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using high-order finite elements on curved boundaries. Specifically, the variational formulation
is appropriately modified to enforce free-slip wall boundary conditions, without perturbing the
structure of the function spaces used to represent the solution, with a considerable simplification
with respect to traditional approaches. Total energy is conserved and the resulting mass matrices
are constant in time. The robustness and accuracy of the proposed method are validated with an
extensive set of tests involving nontrivial curved boundaries.

1. Introduction

This work is motivated by the need to perform Lagrangian hydrodynamics simulations in domains with nontrivial and possibly
curved boundaries. The most common boundary condition (BC) in simulations of Lagrangian shock hydrodynamics is the free-slip
wall BC, v - n =0, where the fluid particles are allowed to slip tangentially along the wall’s surface. Correct enforcement of these
conditions is essential for accurately modeling and simulating fluid behavior in confined geometries, such as containers or channels,
or when the flow must go around internal obstacles. A few approaches have been proposed in the past for compressible [9,14,19,23]
and incompressible [6,12] flows, but, to the best of our knowledge, there is no method that enforces wall BC robustly for high-order
FE Lagrangian simulations of compressible flows in general curved geometries.

The starting point of this work is the high-order Finite Element (FE) method of Dobrev et al. [11] (open-source version available
at [16]). This method has proven itself over the years, demonstrating high-order accuracy, robust behavior for various problems,
good symmetry preservation, accurate capturing of the flow geometry; the method has been used as a backbone of a next-generation
multiphysics simulation code [3]. However, a major restriction of the original formulation is that it is only applicable to straight
boundaries, i.e., when the boundary normals n are parallel to one of the coordinate axes. This limitation is not just specific to
the algorithms described in [3,11,16], but to vast majority of the high-order Lagrangian and Arbitrary Lagrangian-Eulerian (ALE)
shock-hydrodynamic codes in the literature [1,10,13,17,22].

Enforcing wall BC on general boundaries with FE can be done by strong enforcement, i.e., by posing constraints on the linear
system level, or by weak enforcement, i.e., by adding certain penalty force integrals in the variational formulation. While strong
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Fig. 1. Sketch of the Lagrangian map ¢,.

enforcement is generally more accurate, it becomes complex when the different velocity components need to couple, and requires
manipulations in the linear algebra operators. Weak enforcement, on the other hand, provides more flexibility as it allows unified
treatment of different cases. Furthermore, enforcing the wall BC weakly through penalty integrals allows the use of numerical
techniques like partial assembly and matrix-free computations, which enable high performance on the latest computer architectures
[15,31]. For these reasons, the focus of this work is weak enforcement.

We propose a new Nitsche-type approach for weak enforcement of free-slip wall boundary conditions. Nitsche’s method [21]
has been traditionally applied for the imposition of boundary conditions to elliptic and parabolic Partial Differential Equations
(PDEs), and only more recently has been considered in the context of hyperbolic systems of PDEs [26,29,30], associated with
acoustics, waves in solids, and shallow water flows. Our method is inspired by the developments in [29,30], but aims at tackling
the complex challenges associated with the strong nonlinearities of shock hydrodynamics, and introduces some important new ideas.
The variational form of the momentum equation is enhanced by two penalty terms, affecting the mass matrix and the right-hand
side, respectively. These terms are chosen in a way that the mass matrix stays constant in time. The variational form of the specific
internal energy is adjusted in a similar manner, incorporating terms to ensure the preservation of total energy.

This article is organized as follows: Section 2 introduces the equations of Lagrangian shock hydrodynamics; Section 3 describes
the principles and implementation of weak slip wall boundary conditions; Section 4 present a suite of numerical experiments; and
Section 5 summarizes the conclusions and future work.

2. General equations of Lagrangian shock hydrodynamics

The classical equations of Lagrangian shock hydrodynamics govern the rate of change in position, momentum and energy of a
compressible body of fluid, as it deforms. Let , and Q be open sets in R? (where d is the number of spatial dimensions). The motion

@1 Q) > Q=9,(Q), (1a)
Xg x=@,(xy), VYxg€Q), t>0, (1b)

maps the material coordinate x, representing the initial position of an infinitesimal material particle of the body, to x, the position
of that particle in the current configuration (see Fig. 1). Here Q, is the domain occupied by the body in its initial configuration, with
boundary 0Q, =I'; and outward-pointing boundary normal n,. The transformation @, maps Q, to Q, the domain occupied by the
body in its current configuration, with boundary 0Q =I" and outward-pointing boundary normal n. Usually ¢, is a smooth, invertible
map, and the deformation gradient F =V, ¢, and deformation Jacobian determinant J = J(x,1) := det(F) can be defined by means
of the original configuration gradient V, .

In the domain Q, we utilize the non-conservative form of the Euler system [7] and evolve the material position, density, velocity,
and specific internal energy:

x=v, (2a)
pd=py, (2b)
pv=pb+V, 0o, (2¢)
pé=pr+V,wv:ic—V,-q. (2d)

Here V, and V,- are the current configuration gradient and divergence operators, respectively, and () indicates the material, or
Lagrangian, time derivative. Furthermore pj is the initial density with pp,,, 1= supy cq, Po(X) < o0, p is the (current) density, v is
the velocity, b is the body force (e.g., gravity), o is the symmetric Cauchy stress tensor, r is the energy source term, and q is the
heat flux. Using index notation, 67 : Vv = 0 0y, and V,vie=0:V,v= o’ 1V, v, since ¢ is symmetric. We also denote by
E =e+v-v/2 the total energy per unit mass, the sum of the specific internal energy e and the kinetic energy v - v/2. Obviously, E,
e, b, r are measured per unit mass.
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The system of equations (2) is most commonly adopted in shock-hydrodynamics algorithms [7] and makes use of the quasi-linear
rather than the conservative form of the internal energy equation. The sum of the internal energy equation (2d) and the kinetic
energy equation (the product of (2c) by the velocity vector v) yields the equation for the conservation of total energy.

The system of equations (2) completely defines the evolution of the system, once constitutive relationships for the stress ¢ and
heat flux q are specified, together with appropriate initial and boundary conditions.

2.1. Constitutive laws

For a compressible inviscid fluid, the Cauchy stress o reduces to an isotropic tensor, dependent only on the thermodynamic
pressure, namely

o = —ply,+ o, 3)
where an equation of state of the type

p=2(p,e), @

is assumed. The deviatoric stress ¢’ is calculated from either a hypoelastic or hyperelastic constitutive model. Mie-Griineisen equa-
tions of state are of the form (4) with Z(p,e) = f|(p) + f2(p)e, and apply to materials such as compressible ideal gases, co-volume
gases, high explosives, etc. (see [20] for more details). Ideal gases satisfy a Mie-Griineisen equation of state with f; =0 and
f=(r = Dp, namely

P(p,e)=(y — Dpe, (5

where y is the exponent of the isentropic transformation of the gas. Consequently, the sound speed ¢, takes the form
.=\ G -Te. ©)
2.2. Boundary conditions
We assume that slip boundary conditions are enforced on the entire boundary I'" given as
v-nr=0, (7a)

7;-(onp) =0, (7b)

where nr is the outward-pointing normal to I'. In particular (7a) and (7b) enforce that the normal component of the velocity and
the tangential component of the distributed traction force must vanish at the wall.

2.3. General notation: inner products, boundary functionals and norms

Throughout the paper, we will denote by

(u,w)wz/uwdco and (v,w)wz/v-wdw 8)
@ [0}
the L%(w) and the (L2(w))? inner products on the interior of the domain w C Q, and by
(u,w)y=/uwdy and (v,w>y=/v~wdy (C)]
¥ v

a boundary functional on y cT".
Let L2(Q) be the space of square integrable functions on Q. We will use the Sobolev spaces H"(Q) = W™2(Q) of index of
regularity m > 0 (where H Q) = L2(Q)), equipped with the (scaled) norm

m 1/2
_ 2 k nyk 2
10l gy = (n 012, 0+ 1; 1@ D ||L2(Q)> : (10)

where D¥ is the kth-order spatial derivative operator and /(A) = measd(A)l/ 4 is a characteristic length of the domain A with meas(A)
the Lebesgue measure of the set A. As usual, we use a simplified notation for norms and semi-norms, i.e., we set || v ||, o = [l V| H"(Q)

and |v] o =1 D*vllgq =l D*vll 120
3. A Nitsche-type approach to boundary conditions

Let 7" be a family of admissible and shape-regular triangulations of Q. We will denote by A, the circumscribed diameter of an
element T € 7" and by h the piecewise constant function in Q such that hp=hpforalTe T h,

3
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3.1. Discrete approximation spaces for the kinematic and thermodynamic variables

We rely on a semi-discrete formulation to derive the Nitsche-type weak variational formulation of the Euler equations in the
Lagrangian reference frame for (2a)-(2d). The discretization is determined by two finite dimensional functional spaces on the initial
domain Q:

* V() C(H l(QO))"’ : the discrete space for the kinematic variables (x, v), with basis {wa}gzl.
+ &()) C L,y(€): the discrete space for the thermodynamic variable (e), with basis {¢,; }:fl.

The density p is not evolved as a finite element function, see Section 3.2. Note that we can define Lagrangian (moving) extensions of
the kinematic and thermodynamic basis functions on Q(r) through the formulas w,(x,?) := wao(pt_l(x) =w,(xy, 1) and ¢;(x,1) 1=
$ro9; ! (x) = ¢(xg,1), for 1 <a<ny and 1 <1< ng, respectively. These moving bases are constant along particle trajectories and
therefore have zero material derivatives, that is,

w,=0 and ¢, =0. 12)
The spaces associated with the deformed domain €(¢) will be denoted by ¥ (€(?)) and &(€(7)), respectively. A mild restriction on the
space ¥ (€)(?)) is the requirement that

x(xO,to):xO, VXO GQ(), (13)
expressing that we can represent exactly the initial geometry. In the following formulas and throughout the rest of the manuscript,
we use the Einstein notation to sum over repeated indices. We discretize the position x(¢) of the particle x, at time ¢ using the
expansion

x(x0,1) 1= @(x0) = X0 (D w,(x0,10) & s (14)
where x;.,(?) is the time-dependent, ith coordinate of the position unknown of index a and ¢; is the unit vector in the direction i, for
1 <i <d. The discrete velocity field corresponding to the motion (14) is given by

U(x0,1) 1= @(x9) = V.o () we(x,10) & 5 (15)

where v;.,(f) = X;.,(r). Note that we can also think of the velocity as a function on Q(#) with the expansion

v(x,1) =V (D w,(x,0);,
which uses the current coordinates and the moving kinematic basis. The thermodynamic discretization starts with the expansion of
the internal energy in the basis {¢, }751:
e(xg, 1) =¢e;(t) ¢;(x¢,19) - (16)
The internal energy can also be expressed in the moving thermodynamic basis: e(x,?) = ¢;(t) ¢;(x,1).
3.2. Semi-discrete mass conservation law
Given an initial density field py(x,) = p(x,.#;), we use the strong mass conservation principle (2b) to define the density pointwise

at any time 7,

po(xp)
J(xq,1) ’

which implies that the mass in every Lagrangian volume is preserved exactly.

p(xg,1) = a7

3.3. Semi-discrete momentum conservation law

We formulate the discrete momentum conservation equation by applying a Galerkin variational formulation to the continuous
equation (2c). At any given time ¢, we multiply (2c) by a moving test function basis {w[;a}gzl constructed as w;., = w, {;, where
w, € Y (Q1)).

Integrating by parts over (f) and enforcing continuity of the stress ¢ across internal faces and (7b) on I'(), we obtain

(P, w o) + (0, Vi )ag = (n-(Gmnw; ) — (pb,w;,)ou =0. 18

Unlike [11], the boundary integral term will not vanish since (7a) is not embedded in the function space ¥/ (€(¢)). Expanding the
velocity in terms of the moving velocity basis, observing that {; - {; = 5;; (the Kronecker delta tensor) and b; :=b - {;, and using
index notation give us

(P V() Wy, Wy + (03, Vi, Wadaw) — ((ngoym)n;, wa)r(,) —(pbj, wy)om =0. (19)
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We proceed now to the weak enforcement of (7a), by adding two penalty terms to (18) (or (19)). The first term is

(Bpesv-n, won- &)y = (Bpesvpng, wa i)y » (20

which specifically enforces the slip boundary condition (7a). Here § = AC; where A is a user-defined non-dimensional positive
constant and C; is the inverse trace inequality constant, while the choice of pc, is standard to ensure the term has the correct units.
Following [33], C; is chosen to increase with the polynomial degree:

C = (k+1)(k+d)d~! for simplices in d dimensions 1)
= (k+1)? for quadrilaterals and hexahedra,
where k is the order of the spatial polynomial discretization for the velocity. The second penalty term is
(aO Pmax Lo ngy, Wy N - gi)l"o = .j;b (a() Pmax L Wp N> Wy nO;i>r0 ’ (22)

which enforces the condition (x, ?) - ny(xy) = 0, that is, that the acceleration in the initial configuration frame is orthogonal to the
boundary normal in the initial configuration. This condition is equivalent to d/df(v - n) = 0 for boundary surfaces that do not move
in the normal direction, like the ones considered in this work. In this case, n stays constant over time and in particular n, = n, so
that d/dt(v-n) =9 - ny. In (22), L is the perimeter (unit of length) of the bounding box of Q,, ay = L/ J;i de is a non-dimensional
constant, where J;_,, =det(F;_, ) with F; . = V;xg is the deformation gradient of the mapping from the reference domain to
the original configuration. In choosing the scaling in (22), the two key points are dimensional consistency and time-independence.
Hence, a natural choice would be f p,,,, L. However, multiplying the latter scaling by the dimensionless ratio L/ Jii de is critical

to ensure that (22) does not decrease with mesh refinement and, at the same time, allows p, .. to mimic, to a certain degree, the
time-dependent pointwise density p present in (20) (inversely proportional to J). Our tests indicate that this choice of «, is critical
to obtain accurate tangential motion at the boundary as the mesh refinement.

Letv=v,, be an [n., X d]-vector,

My =My, = (pWa, W 6ij)ar) + (@0 Prmax Lo 1y s Wy 1))y (23a)
be a [(n., X d) X (ny X d)]-square matrix with a,b€[1,ny]andi,j€[l,d],

F=F, =0y Vi Waw — ((meogn;) n, w, ¢1>r(,) +{(Bpcv-nw,n; §p)rg (23b)

be a [(ny X d) X ngl-matrix with 1 </ <n,, and

B=B, =(pb,.w,)qq (230)
be a [n X d]-vector. Then the semidiscrete Lagrangian momentum equation can be written in matrix vector form as
M, & =—F1+B, 24)

where 1 is a [n ¢ ]-vector whose entries are all equal to one.
3.4. Semi-discrete energy conservation law

We formulate the discrete energy conservation equation by multiplying (2d) with a test function ¢; € £(Q(r)) and integrating
over the domain Q(¢)

(Pé.Paw — (0 1 Vi, 9)an + Ve -q—pr.ddoy =0. (25)

To ensure conservation of total energy, we add

(n-(emv-n, ¢ —(Boe,@-n drg (26)

to the left hand side of (25). Observe that these are residual terms, since they weakly enforce the boundary condition v - n =0.
Expanding the internal energy in terms of the moving thermodynamic basis and using tensor notation give us

em
W(P(Ibm,(ﬁ[)gg) =03 Vi, Ui ®Dagy + (0 r =V i dag — ((nop;n;) U,-n,w¢1>]—(,) +(fpc, (Ufnf)2,¢[>r(,) . 27)
Defining
Mg =M, =0 b P (28a)

be a [ng X ngl-square matrix with 1 <m,/ < ne and

R=R,=(pr-V,-q,9), (28b)
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be a [n]-vector, the semi-discrete energy conservation can be written in matrix-vector form as

M£%=FTV+R. (29)

Remark 1. The mass matrices M., and M are independent of time due to (2b) and the fact that all the shape functions are
independent of time. Namely,

dM., d d

T E(/’ Wo, Wy 61 ) + E(O‘o Pmax LWy, wy 5ij>p0 =0.
dMg d

di = E(P(Ibmsd’/)g(;) =0.

3.5. Artificial viscosity operator

To ensure a comprehensive presentation of the proposed method, this section details the formulas associated with the artificial
viscosity operator o,,, which aligns with those in [11].

The artificial viscosity tensor o, is added to the semidiscrete equations (24) and (29) to regularize shock wave propagation.
This technique was originally introduced by Von Neumann and Richtmyer [32], whereby the discrete Euler equations are augmented
with a diffusion term scaled by a special mesh dependent nonlinear coefficient . In particular, we add

(Gart ’ Vx wi;a )Q(t)

in the momentum equation and

_(Gart:wa Do
in the energy equation. From [11] and [25], we choose

Oy = Hy, €(V) (30)
with e(v) = % (Vv + (Vv)T) is the symmetrized velocity gradient and

ps, =p (@ 5 1A0] + g wow cy) (3D

where ¢; and ¢, are linear and quadratic scaling coefficients chosen as 1/2 and 2 respectively, A v is the directional measure of
compression defined in section 6.1 of [11], /; =/ (x) is a directional length scale defined in the direction of s evaluated at a point x
defined in section 6.3 in [11], y is a compression switch which forces the linear term to vanish at points in expansion, and y, is a
vorticity switch that suppresses the linear term at points where vorticity dominates the flow:

1 Ayw<0, |V -v]
= = . (32)
v {0 awz0, 0T Ve

3.6. Conservation of total linear momentum and total energy

Linear momentum is conserved by the proposed numerical approach, up to O(h"*!), where m is the regularity index from

Section 2.3. Premultiplying (24) by c;.,, where c¢;., =c, §; is a constant [n., X d]-vector and c,w, = 1, we obtain:

dv _
Cra- (MAVE) =—c¢;y-(Fl)+c,y B
d
— pov-é‘iz/pb-Ci—/(nkakjnj)(n-g’i)—/po v-ng (nO‘C,)+/ﬁpcs v-n (n-§;) (33)
dt \ ) ——
Q Q1) () o

O(hm+1y Ir'® O(h(m+1))

The first three terms represent the statement of balance of accelerations, internal forces and boundary forces, respectively, which
is the standard statement of conservation of momentum. The last two terms represent the error due to weakly enforcing v-n =0,
which scales as O(A"*!) in smooth regions.

Total energy is conserved exactly. Premultiplying (24) by v/ and (29) by 17, we obtain:
dE ._4d (l
dt " dt\2

where we applied Remark 1.

vIM., v+ lTMge) =v'B+R,

Remark 2. Observe that the total energy defined above converges to the exact total energy as the numerical solution converges to the
exact solution, similarly to the case of strong imposition of boundary conditions. In particular, while the definition of the numerical
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internal energy does not seem to pose any particular problem, the definition of the numerical kinetic energy must be considered with
care. In fact, the numerical kinetic energy reads

1 1 1
EVTMWV = 5(»0 Vish Wi WeVisgdoa + 5(0‘0 Pmax L (1 - ”)2>r0 . (34

The second term on the right hand side goes to zero as the grid is refined or the polynomial order is increased, since the boundary
condition on I’ will be more and more accurately satisfied. Then the proposed definition of the numerical kinetic energy is consistent
with the infinite dimensional limit.

3.7. Time integration and fully discrete approximation

So far we have focused exclusively on the spatial discretization. Now we discuss the discretization of the time derivatives in the
nonlinear system of ODEs (2a), (24) and (29), obtained from the spatial discretization of the Euler equations. In this section we
consider a general high-order temporal discretization method and demonstrate its impact on the semidiscrete conservations laws.

We adopt the same modified midpoint Runge-Kutta second-order scheme proposed in [5,8,11,27]. This choice of time integrator
guarantees the proposed formulation conserves total energy without resorting to any staggered approach in time. Let 7 € {¢, };V:’O and
associate with each moment in time, #,, the computational domain Q" = Q(z,). Let Y = (v;e;x) be the hydrodynamic state vector.
We identify the quantities of interest defined on Q" with a superscript n, denote by At the time-step. The fully discrete numerical
algorithm then reads

1 1 1
vt =y = Ayl g gy Vit =V A (P B )
2
1 At 1 _ L or el 1
I —en 4 EMgl <(Fn)Tvn+2 +Rn> . e+l — @n +AtMg1 <(Fn+2)Tvn+2 +Rn+2) )
1 1 1
X" =x"+£v"+5, XM =x" 4 A2,

2

1
where F¥ = F(YX) and ¥"72 = (v*+! 4+ v)/2.
Proposition 1. The RK2-average scheme described above conserves the discrete total linear momentum up to O(h"*1).

Proof. Let c;,=c,{; be a constant [n., X d]-vector and c,w, = 1, then the change in linear momentum (LM) can be expressed as

1 1 1
LM"“—LM"=c,;a-(M7/(v“+l—v“)=—Atc,;a-(F"+51—B"+5)=At / (pb)*1 ¢,

1
Q2
1 1
— At / (ngoyjn; "I .¢)
1
F(I)n+7
! [
A / Blpe)™? @-m™3 (™7 ¢,
1
re™? O(hm+1)

The first two terms on the right hand side above are the same as the ones for a strong boundary condition enforcement and the last
term is the O(h"*!) error from weakly enforcing v-n=0. []

Proposition 2. The RK2-average scheme described above conserves the discrete total energy exactly.

Proof. The change in kinetic energy (KE) and internal energy (IE) can be expressed as
KE™ — KE"=" —y"). (M'V ‘-/n+% ) = _Af (Fn+%1 _ Bn+% ) ) ‘—7n+%
1 1 1
JE™ _[E"=1. (Mg (e — en)) — Afl- ((Fn+E)T‘—,n+5 i Rn+5>

1 1 1
Thus, the change in discrete total energy K E"*! + IE"*! — KE" — IE" = At (B""2 . ¥""2 4+ 1. R"+5) is due to the presence of

body force, source and heat flux terms. If r =0 and b = q =0, we see that the discrete total energy is conserved exactly, namely:
KE™' + JE""' = KE"+IE". [

Remark 3. The RK2-average scheme described above has similar properties to the one described in [5,8,11,18,27]. In particular, it
conserves exactly also angular momentum in the limit of a large number of corrector passes [18]. The RK2-average scheme can be
extended to higher orders of time integration through the work presented in [24].



N.M. Atallah, V.Z. Tomov and G. Scovazzi Journal of Computational Physics 507 (2024) 112959

L1 Velocity Error

- 2nd Order Slope
— Q2Q1

- 3rd Order Slope
— Q3Q2

- 4th Order Slope
— Q4Q3

1071
Mesh Size

Fig. 2. Velocity profile at r = 0.5 of a Q, — Q5 simulation (left) and convergence tests (right) for the 2D Taylor-Green vortex problem. (For interpretation of the colors
in the figure(s), the reader is referred to the web version of this article.)

4. Numerical results

In this section we showcase the method’s behavior on standard benchmarks as well as on domains characterized by more intri-
cate curved boundaries. We start by verifying that the proposed boundary integrals do not deteriorate the high-order convergence
properties of the original method. Then we consider the standard shock hydrodynamic benchmark of the Sedov explosion [28] in
various 2D and 3D domains. In all test cases, the Sedov problem consists of an ideal gas (y = 1.4) with a delta function source of
internal energy deposited at the origin such that the total energy E,,, = 1. The sudden release of the energy creates an expanding
shock wave, converting the initial internal energy into kinetic energy. The delta function energy source is approximated by setting
the internal energy e to zero in all degrees of freedom except at the origin where the value is chosen so that the total internal energy
is 1. In all of the tests, we enforce v - n =0 on all boundaries and set 4 = 20. Note that the density plots are in logarithmic scale.

All simulations are performed in a customized version of the open-source Laghos proxy application [16], which is based on the
MFEM finite element library [2].

4.1. Smooth Taylor-Green vortex

The goal of this test is to verify that the introduced boundary integrals retain the high-order convergence of the original method.
The Taylor-Green vortex is a smooth test with known exact solution. The complete setup of the test can be found in Section 8.1 of
[11]. Fig. 2 shows the velocity profile at r = 0.5, and convergence rates for simulations performed with O, — 0,03 —0,,and Q, — O3
finite element spaces and a fourth-order time integrator as defined in [24]. The optimal rates are achieved for all discretization spaces.
We have also confirmed that momentum and total energy are conserved exactly in all simulations.

4.2. Two-dimensional Sedov explosion in a square

We consider a [0, 1] X [0, 1] domain and a final time 7 = 0.8. In Fig. 3, we show plots of the velocity and density fields in addition to
the mesh deformation at the final time of r = 0.8 for the Q; — Q,, O, — Q;, Q5 — O, velocity-energy pairs. As it is apparent, the weak
wall boundary produce solutions that are indistinguishable from those obtained with strong enforcement. A plot of the shock front
locations using a weak and strong boundary enforcement for a O, — Q, discretization in Fig. 4a shows that they are indistinguishable
from one another. Finally, in Fig. 4b we see that shock front location attained from weak boundary condition enforcement converges
to the exact location with mesh refinement.

4.3. Two-dimensional Sedov explosion in a trapezoid

We perform the Sedov test in a trapezoidal domain and show in Fig. 5 plots of the velocity and density fields in addition to the
mesh deformation at the final time of r = 1.3 for the Q; — Q,, O, — O, O3 — O, velocity-energy pairs. It is worth mentioning that
conducting this test with strong wall boundary enforcement is cumbersome, as it would require enforcement of linear constraints on
the boundary DOFs. The weak wall boundary conditions produce the correct shock bounce-back behavior on the top boundary with
solutions that do not show any unphysical oscillations.

4.4. Two-dimensional Sedov explosion in a square with a circular hole

We perform the Sedov test in a unit square with a circular hole and show in Fig. 6 plots of the velocity and density fields in
addition to the mesh deformation at the final time of = 0.8 for the Q; — Q,, O, — Q;, Q3 — O, velocity-energy pairs. It is worth
mentioning that conducting this test with strong wall boundary enforcement is very cumbersome, due to the curvature of the internal
surface, while it is seamless with our proposed weak form. The weak wall boundary enforcement produces the expected response
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Fig. 3. Plots of the velocity and density fields in addition to the mesh deformation for the planar Sedov test using Q, — Q,, Q, — Q,, Q3 — Q, velocity-energy pairs.

without any unphysical oscillations. This test demonstrates the robustness of the proposed algorithm, which allows the shock wave
to propagate around the curved obstacle under extreme levels of mesh deformation, even for the Q; — Q, discretization.

As the parametrization of the inner circle is known, we can examine the errors in wall deformation by retrieving the final positions
of the corresponding boundary nodes. In particular, we integrate the radius error over all faces on the inner boundary. The results are
reported in Table 1, showing that higher discretization orders allow to track the curved surface more accurately. In all simulations,
the error of the initial mesh positions is 1.48E-3.

4.5. Two-dimensional Sedov explosion in a square with a square hole
We perform the Sedov test in a unit square with a square hole rotated by 20 degrees counter-clockwise and show plots of the
velocity and density fields in addition to the mesh deformation at the final time of t = 0.8 for the O, — Q\, 0, — O, O3 — O,

velocity-energy pairs as shown in Fig. 7. The weak wall boundary conditions produce the expected response without any unphysical
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Fig. 4. Plots comparing the shock front between strong and weak boundary condition enforcement (left) and a convergence study for weak boundary condition

enforcement (right) for a Q2-Q1 velocity-energy pair.
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Fig. 5. Plots of the velocity and density fields in addition to the mesh deformation for the Sedov test in a trapezoidal domain using Q, — Q,, O, — Q;, QO3 — O,

velocity-energy pairs.

Table 1

Geometric errors of the final positions of the inner
boundary faces for the 2D Sedov with a circular hole test.

Mesh  Q,Qqerror  Q,0Q, error  Q;0, error
4x4  4.22E-3 1.95E-3 1.51E-3
8x8 2.16E-3 1.69E-3 1.40E-3
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Fig. 6. Plots of the velocity and density fields in addition to the mesh deformation for the Sedov test in a square domain with a circular hole using the O, — Q,,
Q, -0, Q; — Q, velocity-energy pairs.

oscillations. The proposed method demonstrates its robustness by capturing the propagation of the shock wave past the sharp top
left corner of the obstacle.

4.6. Two-dimensional Sedov explosion in a disc

We perform the Sedov test in a circular domain and show plots of the velocity and density fields in addition to the mesh
deformation at the different points-in-time until r = 20.0 for O, — Q, velocity-energy pair as shown in Fig. 8. Observe that the shock
slides correctly along the outside curved boundary without shape distortions. Similarly, the curved shape of the boundary is not
affected by the strong shock bounce. The solution appears physically correct without any unphysical oscillations.
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Fig. 7. Plots of the velocity and density fields in addition to the mesh deformation for the Sedov test in a square domain with a square hole using the O, — Q,,
0, — 0y, 0; — O, velocity-energy pairs.

4.7. Three-dimensional Sedov explosion in a cube

We consider a [0, 1] X [0,1] X [0, 1] domain and a final time ¢ = 0.8. In Fig. 9 we show plots of the velocity and density fields

in different cross-sections at ¢ = 0.8 for the Q| — Q,y, O, — Q;, O3 — Q, velocity-energy pairs. The weak wall boundary conditions
produce solutions indistinguishable from those obtained with strong enforcement.

4.8. Three-dimensional Sedov explosion in a cube with a spherical hole

We perform the Sedov test in a unit cube with a spherical hole and show plots of the velocity and density fields in different
cross-sections at the final time of 1 = 0.8 for the Q; — Q,, O, — O, Q3 — Q, velocity-energy pairs as shown in Fig. 10. We observe
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Fig. 8. Plots of the velocity and density fields in addition to the mesh deformation for the Sedov test in a circular domain using a Q, — Q, velocity-energy pair.
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Fig. 10. Plots of the velocity and density fields in addition to the mesh deformation for the planar Sedov test using Q; — Q,,, Q, — Q,, Q; — Q, velocity-energy pairs.
Various viewpoints and cuts are presented.
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similar behavior as in the corresponding two-dimensional tests, confirming that the method is directly applicable to simulations in
complex three-dimensional domains.

5. Conclusions

We developed a framework for the weak imposition of slip wall boundary conditions in Lagrangian hydrodynamics simulations.
The advantage of the proposed approach was assessed in a number of computations involving domains with nontrivial and curved
boundaries. Through these simulations, we demonstrated the flexibility, robustness, and accuracy of the proposed approach, and
consequently its overall superiority with respect to the strong imposition of similar boundary conditions. Future work will be directed
to extend these developments in the context of ALE methods, and to obtain an integrated approach to multi-material ALE/Lagrangian
hydrodynamics [4]. We will also leverage the new capability in order to develop novel methods for shifted slip wall boundary
conditions, a technology that will enable hydrodynamics simulations in complex domains that won’t have to be meshed exactly.
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