to adjust distances and normal vectors. It is clear from the sample plots in Figure 4.12b, that this enhancement allows
the SBM to compute a continuous pressure field at the trailing edge.

For simplicity, we adopt a brute force approach to find the projection of each quadrature point on the surrogate
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(a) Reference (CMC, fine mesh)

(b) Relative discrepancy (CMC, coarse mesh).

(c) Relative discrepancy (CMC, middle mesh).

(d) Relative discrepancy (SBM, coarse mesh). (e) Relative discrepancy (SBM, middle mesh). (f) Relative discrepancy (SBM, fine mesh).

Figure 4.13: Transonic flow past a NACA 2412 airfoil: contours of Mach number and relative discrepancies. The reference solution (Figure 4.13a)
is computed by the CMC on the fine mesh (h≈ 0.005 near the airfoil), whereas the relative discrepancy in all the other plots is computed with (4.10).
The actual range of the Mach relative discrepancy in each test is given by the corresponding legend on top of the plot.

boundary to the airfoil surface, using 106 equally spaced sampling points along the chord on both the upper surface
and the lower surface. To speed up computations, we set a larger tolerance to determine the steady state and stop the
computation when maxA

∣∣∣∣(UUUn+1
A −UUUn

A)/∆tn
∣∣∣∣

∞
≤ 10−6.

Figure 4.13, similar to the case of the flow past a cylinder, shows only one converged Mach number field (the
CMC on the fine grid) as the reference solution in Figure 4.13a and for each of the other tests (the SBM on all three
grids, and the CMC on the coarse and middle grids) we plot the discrepancy (4.10). The largest discrepancies, of
order O(1), occur near shock fronts, while everywhere else discrepancies are smaller, by orders of magnitude: this
is expected, as slight changes in the shock location can produce large values of (4.10). Hence, we conclude that all
simulations compute nearly the same shock positions, and the SBM and the CMC solutions are in close agreement on
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Figure 4.14: Transonic flow past a NACA 2412 airfoil. Left panel: pressure coefficient Cp along the airfoil surface computed by the CMC and the
SBM on three pairs of grids; for the SBM, pressures are extrapolated on the exact geometry from close-by surrogate boundaries, as discussed at the
end of Section 4.4. Right panel: pressure coefficient computed by the CMC and the SBM on the pair of fine grids, with upper surface and lower
surface distinguished by different colors.

Table 6: Aerodynamic coefficients computed by the CMC and the SBM on the two sequences of grids.

Drag coefficient Cd

Coarse mesh Intermediate mesh Fine mesh

CMC 0.059243574336755 0.049691976657056 0.043671104264331
SBM 0.118622899641064 0.038597677782040 0.052549780911754

Lift coefficient Cl

Coarse mesh Intermediate mesh Fine mesh

CMC 0.526959085624866 0.544370285666716 0.537545645173485
SBM 0.595367964111681 0.548275555352769 0.552622246472996

grids with similar resolution. The agreement between the CMC and the SBM can be seen more easily in Figure 4.14,
which shows a comparison of the pressure coefficients along the chord of the airfoil, again for the three pairs of grids.
The pressure coefficients are calculated according to (4.11) for the CMC and (4.12) for the SBM, respectively.

The drag and lift coefficients of the airfoil are shown in Table 6, and have been computed according to the follow-
ing formulas, for the CMC and the SBM.

CMC : Cd =

∫
Γ

pnnn · eeexdΓ

1
2 ρ∞ ||uuu∞||2

, Cl =

∫
Γ

pnnn · eeeydΓ

1
2 ρ∞ ||uuu∞||2

; (4.14)

SBM : Cd =

∫
Γ̃
(p+ddd ·∇p)(nnn · ñnn)nnn · eeexdΓ̃

1
2 ρ∞ ||uuu∞||2

, Cl =

∫
Γ̃
(p+ddd ·∇p)(nnn · ñnn)nnn · eeeydΓ̃

1
2 ρ∞ ||uuu∞||2

. (4.15)

These coefficients also show good agreement on grids of comparable resolutions, especially on the medium and fine
pairs. It is important to realize that the grids utilized in these simulations are most likely under-resolved, and very
precise conclusions about the ultimate accuracy of the SBM versus the CMC simulations are hard to make. However,
it is fair to say that the SBM results are close to the CMC results, and are predictive. Observe also that the SBM
simulation on the finest grid produces slightly sharper shocks than the corresponding CMC simulation (see the right
panel of Figure 4.14), an aspect that warrants further investigation.
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(a) DMR problem setup. (b) A sample embedded grid with element size h = 0.1.

Figure 4.15: The DMR problem configuration. Left panel: the computational domain with its green boundary, and the viewing/plotting box, with
its magenta boundary. Right panel: an embedded domain with reference element length h = 0.1.

4.6. Double Mach reflection problem

We consider here the double Mach reflection (DMR) problem, a benchmark test with very strong interacting
shocks, first proposed in [80] and extensively used thereafter in the computational fluid dynamics literature. The
problem considers a vertical Mach 10 shock pushing along a 30-degree wedge (see Figure 4.15). Traditionally, a
rectangular computational grid is aligned with the wedge ramp so that Cartesian grids can easily be deployed (see
the green box of Figure 4.15a). In our case, we consider instead triangularizations of the pentagonal domain and the
bounding rectangular domain in Figure 4.15a, for the CMC and the SBM computations respectively.

The specific heat capacity ratio is γ = 1.4 and the initial condition is given by two constant fluid states separated
by a Mach 10 shock along the line x = 0.5 (the vertical dashed line in Figure 4.15a), To the left of the shock (i.e.,
x < 0.5), the initial data is

ρ = 8 , uuu =

{
8.25
0.0

}
, p = 116.5 , (4.16)

and to the right of the shock (x > 0.5), the initial data is

ρ = 1.4 , uuu =

{
0.0
0.0

}
, p = 1.0 . (4.17)

Slip-wall boundary conditions are applied at the lower edge, the upper edge, and the ramp. Because the state (4.16) is
supersonic, we enforce a supersonic inlet boundary condition at the left edge. The problem is computed until T = 0.2,
at which the shock has yet to reach the right boundary. Hence, a slip boundary condition is also enforced at the edge
along x = 4.

For this test, we use the Lax viscosity with Ducros-type sensor as described in Section 2.4.2 with parameter
cLax = 0.1. While the DMR test is widely used in high-order computations [81], our focus is to assess the impact
of the shifted boundary condition on shocks oblique to the boundary. In other words, instead of attempting to resolve
small scale flow features in the reflection region, we compare the density contour plots obtained by the CMC and the
SBM on grids with similar resolution, as shown in Figure 4.16. The plots show that the SBM produces very similar
results to the CMC.

4.7. Flow past a complex 3D object

Lastly, we compute the supersonic flow past a “Monkey Trefoil”, that is the complex three-dimensional object
shown in Figure 4.17 and described in detail in [82]. This simulation demonstrates the versatility of the proposed SBM,
since the geometry is provided in STL (Standard Tessellation Language) format, with tiny gaps and overlaps. The
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(a) CMC, grid of size h = 1/160. (b) CMC, grid of size h = 1/320.

(c) SBM, grid of size h = 1/160. (d) SBM, grid of size h = 1/320.

Figure 4.16: DMR problem. Density contours for the CMC (upper row) and the SBM (lower row) on grids with representative element size
h = 1/160 (left column) and h = 1/320 (right column). A total of 30 contours in the range [1.4, 22.2] is plotted. The view region is indicated by
the magenta box in Figure 4.15a.

STL format represents surfaces in the three-dimensional Euclidean space as a collection of disconnected (oriented)
triangles. The computational domain is the channel Ω = [−4, 28]× [−2, 2]× [−4,4], with the center of the Monkey
Trefoil positioned at the origin of the axes.

Slip-wall boundary conditions are imposed on the four sides of the channel that are parallel to the x-axis. At the
remaining sides of the channel domain (i.e., the inflow and the outflow) boundary fluxes are computed according to
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Figure 4.17: The “Monkey Trefoil” object with different viewpoints: (left) into the positive y-direction, and (right) into the positive x-direction.
The bounding box of the object is approximately 6.23×3.02×6.29.

the Roe flux formula (2.18) with an ambient fluid state at Mach 1.2 flow. Namely:

ρ∞ = 1.4, uuu∞ =


1.2
0.0
0.0

 , p∞ = 1 . (4.18)

This state is also used to set the initial condition of the fluid throughout the domain. Immersed, shifted, slip-wall
boundary conditions are enforced on the surface of the Monkey Trefoil shape.

For this three-dimensional test, we adopt stronger penalty at the conformal and embedded slippery boundaries by
setting αslip = 2.0. Two tetrahedral grids are used to perform the SBM computation with reference element lengths
h = 0.1 and h = 0.05 near the embedded geometry, respectively. Particularly, the coarser grid has 2,895,945 elements
and 512,925 nodes, and the finer one has 14,162,737 elements and 2,478,383 nodes. In Figure 5.1, Figure 5.2,
and Figure 5.3, we plot the pressure contours at time T = 3, 6, and 12. In Figure 5.4, Figure 5.5, and Figure 5.6,
we plot the Mach number contours, for the same time instants. From these pictures, we can clearly observe that the
solution is smooth and free from spurious oscillations, and that gradients become sharper as the grid is refined, an
indication that the solution is well behaved, despite we do no have numerical or experimental references to compare
with.

5. Conclusions

We have constructed a Shifted Boundary Method for (inviscid) compressible Euler equations on immersed grids.
We have investigated the interplay between the SBM and both hyperbolic wave structures and strong shocks, near
embedded boundaries. The SBM was compared to conforming mesh computations in extensive numerical tests and
found to yield very similar results for comparable mesh resolutions. Similarly, it was found that the SBM is not
affected by introduction of a discontinuity-capturing operator, in the form of an artificial viscosity.

We also demonstrated that: (a) in the case of body-fitted computations, the SBM can improve the accuracy at
curved boundaries approximated by polygonal interpolation; and (b) in immersed computations of airfoils, the SBM
can provide a simple and robust implementation of the Kutta condition at the trailing edge.

Future directions include optimizing the location of surrogate boundaries with the objective to reducing the nu-
merical error. We also plan to extend the method to compressible flow problems with moving boundaries and fluid-
structure interaction.
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Figure 5.1: Monkey Trefoil test. Pressure contours at T = 3, computed with the SBM on a coarser grid (top) and a finer grid (bottom).

Figure 5.2: Monkey Trefoil test. Pressure contours at T = 6, computed with the SBM on a coarser grid (top) and a finer grid (bottom).

Figure 5.3: Monkey Trefoil test. Pressure contours at T = 12, computed with the SBM on a coarser grid (top) and a finer grid (bottom).
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Figure 5.4: Monkey Trefoil test. Mach number contours at T = 3, computed with the SBM on a coarser grid (top) and a finer grid (bottom).

Figure 5.5: Monkey Trefoil test. Mach number contours at T = 6, computed with the SBM on a coarser grid (top) and a finer grid (bottom).

Figure 5.6: Monkey Trefoil test. Mach number contours at T = 12, computed with the SBM on a coarser grid (top) and a finer grid (bottom).
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[32] T. Rüberg, F. Cirak, Subdivision-stabilised immersed b-spline finite elements for moving boundary flows, Comput. Methods Appl. Mech.

Eng. 209 (2012) 266–283.
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