
MEUNIK: Rethinking Virtual Machine Memory

Resource Management for Unikernel-based VMs

Yongshu Bai§

Zhejiang Lab

Hangzhou, Zhejiang, China

Xin Zhang

School of Computing

Binghamton University

Binghamton, New York, USA

Yifan Zhang

School of Computing

Binghamton University

Binghamton, New York, USA

Abstract—In this paper, we investigate the problem of achiev-
ing efficient memory resource management for unikernel-based
virtual machines (uVMs), where unikernels are running as the
operating systems of the VMs. Through extensive experiments,
we first demonstrate that existing VM memory management
mechanisms are unsuitable for uVMs. Then, we propose ME-
UNIK, a system that aims to achieve high memory management
efficiency or uVMs. The four key mechanisms of MEUNIK are
designed to address the problems we find in existing solutions. We
have implemented a prototype MEUNIK system based on the Xen
hypervisor and performed extensive evaluation experiments on
three groups of uVMs, which are constructed based on a variety
of programs and applications, including fifteen small benchmark
programs, four complex server applications, and two network-
operation-heavy programs. The evaluation results show that our
system achieves the design goals with minimal overhead.

I. INTRODUCTION

Unikernels are a type of application-specific OSes which

are constructed following the philosophy of library OS [1]–

[3]. Each unikernel can be considered as a single-application

OS where only the OS kernel functionalities needed by the

application are compiled with the application code into the

OS image. As a result, unikernels are small in image size and

are extremely lightweight in OS bootstrapping and runtime

performances [4]–[9].

Unikernels are highly promising for computing scenarios

where the workload is simple, highly parallel, and demands

a high level of security isolation. The potential of unikernels

can be seen in the following two examples:

• In the emerging serverless computing paradigm [10]–[14],

solutions that use conventional OSes often fall short when

handling serverless workloads due to the complex nature of

OS kernels [15]. Unikernels, on the other hand, are a more

suitable solution because they offer two key advantages: short

start-up and deconstruction times and ease of management and

scaling, both due to their extremely lightweight nature [9],

[15], [16].

• In multi-tenant edge (MTE), users run their workloads

on edge computing nodes which can be embedded edge

devices with limited computing resources [17]–[23]. VMs

running conventional OSes cannot scale well in MTE due

to the resource constraints on embedded edge devices and

§This work was completed during Yongshu’s time as a student at Bingham-
ton University.

the multiplexing overhead of the OSes. In comparison, VMs

running unikernels suit edge devices better because of their

low demand for computing resources.

Due to the single-application nature, unikernels are typ-

ically deployed multiple per physical computing node. As

a result, unikernels can be categorized as either VM-based

[4]–[9], [24]–[33] or process-based [3], [34], [35]. VM-based

unikernels run as guest OSes in individual VMs created

by the underlying hypervisor, such as Xen [36] or KVM

[37], [38]. Process-based unikernels run in special sandboxed

processes, between which communication and interference are

significantly limited. VM-based unikernels have received more

attention in the literature due to their advantages of better

security and scalability, which are enabled by the use of

existing hypervisor technologies.

In this work, we first conduct experiments to study the

suitability of existing VM memory resource management

mechanisms for VMs that run unikernel as the guest OS, or

unikernel-based VMs (uVMs). We make the following four

observations, which suggest that existing solutions are not

suitable for uVMs: (1) Existing hypervisors require a prede-

termined amount of memory to be configured to create VMs.

We show that this requirement is not suitable for uVMs, which

typically exhibit high memory usage variance. (2) Existing

mechanisms for transferring memory between VMs do not

work well for uVMs. (3) Existing cross-VM memory-sharing

mechanisms are slow and costly for uVMs. (4) Existing

VM working set estimation and idle memory reclamation

mechanism incurs high overhead for uVM workload. The

details of these observations are discussed in Section III.

To address the above problems, we propose MEUNIK, a

framework that provides hypervisors with a means of manag-

ing the memory of uVMs efficiently. The primary objective of

MEUNIK is to optimize memory availability within the system

while taking into account the unique features of unikernels and

uVMs. MEUNIK consists of four key components, which are

summarized as follows:

First, our experiment shows that uVMs of the same type

(i.e., uVMs running the same application) have a notably

higher degree of shareable memory than traditional VMs.

Therefore, to address the problem of memory over-allocation

caused by predetermined uVM startup memory allocation,

MEUNIK employs an on-demand memory allocation approach

292

2024 IEEE/ACM Symposium on Edge Computing (SEC)

2837-4827/24/$31.00 ©2024 IEEE
DOI 10.1109/SEC62691.2024.00030

20
24

 IE
EE

/A
CM

 S
ym

po
siu

m
 o

n
Ed

ge
 C

om
pu

tin
g

(S
EC

) |
 9

79
-8

-3
50

3-
78

28
-3

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/S

EC
62

69
1.

20
24

.0
00

30

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 14,2025 at 20:08:14 UTC from IEEE Xplore. Restrictions apply.

based on copy-on-write (CoW) uVM cloning. This approach

improves memory availability in the system by enabling intra-

type uVM memory sharing, which allows uVMs of the same

type to share most of their memory with an app-template

uVM while requesting additional memory only as necessary.

The details of the experiment and the on-demand memory

allocation design are presented in Section IV-A.

Second, MEUNIK adopts a novel three-stage approach for

uVM creation. uVMs created using this approach share mem-

ory with their corresponding app-template uVMs, which in

turn share their memory with a generic-template uVM that

uses only a single physical memory page. Through this design,

the system achieves two goals at the same time: (1) minimizing

the memory footprint of app-template uVMs, and (2) cross-

type uVM memory sharing where uVMs running different

applications share memory. More details are discussed in

Section IV-B.

Third, MEUNIK uses a proactive approach to promptly

release memory that has been freed by individual uVMs back

to the available memory pool for reuse by other uVMs. The

design addresses the unsuitability of existing VM memory

transferring mechanisms on uVMs. However, due to the CoW-

based memory allocation approach, this design can incur

notable time overhead for uVMs with frequent memory oper-

ations. To address this issue, we propose two optimizations.

The details of the proactive memory-releasing approach and

its optimizations are discussed in Section IV-C.

Lastly, MEUNIK employs a simple yet effective approach

based on the LRU (Least Recently Used) strategy to estimate

the working set and reclaim idle memory for uVMs. We show

that existing complex mechanisms for working set estimation

and idle memory reclamation are overkill for uVMs, mainly

due to the single-application nature of uVMs. We present the

experiments and our insights in Section IV-D.

We implemented a prototype MEUNIK system with the Xen

hypervisor [36]. We built three groups of unikernels based

on the Rumprun platform: 15 Python benchmark program

unikernels, 4 server application unikernels, and 2 ClickOS

network middlebox unikernels. We then thoroughly evaluated

the performance of the MEUNIK prototype system with these

unikernels. The evaluation results show that MEUNIK effec-

tively manages memory resources for individual uVMs based

on their actual behavior and aggressively improves system

memory availability with little overhead.

In summary, contributions in this paper are as follows:

• We demonstrate the limitations of existing VM memory

management solutions for unikernel-based VMs through de-

tailed real-world experiments and measurement studies.

• We propose MEUNIK, a solution specifically designed to

address the limitations of the existing approaches.

• We implement a prototype MEUNIK system based on the

Xen hypervisor.

• We create uVMs using various programs and applications,

including 15 small benchmark programs, four complex server

applications, and two network-intensive programs. We conduct

extensive experiments to evaluate the performance of our

prototype system, and the results indicate that our system

achieves the intended design goals with minimal overhead.

II. RELATED WORK

VM forking and copy-on-write (CoW). There have been

works that utilize the approach of cloning/forking/checkpoint-

ing an existing VM or container instance for various purposes

[39]–[42]. For example, Potemkin [39] is a honeyfarm system

that utilizes a large number of VMs to deploy decoy systems

or services which attract attackers and malware. To speed up

the VM creation, each new VM is forked from an initialized

VM instance. SnowFlock [40] uses the VM fork approach to

quickly clone a VM into multiple replicas on different hosts,

which is a desired scenario in cloud computing. Zhi et al.

utilize VM fork to start VMs in the cloud for more efficient

system testing [41]. Catalyzer [42] proposes a sandbox fork

mechanism that reduces the time needed to start a container in

a serverless computing environment. All four works described

previously also utilize the copy-on-write (CoW) technique

to reduce VM startup time and conserve system resources.

However, the works discussed above apply to conventional

VMs, while we study the unique behaviors of uVMs and

design solutions for efficient and effective uVM memory

management in hypervisors.

Nephele [43] is a recent work that investigates how to

systematically support uVM cloning. This work goes beyond

duplicating address spaces to address other issues, such as

I/O cloning and inter-uVM communication. While Nephele

focuses on improving the CoW-based cloning technique for

uVMs, our work aims to identify issues within current hy-

pervisors regarding uVM memory management and develop

solutions that consider the unique attributes of uVMs. In ad-

dition to leveraging the cloning technique, our work introduces

three distinct and novel solutions to achieve the goal. In this

sense, Nephele and our work complement each other.

Lightweight hypervisor designs. Designing hypervisors that

are lightweight and secure has been the focus of many recent

research work. Firecracker [44] is one such effort that is

designed for serverless workloads. The central idea is to use

VMs created by a hypervisor to run containers to achieve better

security isolation. LightVM [45] is a Xen-based lightweight

hypervisor that aims to boot a large number of VMs quickly.

Similar to Firecracker, Kata Container [46] aims to provide

a lightweight and secure virtualized runtime environment by

running containers in VMs that are created and monitored by a

hypervisor. Our work investigates and demonstrates the inade-

quacy of existing hypervisors’ approach to managing memory

resources for unikernel-based VMs. The proposed solutions

in this work focus on the aspect of memory management

and complement the lightweight hypervisor designs in the

literature.

Improving memory availability in virtualized systems. Our

work puts focus on maximizing memory sharing to improve

memory availability for unikernel-based uVMs. Besides KSB-

based [47]–[49] and TPS-based [50], [51] ways of performing

293

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 14,2025 at 20:08:14 UTC from IEEE Xplore. Restrictions apply.

VM memory sharing/deduplication, there have been other

work to improve memory sharing in virtualized environments

[52]–[55]. Our work complements these works in that we are

trying to solve this important problem in the context of uVMs.

III. MOTIVATION

Due to the single-application nature of unikernels, a physical

host needs to run a significantly higher number of uVM

instances than with the case of traditional VMs (i.e., VMs

running traditional OSes) in practice. We observe that existing

VM memory management in hypervisors can cause memory to

become a bottleneck which significantly limits the scalability

of uVMs. We discuss our observations as follows.

Observation 1: Predetermined VM startup memory al-

location is not suitable for uVMs. Existing hypervisors

require that the size of memory assigned to a VM to be

predetermined before starting it [56]–[59]. For example, with

Xen, the administrator needs to specify either a fixed memory

size or a range of memory sizes for a VM before launching it

[56], [57]. If a fixed memory value is provided, the VM will

be allocated with the requested amount of memory initially. If

a range is specified, the hypervisor will keep the amount of

memory allocated to the VM between the specified minimum

and maximum memory values. With KVM, memory allocated

to a VM is also manually specified, either when starting the

VM or during runtime [58].

In practice, the static VM memory allocation described

above is not suitable for uVMs because it is difficult for

administrators to set a proper memory value for uVMs. The

difficulty stems from the following two observations.

(1) Cross-type uVM memory usage difference is high: memory

demands by uVMs of different types (i.e., uVMs that run

different applications) can be drastically different.

(2) Intra-type uVM memory usage variance is high: for the

same type of uVMs (i.e., uVMs that run the same application),

the memory consumption may be highly variable depending

on various factors, such as internal memory behavior of the

application and different types of requests that the uVM needs

to processes.

The two observations above were obtained through our

experiments in which we compiled five applications into

Rumprun unikernels [31], and run them with the Xen (version

4.10) VMs. The first two applications are Node.js [60]

and Ngnix [61] web servers. Both web servers host a doc-

umentation website which consists of 1,000 static web pages

of different sizes. The next two applications are popular in-

memory key-value stores Memcached [62] and Redis [63].

The last one is on-disk key-value store LevelDB [64].

We first compared the memory demands of uVMs of dif-

ferent types (i.e., cross-type uVM memory usage). For the

two web server uVMs (i.e., Node.js and Ngnix), we used

the Apache ab benchmark tool to traverse all the web pages

of the documentation website. For the two in-memory key-

value store uVMs (i.e., Memcached and Redis), we used

the memtier benchmark tool [65] to generate key-value

store traffic which contained 20,000 requests with the set/get

operation ratio set to be 1:1.

The experiment result shows that the two web server uVMs

consumed drastically different memory: the Node.js uVM

demanded 300 MB of memory while the Nginx uVM only

required about 16 MB. The reason is that a substantial amount

of memory was used to support the Node.js runtime while

Nginx is known for its simplicity and lightweight. The

two in-memory key-value store uVMs also exhibited notable

differences in memory demand: memcached uVM consumed

35 MB of memory, and the Redis uVM needed 60 MB.

For uVMs of the same type, memory consumption can also

vary significantly. For example, we sampled the memory usage

of the Node.js uVM every second while it was running

the workload described above. Figure 1(a) depicts the result,

which shows that the memory usage of the uVM oscillated

between roughly 300 MB and 180 MB while the workload

was running. The oscillation is because of the fact that garbage

collection of the Node.js runtime was invoked periodically

(which caused the periodic drops in memory usage). After the

workload completed the memory usage remained at around

180 MB. Besides internal memory behavior of the application,

intra-type uVM memory consumption variance can also be

caused by the different requests that the uVM needs to

process. Figure 1(b) shows the per-second memory usage of

the Memcached uVM when it dealt with two streams of key-

value store traffic, both of which contained 20,000 requests.

The difference was that the set/get operation ratio of one

stream was 1/10 and the same ratio of the other was 10/1.

It can be seen that the uVM consumed much more memory

when processing the traffic with the 10/1 set/get operation

ratio than processing the other one. Another example is shown

in Figure 1(c), which showed the per-second memory usage

of the LevelDB uVM. In this experiment, we compared the

uVM memory consumption when the LevelDB application

filled values in sequential key order (“fillseq”) and random

key order (“fillrandom”). The result showed that there was

a 13% difference (278 MB for “fillseq” and 315 MB for

“fillrandom”).

The high cross-type and intra-type uVM memory usage

variances demonstrated above render it difficult to statically

set a proper memory value for uVMs when launching them

or during runtime. To ensure uVMs to function properly, it

is necessary to be conservative by choosing a high-end value

when setting the amount of VM startup memory. However,

this practice would cause memory waste which can devastate

memory-constrained hosts such as in edge and embedded

computing scenarios.

Observsation 2: Existing mechanisms for transferring

memory between VMs do not suit uVMs. After VMs

are started with the statically configured sizes of memory,

existing hypervisors employ mechanisms to move memory

across different VMs to support memory overcommitment

[66]. Most of these mechanisms adopt the idea of memory

ballooning [67], which utilizes “balloon drivers” in guest OSes

294

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 14,2025 at 20:08:14 UTC from IEEE Xplore. Restrictions apply.

0 2 4 6 8 10

100
150
200
250
300
350

uV
M

 M
em

or
y

co
ns

um
pt

io
n

(M
B)

Time (Second)

 fillseq
 fillrandom

(c)(b)

0 100 200 300 400

15
20
25
30
35
40
45

uV
M

 M
em

or
y

co
ns

um
pt

io
n

(M
B)

Time (Second)

 set/test operations ratio: 1/10
 set/test operations ratio: 10/1

0 20 40 60 80
100

150

200

250

300

workload endeduV
M

 M
em

or
y

co
ns

um
pt

io
n

(M
B)

Time (Second)

workload started

(a)

Fig. 1: Illustrations of high intra-type uVM memory usage variance. Memory consumption of (a) a Node.js uVM workload; (b) a
Memcached uVM workload; and (c) a LevelDB uVM workload.

to transfer memory between VMs [51], [68]–[70]. However,

memory ballooning is not suitable for uVMs for the following

three reasons.

(1) Existing memory ballooning mechanisms require man-

ual activation by administrators or system management tools

for individual VMs [71], [72]. Although attempts have been

made to enable automatic ballooning for KVM, such efforts

remain incomplete [72]. Manual activation of memory bal-

looning for each uVM is inflexible, particularly considering

the notably larger number of uVM instances in the system

compared to traditional VMs.

(2) Even if memory ballooning can be efficiently activated

for individual uVMs, recent studies indicate that it responds

slowly to memory demand changes in VMs [69], [70],

[73]. Given the substantial variance in memory consumption

demonstrated by uVMs, memory ballooning is unlikely to be

effective for them.

(3) Enabling memory ballooning for uVMs would require

adding support to the unikernel guest OSes, such as incorpo-

rating balloon drivers into the unikernels. However, this would

contradict the minimalism philosophy of unikernels.

Observation 3: Existing cross-VM memory sharing mecha-

nisms are slow and costly for uVMs. The need of supporting

a large number of uVM instances on a single physical host

puts significant pressure on system memory consumption.

Effective and efficient cross-VM memory sharing mechanisms

are helpful to alleviate such pressure.

However, the existing VM memory sharing mechanisms are

not suitable for uVMs because they are mostly slow and incur

high costs. The existing mechanisms can be classified into

two groups: Kernel Same-page Merging (KSM) [47]–[49] or

Transparent Page Sharing (TPS) by VMware [50], [51]. Both

KSM and TPS work by periodically scanning the entire system

to identify and share identical memory pages. As a result, they

are not suitable for uVMs because content-based scanning is

slow and incurs high costs in deduplicating identical pages

[49], [53], [54].

Observation 4: Existing VM working set estimation and

idle memory reclamation mechanisms incur high overhead.

In addition to memory ballooning and cross-VM memory

sharing, idle memory reclamation is another way to improve

memory availability for VMs. Idle memory reclamation works

by first estimating VM working set which is the set of memory

pages that are being actively used by the VMs, and then

TABLE I: VM sharable physical memory pages comparison: uVMs
vs. traditional VMs.

Rumprun (unikernel) Lubuntu (lightweight
VMs Linux) VMs

U S F U S F

After boot 2% 10% 88% 58% 17% 25%
qsort 3% 16% 81% 62% 14% 24%
jpeg 3% 13% 84% 65% 13% 22%
sha 3% 17% 80% 59% 17% 24%

U: Unique pages | S: Shareable base pages | F: Freeable pages.

swapping non-working-set pages out to the swap area [51].

However, the existing ways of estimating VM working set,

such as random TLB invalidation followed by TLB misses

checking to identify working sets [51], incur high overhead to

achieve the goal [69], [74].

IV. SYSTEM DESIGN

A. On-demand uVM memory allocation and intra-type uVM

memory sharing

As demonstrated in Section III, uVMs exhibit a wide and

instantaneous variance in memory usage when compared to

VMs running traditional OSes. Therefore, the predetermined

VM startup memory allocation approach that is commonly

adopted by most hypervisors often leads to memory over-

allocation when hosting uVMs.

To address this issue, MEUNIK employs an on-demand

memory allocation approach which is based on the principles

of VM cloning and copy-on-write (CoW). Our experiments

show that the combination of these techniques provides greater

benefits to uVMs than to traditional VMs in terms of improv-

ing memory availability in the system.

Intra-type uVM memory sharing opportunities. In our

experiments, we compiled three benchmark programs, qsort,

jpeg, and sha, from the MiBench suite [75] into three types

of Rumprun unikernels [31]. For each type of unikernel, we

ran it as the guest OS of two Xen VMs, which therefore

are two uVMs of the same type, on an Odroid XU4 single-

board computer [76]. We measured the similarity among

the two uVMs’ physical memory pages at two time points:

immediately after the VM booted and after the benchmark

program had run for one minute. We also ran each of the

programs on two conventional Xen VMs, which used the

lightweight Linux distribution Lubuntu [77] as the guest OS,

and performed the same measurements for the two VMs. The

295

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 14,2025 at 20:08:14 UTC from IEEE Xplore. Restrictions apply.

Machine RAM Machine RAM

App-1 unikernel VM memory Changed memory page

User A VM (yellow) User B VM (blue)

User C VM (brown) App-template VM (shaded)

50 MB 50 MB

50 MB

50 MB

Fig. 2: On-demand memory allocation and intra-type uVM memory
sharing.

physical memory sizes of a Rumprun uVM and a Lubuntu

VM were configured to 20 MB and 256 MB, respectively.

By comparing the similarity of the physical memory pages

between the two VMs, we classified the memory pages of

a VM into three groups: A page is a unique page if it

is different from any other pages across the two VMs. If

the two VMs have pages that are identical, one of those

identical pages is marked as a shareable base page, and the

remaining pages are considered as freeable pages. Table I

shows the percentages of the three categories of memory

pages in the uVMs and the conventional VMs. The results

show that Rumprun uVMs have a much higher potential for

memory sharing than the two conventional VMs. The main

reason is that traditional operating systems typically have

many computing tasks belonging to either the OS kernel or

the user, whereas unikernels only have a single task. This

reduces the number of memory modifications in uVMs, which

increases the opportunities for memory sharing. As a result,

uVMs of the same type can benefit significantly from memory

sharing.

uVM cloning and on-demand memory allocation. To take

advantage of intra-type uVM memory sharing opportunity, we

designed a uVM cloning mechanism that utilizes the principle

of copy-on-write (CoW) to achieve memory sharing among

uVMs of the same type and on-demand uVM memory alloca-

tion. Using this mechanism, a new uVM of an app is launched

by cloning the app-template uVM of the same app. An app-

template uVM is created by following the same process as

starting a uVM normally, except that it is paused after the

initialization phase, which includes loading the code and data

of the unikernel. The memory pages of the app-template uVM

are then made read-only. Instead of having their own memory

allocated by the hypervisor from the beginning, new uVMs are

cloned from the corresponding app-template uVMs and share

memory pages with them. This allows individual memory

allocation needs from the new uVMs to be met via the CoW

process [78]. Specifically, when a new uVM needs to write to

a memory page, a page fault is generated due to the attempt to

modify a read-only memory page. The control is transferred

to the hypervisor, which then allocates a new page for the new

uVM, copies the content of the faulting page to the new page,

and marks the new page writable to the new uVM.

Figure 2 illustrates the advantages of the above mechanism

using an example scenario. Let’s consider three users, A, B,

and C, each launching a uVM running the same application.

The estimated memory consumption of a uVM, depending on

the application’s operations, ranges from 20 MB to 50 MB

(such as the Memcached uVM demonstrated in Figure 1

(b)). To ensure the normal operation of the application, it is

advisable to assign a conservative 50 MB of memory when

launching each uVM. With the existing predetermined VM

startup memory allocation, a total of 150 MB of memory

would be allocated to the three uVMs (left part of Figure

2). However, considering the varying application demands,

a large portion of this allocated memory is likely to be

underutilized. In contrast, by utilizing the proposed uVM

cloning and on-demand memory allocation mechanism, only

50 MB of memory is initially required to launch the app-

template uVM, along with additional memory that is actually

needed by the uVMs during runtime (right part of Figure 2).

B. Single-page generic-template uVM and three-stage uVM

creation

Given the single-application nature of uVMs, it is expected

that many uVMs of different types, each running a distinct

application, are present in the system concurrently. Despite the

mechanisms described in Section IV-A, it is still necessary to

preallocate memory conservatively for a considerable number

of app-template uVMs. Furthermore, the mechanisms do not

utilize the potential memory sharing opportunities among

uVMs of different types.

Three-stage uVM creation. To address the above limitations,

we extend the uVM cloning mechanism to encompass the

creation of app-template uVMs. As a result, a three-stage

approach is used to launch individual uVMs.

(1) Stage-1: single-page generic-template uVM creation.

During its bootstrapping process, MEUNIK creates a special

VM called the generic-template uVM, which is used as a

template for creating app-template uVMs.

To create the generic-template uVM, the only real work to

perform is to set up the uVM’s page table such that every

virtual memory page (VMP) in the address space is linked to

a sole machine memory page (MMP) allocated for the generic-

template uVM. In regular VMs, VMPs in an address space are

not associated with any MMPs at the beginning. As a result,

all the page table entries (PTEs) are marked as invalid. When

an invalid PTE is referenced during runtime, the page fault

handling process takes place. This process maps an MMP from

the (conservatively) preallocated VM memory to the PTE, and

marks the PTE as valid. However, with our design for the

generic-template uVM, MEUNIK allocates just one MMP, and

associates it with all the PTEs. Subsequently, all the PTEs

are marked as valid from the start. This design eliminates the

need to preallocate memory for the generic-template uVM, as

well as all future app-template uVMs. MEUNIK then marks

the PTES to set all the VMPs as read-only and suspends the

VM. The generic-template uVM is now ready for future app-

template uVM creation.

296

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 14,2025 at 20:08:14 UTC from IEEE Xplore. Restrictions apply.

MMP# Other
bits

0

0

0

...

...

...

PTE-0

PTE-1

PTE-N

MMP# Other
bits

1

0

0

...

...

...

PTE-0

PTE-1

PTE-N

MMP# Other
bits

2

3

0

...

...

...

PTE-0

PTE-1

PTE-N

0 ...PTE-2

MMP# Other
bits

1

4

0

...

...

...

PTE-0

PTE-1

PTE-N

0 ...PTE-2

MMP# Other
bits

2

5

0

...

...

...

PTE-0

PTE-1

PTE-N

6 ...PTE-2

0 ...PTE-3

Generic-template uVM
(1 MMP consumed)

page table

App1-template uVM
(2 MMP consumed)

page table

App2-template uVM
(3 MMP consumed)

page table

App1 uVM-1
(3 MMP consumed)

page table

App1 uVM-2
(4 MMP consumed)

page table

clone

clone

clone

clone

Fig. 3: An illustration of three-stage uVM creation (PTE stands for
“page table entry”, MMP stands for “machine memory page”).

(2) Stage-2: app-template uVM creation. When a new uVM

is launched to run an application that is different from any

current uVMs, an app-template uVM is created by cloning

the generic-template uVM. The cloned uVM is then resumed

and continues the booting process. which includes initializing

other VM data structures, such as virtual CPUs (vCPUs) and

I/O devices, and setting up the guest OS using the unikernel

of the new app. Since page tables are not shareable, the page

table is also copied, and the copied version is loaded into the

hardware page table base register (PTBR) of the cloned uVM.

The cloned uVM is paused before the first instruction of the

app code is executed. At this point, the cloned uVM is ready

to be used as a template for regular uVM creation.

(3) Stage-3: regular uVM creation. A regular uVM is

created by cloning the corresponding app-template uVM. The

cloned uVM is then resumed, and a copy of the app-template

uVM’s page table is loaded into the cloned uVM’s PBTR. The

cloned uVM then continues and functions as a regular uVM.

An illustrative example. Figure 3 illustrates how the three-

stage uVM creation works. As part of the system booting pro-

cess, a single-page generic-template uVM is created. Suppose

there are N VMPs in a uVM’s address space, the leftmost part

of Figure 3 shows the content of the generic-template uVM’s

page table. In this page table, the MMP number field of all

page table entries (PTEs) is set to 0, meaning all VMPs are

backed by the same MMP (i.e., MMP #0).

The generic-template uVM is then cloned into two app-

template uVMs. Suppose app1-template uVM only modifies

VMP0 during the initialization process, the VMP0 of this uVM

is allocated with a new MMP (#1). The remaining VMPs of

app1-template uVM are backed by MMP0, which is the single

MMP allocated for the generic-template uVM. Similarly, for

app2-template uVM, if the first two VMPs are modified during

its initialization process, only these two VMPs are allocated

with new MMPs.

Regular uVMs are cloned from the corresponding app-

template uVM. In the example, two regular app1 uVMs are

created. In the beginning, uVM-1 shares MMP1 with the app-

template uVM and shares MMP0 with the generic-template

uVM. Then, new MMPs are allocated to it as individual VMPs

are written.

Benefits analysis. The three-stage uVM creation design pro-

vides the following three main advantages.

First, each app-template uVM is cloned from the generic-

template uVM, where all the VMPs are mapped to the same

read-only MMP. This approach allows for on-demand memory

allocation via CoW as individual VMPs are written, ensuring

that only the necessary amount of memory is allocated for

each app-template uVM. In contrast, the conventional way

to create an app-template uVM would require allocating a

predetermined amount of memory, which can add up to a

significant amount considering the potentially high number

of app-template uVMs in the system. Worse, most of this

preallocated memory would remain unused as app-template

uVMs do not execute actual applications during runtime.

Second, each regular uVM is cloned from its corresponding

app-template uVMs. Therefore, uVMs of the same type share

the majority of their memory with the app-template uVM and

only request additional memory pages as needed due to the

usage of CoW-based page allocation.

Third, with the proposed three-stage uVM creation ap-

proach, unused VMPs in uVMs are backed by the same MMP

and considered to be valid. This approach allows unused mem-

ory to be shared across and within individual uVMs, resulting

in improved memory availability in the system. In essence,

MEUNIK enables lazy page allocation at the hypervisor level,

which is typically a functionality of the guest OS kernel. This

reduces the complexity of the uVM guest OS, conforming to

the minimalism philosophy of unikernels.

It is worth noting that our three-stage uVM creation design

incorporates CoW without incurring the usual copying over-

head associated with typical CoW scenarios. This is because

the copying phase can be bypassed if CoW is triggered as the

result of writing to the sole MMP allocated to the generic-

template uVM (which suggests that the page being written to

was unused). As a result, the CoW-based on-demand memory

allocation during the uVM creation phases exhibits similar

performance in terms of allocation time to the conventional

memory allocation approach.

C. Proactive memory releasing

As explained in Section III, existing approaches for return-

ing memory back to the hypervisor when system memory

pressure is high, such as memory ballooning, are not suitable

for uVMs. This is because the memory ballooning approach

(1) needs to be activated manually, (2) responds slowly to

memory demand changes in uVMs, and (3) requires substantial

changes to the unikernel. To address this issue, our solution

comprises two parts: automatic freed memory releasing (this

section) and idle memory reclamation (Section IV-D).

Automatic freed memory releasing (AFMR). During periods

of high memory pressure, AFMR automatically releases mem-

ory back to the hypervisor as soon as a uVM indicates that it

297

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 14,2025 at 20:08:14 UTC from IEEE Xplore. Restrictions apply.

no longer needs it, such as when memory is explicitly freed

by the uVM. It can be achieved by adding a single hypercall

which is invoked whenever memory is freed by unikernel code.

The hypercall simply marks the MMPs corresponding to the

VMPs that have been freed as available. Additionally, it maps

the sole MMP allocated for the generic-template uVM to the

freed VMPs and sets the VMPs as read-only. This ensures that

the CoW-based on-demand page allocation mechanism can be

activated when the freed VMPs are reallocated and referenced

again.

AFMR can notably improve system memory availability

when the system is hosting unikernels that frequently perform

memory allocation and free operations. However, it may

also cause noticeable time overhead in certain scenarios. For

example, if a large amount of memory pages are reallocated

and written to shortly after being freed, an equivalent amount

of CoW page faults can occur. While the copying phase can be

skipped when the faulting page is backed by the sole MMP

allocated to the generic-template uVM, handling CoW page

faults can still be time-consuming, especially when handling

a large amount. To address this problem, we propose two

optimizations to complement AFMR.

Optimization 1: speculative allocation (SA). The first opti-

mization aims to improve the efficiency of memory realloca-

tion. When a CoW page fault occurs on VMP, it speculates

which additional VMPs are likely to be written to and preal-

locates MMPs for all those VMPs within one CoW page fault

handling process. As a result, the overhead associated with

multiple individual CoW page fault operations is reduced.

The SA algorithm leverages the principles of spatial and

temporal locality in memory references to predict whether to

preallocate an MMP for a VMP. It maintains two counters

for each VMP in an address space: the allocation count

and the hit count. The allocation count increases each time

the VMP is allocated with an MMP through either CoW or

preallocation. The hit count increases each time when the

VMP is written to for the first time since being allocated with

an MMP. When handling a CoW page fault, for each VMP in

a window of VMPs that follow the faulting page, the algorithm

speculatively preallocates an MMP for the VMP if it satisfies

all the conditions below:

• Cond-1: The VMP is mapped with the sole MMP allocated

to the generic-template VM. In other words, the VMP is not

currently allocated with an actual MMP.

• Cond-2: The VMP has been allocated with an actual MMP

before. This is because a VMP that has never been touched

does not provide any temporal information for prediction.

• Cond-3: The time elapsed since the last time the VMP was

freed is smaller than a threshold. In our prototype system

implementation, we use a threshold of 5 seconds.

• Cond-4: The current prediction hit ratio on the VMP, which

is the ratio between the VMP’s hit count and allocation count,

is greater than a threshold. For our prototype system, we set

this threshold to 95%.

If any VMP in the prediction window does not to meet one

1 2 3 4 5 6 7 8 9 10
0

5000
10000
15000
20000
25000
30000
35000

N
um

be
r o

f p
ag

es
 a

cc
es

se
d

Round index

 Portion of pages not accessed in the prev. round
 Portion of pages also accessed in the prev. round

0
20
40
60
80
100

Pe
rc

en
ta

ge
 o

f p
ag

es
 a

ls
o

ac
ce

ss
ed

 in
 th

e
pr

ev
. r

ou
nd

 (%
)

Fig. 4: Memory pages accessed for the Node.js uVM.

or more of these conditions one VMP, the SA algorithm aborts

for all the VMPs behind it.

Optimization 2: delayed releasing (DR). The second op-

timization aims to address the potential problem of AFMR

by delaying the release of MMPs back to the hypervisor.

In Section V, we discuss how the DR optimization was be

implemented while taking system efficiency into account.

D. uVM-aware working set estimation and idle memory recla-

mation

If memory pressure continues to be high even after proactive

memory releasing is enabled, MEUNIK takes the approach of

reclaiming memory that is not being actively used by the VMs.

In other words, it targets idle memory that does not belong to

the VMs’ working sets.

Existing VM idle memory reclamation solutions typically

involve two steps. First, the hypervisor determines which VMs

should have their MMPs reclaimed. A common approach is to

calculate the "price" that a VM is paying for each MMP, and

then reclaim MMPs from VMs that are paying a lower price

and reallocate them to VMs that are willing to pay a higher

price [51]. In the second step, the hypervisor estimates the

working sets of the target VMs and reclaims memory pages

that are not part of the working sets.

However, existing idle memory reclamation solutions do not

fit uVMs well for two reasons: First, calculating page price for

every VM in the system is prohibitively expensive considering

the much larger number of VMs in the case of uVMs. Second,

the existing methods for working set estimation, such as

random TLB invalidation followed by TLB misses checking

to identify the working sets [51], are complex and incur high

overhead [69], [74].

We observed that the working sets of uVMs are more stable

over time than those of conventional VMs. To illustrate this

observation, we conducted an experiment in which a uVM web

server running Node.js was set up to host a documentation

website consisting of 1,000 static web pages. We used the

Apache ab benchmark tool on a separate machine to browse

through the entire wedbsite. We repeated the experiment for

10 rounds, and tracked how memory pages of the uVM were

accessed during each round. Figure 4 shows the results of

the experiment. The working set of the uVM remained stable

throughout the 10 rounds of the experiment, with an average

of 95% of the memory pages accessed in each round also

298

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 14,2025 at 20:08:14 UTC from IEEE Xplore. Restrictions apply.

being accessed in the previous round. The reason for highly

stable working sets in uVMs is that a uVM only runs a single

application only the necessary OS kernel functionalities. In

contrast, a conventional VM typically runs multiple processes

alongside with the full OS kernel. As a result, working sets

of conventional VMs are more prone to change as active

processes change over time.

Given the observation that uVMs tend to have stable work-

ing sets, we propose a uVM-aware working set estimation

and idle memory reclamation mechanism based on the simple

least recently used (LRU) heuristic. With our solution, the

hypervisor maintains a queue of all the MMPs that have

been allocated to the uVMs in the system. When an MMP

is referenced, it is moved to the back of the queue. When

the system experiences high memory pressure, the hypervisor

reclaims a certain amount of MMPs from the front of the

queue, as configured by the user. Our solution is lightweight

compared to existing solutions in two ways. First, it treats

all the MMPs in the system as a whole, rather than checking

individual uVMs to determine which ones should have their

memory reclaimed. Second, the LRU heuristic is much more

lightweight than existing approaches such as random TLB

invalidation followed by TLB misses checking.

V. SYSTEM IMPLEMENTATION

Implementation setup. We have implemented the proposed

MEUNIK system on Xen hypervisor version 4.10 [79]. In Xen,

each VM is referred to as a domain. For the remainder of this

paper, we will use the terms "domain" and "VM" interchange-

ably. The Dom0, which is the privileged management domain

for the unprivileged domains (referred to as DomUs), runs on

Linux 4.4 as the operating system.

We chose paravirtualization (PV) as the virtualization tech-

nique for our prototype system. There are two main reasons

for this decision. First, our design involves participation from

VMs, such as proactive memory releasing, which requires

modifications to the VM guest OS. Second, unikernels, which

are the guest OSes of unikernel VMs, are typically built before

deployment due to their single-application nature. As a result,

changing unikernels to add MEUNIK support would not incur

much deployment overhead.

The unikernels that have been integrated with our prototype

system are Rumprun [31], which is a NetBSD-based library

OS that supports the development and execution of existing

application code as unikernels, and ClickOS [30], which is

a virtualized software router platform based on the Click

Modular Router architecture [80].

Xen Background. To speed up memory translation, Xen’s PV

MMU (memory management unit) model lets a guest OS map

its virtual memory pages (VMPs) directly to machine memory

pages (MMPs) in its page tables, instead of mapping them to

the guest’s physical memory pages (PMPs) [81]. Thus, guest

OSes’ page tables are also called V2M tables. A V2M table

can be updated by the hypervisor and the guest OS, but the

guest must use hypercalls provided by the hypervisor to do so.

The hypervisor maintains another page table called the P2M

table, which records the mappings from the guest’s PMPs to

MMPs. The P2M table is readable to the guest, and it helps

the guest to populate the V2M table as unmapped VMPs are

referenced.

CoW-based page allocation. To implement the CoW-based

page allocation mechanism, an MMP to be shared is first set

as read-only by clearing the writable bit of the corresponding

V2M table entry and then marked as shared in its page

descriptor. This can be done by either the hypervisor (when

setting up a generic-template uVM or an app-template uVM),

or the guest OS (when exercising AFMR). When a shared

MMP is modified, a page fault is generated. The hypervisor

handles this page fault by allocating a new MMP for the uVM

that attempted to modify the faulting MMP. The hypervisor

then copies the content of the faulting MMP to the newly

allocated MMP and updates the uVM’s corresponding V2M

entry accordingly. If a page fault is not due to an attempt to

modify a read-only page, the hypervisor injects the page fault

back to the uVM and lets the uVM handle it.

Three-stage uVM creation. To create the generic-template

uVM, the hypervisor only needs to initialize the V2M table

by mapping all the VMPs of the guest OS to a single MMP

dedicated to the generic-template uVM and setting the VMPs

as shared and read-only. To create an app-template uVM,

the hypervisor takes a copy of the generic-template uVM,

duplicates its V2M table, and continues the uVM startup

process. This includes loading the unikernel image, setting up

resources related to the vCPUs and I/O devices, and finishing

the application initialization. During the startup process, all

newly allocated MMPs due to CoW page allocation are marked

as read-only, except for those that cannot be shared (e.g.,

MMPs for the page table, and resources related to vCPUs

and I/O devices). The app-template uVM is suspended when

it is ready to execute the first instruction of the application

code. Regular uVMs are created by cloning the corresponding

app-template uVMs. During this process, the hypervisor only

needs to allocate and initialize the memory for contents that

cannot be shared. The regular uVM shares the majority of its

memory with the app-template uVM and only requests new

memory as needed.

AFMR and its optimizations. The AFMR (automatic freed

memory releasing) mechanism was implemented by instru-

menting the Rumprun framework so that a hypervisor hy-

percall is made whenever a memory-freeing operation is

performed in the guest OS. The details of the AFMR hypercall

actions are discussed in Section IV-C.

The SA algorithm maintains two counters for each VMP in

the address space: the allocation count and the hit count. The

allocation count is increased by one when the VMP is allocated

with an MMP, through either CoW or SA. The hit count is

incremented by one each time the VMP is first modified since

it was last allocated with an MMP. In our implementation, we

set the hit count of a VMP when it is released back to the

hypervisor via AFMR. Specifically, when serving an AFMR

hypercall, the hypervisor checks the dirty bit of the V2M table

299

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 14,2025 at 20:08:14 UTC from IEEE Xplore. Restrictions apply.

entry which contains the VMP being freed. If the dirty bit is

set, the hypervisor increments the hit count of the VMP by

one.

To implement the DR mechanism, we used a queue to track

the MMPs that have been recently freed by the guest OS. We

modified the buddy page allocator of the Rumprun platform

such that MMPs in the queue are used to satisfy memory

allocation requests in the guest OS first. If an MMP in the

queue is selected to satisfy a memory allocation request, it

is removed from the queue. A kernel thread in the guest is

then used to periodically examine the MMPs in the queue and

invoke the AFMR hypercall to release the MMPs that have

remained in the queue for more than a threshold period of

time (which is set to 5 seconds in our prototype system).

uVM-aware idle memory reclamation. The uVM-aware idle

memory reclamation mechanism described in Section IV-D

treats all the MMPs that have been allocated to the individual

uVMs as a whole and applies a simple heuristic of LRU (Least

Recently Used) to select pages for reclamation. In our imple-

mentation, we used the clock algorithm [82] to approximate

LRU. The clock algorithm uses the dirty bit of individual

MMPs (which can be found in the corresponding V2M table

entry) to determine which MMP should be reclaimed next.

Due to space constraints, we omit the details of the algorithm.

One notable issue that occurred in our implementation is that

the clock algorithm clears the dirty bit of all the allocated

MMPs periodically. This created a problem for our system

because the dirty bit of individual MMPs is also used in the

speculative allocation mechanism. To address this problem,

we duplicated the dirty bit of all the allocated MMPs into a

bitmap (which is called the shadow dirty bitmap) each time

the clock algorithm clears the MMPs’ dirty bit. By doing this,

we can safely use the original dirty bit of individual MMPs

for the clock algorithm while using the shadow dirty bitmap

for speculative allocation.

Dealing with network devices. Since the DomU uVMs are

cloned from the app-template uVMs, uVMs of the same type

all have the same MAC and IP addresses. Existing solutions

use network tools that are readily available in conventional

OSes to change VM MAC/IP addresses at runtime [39].

However, these solutions are not applicable for uVMs because

of the app-specific nature of unikernels. Our solution is to

assign new MAC/IP addresses to newly cloned uVMs on the

back-end network device driver, while keeping the MAC/IP

addresses on the front-end which are inherited from the

app-template uVM unchanged. Since the shared ring buffer

between Dom0 and DomU is placed at front-end driver in

DomU, the back-end driver in Dom0 is able to differentiate

ownership of network packets and acts as a proxy accordingly.

For outgoing packets that a uVM (i.e., DomU) put into the

ring buffer, the back-end driver in Dom0 fetches them and

replaces the source MAC/IP addresses with the new ones

assigned to that uVM. For incoming packets, the back-end

driver is able to tell which uVM is the receiver by examining

the destination MAC/IP address. It then replaces the packet

ch
ameleon

delta
blue

dulw
ich

_log

fannku
ch

flo
at

go

htm
l5lib

jso
n_loads

mako

meteor_
co

ntest

nqueens

re
gex_

co
mpile

re
gex_

v8

ric
hard

s

sp
ectr

al_norm
0
2
4
6
8

1 0
1 2
1 4
1 6

Ex
ec

ut
io

n
tim

e
di

ffe
re

nc
e

(m
s) E x e c u tio n tim e d iffe re n c e

 C o W c o u n t

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

C
oW

 c
ou

nt

ch
ameleon

delta
blue

dulw
ich

_log

fannku
ch

flo
at

go

htm
l5lib

jso
n_loads

mako

meteor_
co

ntest

nqueens

re
gex_

co
mpile

re
gex_

v8

ric
hard

s

sp
ectr

al_norm
0

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0

 B a s e lin e
 u V M c lo n in g

Ex
ec

ut
io

n
tim

e
(m

s)

0

2 0

4 0

6 0

8 0

1 0 0

Ex
ec

ut
io

n
tim

e
ov

er
he

ad
 (%

)

ch
ameleon

delta
blue

dulw
ich

_log

fannku
ch

flo
at

go

htm
l5lib

jso
n_loads

mako

meteor_
co

ntest

nqueens

re
gex_

co
mpile

re
gex_

v8

ric
hard

s

sp
ectr

al_norm
0

1 0

2 0

3 0

4 0

5 0

6 0
 B a s e lin e
 u V M c lo n in g

M
em

or
y

us
ag

e
(M

B)

0

2 0

4 0

6 0

8 0

1 00

M
em

or
y

us
ag

e
re

du
ct

io
n

(%
)

(c) Execution time difference vs. CoW count

(b) Execution time

(a) Memory consumption

Fig. 5: Python benchmark uVMs experiment results.

destination MAC/IP addresses with the original ones and

places the packets in the ring buffer of the receiving uVM.

VI. SYSTEM EVALUATION

We evaluate our prototype system on a desktop server with

an 8-core 3.3 GHz CPU and 32 GB of physical memory. The

unikernels used in the experiments were compiled from the

following three groups of programs and applications:

• Python benchmark program unikernels: To evaluate MEU-

NIK’s performance when running unikernels built from small

programs, we selected and compiled benchmark programs

from the pyperformance Python performance benchmark

suite [83] into Python benchmark unikernels. We skipped

programs that involve user interaction, as we were only

interested in evaluating uVM execution time performance. We

also skipped programs that were similar to the ones that had

already been selected. As a result, we selected 15 programs,

as shown in the evaluation results later. To build a Python

benchmark uVM, we first fed the code of a selected program

and the Python interpreter to the Rumprun platform. Rumprun

then generated the unikernel, which was used as the guest OS

to start a uVM.

• Server application unikernels: We compiled four popular

server applications, Node.js, Nginx, Memcached, and

Redis into Rumprun unikernels, and built four app uVMs

using these unikernels.

• ClickOS middlebox unikernels: We ran two ClickOS mid-

dleboxes, IP router and Firewall, as uVMs, and evaluated

MEUNIK’s performance of hosting network-oriented uVMs.

300

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 14,2025 at 20:08:14 UTC from IEEE Xplore. Restrictions apply.

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

M
em

or
y

us
ag

e
(M

B)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

0

1 0

2 0

3 0

4 0

5 0

M
em

or
y

us
ag

e
(M

B)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

M
em

or
y

us
ag

e
(M

B)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

0

5

1 0

1 5

2 0

2 5

M
em

or
y

us
ag

e
(M

B)

Memcached RedisNginxNode.js

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

2 5

3 0

3 5

4 0

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

(b) Execution time

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

2 5

3 0

3 5

4 0

4 5

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

8

1 0

1 2

1 4

1 6

R
un

ni
ng

 ti
m

e
(s

ec
on

d)
B a s e l in e u V M

c lo n in g
c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

2 0

2 5

3 0

3 5

4 0

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

(a) Memory consumption
Node.js Nginx

NginxNode.js

RedisMemcached

Memcached Redis

(c) CoW count

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0

C
oW

 c
ou

nt
 (x

 1
00

0)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

0

5

1 0

1 5

2 0

2 5

C
oW

 c
ou

nt
 (x

 1
00

0)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

2

3

4

5

6

C
oW

 c
ou

nt
 (x

 1
00

0)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

5

6

7

8

9

1 0

C
oW

 c
ou

nt
 (x

 1
00

0)

Fig. 6: Application uVMs experiment results.

TABLE II: Memory pages distribution of Python microbenchmark uVMs (page size is 4KB)

chameleon deltablue dulwich_log fannkuch float

Shared Unique Shared Unique Shared Unique Shared Unique Shared Unique

text section 1,462 0 1,462 0 1,462 0 1,462 0 1,462 0

data sections 1,410 87 1,444 53 1,376 121 1,470 27 1,415 82

kernel stack 1,600 0 1,600 0 1,587 13 1,600 0 1,600 0

user stack & dyn. alloc. mem. 4,315 1,998 1,455 510 2,063 2194 1,954 86 1,312 4384

VM-specific info 0 72 0 72 0 72 0 72 0 72

Total 8,787 2,157 5,961 635 6,488 2,400 6,486 185 5,789 4,538

(percentage) (80.29%) (19.71%) (90.37%) (9.63%) (73.00%) (27.00%) (97.23%) (2.77%) (56.06%) (43.94%)

go html5lib json_loads mako meteor_contest

Shared Unique Shared Unique Shared Unique Shared Unique Shared Unique

text section 1,462 0 1,462 0 1,462 0 1,462 0 1,462 0

data sections 1,425 72 1,334 163 1,444 53 1,401 96 1,452 45

kernel stack 1,600 0 1,587 13 1,600 0 1,600 0 1,600 0

user stack & dyn. alloc. mem. 1,650 1,242 2,404 6,553 3,469 341 2,307 3,108 1,550 618

VM-specific info 0 72 0 72 0 72 0 72 0 72

Total 6,137 1,386 6,787 6,801 7,975 466 6,770 3,276 6,064 735

(percentage) (81.58%) (18.42%) (49.95%) (50.05%) (94.48%) (5.52%) (67.39%) (32.61%) (89.19%) (10.81%)

nqueens regex_compile regex_v8 richards spectral_norm

Shared Unique Shared Unique Shared Unique Shared Unique Shared Unique

text section 1,462 0 1,462 0 1,462 0 1,462 0 1462 0

data sections 1,465 32 1,379 118 1,450 47 1,451 46 1467 30

kernel stack 1,600 0 1,587 13 1,600 0 1,600 0 1600 0

user stack & dyn. alloc. mem. 1,563 182 2,246 3,312 2,387 423 1,868 213 1945 97

VM-specific info 0 72 0 72 0 72 0 m72 0 72

Total 6,090 286 6,674 3,515 6,899 542 6,381 331 6,474 199

(percentage) (95.51%) (4.49%) (65.50%) (34.50%) (92.72%) (7.28%) (95.07%) (4.93%) (97.02%) (2.98%)

TABLE III: Memory pages distribution of application uVMs (page size is 4KB)

Node.js Nginx Memcached Redis

Shared Unique Shared Unique Shared Unique Shared Unique

text section 2,512 0 879 0 551 0 618 0

data sections 2,718 388 824 61 896 92 844 169

kernel stack 1,650 14 1,650 14 1,587 13 1651 13

user stack & dyn. alloc. mem. 27,458 39,740 1,732 1,046 3,871 5,354 5462 8,607

VM-specific info 0 520 0 44 0 136 0 136

Total 34,338 40,662 5,085 1,165 6,905 5,595 8575 8925

(percentage) (45.78%) (54.22%) (81.36%) (18.64%) (55.24%) (44.76%) (49.00%) (51.00%)

A. uVM memory consumption reduction

We first evaluated how MEUNIK improves system memory

availability with its uVM cloning and on-demand page allo-

cation mechanisms.

Python benchmark program uVMs. In the first experiment,

we measured the baseline cases where each Python benchmark

301

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 14,2025 at 20:08:14 UTC from IEEE Xplore. Restrictions apply.

After routing
1 packet

After routing
500 packets

After routing
1500 packets

0
1
2
3
4
5
6
7

M
em

os
ry

 u
sa

ge
 (M

B)

 Basline
 uVM cloning

After processing
1 packet

After processing
50 packets

After processing
100 packets

0
1
2
3
4
5
6
7

M
em

or
y

us
ag

e
(M

B)

(b)(a)

Fig. 7: ClickOS middlebox uVMs, (a) IP router and (b) Firewall,
experiment results.

uVM was run with the unmodified Xen hypervisor. Since the

uVM was running as a conventional VM, it was conservatively

configured with 64 MB of machine memory. We then ran

each Python benchmark uVM with our MEUNIK system. We

measured the actual memory consumption of each uVM at

the end of each run. We repeated the experiment three times

and calculated the average memory consumption. Figure 5(a)

shows the results of this experiment. As can be seen, the

uVM cloning and on-demand memory allocation mechanisms

significantly reduce memory consumption for each uVM.

Five Python benchmark uVMs (fannkuch, json_loads,

nqueens, richards, and spectral_norm) see over

95% memory consumption reduction compared to the baseline

cases. The uVM that has the smallest consumption reduction

(html5lib) still enjoys about 50% reduction.

It is worth noting that in the baseline cases, each uVM was

assigned 64 MB of machine memory, even though the actual

memory consumption varied between 26 MB and 55 MB. This

means that a significant amount of memory was left unused.

In contrast, with MEUNIK, only the memory that is actually

consumed by each uVM is allocated. This results in significant

improvement in system memory availability.

We then measured the time needed to run each benchmark

once with the uVM. Figure 5(b) shows the results. We can

see that uVM workloads run with MEUNIK take more time

than those with the original hypervisor. However, the time

overhead is generally low, with 12 of the 15 uVMs having

an overhead of less than 10%. The reason for the execution

time overhead is because MEUNIK allocates memory pages

on demand using the CoW mechanism. Figure 5(c) plots the

execution time overhead (black line, left Y) and the CoW page

fault count (blue line, right Y). It shows that the two lines

roughly overlap, which supports our explanation above.

Sever application uVMs. We performed the same experiment

as above for the four app uVMs. In the experiment, the

app uVMs performed the workloads described in Section III

“Observation 1”. The first (the leftmost) bar in each plot of

Figure 6 shows the results for the baseline cases, and the

second bar shows the results for cases with uVM cloning

and on-demand memory allocation enabled. Similar to the

Python benchmark uVMs, all four app uVMs see consumption

reduction at 45% or above with MEUNIK. The execution time

overhead for Node.js, Memcached, and Redis is all less

than 2%, while the overhead for Nginx is 8%.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

 (1) uVM cloning
 (2) uVM cloning + AFMR
 (3) uVM cloning + AFMR + SA
 (4) uVM cloning + AFMR + DR

M
em

or
y

us
ag

e
(M

B)

Time (second)

(1)

(4)
(3)
(2)

Fig. 8: Memory usage of Node.js uVM under a simulated long
periodic web usage scenario.

ClickOS network middlebox uVMs. We also measured

memory consumption reduction for the two ClickOS middle-

box uVMs. For the IP router middlebox uVM, we measured its

actual memory consumption after 1, 500, and 1,500 network

packets had been routed. For the Firewall uVM, we took

the measurement after 1, 50, and 100 network packets have

been processed by the firewall. Figure 7 shows the results

from which two observations can be made. First, the uVM

cloning mechanism significantly reduced the memory con-

sumption for the two middlebox uVMs. Second, in the baseline

cases, memory consumption remains constant across the three

measurement timings. However, in the cases with MEUNIK,

uVM memory consumption increases as more packets are

processed but remains significantly lower than in the baseline

cases. To understand the reason for the second observation,

we examined the source code of the two middlebox programs.

We found that both programs request a large amount of heap

memory on startup. Therefore, the explanation is that with

the original hypervisor, all the requested memory is actually

allocated immediately upon request. With MEUNIK’s three-

stage uVM creation design, memory pages are allocated lazily

by the hypervisor (Section IV-B), which results in improved

system memory availability.

B. uVM memory pages distribution

The major source of uVM memory consumption reduction

by MEUNIK is memory page sharing between uVMs of the

same type and the app-template uVM. During our experiments,

we collected statistics about how page sharing among uVMs

is distributed among different types of memory pages, such as

text, data, stack/heap of kernel code, stack/heap of app code,

and VM-specific info. Table II shows the results of the 15

Python benchmark program uVMs, and Table III presents the

results of the 4 server application uVMs. In the tables, the

memory pages of each uVM are broken down into two parts:

the memory pages that are shared with the corresponding app-

template uVM and therefore saved compared to the baseline

case (listed in the "Shared" columns) and memory pages that

are unique (listed in the "Unique" columns). The results show

that uVM memory page changes are mostly made on user

program stacks and heaps. This is also the reason why the

server application uVMs saw lower percentages of memory

302

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 14,2025 at 20:08:14 UTC from IEEE Xplore. Restrictions apply.

1 0 % 2 0 % 3 0 % 4 0 % 5 0 %
4 0

6 0

8 0

1 0 0

Pa
ge

 h
it

ra
te

 (%
)

P a g e r e c la m a t io n r a t e c o n f ig u r e d

 L R U
 R a n d o m

Fig. 9: Evaluating LRU-based idle memory reclamation.

saving - server applications run longer and have more complex

operations than the Python benchmark programs.

C. Effectiveness of AFMR and its optimizations

AFMR (automatic freed memory releasing) is designed to

achieve more aggressive memory savings when the system is

under high memory pressure. We conducted two experiments

to evaluate the effectiveness of AFMR and its two optimiza-

tions SA (speculative allocation) and DR (delayed releasing).

In the first experiment, we evaluated the performance of

AFMR and the two optimizations for the four app uVMs

executing the workloads described in Section III “Observation

1”. The rightmost 3 bars in each plot of Figure 6 show

the results of this experiment. As shown in Figure 6(a), the

Node.js uVM benefited the most from AFMR, consuming

70.2% less memory than the baseline case, compared to

45.8% with uVM cloning alone. However, the memory saving

enabled by AFMR comes at the price of execution time

overhead. As shown in Figure 6(b), the time overhead for the

Node.js uVM is 26.1% with AFMR enabled, compared to

1.1% with uVM cloning alone. The increase in time overhead

is due to the increased number of CoW page faults caused by

AFMR. As shown in Figure 6(c), the CoW count with AFMR

was 18 times that of uVM cloning alone. SA and DR are

designed to address the high time overhead issue. Both of them

work well for the Node.js uVM. AFMR with SA achieves

a 68.5% memory consumption reduction while incurring 14%

of time overhead compared with the baseline. AFMR with

DR achieves a 62% memory consumption reduction with

a time overhead of just 2%. AFMR achieves insignificant

improvement in memory consumption reduction for Nginx,

Memcached, and Redis uVMs. This is because these three

apss have much less memory activities than Node.js.

The Node.js workload used in the first experiment com-

pletes in less than 4 seconds. We conducted a more practical

evaluation of the different mechanisms of MEUNIK. We sim-

ulated a long-term periodic web usage scenario by having a

web client sequentially request 500 files with different sizes

from the Node.js web server uVM. The first request was

made 30 seconds after the experiment started, and there was a

20-second idle period between each batch of file requests. The

whole experiment lasted for 300 seconds and was repeated 5

times. Figure 8 shows the experiment results. As can be seen,

AFMR is effective in achieving significantly more memory

consumption reduction than with uVM cloning alone. SA is

able to accurately predict memory activities when a new batch

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Unidirectional
comm. (sending)

N
et

w
or

k
th

ro
ug

hp
ut

(M

bp
s)

 Baseline
 uVM cloning

Bidirectional
comm.

Unidirectional
comm. (receiving)

Fig. 10: Dom0-DomU network overhead.

of requests starts and preallocate memory pages accordingly.

As a result, SA maintains the memory savings achieved by

AFMR while incurring fewer memory usage fluctuations.

D. LRU-based idle memory reclamation

We compared the performance of MEUNIK’s LRU-based

idle memory reclamation to that of a random reclamation

policy. The workload used in this experiment was the same

as the one described in Section IV-D. Memory reclamation

for a configured percentage was performed after 9 rounds of

the experiment. We measured the memory page hit rate during

the 10th round of the experiment. Figure 9 shows the results

of the experiment. It can be seen that the LRU implementation

achieves a 100% hit rate when the reclamation percentage is

less than 30%. The hit rates for 40% and 50% reclamation

percentages are 89% and 75% respectively, all of which are

significantly higher than the random reclamation approach.

E. Network overhead

As discussed in Section V, we addressed the issue of

duplicated MAC/IP addresses in uVMs of the same type by

having the network device back-end driver act as a proxy

to properly substitute MAC/IP addresses for outgoing and

incoming network packets. To evaluate the overhead of this

approach, we compiled the iperf [84] server program as a

uVM and ran it in a Xen DomU. We then ran the iperf

client program in Dom0 to measure the network throughput

between Dom0 and DomU. The results (Figure 10) show

that the average network throughput reduction caused by our

implementation is about 10%.

VII. CONCLUSION

In this paper, we demonstrated the issues of existing solu-

tions for uVM memory management using thorough experi-

mental results. We then proposed MEUNIK a framework for

hypervisors to manage memory resources of unikernel-based

VMs (uVMs). The evaluation results on our prototype system

suggest that our solutions are effective and incur marginal

overhead.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable

feedback. This work was supported in part by NSF Award

#1943269.

303

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 14,2025 at 20:08:14 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. R. Engler, M. F. Kaashoek, and J. O’Toole, “Exokernel: An operating
system architecture for application-level resource management,” in ACM

Symposium on Operating Systems Principles (SOSP), 1995.

[2] G. Ammons, J. Appavoo, M. A. Butrico, D. D. Silva, D. Grove,
K. Kawachiya, O. Krieger, B. S. Rosenburg, E. V. Hensbergen, and
R. W. Wisniewski, “Libra: a library operating system for a jvm in a
virtualized execution environment,” in ACM SIGPLAN/SIGOPS Inter-

national Conference on Virtual Execution Environments (VEE), 2007.

[3] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C.
Hunt, “Rethinking the library OS from the top down,” in International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2011.

[4] A. Madhavapeddy, R. Mortier, C. Rotsos, D. J. Scott, B. Singh, T. Gazag-
naire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: library operating
systems for the cloud,” in International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS),
2013.

[5] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets,
D. J. Scott, R. Mortier, A. Chaudhry, B. Singh, J. Ludlam, J. Crowcroft,
and I. M. Leslie, “Jitsu: Just-in-time summoning of unikernels,” in
USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2015.

[6] S. Kuenzer, A. Ivanov, F. Manco, J. Mendes, Y. Volchkov, F. Schmidt,
K. Yasukata, M. Honda, and F. Huici, “Unikernels everywhere: The case
for elastic cdns,” in ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution Environments (VEE), 2017.

[7] Y. Zhang, J. Crowcroft, D. Li, C. Zhang, H. Li, Y. Wang, K. Yu,
Y. Xiong, and G. Chen, “Kylinx: A dynamic library operating system for
simplified and efficient cloud virtualization,” in 2018 USENIX Annual

Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-

13, 2018, 2018.

[8] H. Kuo, D. Williams, R. Koller, and S. Mohan, “A linux in unikernel
clothing,” in EuroSys, 2020.

[9] A. Raza, P. Sohal, J. Cadden, J. Appavoo, U. Drepper, R. Jones,
O. Krieger, R. Mancuso, and L. Woodman, “Unikernels: The next stage
of linux’s dominance,” in Workshop on Hot Topics in Operating Systems

(HotOS), 2019.

[10] P. C. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise
of serverless computing,” Commun. ACM, 2019.

[11] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. M. Swift, “Peeking be-
hind the curtains of serverless platforms,” in USENIX Annual Technical

Conference (ATC), 2018.

[12] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation
with openlambda,” in USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud), 2016.

[13] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Server-
less computing: An investigation of factors influencing microservice
performance,” in IEEE International Conference on Cloud Engineering

(IC2E), 2018.

[14] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “SOCK: rapid task provisioning
with serverless-optimized containers,” in USENIX Annual Technical

Conference (ATC), 2018.

[15] R. Koller and D. Williams, “Will serverless end the dominance of linux
in the cloud?” in Workshop on Hot Topics in Operating Systems (HotOS),
2017.

[16] H. Fingler, A. Akshintala, and C. J. Rossbach, “USETL: unikernels for
serverless extract transform and load why should you settle for less?”
in ACM SIGOPS Asia-Pacific Workshop on Systems (APSys), 2019.

[17] P. Liu, D. Willis, and S. Banerjee, “Paradrop: Enabling lightweight
multi-tenancy at the network’s extreme edge,” in ACM/IEEE Symposium

on Edge Computing (SEC), 2016.

[18] K. Bhardwaj, M. Shih, P. Agarwal, A. Gavrilovska, T. Kim, and
K. Schwan, “Fast, scalable and secure onloading of edge functions using
airbox,” in ACM/IEEE Symposium on Edge Computing (SEC), 2016.

[19] K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya,
P. Pillai, and M. Satyanarayanan, “You can teach elephants to dance:
agile VM handoff for edge computing,” in ACM/IEEE Symposium on

Edge Computing (SEC), 2017.

[20] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers
via docker container migration,” in ACM/IEEE Symposium on Edge

Computing (SEC), 2017.

[21] Y. Ren, V. Nitu, G. Liu, G. Parmer, T. Wood, A. Tchana, and R. Kennedy,
“Efficient, dynamic multi-tenant edge computation in edgeos,” CoRR,
2019.

[22] P. Hao, Y. Bai, X. Zhang, and Y. Zhang, “EdgeCourier: An Edge-
hosted Personal Service for Low-bandwidth Document Synchronization
in Mobile Cloud Storage Services,” in ACM/IEEE Symposium on Edge

Computing (SEC), 2017.

[23] Y. Bai, P. Hao, and Y. Zhang, “A Case for Web Service Bandwidth
Reduction on Mobile Devices with Edge-hosted Personal Services,” in
IEEE Infocom, 2018.

[24] A. Bratterud, A. Walla, H. Haugerud, P. E. Engelstad, and K. M.
Begnum, “Includeos: A minimal, resource efficient unikernel for cloud
services,” in IEEE International Conference on Cloud Computing Tech-

nology and Science (CloudCom), 2015.

[25] lsub.org, “Removing (most of) the software stack from the cloud,” http:
//lsub.org/ls/clive.html.

[26] Galois, Inc., “Halvm,” https://galois.com/project/halvm/.

[27] K. Stengel, F. Schmaus, and R. Kapitza, “Esseos: Haskell-based tailored
services for the cloud,” in International Workshop on Adaptive and

Reflective Middleware (ARM), 2013.

[28] runtimejs.org, “Javascript library operating system for the cloud,” http:
//runtimejs.org/.

[29] erlangonxen.org, “Ling,” https://erlangonxen.org/.

[30] J. Martins, M. Ahmed, C. Raiciu, V. A. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,” in
USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2014.

[31] rumpkernel, “Rumprun,” https://github.com/rumpkernel/rumprun.

[32] P. Olivier, D. Chiba, S. Lankes, C. Min, and B. Ravindran, “A binary-
compatible unikernel,” in ACM SIGPLAN/SIGOPS International Con-

ference on Virtual Execution Environments (VEE), 2019.

[33] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and
V. Zolotarov, “Osv - optimizing the operating system for virtual ma-
chines,” in USENIX Annual Technical Conference (ATC), 2014.

[34] C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A. Kalod-
ner, V. Kulkarni, D. A. S. de Oliveira, and D. E. Porter, “Cooperation
and security isolation of library oses for multi-process applications,” in
EuroSys, 2014.

[35] C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library
OS for unmodified applications on SGX,” in USENIX Annual Technical

Conference (ATC), 2017.

[36] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
ACM SOSP, 2003.

[37] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in Linux Symposium, 2007.

[38] Xen.org, “Xen Project Software Overview,” https://wiki.xen.org/wiki/
Xen_Project_Software_Overview.

[39] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren,
G. M. Voelker, and S. Savage, “Scalability, fidelity, and containment
in the potemkin virtual honeyfarm,” in ACM Symposium on Operating

Systems Principles (SOSP), 2005.

[40] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.
Rumble, E. de Lara, M. Brudno, and M. Satyanarayanan, “Snowflock:
rapid virtual machine cloning for cloud computing,” in EuroSys, 2009.

[41] J. Zhi, S. Suneja, and E. de Lara, “The case for system testing with swift
hierarchical VM fork,” in USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud), 2014.

[42] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and
H. Chen, “Catalyzer: Sub-millisecond startup for serverless computing
with initialization-less booting,” in International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS), 2020.

[43] C. Lupu, A. Albisoru, R. Nichita, D. Blânzeanu, M. Pogonaru, R. Dea-
conescu, and C. Raiciu, “Nephele: Extending virtualization environments
for cloning unikernel-based vms,” in EuroSys, 2023.

[44] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D. Popa, “Firecracker: Lightweight virtualization for
serverless applications,” in USENIX NSDI, 2020.

[45] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici, “My VM is lighter (and safer) than

304

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 14,2025 at 20:08:14 UTC from IEEE Xplore. Restrictions apply.

your container,” in ACM Symposium on Operating Systems Principles

(SOSP), 2017.
[46] OpenStack Foundation, “Kata Containers,” https://katacontainers.io/

collateral/kata-containers-1pager.pdf.
[47] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density by

using ksm,” in Ottawa Linux Symposium (OLS), 2009.
[48] P. Sharma and P. Kulkarni, “Singleton: system-wide page deduplica-

tion in virtual environments,” in International Symposium on High-

Performance Parallel and Distributed Computing (HPDC), 2012.
[49] L. Chen, Z. Wei, Z. Cui, M. Chen, H. Pan, and Y. Bao, “CMD:

classification-based memory deduplication through page access char-
acteristics,” in ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments (VEE), 2014.
[50] I. Banerjee, P. Moltmann, K. Tati, and R. Venkatasubramanian, “Esx

memory resource management: Transparent page sharing,” 2013.
[51] C. A. Waldspurger, “Memory resource management in vmware ESX

server,” in USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2002.
[52] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,

G. M. Voelker, and A. Vahdat, “Difference engine: Harnessing memory
redundancy in virtual machines,” in USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2008.
[53] G. Milos, D. G. Murray, S. Hand, and M. A. Fetterman, “Satori:

Enlightened page sharing,” in USENIX Annual Technical Conference

(ATC), 2009.
[54] K. Miller, F. Franz, M. Rittinghaus, M. Hillenbrand, and F. Bellosa,

“XLH: more effective memory deduplication scanners through cross-
layer hints,” in USENIX Annual Technical Conference (ATC), 2013.

[55] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and
M. D. Corner, “Memory buddies: exploiting page sharing for smart
colocation in virtualized data centers,” in ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments (VEE),
2009.

[56] Citrix Systems, Inc., “Citrix Hypervisor VM memory,” https://docs.
citrix.com/en-us/citrix-hypervisor/vms/vm-memory.html.

[57] ——, “Citrix Hypervisor Configuring VM Memory,”
https://docs.citrix.com/en-us/xencenter/current-release/vms-
memory.html#dynamic-memory-control-dmc.

[58] Jose DelaRosa, “KVM Virtualization in RHEL 7 Made Easy,” Dell
Linux Engineering White Paper, 2014.

[59] VMware, “VMware vSphere Documentation:Memory Virtualization
Basics:Virtual Machine Memory,” https://docs.vmware.com/en/
VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-
C25A8823-F595-4322-BD0D-4FD5B081F877.html.

[60] OpenJS Foundation, “Node.js,” https://nodejs.org/en/.
[61] NGINX Inc., “Nginx,” https://www.nginx.com/.
[62] Danga Interactive, “Memcached,” https://memcached.org/.
[63] Redis Labs, “Redis,” https://redis.io/.
[64] Wikipedia, “LevelDB,” https://en.wikipedia.org/wiki/LevelDB.

[65] RedisLabs, “memtier benchmark,” https://github.com/RedisLabs/
memtier_benchmark.

[66] Wikipedia, “Memory overcommitment,” https://en.wikipedia.org/wiki/
Memory_overcommitment.

[67] ——, “Memory ballooning,” https://en.wikipedia.org/wiki/Memory_
ballooning.

[68] M. R. Hines and K. Gopalan, “Post-copy based live virtual machine
migration using adaptive pre-paging and dynamic self-ballooning,” in
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments (VEE), 2009.

[69] J. Kim, V. V. Fedorov, P. V. Gratz, and A. L. N. Reddy, “Dynamic
memory pressure aware ballooning,” in International Symposium on

Memory Systems (MEMSYS), 2015.

[70] T. Salomie, G. Alonso, T. Roscoe, and K. Elphinstone, “Application
level ballooning for efficient server consolidation,” in EuroSys, 2013.

[71] P. Hahn, “VirtIO Memory Ballooning,” https://pmhahn.github.io/virtio-
balloon/.

[72] linux kvm.org, “Automatic Ballooning,” https://www.linux-kvm.org/
page/Projects/auto-ballooning.

[73] N. Amit, D. Tsafrir, and A. Schuster, “Vswapper: a memory swapper for
virtualized environments,” in International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS),
2014.

[74] V. Nitu, A. Kocharyan, H. Yaya, A. Tchana, D. Hagimont, and H. V.
Astsatryan, “Working set size estimation techniques in virtualized envi-
ronments: One size does not fit all,” POMACS, 2018.

[75] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001

IEEE International Workshop on. IEEE, 2001.

[76] Hardkernel, “ODROID XU4,” http://www.hardkernel.com/main/
products/prdt_info.php.

[77] lubuntu.net, “Lubuntu,” http://lubuntu.net/.

[78] Wikipedia, “Copy-on-write,” https://en.wikipedia.org/wiki/Copy-on-
write.

[79] Xen.org, “Xen Project 4.10 Release Notes,” https://wiki.xenproject.org/
wiki/Xen_Project_4.10_Release_Notes.

[80] R. T. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” in ACM Symposium on Operating Systems Principles

(SOSP), 1999.

[81] Xen.org, “X86 Paravirtualised Memory Management,” https://wiki.
xenproject.org/wiki/X86_Paravirtualised_Memory_Management.

[82] R. Arpaci-Dusseau and A. Arpaci-Dusseau, “Chapter 22: Beyond phys-
ical memory: Policies,” Operating Systems: Three Easy Pieces, 2018.

[83] Victor Stinner, “The Python Performance Benchmark Suite,” https:
//pyperformance.readthedocs.io/index.html.

[84] iPerf, “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,”
https://iperf.fr/.

305

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 14,2025 at 20:08:14 UTC from IEEE Xplore. Restrictions apply.

