World Scientific

Vol. 26, No. 2 (2024) 2440003 (31 pages) e

© World Scientific Publishing Company
DOI: 10.1142/50219198924400036

International Game Theory Review \\

Maximum Principle for Mean Field Type Control Problems
with General Volatility Functions

Alain Bensoussan

International Center for Decision and Risk Analysis
Naveen Jindal School of Management
University of Texas at Dallas, USA
azxb046100Q@utdallas. edu

Ziyu Huang

School of Mathematical Sciences
Fudan Unigversity, P. R. China
zyhuang19@fudan.edu.cn

Sheung Chi Phillip Yam

Department of Statistics

The Chinese University of Hong Kong
Hong Kong, P. R. China
scpyam@sta. cuhk. edu. hk

Received 9 September 2023
Revised 15 October 2023

Accepted 25 October 2023
Published 9 April 2024

This paper is dedicated to Pierre Bernhard, for his 80th Anniversary

In this paper, we study the maximum principle of mean field type control problems when
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1. Introduction

Mean field type control problems and mean field games have received much atten-
tion in recent years. The literature in this area is huge. We refer to some recent
relevant literature such as Cardaliaguet et al. [2019], Carmona and Delarue [2018],
Bensoussan et al. [2013], Cosso and Pham [2019], Pham and Wei [2017], Buckdahn
et al. [2017], Djete et al. [2022], Gomes et al. [2016], Huang et al. [2006], Porretta
[2015], Carmona and Delarue [2015], Gangbo et al. [2022], Chassagneux et al. [2022],
Cardaliaguet et al. [2022], Bensoussan et al. [2019], Bensoussan et al. [2020] and
Bensoussan et al. [2023].

We here study the mean field type control problem with a general volatility
function, following our previous work [Bensoussan et al., 2023a,b; Bensoussan et al.,
2019]. Our approach is to embed the mean field control type problem into one in
Hilbert spaces, which looks like the lifting method proposed by Lions, but actually
they are fundamentally different. This lifting method was used in Bensoussan et al.
[2019] to study the control problem in the Wasserstein space. In Bensoussan et al.
[2023a], we used a different Hilbert space and this allows to recover the mean field
type control problem as a particular case. This kind of Hilbert space is already used
in Bensoussan et al. [2023b], for the case when the volatility is a matrix, and the
cost functional is separable.

This paper is organized as follows. In Sec. 2, we introduce the Wasserstein space,
the derivatives of functionals, the Hilbert space and the Wiener process. Section 3
gives the formulation of our problem. In Sec. 4, we study control problems in Hilbert
spaces and give a necessary condition in view of the maximum principle. In Sec. 5,
we give a sufficient condition by showing the cost functional is convex. We also
derive a system of Forward-Backward Stochastic Differential Equations (FBSDEs)
defined in Hilbert spaces, the solution of which gives the optimal control. In Sec. 6,
we go back to mean field type control problems and interpret our results for control
problem in Hilbert spaces as those for mean field type control problems.

2. Problem Setting and Notations
2.1. Wasserstein space

We consider the space P2(R™) of probability measures on R™, each with a second
moment, equipped with the two-Wasserstein metric defined by

Wo(m,m') = EFi(nf y \// . |x — &' |27 (dz, dz’),
g m,m n RN

where T'(m,m’) denotes the set of joint probability measures with respective
marginals m and m/. The infimum is attained, so we can find X,,, X, in
L2(Q, A, P;R™), where (2, A, P) is an atomless probability space, whose probability
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laws £LX,, = m, LX,,, = m/, such that
Wi(m,m') = E|X,, — X |%.

A family my, converges to m in P2(R™) if and only if it converges in the sense of
the weak convergence and Wa(my, dg) — Wa(m,do) as k — oo, see Ambrosio et al.
[2005] and Villani [2009] for details.

2.2. Derivatives of functionals

We consider a functional F' : Po(R™) — R. For the concept of derivative, we use the
concept of the linear functional derivative; see Carmona and Delarue [2018]. The

linear functional derivative of F(m) at m is a function P2(R™) x R"™ > (m,z)
dF

% (m)(z) being continuous under the product topology, satisfying

/Rn_

for some positive constant ¢(m) depending locally on m, and for any m’ € Po(R™),

dm(z) < ¢(m),

limy L F e’ = m)) = Flm) _ [ 5 o )~ a2,

e—0 €

This definition implies that

dF

(4 6’ = m))(@) (di(2) — dm(x)

d
@F(m—l—@(m —m)) = /R

and
F(m/ / /n (m+0(m’ —m))(x)(dm’(z) — dm(x))do.

Here, we write 4 (m)(z) instead of 25 (m)(z) to make the difference between the
notation v and the argument m. Also, we prefer 4 (m)(z) to %(m) (x) used in
Carmona and Delarue [2018], because there is no risk of confusion and it works
pretty much like an ordinary Géateaux derivative in the space of measures with

L?-integrable densities.

2.3. Hilbert spaces

In this paper, the control is R%-valued, and the state is R"-valued. For m € Py(R™),
consider L2, (R™; R™) the Hilbert space with respect to the following inner product:

(X, X"):= | X:Xldm(z), X,X'€L?(R"R").
Rn
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We also work in Hilbert spaces H,, := L*(Q,A,P;L2,(R™;R")) and Uy, =
L2(Q, A, P; L2 (R";RY)). An element of H,, is denoted by X, (w), (z,w) € R™ x Q;
for any z € R, X, is a R®random vector in L?(€2, A, P; R™). Similarly, an element
of Uy, is denoted by V,(w), (w,w) € R™ x Q; for any € R”, V, is a R%random
vector in L?(2, A, P;R?). The inner products over M, and U, are, respectively,
defined as

(X, X'y, = E { / X;‘X;dm(:r)} X, X' € Hy,
Rﬂ,

(V,V'u,, =E [ V;Vw’dm(x)}, V, V' € Uy,

Rn
For X € H,,, we denote by X#(m ® P) the push-forward of m ® P by the map
(z,w) — X, (w). For test function ¢, we have

/Rn e(y)dX#(m@P))(y) =E UR @(Xz)dm(x)} _

We have X#(m @ P) € Po(R™) and
Wa(X#(m @ P),do) = [ X||n,,, )
Wao(X#(m @ P), X'#(m @ P)) < [|X = X'|ln,,., X, X € Hp.

We refer to Bensoussan et al. [2023a,b] for details. For notational convenience, we
use the notation X ® m instead of X#(m & P).

2.4. Wiener process and filtrations

Let w(t), t > 0 be an n-dimensional standard Wiener process on (€, A, P). For any
0 <t<s<T,wedenote by Wy := o(w(r)—w(t);T € [t,s]) the filtration generated
by the Wiener process, and denote by W, := WT. For any X € H,, independent
of Wy, we denote by Wy = o(X) VW, the filtration generated by X and the
Wiener process, and denote by Wi x the filtration generated by the o-algebras Wy
for all s € [t,T]. We denote by L%/vtx(t,T;Hm) the subspace of L2(t,T;H.,,) of all
processes adapted to the filtration W;x.

3. Formulation of the Control Problem
3.1. Problem formulation

We first introduce the dynamical system. We consider maps
Drift: f:R"™ x Po(R™) x R? x [0,7] — R",
Volatility: o : R™ x Pa(R™) x R? x [0,T] — R"™*™.

For (t,m) € [0,T] x P2(R™) and initial X € H,, independent of W, the space
of controls is set as the Hilbert space L12/th (t,T;U,,), and a control is denoted by
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v, (8). Then, the state process X"(-) associated with v(-) is defined as

X, (s) =X, + /tS F(X2(r), X7(r) @ myvg(r), r)dr

+ z_:/: o (X2(r), X (r) @ m,vg(r),r)dw;(r), se€t,T]. (2)

The state process X"(-) belongs to L%Mx (t,T;H,,) under suitable assumptions
on coefficients g and o to be stated in Sec. 4. For s € [t,T], X"(s) ® m is the
probability law of X,‘,’(s) when 7 is equipped with a probability m @ P. We then
introduce the loss function. We consider the respective running and terminal loss
coefficient functions

g:R" x Py(R") x R? x [0,T] — R,
gr R"™ x PQ(R”) — R.

We then define the loss functional as

Tixo) = | 'E [ | otz x ) om, w(s»s)dm(x)} ds

| [ (@) X0 e mdn()]. o) € Ly (T4
®3)
Then, our control problem is defined as
inf Jix (v).

2 .
vELWtX (t,T:Um)

3.2. Deterministic control problem in Hilbert space

In our previous work [Bensoussan et al., 2023a,c|, we study the deterministic control
problem. For (t,m) € [0,T] x P2(R") and X € L2 (R";R"), the McKean—Vlasov
control problem is defined as follows:

inf Jix (v), where
veL2([t,T];L2, (R™;R))

. (4)
XU(s) = X, + / FOXE(), X0 () em, v (), r)dr, s € 8,7,

where the loss functional is defined as
T
Jix (v(v)) = / / g( X (), XV (s)#m, v, (s), s)dm(x)ds
t n

+ /n gr(X(T), X (T)#m)dm(z), v(-) € L*([t, T]; L7,(R";RY)).
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To obtain the optimality condition, we introduce the Lagrangian L : R™ x Py (R"™)
x R% x [0,T] x R* — R as

L(x7 m?”) S;p) = p*f(m7 m7 v? 8) + g(x7 m7v’ S)'

Let 9, (s) be an optimal control for (4) and X, (s) be the corresponding state process.
The adjoint process is defined by for s € [t, T,

Po(s) = Dogr(Xo(T), X.(T)#m)

e DEE(Xy(T%X(T)#W@y(r)ﬂ“;Py(r))(Xz(T))dm(y) dr.

Then, the optimal control satisfies the optimality condition

DyL(X(s), X.(s)#m, 04(s), 8 Pp(s)) =0, a.e. se[t,T], as. dn(z).

4. Necessary Condition for Control Problem (5) on Hilbert Spaces

The formulation of problem (2) and (3) inspires us to study control problems
on Hilbert spaces H,, and U,,. For any initial time ¢ € [0,7] and X € H,,
(being independent of W), in this section, we consider the following control
problem:

T
inf Jix (V) = G(XV(s),V(s),s)ds + Gp(XV(T
VeL%,thf(t,T:,Mm) ix (V) /t (X7 (s),V(s),s)ds + Gr (X" (T)),

n (5)
st XV(s) =X +/ F(XV(r),V(r),r)dr + ZAj(XV(T),V(T),T)dwj (r),
t =
where
F My XU X [0,T] = Hpy, A:Hpy X Uy, x [0, T] = H,
G:Hp xUp x[0,T] >R, Gp:Hy— R

We shall make a connection between mean field type control problem (2) and (3)
and the abstract control problem in (certain suitably chosen) Hilbert spaces (5) in
Sec. 6. We state our assumptions for necessary condition for (5). We shall make a
connection between assumptions for mean field type control problem (2) and (3)
and the following assumptions in Sec. 6. For notational convenience, we use the
same constant L > 0 for all the conditions below.
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(A1) The maps F and A7 (for 1 < j < n) satisfy for (X, V,s) € Hy, x Uy, x [0,T7,

[EX Vs 8)l9,, < L+ [ X3, + (V]

Un )

147 (X, V. 8)ll3e,, < L+ [1X 19, + 1V ]ler,,)-

For any (X, V, s), the Gateaux derivatives of F' and A7 along any directions X eHpn
and V € U, at (X,V,s) exist and are continuous in (X, V'), and satisfy

IDxF(X,V,8)(X) I, < LIXl#,.  IDvF(X,V,8)(V)lrt, < LIV e,

IDx A (X, V,8)(X)Int,, < LIX e, 1Dy A (X, V) (V) < LIV g,
(A2) The running cost functional G satisfies

IG(X,V,s)| < L(L+ | X3, + IV

2 ) (X,V.s) € My X Uny x [0,T].

For any s € [0,77], the functional H,, x Uy, 2 (X, V) — G(X,V,s) € R is continu-
ously differentiable, with its derivatives

IDxG(X, V. s)#,,, +[IDvG(X, V. 8)llut,, < L1+ X [32, + 1V [les,0)-
The terminal cost functional G satisfies
Gr(X)| < LA+ IX7,,), X € Hm
and is continuously differentiable, with its derivative

[DxGr(X) 2, < L+ [|X2,,)-

For any control V' € L%/Vtx (t, T;Uy), we study the regularity in V' of the correspond-
ing controlled state process X" (s). The following result is proven in Appendix A.

Lemma 1. Under Assumption (A1) and V € L}, (t,T;Un), the corresponding
controlled state process XV belongs to L%MX (t,T;Hum) and satisfies

Sup IXY (8)ll2¢,, < CL, YA+ X g, + 1V |22t 72400 (6)

where C(L,T) is a constant depending only on (L, T). ForV € LlQ/Vtx (t, T;Up,), we
set VE:=V + €V foree0,1] and denote by X¢ the state process corresponding to
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the control V<. Then, we have

Lx<(s) = XV (3)] - Dy X" (5)

€

lim sup
e—=0¢<s<T

=0, (7)
Hom

where XYV € L3, (t,T;Hy,) is the unique solution of the following equation:
Dy XVY(s) = /tS[DxF(X"(r), V(r),r)(Dy X" (r))
+ Dy F(XY(r), V(r),r)(V(r))]dr
+Z [ XAV 0.V (). (P X ()

+ Dy (XY (1), V(r),r)(V(r)ldw; (r), s € [t,T], (8)
such that
sup Dy XY (8)l13,, < C(L TV || 200,124 (9)
t<s<T
That is, Dy XY (s) is actually the directional derivative Dy XV (s) of XV (s) along
the direction V € L2(t,T;Uyy,).
Lemma 1 shows that the mapping
L3(t,T:Uy) 5V — XV (s) € Hum,

is Gateaux differentiable. The directional derivative Dy X V' evaluated at V can
be expressed as a Fréchet derivative Dy XV acting on V, ie. Dy XV (V), see
Bensoussan et al. [2023b,c]. Here, the subscript V in the directional derivative
Dy XV means the direction while that V in Dy X V(V) means the evaluating point
in the Fréchet derivative, we wish this may not cause too much ambiguity. We
introduce the Lagrangian £ : H,, X Uy, X [0,T] X Hy X HI, — R such that for
(X,V,5,P,Q) € Hyp, X Uy, X [0,T] X Hpp x HJY,

L(X,V,5P,Q) i= (P,F(X,V, ), + S (Q1, A1 (X,V,8)), + G(X,V, 5),
=1

(10)
Then, we have
DpL(X, V.5 P,Q) = F(X,V,s), DqL(X,V,5P,Q) = A/(X,V,5).
From Assumptions (A1) and (A2), we know that the functional £ satisfies
£(X,V,s5 PQ) < C) [ 1+ X1y, + IVIE, +I1PI7,, + > 1Q715, | (1)

=1
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and for any (s, P,Q), the functional (X,V) — L(X,V,s; P,Q) € R is continuously
differentiable, with the derivatives

IDxL(X, V5 P, Q). + [|DvL(X, V5, P, Q)lus,,

n
<C) | 1+ IX 1 + Vet + P20, + D N1Q7 2,0 |- (12)
j=1

Let V be an optimal control for problem (5) and X be the corresponding state pro-
cess. We define the adjoint process as the unique solution of the following Backward
Stochastic Differential Equation (BSDE):

T
P(s) = DxGr(X(T)) + | DxL(X(r),V(r).r;

P(r),Q(r))dr

*Z/ Q7 (r)dw;(r), s € [t,T). (13)
j=17%

For the solvability of BSDEs in Hilbert spaces, we refer to Remark 5.53 in Pardoux
and Reanu [2014]. From Assumptions (A1) and (A2) and Lemma 1, there is a unique
solution (P, Q) € L3y, (6, T Hypn) x (L}, (8, T; Hp))™ of BSDE (13) satisfying

sup HP( )\|HM+Z||QJ||L2(tTH )
Jj=1

< CL DA+ Xl + IVl 22t mu))- (14)
Now we give the necessary condition of control problem (5).

Theorem 1. Under Assumptions (A1) and (A2), let V be an optimal control for
Problem (5), X be the corresponding controlled state process, and (P,Q)) be the
solution of Eq. (13). Then, we have the optimality condition

DyL(X(s),V(s),s;P(5),Q(s) % 0, ae sel[tT)
Proof. Forany V € L3y, (6, T;Uyp), we set V€ := V€V for e € [0,1]. Tt is obvious
that Ve e L%Vt}( (t, T;U,,). We denote by X ¢ the state process corresponding to the
control V¢, and set Y := 1(X*¢ — X). From Assumption (A1) and (A2), we have

L (V) ~ Jix (V)]
/ / (DxG(X(5) + AeY(5), V<(s), ), Y(5))2.,
+(DvG(X(s), V(s) + AV (s), 8), V(5))u,, JdAds
+/01(DXGT(X(T)+/\6Y6(T))7YE(T))HMCD\. (15)
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Let D(/XV be the solution of Eq. (8) corresponding to (V, V). From Assumption
(A2), Lemma 1, and the dominated convergence theorem, we have

[t . -
hII(l) [E[th(v ) — th(V)]

€—

T N
- / (DxG(X (), V(5),8), Dy X7 (5.,

+(DyvG(X(s),V(s),5),V(s)u, |ds
+(DxGr(X(T)), Dy XY (D), (16)

From (8), (13), Assumption (A1) and the definition of the Lagrangian functional
L, we have for s € (t,T),

L (P(s), DXV (5)),

= (P(s), Dx F(X(s), V(s), $)(Dy. X" (),

+ (P(s), Dy F(X (), V(s), 5)(V(5))) 1,0
+Z (Q(s), Dx A/ (X (s), V(s),5) (D X ¥ (5)))5¢,,

+(Q7(s), Dv A (X(5), V(5), 8)(V(5)50,0]
— (DxL(X(s),V(s), 55 P(s),Q(s)), Dy XV ().,
= (P(s), DvF(X (), V(5), 5)(V (5)))21,,

n

+Z Q(s), Dv A (X (s), V(). ) (V ().

— (DxG(X(5), V(s),5), Dy X" (5))n

We integrate against s from ¢ to T' so as to obtain

(DxGr(X(T)), Dy X" (T))2

m

+ /t (DxG(X(5), V(s), ), Dy XV (8))re,, ds

T
-/ [<P<s>,DVF(X@,V<s>,s><v<s>>>um

n

+ D (Q7(s), Dy A (X (5), V(5), )(V (5)))31,, | ds. (17)

Jj=1
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Plugging (17) into (16), from Assumption (A1), we have

€—

lim E[th(Ve) - th(f/)]}

The necessary condition then follows. |

5. Sufficient Condition for Control Problem (5) on Hilbert Spaces

In this section, we give the sufficient condition of the control problem (5). We need
the following assumptions, which are the regularity-enriched version of Assumptions
(A1) and (A2).

(A1) (i) The maps F and A7 (for 1 < j < n) are linear in V. That is

F(Xa Va 8) = Fl(X7 S) +~7:2(S)V7
AV(X,V,s) = Al(X,s) + A (s)V,

where Fy and A also satisfy Assumption (A1), and Fa(s) and AJ(s) are linear
maps on U,,, and

1o () L@ty < L 1A L@t < L
(ii) Furthermore, the maps Fy and A{ (for 1 < j < n) are linear in X. That is
Fi(X,s) = Fo(s) + Fi(s) X,
A(X,5) = A4j(s) + Al(9)X, 1<j<n,
where Fi(s) and A7 (s) are linear maps on H,,, and
1Eo ()7 < Ly [F1() | Lttt < L
145513, < Ly 1A (5)| 237ty < Lo

(A2’) The functionals G and Grp satisfy (A2). The maps DxG and Dy G are
L-Lipschitz continuous in (X, V) € H,,, X Uyp; the map DxGr is L-Lipschitz con-
tinuous in X € H,,.
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We also need the following convexity assumption.
(A3) (i) There exists A > 0 such that, for any X € H,,, V.V’ € U,, and s € [0,T],

G(X,V',s) — G(X,V,5) > (DyG(X,V,5), V' = V), + AV = V|2 .
(ii) There exists A > 0 such that, for any X, X' € H,,,, V.V’ € U,, and s € [0, T],

G(Xl’ V/’ S) - G(X7 Va ‘5) > (DxG(X,MS),X/ - X)Hm
+ (DyG(X,V,8), V' = V), + MV =V,
(DxGr(X') — DxGr(X), X' — X)y,, > 0.

We refer to Remark 3.1 in Bensoussan et al. [2023b] for the relation between the
aforementioned convexity assumption and the displacement monotonicity condition
and Lasry-Lions monotonicity condition. We now give a sufficient condition for the
control problem (5).

Theorem 2. Under Assumptions (Al')-(i), (A2') and (A3)-(i), there exists a con-
stant C(L,T) depending only on (L,T'), such that problem (5) has a unique optimal
control for X > C(L,T). Furthermore, if Assumptions (A1")-(ii) and (A3)-(ii) are
satisfied, then, problem (5) has a unique optimal control for any X > 0.

Proof. From Assumption (A1l’), we have
DVL(X, V.5 P,Q) = (F2(s))" P + Y (A}(5))"Q" + DvG(X, V). (19)
j=1

From (18) and (19), we have the differentiability of Jyx: for any V,V S
le,vtx (t, T;Unm),

d ~
&th(v + EV)

e=0

+ (DvG(XV(8)7V(S)7S),V(S))um:|d8, (20)

where XV is the state process and (PY, Q") is the adjoint process corresponding
to the control V. Now, we prove that J;x is strictly convex when A is large enough.
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For Vi, Vs € L3, (t,T;Uyy,) and 6 € [0,1], we can write
Jix(OVi + (1= 0)V2) = Jyx (Vi + (1 = 0) (V2 — V1))

:JtX(‘/1)+/Ol %th(vl +€(179)(V27V1))d6. (21)

(From here on, we use the same e for both derivative variable and dummy integra-
tion variable for the sake of convenience.) From (20), we have

/1 thX(Vl +e(1=6)(Va —V1))de
o de
—(1-9) / / [<f2<s>(v2<s> —VA(s), PO (s)),
+ 3 (AU (5() Vi), Q" (3),

+ (Dy G(X10¢(s), Vi(s) + €(1 — 0)(Va(s) — Vi(s)),5), Va(s) — Vi(s))u,, |dsde,

where we denote by

Xl,é’,e(.) — XV1+5(1—6)(V2—V1)(.)7 Pl,G,e(.) — P)V1+e(l—0)(V2—V1)(.)7

QI,G,EJ(.) .— QV1+6(1*9)(V2*V1)J(.)7 1<j<n.
Similarly, we can also write

Jix (OVL + (1 = 0)V2) = Jix (Vo + 0(Vi — Va))

= Jix(Va) + / —JtX (Vo +e0(Vy —Va))de,  (22)

while the second integral term can be expressed as follows:

/ thX(V2+66'(V1 Va))de
p / / [fg Y(Va(s) = Va(s)), P20<(s))a,,
+ Z(Aé<s)<m<s> —Va(5)), Q204 (5))n,,

+ (DyG(X29¢(5), Va(s) + eB(Vi(s) — Va(s)),s), Vi(s) — Va(s))u,, |dsde,

where we also denote by

X2’9’E(-) .— XV2+69(V1—V2)(.)7 P2*6’6(.) = PV2+69(V1—V2)(.)’
Q¥I() 1= QUETOMITVNI() 1< j <.
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Adding 6 of (21) to (1 — 0) of (22), we have
Jix 0V + (1 = 0)Va) — 0 x (Vi) — (1 — 0)J,x (Va)

01— 0) / / [B (Va(s) — Vi(s)), PAO(s) — P20 ()},
n _Z(Afg(s)(vg(s) CVA(5)), QM (s) — Q2O (),

+ (DyG(X14(s), Vi(s) + e(1 — 0)(Va(s) — Vi(s)), s)

— DyG(X*7<(s), Va(s) + ef(Vi(s) = Va(s)), 8), Va(s) = Vi(s))u,, |dsde.

(23)
Similar to (6), we have the following estimates for X2::¢(s) — X 1.0:¢(s):
sup | X2%¢(s) = X10(s)la¢,, < C(L,T)(A = [Va() = Vi)l (e, 110
t<s<T
(24)

Similar to (14), from Assumptions (A2’) and the estimate (24), we have the follow-
ing estimate:

n
sup [|P27(s) = P20(8) |90, + D 1Q1PI() = @I ()l p2( i)
t<s<T i1

< (LT = lVal) = Vil ll 2 (e ryitan) - (25)

From (25) and Assumption (A3), we have

[ (Fa(s)(Vals) — Vi(s)), PHO<(s) — P>0(s))r..

+Z<Aé<s)<vz<s) = Va(s)), Q" (s) - QZ‘*EJ(s))HW} dsde

< C(L,DVa() = ViOlI e ras,)- (26)

From (24) and Assumption (A3), we have
| DGt (s, )+ 1 = )(7(s) = V). 9
— Dy G(X2%(s), Va(s) + e0(Vi(s) — Va(s)), 8), Va(s) — Vi(s))u,, dsde
1 T -
< [ (OrGx (), )+ 1 = )(Vals) = V). o)
— Dy G(X29¢(s), Va(s) + eB(Vi(s) — Va(s)),s), Va(s) — Vi(s))u,, dsde
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e Lo (g s)+e(l— s) —Vi(s)), s
+‘/O/t(DvG(X (), Va(s) + e(1 - 6)(Va(s) — Vi (s)), 5

= DyG(X*%<(s), Vi(s) + (1 — 0)(Va(s) = Va(s)), 5), Va(s) = Va(s))u,, dsde

<[22+ O(LDNNVa() = Vil Tz ra,)- (27)
Substituting (26) and (27) back to (23), we have
Jix OV 4+ (1= 0)Va) — 0Jix (Vi) — (1 — 0)Jix (Va)
<O = 0)[=2A + C(L, T)[Va() = Vi) 20 24,0 )-

Therefore, there exists a constant C'(L,T) depending only on (L,T'), such that
when A > C(L,T), Jix is strictly convex. Next, we prove that Jix (V) — 400
as ||[Vlr2,ru,,) — +oo. For any V € L?(¢,T;Up,), from Assumptions (A2') and
(A3), we have

JtX(V):/f G(XV(s),V(s),s)ds + Gr(XV(T))
T

> / G(XY(5),0,5) + (DyG(X" (5),0,5), V(s)as,, + AV (5)IIZ, Jds
+Gr(XV(T))

T
> /t (LA + XY (s)l13,,) = LO A+ XY ($) )V (5) s,

+ AV (3)ll, Jds — L1+ | X7(T)If3,,,)-
From (6), we have
Jix (V) 2 (=X + C(L DIV L2, — CL T+ 1X]3,,)-

So when A is large enough such that —A+ C(L,T) < 0, we know that Jix (V) —
+o0 as |V p2t,1iu,,) — +oc. This coercive property and the strict convexity imply
that the functional J should possess a unique minimum. That is, (5) has a unique
optimal control.

Moreover, if Assumption (A1’)-(ii) and Assumption (A3)-(ii) are satisfied, then

Jix (Vo) — Jex (V1)
T
_ /t (G(XV2(s), Va(s), s) — G(X Vi (s), Vi (s), s)|ds
+[Gr(XY>(T)) = Gr(XY(T))]

T
> / (DxG(X"(s), Vi(s), 5), X"2(s) — XV (8))n,
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+(DvG(XY1(s), Vi(s), 8), Va(s) = Vi(s)u, + AlIVa(s) = Vi(s)lIz,, Jds
+(DxGr(X(T)), X*(T) = XV ()2, (28)
Similar to (17), from Assumption (A1’)-(ii), we have
(DxGr(X"(T), X*(T) = X" (1)),

T
-/ [(P“(s),fQ(s)(vz(s) Vi),
+ 3@ (). M) (Vals) = Va9

— (DxG(XY1(5),Vi(s),s), XV2(s) — XV1(s))n,, |ds. (29)

From (28), (29) and (20), we deduce that
Jix (Vo) — Jix (V1)

T
>/
t

+(DvG(X " (s), Vi(s), 8), Va(s) = Vi(s)et + AllVa(s) = Va(s)lc,, | ds

(PY(5), F2(5)(Va(s) = Va(5) o + D Q7 (), AL (5)(Va(s) = Va(5)))rm

j=1

da

=7 Jix (Vi +¢e(Va — V7))

T
+ / 1Va(s) = Va(s) |1, ds.
e=0 t

That is, Jyx is strictly convex when A > 0. Therefore, (5) has a unique optimal
control for any A > 0. 0

We derive from Theorem 1 the following FBSDEs for (Yx(s), Px¢(s), @x+(s))
for s € [t,T7:

Yxi(s) =X + /tSF(YXt(T),UXt(T),T)dT + Z[sAj(YXt(T)7UXt(r),r)dwj(r),
T
PXt(S) = DxGT(YXt(T)) +/ Dxﬁ(YXt(T), UXt(T),’I‘; PXt(T),QXt(T))d’F

> @r)duw;(r),

j=1"¢
(30)
with Ux(s) satisfying the following optimal condition:
Dy L(Yxi(s),Uxt(s),s; Pxi(s),Qxt(s)) =0, ae. se][t,T]. (31)
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As a consequence of Theorems 1 and 2, we have the solvability of FBSDEs (30)
and (31) in space L3y, (¢, T;Hm) % L}y, (6, T;Hpm) X (L}, (t,T;Hp))" under
Assumptions (A1)—(A3).

6. Application to Mean Field Type Control Problems

In this section, we apply our results in Sec. 4 back to the mean field type control
problem (2) and (3) for (t,m) € [0,T] x P2(R") with an initial X € H,, (being
independent of W;). For any fixed m € Po(R™), we can make a connection between
the mean field type control problem (2) and (3) and the control problem (5) in
Hilbert spaces by setting for (X, V,s) € Hy,, X Uy, x [0,7] and € R™,

F(X7Vvs)|z = f(XamX ®m,Vz,s), (32)
A(X,V,8)]a =0 (X, X @m, Vp,s), 1<j<n, (33)
G(X,V,s):=E {/n 9(X,, X ®m,Vw,5)dm(m)], (34)
Gr(X):=E {/R 97 (X, X ®m)dm(m)}. (35)

We define the Lagrangian L : R™ x Pa(R") x R? x [0,T] x R" x R™*" — R as
j=1
and define £ : Hy, X Uy, X [0,T] X Hyy X HE, — R as

L(X,V,s;P,Q):=E {/ L(Xz, X @m, Vg, s; Py, Qr)dm(x)|. (37)
R

n

Then, we know from (32)—(37) that (G, A, F, L) satisfies (10).

We first give the connection between the linear functional derivative in Py (R™)
and the Gateaux derivative in H,,. Let k : P2(R™) — R be a differentiable functional
such that for any pu € Po(R™), the map R™ 3 ¢ s 4E(4)(¢) € R is differentiable

with the derivative Dg%(ﬂ)(ﬁ) being continuous in ((ZJ, ) and
dk
GO < 1 +IED, (1) € PolR™) R

For m € Py(R™), we define K : H,, — R as
K(X):=kX®m), X &Hpy.
Then, K is Gateaux differentiable and
dk
DXK(X)|I:DEE(X(X)m)(XI)7 X € Hp,. (38)

By letting X to be the identity function I, (38) becomes
dk

DxK(I)‘I = DIE(”TL)(:U)7
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which is identical to the L-derivative 0, k(m)(z) as introduced in Carmona and
Delarue [2018]. We also refer to Bensoussan et al. [2017] for further discussion
about its connection with Wasserstein gradients. We then give the corresponding
differentiability of F, A7, G, G and L in (X,V) € H,, x Uy, under the following
assumptions. For notational convenience, we use the same constant [ > 0 for all the
conditions as follows.

(B1) The functions f and o/ (for 1 < j < n) satisfy for (z,m,v,s) € R" x
Pa(R") x RY x [0,T],

[f(@,m, v, )] <UL+ 2] + Wa(m, 6) + [v]],

lo7 (z,m, v, s)| <I[1+ |z| + Wa(m, o) + |v|]

and they are differentiable in (z,m,v) € R™ x Po(R") x R% The derivatives
%(z,m,v,s)(g) and %(z,m,v,s)(f) are differentiable in £. The derivatives
(D f, Df%, D,f, D07, Dg%, D, 07) are bounded by [ and continuous in all argu-
ments.

(B2) The functions g and gr satisfy for (x,m, v, s) € R" x Po(R") x R x [0, T],
|g(x,m7v,s)\ < l(l + ‘$|2 + W22(m7 60) + |1)|2),
lgr(z,m)| <UL+ |z|* + WZ(m, &)

The running cost function g is differentiable in (x,m,v) € R™ x Pa(R") x RY,

and the derivative %(z, m, v, s)(€) is differentiable in £. The terminal cost function

gr is differentiable in (z,m) € R" x Py(R™), and the derivative dd’;f(;r,m)(f) is
differentiable in €. The derivatives (D¢, Dg%, Dy,g, D.gr, Dg%) are continuous

in all of their own arguments, and for (z,m,v,s) € R® x R? x Py(R™) x [0,T],
|(Dzg, Dog)(z,m,v,s)| < I(1+ |z + Wa(m, do) + [v]),
d
Do, 0. 5)E)] < UL+ b+ Walm o) + o] + ),
|Degr(z,m)| <11+ |z| + Wa(m, do)),

d
DE WL o )(€)| < 1(1-+ o]+ Wa(on, o) + €],

In the rest of this paper, for any random variable &, we use £ to denote its indepen-
dent copy, and use E[£] to denote its expectation; at the end, at the most we may
only need countably many of independent copies, one can simply construct them
right away in (9, A, P) before the discussion of our control problem. The following
lemma is proven in Appendix B.

Lemma 2. Under Assumptions (B1) and (B2), F as defined in (32) and A7 as
defined in (33) satisfy (Al); G as defined in (34) and Gp as defined in (35) also
satisfy (A2), with a constant C (1) depending only on . The functional L defined in
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(37) satisfies (11). For any (s, P,Q) € [0,T] X Hu, X H}Y, the functional Hy, X Uy, >
(X,V) — L(X,V,s; P,Q) € R is contmuously~ diﬁ”erentiablg, with the derivatives
satisfying (12). Moreover, for s € [0,T], X, X € Hupm, V,V € U, we have for
r € R™,

DxF(X,V,s)(X)|s = (Dpf(Xp, X @m, Vp,8)) X,

+E {/ <D5%(X1,X ®m,VZ78)(Xy)>* iydm(y)];
(39)

Dy F(X,V,8)(V)|x = (Dof(Xe, X @m, Vi, 5))* Vi (40)

Dx A (X,V,8)(X)|z = (Ds0? (Xo, X @ m, Vo, 5))" X

2] (nox @m,vx,sx)‘fy))*)?ydm(y)}

(41)
Dy A (X, V,8) (V)]s = (Dyo? (X0, X @ m, Vi, 8))* Vs (42)
DXG(X7 V, s)‘z = ng(sz X ®@m,Vy, 3)
_ dg  — _
B[ DR, X om ) (dmt)]i (9
DVG(Xa V7 3)‘% :Dvg(Xz7X®m7Vras); (44)

DXGT(X)lz = ngT(szX ®m) +IE [

DL (X, X ) (X, )|
.

(45)

and for (P, Q) € Hy, x HI,, we have for x € R™,

DxL(X,V, 5 P,Q)le = Dof(Xa, X @, Vi, ) Po + Y 07 (X, X @, Vi, 5) Q)

j=1
+ng(Xwa X ® ma an S)

_ df , - _
+ E . ng—y(Xy,X ®@m, Vy, s)(Xg)Pydm(y)

+ZE{ D% (%, X &m. 00X Z>Q;dm<y)}

+E| [ DX, X om T (EimG)], (49
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n
DvL(X,V,5P,Q)ls = Do f (Xo, X @m, Vi, 8) Py + Y Dyo? (X, X @ m, Vi, 8)Q)

j=1
+D’Ug(XI7X®m’VZ78)7 (47)

where ()_(,):(, V) is an independent copy of (X, X, V).

Let 0, (s) be an optimal control for the mean field control problem (2), (3) and
X (s) be the corresponding state process. The adjoint process is defined as

Py(s) = Dagr(Xo(T), X(T) @ m)

+E { | Peg, (X)) X(T) ® m)(Xo(T))dm(y)

- / Q3 (r)dw; (r), s € [1,7), (48)

where (X (s),0(s), P(s),Q(s)) is an independent copy of (X (s),9(s), P(s), Q(s)). By
Lemma 2, we know that (Py(s), Qz(s)), defined in (48), satisfies Eq. (13). The fol-
lowing necessary condition is then a direct consequence of Theorem 1 and Lemma 2.

Theorem 3. Under Assumptions (B1) and (B2), let 0,(s) be an optimal control for
the mean field control problem (2) and (3), X.(s) be the corresponding controlled
state process, and (P,(s),Q(s)) be the corresponding adjoint process. Then, we
have the optimality condition

DyL(Xa(s), X (s) © m, bu(s), 5 Pu(s), Qu(s) = 0, ae. s € [t, T,

a.s. dm(z), a.s. dP(w).

To give a sufficient condition for the mean field type control problem (2) and
(3), we need the following assumptions, which are the regularity-enriched version
of Assumptions (B1) and (B2).

(B1) (i) The coefficients f and o/ (for 1 < j < n) are linear in v. That is

f(;r,mw, S) = fl(xvma 8) + fZ(S)U’
ol (z,m,v,s) = ol (x,m, s) + o3 (s)v,

with fl,U{ satisfying Assumption (B1), and fz(s),oé(s) € R™? heing bounded
by 1.
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(ii) Furthermore, the functions f; and U{ (for 1 < j < n) are linear in x and m.
That is,

fi(m,s) = fols) + f1(s)z + Fi(s) / ydm(y),

n

o (. m, 8) = 0(s) + o} () + 51(s) /

ydm(y),
Rn

with go(s),ag(s) e R™ and fi(s), f1(s), 0l (s), 5 (s) € R™*™ being bounded by I.
(B2’) The functionals g and gr satisfy (B2). The derivatives

dg dg
<ng7D557Dvgle‘gT7D§d_j)v

are [-Lipschitz continuous in (z,m,v,§).

We also need the following convexity assumption.

(B3) (i) There exists A > 0 such that for any (z,m,v,v') € R™ x Pa(R") x R? x
R? and s € [0,7],

g(as,m, vla S) - g($7 m,v, 8) > (Dvg(xa m,v, S))*(vl - U) + )‘|vl - U|2.
(ii) There exists A > 0 such that, for any z, 2/, &, & € R™, v,v' € R? and s € [0, 77,
g(z',m' V', s) — g(a,m, v, s) > (Dag(x,m,v,5))" (2" — )
d
+ [ wm v, (O~ m)(©
R AV
+ (Dogla,m, v, 8))* (0" = v) + Ao —vl*;
dg n_dg dg T
-7 _ 2 > at — &)
.m0 () - Glnm () = (Degam.n.0) (€ -
gr(a’,m’) — gr(x,m) > (Dygr(z,m))" (2" — )

[ my @i’ - m) o)
%(%m)(f’) - %(%m)(f) > <D5(Zg—5(x,m)(§)) (€ —¢).

From Assumption (B1’), we know that I and A7 defined in (32) and (33) satisfy the
condition (A1l’). From Assumption (B2’) and Lemma 2, we know that functionals
G and Gy, respectively, defined in (34) and (35) satisfy the Lipschitz continuity
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conditions in (A2’) with a constant C'(I) depending only on [. By Assumption (B3)-
(i), we have for any X € H,,, V.V’ € Uy, and s € [0,T],

G(X,V' s)—G(X,V,s)

=E _ [9(Xp, X @m, V), s) — g(Xs, X @m, Vz,s)]dm(a:)]

) x?
Rn

(Dog(Xes X @ m, Ve 8))* (VL — Vi) + AV — Vw|2]dm<x>}
LJR"

_E _/H(DVG(X, V. s)|)* (V] — Vx)dm(x)} AV -V

That is, G satisfies the convexity conditions in (A3)-(i). Furthermore, if Assumption
(B3)-(ii) is satisfied, by Fubini’s theorem, we have

G(X', V', s)—G(X',V,s)

= [ [ 000X V)~ X X Vo)
> E[/ {(Dmgm,x ®m, Vi, ) (X, — X,

d
+ /R Y (X, X ©m, Ve, )X ©m— X ©m)(©)

+ (Dpg(Xp, X @m, Vi, 8)) (VI — Vi) + NV — Vgﬂ dm(m)}

_ [/ {wwg(XwX ©m, Vi, s))* (X, — X.)

D dg v/ 7dg _

X dm(g)ﬂ dm(as)} + (DvG(X,V,s8), V=V )y, + AV = VI,

> E[/ {(ng(XnX ®@m, Ve, 8))" (X; — Xz)
25 [ (Dt xom, vgc,s)(Xg))* (X - Xodm(©)) [ o)
+(DvG(X, V), V! =V, + AV = VIIZ,,

:E/ {ng(Xx,XQ@mnyvS)
]R'n.

+B( [ DX X 0 m Vo) (€)X - Xy
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+ (DVG(X7 V7 S)v V/ - V)Mm + )\HV, - V”l%{m
= (DxG(X,V,s), X' = X)n,, + (DvG(X,V,s), V' = V), + N[V = V| ,

where (X, X', V) is an independent copy of (X, X’,V). That is, G satisfies the
convexity conditions in (A3)-(ii). The argument leading to the convexity for Gr
can be shown similarly. As a consequence of Theorem 2, we have the following
solvability of mean field type control problem (2) and (3).

Theorem 4. Under Assumptions (B1')-(i), (B2") and (B3)-(i), there exists a con-
stant C(1,T) depending only on (I,T), such that when X > C(I,T), Jix is strictly
conver, and the mean field type control problem (2) and (3) has a unique optimal
control. Furthermore, if Assumptions (A1')-(ii) and (A3)-(ii) are satisfied, then,
problem (2) and (3) has a unique optimal control for any A > 0.

From the optimality condition, we obtain the following FBSDEs, for s € [t, T:
Viams(s) = Xt [ Vi), Vo) @ ) 1)
+Z/ 0 (Yt mt(F), Yot (1) © 11, ot (1), )l (),
Px,mi(8) = Dogr(Yx,mt(T), Yxmi(T) ® m)
dgr (

+JE{ De—

an YXymt (T)7 Yth(T) ® m) (YXmmt(T))dm(y)

T
[ [ PeE W) Yot 0) ),
s
Pmet(T)v Qert(r))
= dL - B
+E Dfd_V(YXymt(T)vamt(r) ®m, u)?ymt(’r)vr;

Py, Qi) (X (1)) )|

/Qth )dw; (1),
j=17°%

(49)
where ux_m¢(s) satisfies the following optimal condition:
Dy L(Yx,mt(8), Yxmi(s) @ m, ux,mt(s), 8; Px,mt(s), Qx,me(s)) =0, (50)
a.e. s € [t,T], as. dm(z), as. dP(w),

such that the process (Yi,,;(5), @i (), Pgmi(8); @zmi(5)) is an independent
copy of (Yxmt($), uxme($), Pxmt(s), @ xme(s)). For the Lagrangian L, we define
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O(z,m, $;p, q) satisfying the following:
D,L (z,m,d(z,m,s;p,q),s;p,q) =0 (51)
and then define V : H,, x [0,T] X Hpp X HIY — Uy, as
V(X,5PQ). =0(Xe, X ®@m, 8 Py, Qy), xR (52)

From (37) and (52), we know that

V(X,s;P,Q) =argmin L(X,V,s; P,Q), (X,s,P,Q) € Hm x [0,T] X Hpm x H,.
Veu,

Then, we know that ux ,,,¢(-) defined in (50) coincides with Ux(-) as defined in
(31). Therefore, the FBSDEs (49) and (50) coincide with the FBSEDs (30) and (31).

Remark 1. From above, we can see that the optimal control ux,.,:(s) for the
mean field control problem (2) and (3) is a feedback one, namely,

uXImt(s) = f)(Yszt(S)v Yth(S) @ m, s; PXmmt(S)7 Qszt(s))

and we can have the regularity for the function ¢ in accordance with the conditions
of the coefficient functions (we refer to Benoussan et al. [2023a, 2023b, 2023c]).
Therefore, we know that the system of FBSDEs (49) and(50) has a unique adapted
solution. We can see that the monotonicity conditions for the FBSDEs of our mean
field control problem are actually the convexity conditions of the coefficient func-
tions. Certainly, it is different from mean field games. Indeed, when we consider a
mean field game, the associated FBSDEs should be

Yx,me(s) = Xo + / FYxumt (1), Yme (1) @ myuxme(r), r)dr
t
+ Z/ 07 (Yymt (1), Yxme (1) @ M, tx,me (r), 7)dw; (),
j=17t

Px,mt(5) = Dagr (Yx,mt(T), Yxmt(T) ®m)

T
+/ [De L(Yxymt (1), Yxme (1) @ My uxtyme (1), 75 Pxpme (1), Qxpme (1)) ]dr

3 [ @),

j=17%

(53)

with wx, m:(s) satisfying the optimal condition (50). Note that the derivative with
respect to the distribution term does not appear. Therefore, the monotonicity con-
ditions for g and gr are not the convexity conditions anymore. For instance, take
gr as an example. In view of (53), the monotonicity condition for g7 in mean field
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games should be

(Dpgr (XL, X' @m) — Dpgr (X, X @m), X, — Xo)n,, >0, X, X'€H,p.
(54)

Note that

(Da:gT(XrlmX/ ® m) - DIgT(Xz7X ® m)v X; - XI)H

m

=E {/n((ngT(X;’X/@m) — Dagr(Xe, X @m))* (X, — X, )dm(z)

= E[((D2gr(X3, £LX7) = Dagr(Xy, Xy)))" (X, — X))}

when 7 is equipped with a probability m ® P[j 4, where P[4 is generated by
w(s), s € [0,t]. Therefore, condition (54) coincides with the displacement mono-
tonicity

E[((Dagr(n®, Ln*) — Dagr(n', £n')))* (n* = n')] > 0, (55)

which is proposed by Ahuja [2016]. When h is continuously differentiable in z and
is also convex in z, the displacement monotonicity (55) is satisfied if the following
condition is satisfied:

Elgr(n', £Ln") + gr(n®, Ln*) = gr(n*, Ln*) — gr(n®, Ln")] > 0. (56)

Condition (56) is called well-known Lasry—Lions monotonicity, extensively used in
the literature [Cardaliaguet, 2010; Cardaliaguet et al., 2019; Carmona and Delarue,
2018; Chassagneux et al., 2022]. For further discussion on monotonicity conditions
for mean field type control problem and mean field game, we also refer to Remark 3.1
in [Bensoussan et al., 2023b] and Sec. 5.3 in [Bensoussan et al., 2023c].
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Appendix A. Proof of Lemma 1
We first prove (6). Using the SDE in (5) and Assumption (A1), we have for s € [t, T,

d%HX (3)lI3,, = 2(XY (), F(XV(5), V(5), 9)ns,, +Z||Aj(XV(S)»V(8)»S)||3{m
< OL)A+IXY (), + IV($)E,,)-

From Gronwall’s inequality, we obtain (6). We then prove the estimate (9) for
Dy XY (s). By Eq. (8) and Assumption (A1), we have

DXV () 1By, = 2Dp XY (), Dx F(XY (5),V (5),r)(Dy X (5)
FDYFXY (), V(3), )7 (5Dt + D DA/ (XY (5), V(). ) (D XV ()
+ Dy (XY (3), V(3),8) (VD) B, < CUNIDy XY (3) By, + 1P )IE, ).

By applying Gronwall’s inequality, we deduce (9). We next prove (7). It is obvious
that V< € L3, (t,T;Up). We set Y(s) := £(X(s) — XV (s)). We first establish
the uniform boundedness of the norm 1Y ¢(s)||#,,. From the equation in (5) and
Assumption (A1), we have for s € [t, T,

€ = ’ 1 Vir eYe(r “(r),r (r
Y(s)—/t UO DxF(X" (r) + AeY“(r), V(r),r)(Y(r))dA
+/0 DVF(XV(T),V(T)+Ae\7(r),r)(17(r))dA] dr
+an‘:/t M Dx A7 (XY (r) + XeY<(r), VE(r), r) (Y (r))dA
+/0 DvAj(XV(’r’),V(T)+)\€V(T),T)(‘~/(T))d)\] dw;(r). (A.1)

From Assumption (A1) and Cauchy’s inequality, we have for s € (¢, 77,

S
V6, < CLT) | [ AV OB, + 1701, )ar]
t
By applying Gronwall’s inequality, we have

sup [[Y(8)ll,, < CL DIV Ilz2(t,724,)- (A2)
t<s<T
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We denote by A¢(s) := Y(s) — XV’V(S). From (8), (A.1) and Assumption (A1),
we have for s € [t, T,

56 = [ [ xrex @ 0206V
— DxF(XY(r) + XY (1), V<(r),r)(Dy XV (r))]dA
+ /Ol[DXF(XV(r) + XY (r), VE(r), r) (D XV (1))
— DxF(XY(r),V(r),r)(Dy X" (r))]dA
+ /Ol[DVF(XV(r), V(r) + AeV(r),r)(V(r))

— Dy F(XV(s),V(s),s)(V(r))]dX\|dr

+ ;/t UO [Dx A7 (XY (1) + AY<(r), VE(r), 7)(YE(r))
— Dx AV (XY (r) + AeY(r), VE(r), 7) (D XV (7)))dA
+ /Ol[DxAj(XV(r) + XY (1), VE(r),r)(Dy XV (1))
— Dx AN(XV(r),V(r),r) (D‘-/XV(T))]d/\
-/ Dy AKXV (), V() + AT (), (7 ()
— Dy AI(XV(r),V(r), r)(f/(r))}d)\} dwj(r).
From Assumption (A1) and Cauchy’s inequality, we have
1A, < 1) | [ 1A 0B, ar + 700
where
7(e) = | ' / IIDXF(XY () + AV <(5), V¥(s), 9)(Dy XV (5))
~ DxF(X"(5),V(s),8)(Dy X" (5))l[3,,,
1Dy F(XY (5), V(5) + A (5), 8)(7(5))

~ Dy F(X"(5),V(5),8)(V(5))I[3,, ] dAds
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o3[ I a0, v 0.0
~ Dy AT(XY(s), V(s). 8)(Dy XV (3)) I,
+ | Dv AT (XY (5),V(s) + AV (s), s)(V(s))
— Dy AN (XY (s),V (5),8)(V ()13, ] dNds.
From Grénwall’s inequality, we have

sup [|A(s)|[3;,, < C(L, T)Z(e). (A.3)
t<s<T

From Assumption (Al), estimates (9) and (A.2) and the dominated convergence
theorem, we have

lim I(e) = 0. (A.4)

e—0

From (A.3) and (A.4), we have (7).
Appendix B. Proof of Lemma 2
From (32) and Assumption (B1), we have for (X,V,s) € H,, X Uy, x [0,T7],
F(X,V,5)e < U1+ [Xe| + [Va] + Wa(X @m, do)) < L(1+ | Xo| + [Vl + [ X]|2,,),
therefore, we have

IEX, Vo), < COA+ [ X4, + 11V I, (B.1)
From (34) and Assumption (B2), we have

GX,V.s)l < CO+ XN, + IVIE,)-

For X, X € H,, and € € (0,1), we have

%[F(X X V8| — F(X,V, 8]

1
:/ (Do f(Xy + Ae Xy, (X + €X) @m, Vy, 8))* Xpd
0

11 df ~
+/0 /O ]E{/W(DEE(Xm(lf)\)X®m+)\(X+eX)®m,Vz,s)

x (X, + &f@))*f(ydm(y)} dsd.
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By the dominated convergence theorem, we obtain (39). Similarly, by Fubini’s the-
orem, we have

lim L[G(X + X, V, ) — G(X,V, s)]

e—0 €

_E [/H(ng(Xw,X ®m,Vy, S))*dem(l‘)}

+E U E (/ <D5%(XZ,X ®@m,Vy, s)(Xy)> ) ):(ydm(y)) dm(a:)}

:]E{/ {Dwg(XI,X®m,Vz,s)

+B( [ DX, X 5 m Vi) (Xalim() ) | Kedinte)].

from which we deduce (43). Arguments for (40), (41), (42), (44) and (45) are similar.
Other arguments for (A1) and (A2) are direct consequences of (39)—(45). We next
prove (46). For any (X, V,s, P,Q) € Hum X Up, x [0,T] x Hp x H?, and X € H,,,
from Fubini’s theorem, we have

DxL(X,V,s; P,Q)(X)

=E

/n (P DxF(X,V,s)(X \ﬁz (@) Dx A (X, V,8)(X)]a

=1

+ (DxG(X,V, s)z)*f(z> dm(x)

_E [/ P} (D2 f(Xe, X m,Vz,s))*f(zdm(x)]
e[ 2( / B (P X om (%)) R ) dme)|
+ZE [/ (Dac? (X, X @, Vi, )" Ko dm(w)}
S]], -(W @ (P2 50 )]
HEU {ng(Xx,X@)m,Vm,s)
B[ D% X om Ty (X)) | Kemo)]

=E

/ (sz(Xz, X @m, Ve, 8)Po+ Y Doo? (Xa, X @m, Ve, 5)Q4

j=1
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_ df - _
4+ Dpg(Xe, X @m, Vg, s) +E DgE(Xy7 X ®@m,Vy,s)(Xz)Pedm(y)

L Jj o _ .
+308( [ DA (R, X @, Ty 9) (X QL))
j=1 R

+E( [ DR, X 8 m ) (X)) ) ) dem@)}
from which we obtain (46). Similarly, we have (47).
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