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Optically Connected Multi-Stack HBM Modules for Large Language Model
Training and Inference

Yanghui Ou

Abstract—Large language models (LLMs) have grown exponentially in
size, presenting significant challenges to traditional memory architectures.
Current high bandwidth memory (HBM) systems are constrained by chiplet
I/0 bandwidth and the limited number of HBM stacks that can be integrated
due to packaging constraints. In this letter, we propose a novel memory
system architecture that leverages silicon photonic interconnects to increase
memory capacity and bandwidth for compute devices. By introducing op-
tically connected multi-stack HBM modules, we extend the HBM memory
system off the compute chip, significantly increasing the number of HBM
stacks. Our evaluations show that this architecture can improve training
efficiency for a trillion-parameter model by 1.4 X compared to a modeled
A100 baseline, while also enhancing inference performance by 4.2 x if the
L2 is modified to provide sufficient bandwidth.

Index Terms—Memory architecture, silicon photonics.

1. INTRODUCTION

N RECENT years, modern high-performance compute devices such
I as GPUs and TPUs have largely shifted to using high bandwidth
memory (HBM) due to its superior memory bandwidth compared
to DDR and GDDR. For instance, in 2017, NVIDIA’s V100 GPU
introduced HBM2 with 900 GB/s bandwidth and 16 GB capacity.
More recently, HBM3e has further pushed these limits, offering 8 TB/s
bandwidth and 192 GB capacity in the NVIDIA GB200 GPU. Fig. 1
shows the trend of HBM capacity per device over time. While the
capacity per HBM stack has grown from 4 GB to 24 GB over the
past seven years, the aggregated HBM capacity remains fundamentally
limited by the number of stacks per compute chip. The HBM stacks
are connected to the compute chip via short-reach chiplet 1/0Os, and
the number of HBM stacks is ultimately limited by the perimeter of
the compute chip. Other memory expansion solutions, such as CXL
memory modules [9], [12], come at the cost of reduced bandwidth.

Meanwhile, large language models (LLMs) have demonstrated re-
markable capabilities across a broad range of applications [2], [4].
Driven by the need for higher accuracy and the ability to perform more
sophisticated tasks, the size of LLMs continues to increase and has
recently surged into trillions of parameters [5] (see Fig. 1). This poses
significant challenges for the memory capacity of compute devices. For
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Fig. 1. Memory requirement for training LLMs and HBM capacity per device

over time — We assume 16-bit precision for LLM parameters and gradients and
32-bit precision for optimizer state. HBM capacity data is adapted from [15].

instance, training the GPT-3 model with 175 billion parameters [2],
requires approximately 3 TB of memory for storing the model parame-
ters, gradients, and optimizer state. Today’s larger models, like Switch
Transformer [5], can have 1-2 trillion parameters and require up to
32 TB of memory to train. Early LLMs fit within a single compute
device, enabling efficient scaling of training through data parallelism.
However, today’s largest models far exceed single-device memory
capacity, and thus require the use of model parallelism, including
tensor parallelism [13] and pipeline parallelism [10], [11]. Tensor
parallelism splits the computation of each layer across multiple devices,
while pipeline parallelism segments the model into different stages
processed sequentially. However, these parallelism strategies introduce
new complications. With tensor parallelism, the frequent all-reduce
communication between devices can reduce overall efficiency. Sim-
ilarly, pipeline parallelism suffers from bubble inefficiencies where
stages of the pipeline are underutilized, particularly during the ramp-up
and ramp-down phases of the pipeline. This leads to the key observation
that motivates this work: Efficiently exploiting model parallelism for
LLM training is largely limited by per-device memory capacity.

In this letter, we propose a novel memory architecture using silicon
photonic interconnects to expand the memory capacity and bandwidth
of compute devices. We introduce optically connected multi-stack
HBM modules, a separate chip package with multiple HBM stacks
and connected to the compute chip via co-packaged optics. With co-
packaged optics, we extend the HBM memory system off the compute
interposer, circumventing the chip packaging constraint and allowing
more HBM stacks to be connected to the compute chip. In an augmented
A100 system, we achieve 576 GB of memory capacity and 12 TB/s
of bandwidth using the same HBM technology. Our system improves
model FLOPS utilization (MFU) by up to 1.4 x for trillion-parameter
LLM training. In addition, the increased bandwidth of our system can
also benefit LLM inference, improving decoding performance by up to
4.2x with sufficient L2 bandwidth.
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Fig. 3.

Example system architecture.

II. SYSTEM ARCHITECTURE

Fig. 3 depicts an example system architecture with optically con-
nected multi-stack HBM modules. The proposed system consists of
a compute multi-chiplet module (MCM) and multiple multi-stack
HBM modules. The compute MCM incorporates six electrical interface
chiplets (EICs) and six photonic interface chiplets (PICs), which are co-
packaged using 3D integration. The multi-stack HBM module includes
an EIC-PIC pair and is connected to the compute MCM directly via
optical fibers. The system design is based on an A100-sized compute
chip. Key design parameters, such as chip dimensions, optical fiber
pitch, and optical bandwidth are adapted or derived from recent works
on opto-electronic transceivers and MCMs [8], [17]. Given that the
width of the EIC-PIC pair is close to that of an HBM stack, the six
HBM stacks in the A100 GPU chip can be replaced with six EIC-PIC
pairs. Each EIC-PIC pair has a total of 48 optical fibers with a pitch
of 127 pum, constituting 16 optical channels. Each optical channel
is comprised of three fibers: one for unmodulated comb lines, one
for transmitter (TX) signals and one for receiver (RX) signals. Each
signal fiber carries 64 wavelengths modulated at 16 Gb/s, resulting in
a total unidirectional bandwidth of 1 Tb/s. In total, our design provides
12 TB/s of bandwidth and 576 GB of capacity using the same HBM?2e
technology. The system shown in Fig. 3 is just one conceptual example,
and the proposed architecture can also be adapted to other packaging
strategies such as embedded PIC [17], EIC on top of PIC [3], and
monolithic EIC-PIC [14].

Fig. 2 shows the detailed structure of the optical datapath highlighted
in Fig. 3. The TX array is driven by a comb source that generates
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Fig. 4. EIC and PIC architecture — mixed-signal transceivers in the EIC is
based on [8]. PIC design is adapted from [17].

hundreds of low-noise frequency channels (comb lines) from a
continuous-wave (CW) laser. The comb lines are subdivided by two
stages of de-interleavers into four buses, each containing 16 wave-
lengths. Each wavelength is modulated by a microdisk modulator in
the TX array. The modulated wavelengths are combined by two stages
of interleavers and transmitted via a single fiber. At the RX side, the
modulated wavelengths are de-interleaved into four buses and sent to
arrays of cascaded ring resonators that drop each wavelength onto a
photodetector to generate electrical signals.

Fig. 4(a) shows the EIC structure. The EIC is connected to the
compute or I/O chiplet via Universal Chiplet Interconnect express
(UCle) PHYs. We derive the design parameters from the 16 GT/s UCle
PHY from the UCle 1.0 specification [16]. Each UCIe PHY contains
four 128 GB/s UCle modules. The EIC includes four UCle PHYs to
provide a total bandwidth of 2 TB/s, matching the optical bandwidth.
The EIC also includes mixed-signal transceiver arrays to communicate
with the PIC via high density microbumps and through-silicon vias
(TSVs). Fig. 4(b) illustrates the PIC structure, adapted from [17]. It
includes an edge coupler array, de-interleavers and interleavers, and
transceiver arrays. The edge coupler array is used for attaching optical
fibers. Each TX array contains 256 microdisk modulators and each RX
array contains 256 ring resonators, corresponding to four optical chan-
nels. The transceivers in both EIC and PIC include include integrated
heaters and closed loop control to ensure the devices stay at their target
temperature.

Our proposed architecture does not integrate optical interconnect
technology directly into the HBM stack. Instead, it maintains the
conventional HBM structure while leveraging co-packaged optics to
extend connectivity beyond the compute interposer. However, this de-
sign choice does introduce added packaging cost and design complexity.
Future work will explore the cost effectiveness of our design.

Our design addresses two key constraints limiting the capacity and
bandwidth of current HBM-based memory systems.
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Constraint #1: The number of HBM stacks is restricted by the
perimeter of the compute chiplet. Our proposed design overcomes
this by extending the HBM stacks into separate chip packages using
co-packaged optics, with slight overhead in latency and energy. Instead
of direct microbump connections to HBM, the compute chiplet connects
optically to multiple I/O chiplets, and each I/O chiplet is connected to
multiple HBM stacks. As aresult, without increasing the chip perimeter,
significantly more HBM stacks can be connected to the compute chiplet.

Constraint #2: The HBM interface operates below the maximum
possible data rate of chiplet 1/0. Current compute chiplets use HBM
PHYs to communicate with the HBM stacks at up to 9.6 Gb/s per
microbump (HBM3e). However, state-of-the-art chiplet interconnects
like UCle can reach 16 Gb/s or even 32 Gb/s under similar bump pitch.
The bandwidth of HBM PHYSs are constrained by the DRAM speed
rather than the data rate of microbumps. By replacing the HBM stacks
with EIC-PIC pairs, our design leverages faster UCIe PHY's to achieve
a higher bandwidth. In the multi-stack HBM module, multiple HBM
stacks can be accessed in parallel to match the optical bandwidth.

III. EVALUATION

We evaluate our proposed system using LLMCompass [18], a perfor-
mance modeling framework for LLM workloads. We model an §-GPU
A100 compute node as the baseline system. We create a model of our
proposed memory system in LLMCompass and integrate it into the
A100 model. The memory system, as is detailed in Section II, offers
12 TB/s of memory bandwidth and 576 GB of memory capacity. Both
training and inference performance are evaluated.

Fig. 5 shows the evaluation results for modeling training of a
175-billion and a 1-trillion parameter LLM. We use the kernel-level
performance model to simulate the execution time of the forward and
backward pass. We generate different pipeline schedules based on the
memory capacity constraints and create an InfiniBand network model in
LLMCompass to simulate the communication time for data parallelism.
We compare the achieved MFU of three different systems: the baseline
A100 model, the A100 model with only the bandwidth enhancement of
our design, and the A100 model with optically connected multi-stack
HBM modules. We sweep the number of GPUs from 1 to 4096, and each
point in the plot represents a possible mapping with certain degree of
tensor, pipeline, and data parallelism. We can see that the improvements
in MFU mainly benefit from the capacity enhancement as opposed
to bandwidth. This is because the main operations in the training
process, matrix-matrix multiplications, are compute-bound. Our design
particularly benefited the training of the 1-trillion parameter LLM by
offering higher memory capacity. At4096 GPUs, the best mapping with
our design achieves a 1.4 x improvement in MFU. The baseline system,
constrained by the memory capacity, has to use more model parallelism
to partition the model parameters, gradients, and optimizer state. It also
requires activation recomputation during the backward pass since it
does not have sufficient memory to hold the activations, which leads to
reduced MFU.

We compare the per-layer latency of the prefill and decode stages for
the 175-billion and 1-trillion parameter LLM. Since our design exhibits
bandwidth inversion, offering 12 TB/s bandwidth which is well above
the 7 TB/s L2 bandwidth of the baseline A100, we also evaluate a system
with an aggressive 24 TB/s L2 bandwidth to fully utilize the optical
bandwidth. As is shown in Fig. 6, for prefill, our design with aggressive
L2 bandwidth achieves an average 1.14x speedup across different
sequence lengths for both the 175B and 1 T model. For decoding, our
design with aggressive L2 achieves 3.17 x speedup for the 175B model
and 4.23 x speedup for the 1 T model on average across different context
lengths. Without the L2 modification, the speedup is 1.53x and 1.67 x
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respectively, indicating that our design requires rethinking the memory
hierarchy design to fully utilize the massive memory bandwidth offered
by the optically connected multi-stack HBM modules. The capacity
enhancement of our design can also potentially benefit the latency and
throughput of LLM inference by allowing larger sequence length, batch
size, KV cache size, as well as enabling more optimal parallelization
strategies. Future work will evaluate the impact of our design on
end-to-end LLM inference systems.

IV. RELATED WORK

Beamer et al. propose PIDRAM, a photonically interconnected
DRAM architecture that uses monolithically integrated silicon pho-
tonics to address the bandwidth and power limitations of electrical
DDR-based memory systems [1]. Our work is distinct from PIDRAM in
that we use 3D integrated silicon photonics to augment the HBM-based
memory system.

Khani et al. introduce SiP-ML, which uses silicon photonics to create
aflat network topology for inter-GPU communication [7]. Wu et al. pro-
pose SiPAC, co-designing an inter-GPU silicon photonic interconnect
and a collective communication algorithm to accelerate distributed deep
learning. Our work is complementary to SiP-ML and SiPAC in that our
work explores optical interconnects between the compute chip and the
HBM-based main memory.

Gonzalez et al. propose an optically connected memory architecture
for disaggregated data centers, using silicon photonics to create high-
bandwidth, low-latency optical links between different resource pools
[6]. The GPU memory system is not modified. In contrast, our work
leverages co-packaged optics to augment the HBM-based memory for
compute devices.

V. CONCLUSION

We propose optically connected multi-stack HBM modules to en-
hance the capacity and bandwidth of HBM-based memory systems.
Utilizing co-packaged optics, our design connects compute devices to
multiple off-chip HBM stacks. Our evaluations show significant im-
provements in memory capacity and bandwidth, enhancing the training
and inference efficiency for large-scale LLMs. The results also suggest
that current memory hierarchy designs need to be reconsidered to fully
exploit the advantages of optical interconnects.
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