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Smartphone Haptics can Uncover Differences in Touch Interactions
Between ASD and Neurotypicals

IVONNE MONARCA, FRANCELI L. CIBRIAN, ISABEL LÓPEZ HURTADO, and MONICA
TENTORI
Utilizing touch interactions from smartphones for gathering data and identifying digital markers for screening and monitoring
neurological disorders, such as Autism Spectrum Disorder (ASD), is an emerging area of research. Smartphones provide
multiple benefits for this kind of study, including unobtrusive data collection via built-in sensors, integrated haptic feedback
systems, and the capability to create specialized applications. Acknowledging the significant yet understudied presence
of tactile processing differences in individuals with ASD, we designed and developed Feel and Touch, a mobile game that
leverages the haptic capabilities of smartphones. This game provides vibrotactile feedback in response to touch interactions
and collects data on these interactions. We conducted a deployment study with 83 Mexican children who played Feel and
Touch to capture their interactions with the game. Our analysis, comparing touch interactions between children with ASD
and neurotypical (NT) peers, uncovered three digital markers based on phone tilt and touch patterns that distinguish the
two groups. Additionally, we demonstrated the ability of a machine learning model to accurately classify these interactions
between ASD and NT children. Our findings discuss the implications in terms of accessibility and ubiquity, as well as the
possibilities for the development of digital markers and their application in pervasive computing for healthcare.

CCS Concepts: • Human-centered computing → Haptic devices; Smartphones; • Applied computing → Life and
medical sciences.

Additional Key Words and Phrases: Vibrotactile Pattern, Digital Markers, Autism Spectrum Disorder
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1 INTRODUCTION
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is marked by a wide array of
social and behavioral symptoms [6]. There is consensus in the field that early diagnosis of ASD can not only impact
early access to high impact treatments but also support the development of an ASD-friendly environment [37]
improving outcomes for ASD children. Obtaining a full diagnosis usually requires working with specialists who
use validated tests, such as the Denver Scale, the Autism Diagnostic Observation Schedule, Second Edition (ADOS-
2), and the Autism Diagnostic Interview Revised (ADI-R). However, conducting these tests can be prohibitively
expensive, especially in contexts like Mexico. The cost of a comprehensive diagnostic assessment is approximately
$10,000 Mexican Pesos, equivalent to around 2.3 months of work for individuals earning the minimum wage.
Consequently, the screening and diagnosis of ASD in Mexico are often beyond the reach of the majority of the
population, making them costly, delayed, and prone to errors [15].
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In recent years, there has been a focus on identifying digital markers to support the early detection and screening
of ASD [25].Despite not being entirely objective, digital markers offer a valuable approach to ubiquitously
collecting quantifiable behavioral data using different technologies, like smartphones. This data can be highly
relevant to the screening, diagnosis, and monitoring of healthcare delivery in ASD [66]. The extraction and
selection of digital markers for children with ASD opens up new possibilities for understanding neurobiological
mechanisms of the disorder, as well as the development of accessible screening programs.

While few studies identifying digital markers for ASD have traditionally focused on uncovering actions related
to emotional recognition and social attention [79], language [95], visual attention [72], and motor abilities [27],
few have explored touch interactions in depth. Tactile processing differences are highly prevalent in over 85% of
ASD children [90]. Children with ASD often either dislike being touched or carried, and they may present an
excessive fascination or avoidance of certain textures or fabrics [90]. Despite this, there is very little discussion
and evidence in the field investigating if the tactile processing differences exhibited by children with ASD can
become a potential marker of ASD [85] and how haptic capabilities of smartphones can be best utilized to uncover
such differences.
By leveraging advancements in haptic technology to stimulate the skin using actuators that replicate the

tactile or kinetic properties of an object [56, 58, 86], there is an opportunity to collect data about children’s touch
interaction behavior in a non-invasive and accessible manner, particularly in the context of smartphones. These
devices incorporate haptic sensors, such as vibration feedback and force monitoring, to deliver tactile information
crucial for understanding how children engage with technology. In addition, given the significant increase in
smartphone usage over the past decade, with 82.8% of people in urban areas and 62.6% in rural areas having
access to a mobile phone in Mexico [50], there is a substantial opportunity to develop mobile tools that can
complement existing ASD screening methods. By leveraging the widespread availability of mobile phones, such
tools have the potential to offer more accessible and cost-effective screening options, tailored to the Mexican
context, thereby improving the early identification and support of children with ASD.
The link between neurodevelopmental disorders and tactile processing has historically received insufficient

research attention [64, 78, 91]. In this study, we extend the current state of the art by taking advantage of the
affordances of haptic computing to provide tactile stimulation while children interact with a mobile phone
through a haptic game named Feel and Touch. which incorporates vibrotactile patterns, a function of intensity,
rhythm, and sharpness, representing the shape of a vibratory waveform. This paper aims to address three key
research questions: 1) Can haptic mobile games be effectively used to collect touch interactions from children? 2)
Which touch interaction features are most effective for classifying children with ASD using machine learning
models. 3) Can alterations in tactile processing in children with ASD be measured through their interactions
with haptic interfaces? . These inquiries contribute to the field of IMWUT by: 1) providing empirical evidence
that demonstrates how a mobile haptic game can be used for neurotypical (NT) and children with ASD outside a
clinical setting to gather their touch data, 2) sharing lessons learned from the design and development of haptic
interface, which could potentially support the screening of ASD in everyday contexts, and 3) offering empirical
evidence showing that tactile differences can be used to unveil digital markers that can feed a machine learning
model to assist with the potentially automatic tactile screening of ASD. Our results uncovered differences between
children with ASD and NT related to tilt and touch features that describe how children hold and move the mobile
phone and perform touch interactions.

2 RELATED WORK

2.1 Using mobile technology to uncover digital markers
Digital markers provide quantifiable measurements of physiological and behavioral data [62]. These markers are
primarily collected via wearable sensors, interactive surfaces, mobile sensors, and tracking sensors. Some digital
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markers replicate existing biological markers. For example, we can monitor glucose using a sensor placed on the
body and transmit the information to an application [24]; on the other hand, there are digital markers that are
more novel and are evolving [30].
Smartphones are increasingly utilized to gather digital markers due to their widespread use and capabilities

for pervasive sensing [62]. Research indicates that smartphones can capture a broad spectrum of psychologically
and physiologically relevant behaviors. For instance, their ability to uncover markers of stress-related behaviors
[1], personality traits [28] and depression [41] through the analysis of phone usage, voice, and video recordings.
Additionally, a segment of research focuses on exploiting smartphone sensors to monitor health-related

behaviors. Tseng et al. [97], for example, utilized the phone’s accelerometer to gauge physical activity, which, in
combination with other features, predicted individuals’ inhibitory control. In another study, researchers trained a
machine learning model using data from phone sensors—such as acceleration, gyroscope, and slope—to classify
individuals into categories of cognitive performance [46]. While the potential of utilizing internal smartphone
sensors to uncover digital markers is promising, this approach is largely unexplored in the field of digital markers
for ASD.

2.2 Digital markers for ASD
Significant research has been conducted on identifying digital markers for children with ASD. These studies have
primarily utilized sensors placed in the environment such as infrared camera [27] or Kinect Camera [3, 10] to
capture movement features; eye-takings to capture gaze features [12, 72, 104]; and microphones [19, 21, 57, 94]
to capture speech features.
For example, Oliveira et al. [72] employed an eye tracker to gather gaze data from 76 children with ASD and

30 NT children, aged 3 to 18 years, while they watched brief 6-second videos. Each video was divided into two
parts: one showing individuals performing natural movements (e.g., a child waving a hand) and another showing
geometric movements (e.g., the design of a moving fractal figure). They used the eye tracking data to extract
features related to visual attention. These features were then employed to train a machine learning model for
classifying children with ASD and NT, achieving an accuracy and recall of 90% and 69%, respectively. This study
demonstrated that children with ASD tend to focus their gaze in the center of the image, even when there is
nothing in the center, and exemplified the use of eye tracking data to extract digital markers for children with
ASD.

Other studies leverage voice recordings to analyze potential patterns in the vocalizations of children with
ASD, one example is the work of Lyakso et al. [57] who found significant differences in pitch values, pitch
range, frequency, and voice energy between children with ASD and NT. During the study, ASD and NT children,
aged 5-16, were recorded as they answered a series of questions and engaged in storytelling based on an image
presented to them. Similarly, this study extracted voice-related features, and trained a machine learning model,
achieving an accuracy of 60% and a recall of 67% in classifying children with ASD and NT.

Finally, another common approach to gathering digital marker is through cameras placed in the environment
to study the movements and motor coordination deficits of children with ASD. A study by Ardalan et al. [10]
found that children with ASD exhibit greater variability in their kinematic movements compared to NT children,
with the head, shoulders, feet, and left elbow movements being the most useful in distinguishing children with
ASD. Using motion capture technology, the study collected movement data from 39 children with ASD and 23
NT children aged 7 to 17 years. The children performed 10 static postures inspired by Yoga and Tai Chi practices.
These studies demonstrated the feasibility of using environmental devices to collect gaze, vocalization, and

movement-related data to identify digital markers of ASD. They also highlight the importance of selecting specific
features for building machine learning models capable of differentiating between children with ASD and NT
children. These studies marked an important advancement in the field of digital markers for children with ASD,
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nonetheless the devices — such as eye tracking technology, sound equipment and motion sensing device — used
to collect these digital markers are not widely available or accessible in countries with limited resources, for
example, the cost of purchasing an eye-tracking system, which, is between 3,000 and 50,000 US [7]. Building
on this research, another set of studies focuses on the use of interactive surfaces as an alternative approach,
enabling the collection of additional markers such as touch interactions. Recent research has revealed that touch
interactions with tablets can generate valuable information that could contribute to the identification of digital
markers of ASD, as presented in the following section.

2.2.1 Digital markers using mobile devices. A wide range of studies have focused on collecting digital markers
using tablets [9, 77] and smartphones [36]. One of the earliest significant studies leveraging mobile devices to
identify digital markers of children with ASD was conducted by Anzulewicz et al. [9], who proposed the use of
commercial video games on iPads to identify the motor signature of children with ASD. The study involved 37
children with ASD and 45 NT children who played two commercial video games on an iPad, each for a period
of 5 minutes. During these gaming sessions, data from the screen and internal tablet sensors were recorded. A
total of 262 features related to kinematic values (e.g., speed, acceleration) and touch-based metrics (e.g., number
of touches) were calculated. The results obtained in this study were exceptional, the model trained with the
features extracted reached an accuracy of 93% in classifying children with ASD from NT children. Additionally,
significant differences were revealed in the touch behavior of children with ASD. It was found that children
with ASD exerted more force in their touch interactions, performed touch interactions more rapidly, and used a
larger screen area to carry out these interactions. This study marks a significant advancement in the field by
offering valuable insights into how touch interactions can function as digital markers for ASD. It underscores the
variations in tactile behavior among children with ASD, and lays the groundwork for future studies that seek to
identify digital markers through tactile interactions.
Another example is the SensetoKnow app which uses a tablet to display short movies that prompt social

attention, facial expressions, head movements, motor behaviors and name recognition. The app collects data using
the tablet’s front camera and quantifies it using computer vision analysis (CVA). In their 2023 study, Perochon
et al. [77]. utilized the SensetoKnow app to extract 23 behavioral features from children interacting with the
application. They then employed a machine learning classification model to analyze these features, and found
that facing forwards, gaze, facial dynamics complexity, head movements, response to name and touch interactions
were the most relevant features in the classification of ASD. Touch interactions included average touch length,
average applied force, accuracy and popping rate all extracted during a pop the bubble activity.
In conjunction, this literature provides examples of employing mobile devices to collect digital markers of

children with ASD, indicating that the way children with ASD interact with devices differs significantly from NT
children, suggesting potential differences in motor skills or tactile processing. They also open up the possibility of
using touch interaction as digital markers of ASD. However, to our knowledge, there has been limited exploration
into how the haptic capabilities of mobile devices can be leveraged to stimulate touch interactions and identify
digital markers of ASD. This represents a significant gap in the literature, as the use of haptics—specifically
vibrotactile stimulation—in the context of ASD research is relatively novel. Children with ASD frequently
experience challenges with tactile processing [64, 78, 91], which can affect their ability to respond to and interact
with sensory stimuli.

2.3 Haptic technology and ASD
Haptic interfaces provide unique tactile responses to user interaction, these interfaces have garnered considerable
attention in therapeutic contexts to support children in motor exercises [54, 106], sensory integration therapies
[42, 55], therapeutic approaches related to emotions [83] within the context of ASD, rehabilitation [40] social
skills [23] and as an educational tool to improve the reading experiences [105] and teach writing skills [74]

4



189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

Smartphone Haptics: Touch Differences Between ASD and NT
Interact. Mob. Wearable Ubiquitous Technol., 978-1-4503-XXXX-X/18/06,

For example, FeelSleeve [105] is a protective glove-shaped sleeve that is placed over a tablet, and has two
actuators that generate vibrotactile patterns. These patterns are associated with specific events in a story, allowing
children to feel what they are reading. A study involving 44 NT children aged 6 to 9 showed that combining the
narrative events with the vibrotactile patterns in FeelSleeve can effectively enhance children’s reading experience.
Another example is CARBO [55], a haptic robot designed to promote tactile interactions through a set of

interactive games. Results from a study conducted using CARBO revealed that children diagnosed with attention-
deficit/hyperactivity disorder (ADHD) and ASD were able to interact with CARBO and found it both interesting
and intuitive. This study also highlighted that the interaction patterns of children with ASD differ from those of
children with ADHD, underscoring the potential of haptic feedback to identify differences in the ways children
with neurodevelopmental disorders interact.

From a clinical perspective, research on haptics has focused on identifying differences in sensory processing
and the development of fine motor skills in children with ASD and NT, exploring the use of devices that transmit
vibrations to the fingers [38, 54, 61, 81]. For instance, a recent study conducted by Espenhahn et al.[38] with 33
children with ASD and 45 NT children aged 3 to 6 years. Participants completed vibrotactile activities involving
receiving vibrations of different intensities on their fingers and answering questions about their perception. The
results indicated that children with ASD had slower response times but showed greater ability to discriminate
between levels of vibration intensity compared to NT children.

In summary, these studies collectively demonstrate that haptic interfaces are both well-received and effectively
utilized by children diagnosed with ASD as well as NT children. Haptics also show great promise in differentiating
tactile responses from children with and without ASD. Showcasing versatility, these interfaces hold promise as
tools for skill assessment. However, current research indicates that the potential of haptic interfaces to identify
digital markers of ASD remains underexplored.

Additionally, these insights were garnered using specialized tools designed to deliver vibrations directly to the
fingers, but the accessibility of such tools has been a significant barrier. In contrast, today’s mobile devices, which
are widely accessible, are capable of reproducing vibrotactile patterns using haptic interfaces. By investigating
how haptic feedback can be used to enhance touch interactions, our research aims to address these sensory
processing difficulties and provide new insights into the development of digital markers for ASD. This approach
not only contributes to the understanding of sensory processing in ASD, but also opens new avenues for creating
more effective screening tools and intervention strategies tailored to the unique needs of individuals with ASD in
a Latin America.

3 DESIGN AND DEVELOPMENT OF FEEL AND TOUCH
The design of Feel and Touch is built around the user-centered design philosophy [71], involving a comprehensive
iterative process to develop a mobile haptic game augmented with vibrotactile patterns to assess tactile processing
in children. To design the game, the research team conducted literature reviews, brainstorming sessions with
experts and children, and multiple design and testing phases to refine the game’s features and ensure the game
design was appropriate for preschool-aged children.

The design process began with a comprehensive literature review to compile existing active haptic interfaces,
vibrotactile patterns, and interaction gestures. Following this, we conducted 6 participatory sessions with human-
computer interaction (HCI) experts, NT children, preschool teachers, and special education teachers. These
sessions aimed to identify appropriate gestures associated with vibrations. During each session, we first explained
the study’s context and the session’s objective to the participants. Then, we engaged in brainstorming to discuss
key design ideas. Finally, we proposed low-fidelity prototypes and discussed their advantages and disadvantages.
We analyzed the data collected during the design sessions and materialized it into sketches and storyboard scripts.
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These two steps led to clear design decisions that determined the criteria for gestures captured and the vibrotactile
patterns represented by the game.

Gestures. According to our experts and in line with literature [32], we select the tap and drag gesture for the
game as children from 3 to 5 years old could perform easily, tap and drag.
Vibrotactile patters. The two selected gestures were linked to distinct vibrotactile patterns: the tap gesture

with a flat vibration pattern and the drag gesture with a ramp vibration pattern (see Figure 1). The flat vibration
pattern included three rhythm variations: slow (1-second intervals), medium (500-millisecond intervals), and
fast (250-millisecond intervals), based on the repeated monotone patterns of variable-length notes studied in
the literature for haptic design [45, 92, 96].For the ramp pattern, we designed variations, including ascending,
descending, and mixed.

Fig. 1. Vibrotactile patterns. Left shows the Flat pattern.When children tap they will feel an array of pulse vibrations with a
predefined offset that change intensity from slow (1 second between each vibration), to medium (500 milliseconds between
each vibration) to fast (250 milliseconds between each vibration). Right shows ramp pattern. When children drag, the vibration
intensity will increase or decrease depending on angular direction. Ascending ramps range from 40 to 100% intensity, while
the descending ramps range from 100 to 40% intensity

Activities The design process also led to the design of the story and game activities. The goal of Feel and
Touch is to help a hungry spider rebuild its web destroyed in a storm, mimicking the storytelling of the itsy bitsy
spider nursery rhyme. To engage children while performing tap and drag touch interactions, Feel and Touch has
two goal-oriented activities, Build the web and Feed the spider, and one open-ended activity, Dancing on the web.
Following a scaffolding approach, activities are presented progressively, increasing the complexity of both the
touch interaction and the type of vibrotactile pattern and its rhythm. For example, as tapping is generally easier
than dragging [32], Feel and Touch initially presents the Build the web activity which requires children to tap
around the screen, and then drag for a second activity.
Build the web (Figure 2-1). During this activity, children synchronize their taps anywhere on the screen with

the rhythm of the flat vibration pattern. Each time they tap, the spider jumps from its current position to the
location of the children’s tap. This action creates a trajectory drawing, forming a colorful line that connects
the spider’s movement trajectory from its initial to its final location. This activity has three vibration rhythms,
each with a different speed: slow (1 second between each vibration), medium (500 milliseconds between each
vibration), and fast (250 milliseconds between each vibration).

Feed the spider (Figure 2-A). During this activity, children must drag the spider’s feet to eat the bugs trapped
in the web. A spider will catch a bug when the child releases its leg. While dragging, children will feel a ramp
vibration pattern, which could be ascending, descending, or mixed of both. Ascending and descending ramps
were designed to stimulate children in different ways and to assess any variance in their interactions. Vibration
ramps are activated when a bug falls into the spider’s web.
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Dancing on the web (Figure 2-E). This activity encourages children to freely tap or drag, experiencing the
corresponding vibrotactile pattern, flat, or ramps. The spider jumps when children tap and dances when being
dragged.

Fig. 2. The figure presents five screenshots showing the main features of Feel and Touch. A) Build the web: this activity
presents a spider in the center of the screen and colorful lines representing the web being built. B) Rewards: this screenshot
represents three treasure chests vertically aligned, allowing children to choose one to collect a surprise reward that is inside.
C) Feed the spider: this activity presents the spider in the center with a red line and a representation of the dragging motion
required to move the spider’s feet to get one of the bugs located at the end of the red line. D) Spiders collected: this shows the
spiders collected through the game as a reward, so children can select their favorite to play the last activity. E) Dancing on
the web: it shows the selected spider in the center of the screen, and children can tap or drag the spider; the game reproduces
the vibrotactile pattern associated with each gesture. The final image shows a blue line representing a drag, the orange box
representing the bounding box, and a yellow line representing the angle of the bounding box.

Tutorial. Feel and Touch incorporates a tutorial at the beginning of the game and a reward upon completing
each activity consisting of unlocking a new spider (Figure 2-B). Both the tutorial and the reward act as relaxation
activities that were strategically placed between the vibrotactile stimulation (i.e., the three activities) to ensure
that children remain engaged without feeling overwhelmed by the vibrations [47]. If the children need guidance
during the activities, the game uses both verbal and visual prompts. Verbal prompts include voice-recorded
instructions in Spanish, like “Tap the screen when you feel the vibration,” while visual prompts show colored dots
displayed on the screen. Each prompt changes every 5 seconds in the absence of interactions from the children.
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Implementation We implemented Feel and Touch to run on iPhone 8 and later versions with the iOS 14
operating system onwards. The iPhone 8 provides sufficient technical capabilities for our study’s requirements,
including processing power, touch interactions sensors, and compatibility with necessary applications. By opting
for the iPhone 8, we aim to demonstrate that our game can be effectively used on more affordable versions of the
iPhone, making our tool more accessible to a broader segment of the population. Feel and Touch utilized the
Swift programming language, the SpriteKit game framework, and Xcode version 13.3.1 (Figure 3). To implement
vibrotactile patterns, we used the haptic engine of iOS, which allows the composition and reproduction of
vibrotactile patterns to provide feedback to the user.

Fig. 3. The figure displays a deployment diagram showcasing the components of Feel and Touch.

Initial evaluation. The initial evaluation of Feel and Touch was with 5 NT children aged 3-5 and demonstrated
that the game’s design was effective in engaging children while testing their tactile responses. In general. children
were able to 1) perform the required tab and drag gestures and respond appropriately, 2) understand and engage
with the task, and 3) were not confused or frightened by the vibrations. More around the design and evaluation
of the game can be seen in [65].

4 METHODS

4.1 Participants
Recruitment and data collection for this study took place in an urban city located in central Mexico. Children
aged three years and older with ASD were recruited from a specialized center that focuses on children with ASD.
We also recruited non-ASD or NT children from a preschool located in the same area (Table 1). Parental written
consent from parents/guardians was obtained for each participant in the study, following ethical guidelines for
research on minors. The study was approved by the Bioethics Committee of CICESE (no: BIOÉTICA.HUM.2021.02)
and was conducted in accordance with the amended Declaration of Helsinki.
Children in the ASD group were eligible to participate in the study if they met the following criteria: 1)

diagnosed with ASD level 2 of severity 1 using the Autism Diagnostic Observation Schedule, Second Edition
(ADOS-2, [26]), 2) not currently taking pharmacological treatment, 3) capable of interacting with a mobile phone
1While there may be a greater understanding of ASD in certain contexts and the severity levels might not fully capture the complexity of the
condition, these levels are still the standard within the context of our study. To align with established definitions, we will use the term ’level’
to specify the severity of ASD.
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and 4) between the ages of 3 to 6 years, The staff at the child care center for children with ASD was responsible
for selecting children who met the inclusion criteria. To protect the privacy of participants and adhering to our
ethical protocol, we did not request access to their clinical records.Children in the NT group were eligible to
participate if they met the following criteria: 1) capable of interacting with a mobile phone 2) between the ages of
3 to 6 years 3) to be free from developmental disorders
We used three screening tools to get the best understanding of participants’ development, and to identify

children at risk of developmental delays. Furthermore, we implemented a robust screening process using three
complementary assessments. Firstly, parents from both groups were asked to complete the Autism Spectrum
Quotient (AQ-10), a well-established screening tool for identifying ASD test [4] and the Short Sensory Profile
(SSP) survey [60] which evaluates sensory processing abilities in children, to detect any atypical sensory process-
ing. As teachers/psychologist have most experience assessing motor skills, they completed the Ages & Stages
Questionnaires-3 (ASQ-3) [2]. Any child whose test results suggested a risk for undiagnosed developmental
disorders were invited to play and complete the game, but their data were excluded from the NT group. This
approach allowed us to confidently categorize the remaining participants as NT, thereby enhancing the reliability
of our study results.

Table 1. Characteristics of study participants reported separately for children with ASD and NT

ASD (n = 19) NT (n = 36)

Gender
Female 5 19
Male 14 17

Age
Mean ± SD 4.36±0.68 4.78±0.91

AQ-10 score
Mean ± SD 6.75 ±0.95 3.18 ±0.98

SSP
Mean ± SD 30.85 ± 6.59 20.81 ±7.63

ASQ-3
Mean ± SD 29.16 ± 2.83 43.45 ± 11.46

4.2 Study procedure
The study lasted three months and was conducted in two locations: a typical private kindergarten and a center
specializing in children with ASD. Due to the distinct samples, we couldn’t bring the children to the same lab
setting, so we didn’t randomize the order of participants between the two groups.
We used a similar setup in both settings (Figure 2). As the game follows a scaffolding approach, we did not

randomly assign the children to different setups. Participants completed two phases of the study individually, the
first was completed in two sessions within the same week, and the second was completed the following week in
one session. Both phases are described in detail below.
(1) Sensitization session. We conducted two sensitization sessions, each on a different day in the same

week and with a five-minute duration [29, 63]. These sessions aimed to help children with ASD become more
receptive to using a smartphone before playing with Feel and Touch, especially if they had previously associated
smartphones with specific activities. During the sensitization session, children played casual games designed for
children aged between 3 and 6 years.
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(2) Completing the game. To minimize distractions, the study was conducted in an individual room in each
setting, where all the visual and auditory stimuli were removed. The room only had a table and a child-sized
chair. On top of the table, we placed an iPhone 8 with a 4.7” screen to run the game. We attached a grip phone
ring holder to the back of the mobile phone to facilitate its manipulation 4. Two cameras were used in the study
to enhance data collection: one to record the children’s interactions and gather detailed information about their
behavior, and a second camera to take photographs and document the study process. We asked the children to rest
their arms on the table, allowing them to have better control of the mobile phone.Each child was accompanied
during the session by a member of the research team. The head of the preschool and caregivers assisted children
in navigating between their classroom and the therapy room where our intervention was held. We asked the
head of the preschool and caregivers to stay at least 1.5 meters away from the children and not to touch the
screen nor provide any further instructions to the child. This approach ensured that the children’s interaction in
the game remained uninfluenced

Children played and complete the Feel and Touch game. The game has a predetermined duration of 12 minutes.
All children used their dominant hand to perform the touch interactions. First, they viewed the story of the
spider and then completed a tutorial to ensure they understood the dynamics of the Build the Web activity. After
engaging in the tutorial, participants completed three levels of the activity. Children then went through a similar
procedure, completing a tutorial for the Feed the spider activity and finalized its three levels. The final part of
the game is the Dancing on the web activity. At the end of the game, children completed a survey about their
experience.

Fig. 4. The left side shows the setup used in the study, and the right side shows the phone ring holder attached to the iPhone.

4.3 Data Collection
Touch interactions were captured at a resolution of 60 frames per second during the participant’s interaction
with the game. The final participant interaction data were stored in a CSV file used for statistical analysis. We
collected a touch interaction when a finger touches the screen and continues until the user lifts the same finger
from the screen. During this time, users can either keep their finger in place (tap gesture) or move it across the
screen (drag gesture) (see Figure 5). For each touch interaction we created a vector of touch-objects [49] at a
time t where each vector contains the timestamp indicating when the touch occurred, size of the area in points
covered by the finger in a time t, centroid of the area covered by the finger location at the time t (x, y, z), force of

10
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the touch occurring at the screen in N, the values of the inertial sensor at time t (accelerometer, ax, ay, az, and
gyroscope, gx, gy, gz).

Fig. 5. The figure shows a representation of the touch interactions. The left-side shows a tap and the right-side shows a drag

In addition to the touch interactions, we recorded in the same file the time when the game gave an instruction,
and we recorded the type of instruction (verbal, visual, verbal+visual).

4.4 Data Preparation
To ensure data quality, we cleaned the dataset, which involved separating the touch interactions from the
instructions and removing columns with the same or no variance.

Table 2. Dataset used for the statistical analysis and machine learning process. Labeling NT for neurotypical children, ASD
for children with Autism Spectrum Disorder

NT ASD

subjects (n) 36 19
Total touch interactions, 10541 6043
Average touch interaction per participant ± sd 335.72 ± 225.95 301.17 ± 195.46

4.5 Feature Extraction
From the touch interactions and the inertial motion sensors of the phone, we extracted a vector of features that
describe the child’s interaction with the mobile phone. In addition, we selected features explored in mobile touch
interactions, focusing on aspects related to the geometry of touch interaction [8, 53, 87], performance [8], and
movement produced in the phone [18] (For more details, see supplementary Table A). The consecutive data
from each gesture were transformed into a single feature vector, which includes 13 features derived from the
internal data of the phone, the screen, and the interaction of the children (e.g., force, accelerometer, gyroscope).
For each feature, we calculated statistical values (i.e., mean, standard deviation). We categorized the features into
two groups; (1) tilt: describes how children hold and rotate the phone. (2) touch: describes the screen space that
children use to perform touch interactions and how children perform touch interactions over time.
To extract the features, we initially grouped the touch interactions by ID. We then calculated the features

described in Appendix A for each touch interaction, obtaining statistical values to represent their distributions.
Following this feature extraction process, we assigned labels to each touch interaction, categorizing them as ASD
or NT.

11



518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

Interact. Mob. Wearable Ubiquitous Technol., 978-1-4503-XXXX-X/18/06,
Ivonne Monarca, Franceli L. Cibrian, Isabel López Hurtado, and Monica Tentori

4.6 Feature analysis
In order to understand how each feature distinguishes between children with ASD and NT, and identify digital
markers of ASD, we divided this analysis into two parts.

The first part of our approach involves reducing features by selecting the most relevant ones to build a touch
interaction classification model. The goal is to identify features that can improve the model’s accuracy and
effectiveness. According to the literature, focusing on the most relevant features may aid in uncovering digital
markers in machine learning and filter the redundant and\or irrelevant features that could negatively impact the
model performance [52]. For this work, we used ANOVA F-test feature selection, which reduces overfitting since
the results are independent/separate from the classifier algorithm; in this manner, the selected feature set is more
general and not fine-tuned to any specific classifier [80]. The method calculated the ratio of variance between
groups and within a group for each feature; greater value of F-score means that the distances within the groups
are less and distances between the groups are more. The features were ranked based on higher values of F-score.
It’s considered best practice to evaluate model configurations on classification tasks using repeated stratified
k-fold cross-validation [22]. Therefore, we employed a Grid SearchCV2 to systematically test various numbers of
selected features and determine which configuration yielded the best-performing model.
The second part of our approach involves comparing the interactions of ASD and NT children using the

selected features, with the goal of identifying distinct patterns and digital markers. We first conducted a Shapiro
test to assess the normality of our data, which confirmed its non-normal distribution. Group differences in age,
sex, and features between children with ASD and NT were assessed using a two-sided Mann-Whitney-U test
with a significance at the 0.5 level. We calculated the effect size (d) using Cohen’s D for each relevant features.
Additionally, we used Spearman correlation (r) to examine the association between demographic features (age,
sex) and game performance, and the association between the clinical tests administered during recruitment and
game performance. We manually grouped the relevant features to define digital markers, carefully selecting and
categorizing them based on their significance and relevance to create distinct and meaningful markers.

4.7 Modeling
For the classification task, we utilized 10,541 touch interactions from 36 NT children and 6,043 touch interactions
from 14 children with ASD. These interactions were crucial for training and evaluating our model’s performance
in distinguishing between the two groups (i.e., interactions from NT vs interaction from ASD) based on their
touch interactions (Table 2

4.7.1 Classification Algorithm. We recognize the importance of identifying subgroups of ASD [101], however, as
an initial step in addressing this problem’s complexity, we focused our study on a supervised binary classification
task

We defined the binary classification task using a logistic regression model to distinguish the touch interactions
of children with ASD from NT children.
We used scikit-learn [75], a library for machine learning in Python, which provides both supervised and

unsupervised learning algorithms. Furthermore, our main goal was to evaluate the impact of feature selection on
model performance. To do this, we trained two models: one using all available features to establish a baseline,
and another using only the features selected in the previous stage. This comparison allowed us to assess the
effectiveness of our feature selection process in improving model accuracy and efficiency.

4.7.2 Validation and performance evaluation. To validate our results, we employed 10-fold cross-validation,
which is known to provide a reliable estimate of model performance [20]. However, when a dataset includes

2https://scikit-learn.org/stable/modules/generated/sklearn.model𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛.𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉 .ℎ𝑡𝑚𝑙
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multiple measurements from the same participant, using Group K-fold cross-validation3 is recommended to
avoid overfitting and assess the model’s generalizability, considering individual variability [89]. Group K-Fold
cross-validation prevents multiple touch interactions from the same child from being split between the training
and validation or test sets. In our case, we set K equal to the number of participants, ensuring that each iteration
designated one of the k groups as test data while using the remaining (k-1) groups as training data. This method
provided a more accurate evaluation of our model’s performance by accounting for the inherent variability
between participants.

To evaluate the performance of the model, we selected standard evaluation metrics including precision, recall,
F-score (F1), the area under the curve (AUC), and classification accuracy (CA). Given that our research aims to
identify touch interactions of ASD, we wanted to avoid type 1 error; thus, we prioritize the metrics of precision
and recall for model comparison.

5 RESULTS

5.1 Comparisons of interactions in children with ASD versus NT
There were no statistical significance differences in age (p=0.13; two-sided Mann-Whitney test) between NT
(N=36 children) and ASD (N=19 children) children, indicating a similar balanced distribution of age. Children
with ASD (M= 301, SD= 19.05) and NT (M= 335, SD= 22.5) did not statistically differ in terms of the mean number
of touches (p=0,88;two-sided Mann Whitney test) indicating similar levels of overall engagement with the game.

5.2 Correlations between touch interactions and clinical scores
We examined the correlations between total touch interactions of all children — both ASD and NT -and the
AQ-10, SSP, ASQ scores (Figure 6) with the 14 relevant markers identified during the feature analysis. The AQ-10
was found to be slight positively correlated with: touch vibration (r=0.06, p-value<0.05), with the tilt direction
along x-axis (r=0.02, p-value<0.05), and along y-axis (r=0.13, p-value<0.05), with the touch velocity (r=0.07,
p-value<0.05); and negatively correlated with the touch size (r=-0.10, p-value<0.05), and horizontal touch distance
to the center (r=-0.03, p-value<0.05) although the magnitude of the negative correlation was small.
The SSP was found to be slight positively correlated with tilt direction along y-axis (r= -0.15, p-value<0.05),

touch size (r=-0.07, p-value<0.05), horizontal touch distance to the center (r= -0.03, p-value<0.05), and touch
velocity (r=0.05, p-value<0.05); and negatively correlated with touch vibration (r= -0.11, p-value<0.05), tilt direction
along x-axis (r= -0.01, p-value<0.05), and touch size (r=-0.06, p-value<0.05).

The ASQ was found to be slight positively correlated with touch vibration (r= 0.10, p-value<0.05), tilt direction
along y-axis (r=-0.02, p-value<0.05), tilt velocity (r=0.10, p-value<0.05), touch velocity (r=0.07, p-value<0.05); and
negatively correlated with touch size (r=-0.21, p-value<0.05), horizontal touch distance to the center (r=-0.09,
p-value<0.05).

3https://scikit-learn.org/stable/modules/generated/sklearn.model𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛.𝐺𝑟𝑜𝑢𝑝𝐾𝐹𝑜𝑙𝑑.ℎ𝑡𝑚𝑙
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Fig. 6. Correlations between motor performance and clinical scores. (1) Final flick along X-axis. (2) Average flick along X-axis.
(3) Average flick along Y-axis (4) Initial flick along Y-axis (5) Final flick along Y-axis (6) Max flick along Y-axis (7) Tilt (8)
Angular velocity (9) Total acelerario (10) Average Radius (11) Std Radius (12) Distance to the center (13) Final touch in x (14)
Average speed. *p<0.05; **p<0.01; ***p<0.001;

5.3 Digital Markers
As previously noted, our feature analysis narrowed the scope to 14 features that were most pertinent in differ-
entiating touch interactions between ASD and NT groups. Further analysis revealed three characteristics that
showed significant differences between ASD and NT children (see Figure 7). These three features emerged as the
most critical in our study (see Table 3).
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Fig. 7. Box plot of the features that best distinguish children with ASD and NT children. Box plots show median values for
each population.
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Table 3. Features and digital markers extracted from the touch interactions. The table shows the digital markers that best
distinguish children with ASD from NT and from other neurodevelopmental disorders

Group Digital Marker Description Features

Tilt Tilt direction The mobile phone is accelerated by
tilting movement in the desired
direction (Tilting). From the
internal acceleration sensors, we
compute changes different
measurements by rotating the
phone. The phone could be tilting
to the left or right (horizontal
rotation), up or down (vertical
rotation), and back or forward
(deep rotation).

Average flick along
Z-axis

Touch Total acceleration Acceleration of the vibration
produced on the phone when a
child performs a touch interaction.

Vibration wave total
acceleration

Horizontal touch
Distance to the
center

Horizontal distance (x-axis) in
points from the initial and end
touch and the center of the phone
display.

Initial touch in x.

5.3.1 Tilt. Although all participants used the mobile phone with a phone ring holder to reduce movement
and make it more comfortable to use, touch interactions and the way they positioned the phone in their hands
influenced the tilt direction. The tilt on the Z-axis shows that children with ASD (2.19±0.68) on average tilt the
phone more forward/backward than NT children (1.49±0.67, d = 0.9). Figure 7 shows that in the case of children
with ASD, approximately 75% of interactions are between 2 and 3 m/s2, while interactions for NT children are
more scattered.

5.3.2 Touch. Although all participants used the same mobile phone and completed the same game, there were
also differences in touch-related features. For instance, the total acceleration shows that on average, touch
interactions of children with ASD (2.19±0.68) result in higher acceleration compared to NT children (1.49±0.0.8, d
= 0.85). Figure 7 illustrates how approximately 75% of interactions by children with ASD fall between 2 and 3
m/s2, whereas 75% of interactions by typically developing children are below 2.5 m/s2.

The horizontal distance to the center of the screen shows that, on average, children with ASD (5.04±60.75) tend
to make touch interactions closer to the center compared to typically developing children (51.79±68.22, d = 0.7).

5.4 Touch classification performance
As described in 4.7 Modeling, we built two classification models, one with all features captured and another
with the top features identified from the previous step. As shown in Figure 8, through the utilization of the most
relevant features, our model achieves a precision of 79%, demonstrating its efficacy in accurately discerning
children with ASD while mitigating false positives. Furthermore, with a recall of 80%, our model identifies most
touch interactions of children with ASD in the dataset. Overall, we successfully constructed a model capable of
accurately classifying touch interactions.
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The group validation shows similar results, we reached a precision of 76%-79% and a recall of 80%-87%. (Table
4). This performance is consistent with the individual touch interaction validation, demonstrating the model’s
efficacy in accurately discerning children with ASD and mitigating false positives across different datasets.

The model demonstrated the ability to classify touch interactions with high precision and recall, showcasing
its effectiveness in distinguishing between touch interactions of ASD and NT children.

(a) ROCs and AUCs values were derived from lo-
gistic regression classifiers. These classifiers com-
pared the performance of amodel incorporating all
extracted features to another model that included
only the most relevant features for distinguishing
between children with ASD and NT children.

(b) Confusion Matrix depicting the classification
performance of a predictive model distinguishing
between ASD and NT children, with True Nega-
tive (TN) rate of 90.5%, False Positive (FP) rate of
9.5%, False Negative (FN) rate of 39.8%, and True
Positive (TP) rate of 60.2%

Fig. 8. The figure illustrates the model efficacy through a visual representation of the ROC curve and confusion matrix.

Cross validation Features Accuracy Precision Recall F1
10-fold All features 60% 63% 89% 74%
10-fold Relevant features 77% 79% 87% 83%

Group validation Relevant features 72% 76% 80% 78%
Table 4. Performance metrics for classification models evaluated using different cross-validation methods and feature sets.
The table compares accuracy, precision, recall, and F1 scores for models using all features with 10-fold cross-validation,
relevant features with 10-fold cross-validation, and relevant features with group validation.*

6 DISCUSSION

6.1 Touch interactions differences as digital markers
Our results show that the mobile haptic game we developed can effectively promote touch interactions among
neurodiverse children and capture haptic data with sufficient detail. This addresses the question: Can haptic mobile
games be effectively used to collect touch interactions from children? The data collected is useful for uncovering
differences in touch interactions among children.
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Through an extensive feature analysis, we identified a total of three potential ASD digital markers that could
be used as a starting point for analyzing children’s touch interactions. Those markers can be categorized into
two distinct groups: tilt and touch.
Tilt. Although all participants used the mobile phone with a phone ring holder, small movements over time

were captured by the phone. Small movements naturally occur when performing gestures on a phone that is
not fully static. Our results show that these small movements can be analyzed and used to distinguish touch
patterns for individuals with neurological disorders. In our study, children with ASD exhibited more pronounced
patterns of moving the phone toward and away from themselves. This could be partially explained because
children with ASD might either seek intense sensory stimulation being received from the vibrotactile feedback
provided by Feel and Touch or have engaged in stereotyped behavior. Indeed, research has reported similar
findings regarding how motor patterns of children with ASD influence their manipulation of mobile devices
[9, 82], though previous studies primarily concentrated on tablet usage and did not use haptic stimulation. These
results suggest that the exploration of hand movements and the incorporation of 3D gestures could reveal other
unknown touch differences beyond those we can uncover from tracking 2D touch interactions. Further research
needs to explore the design space for refining the development of Feel and Touch or similar tracking applications
to incorporate interactions based on hand movements, such as 3D gestures, and their mapping to innovative
vibrotactile patterns. This approach could provide additional insights into the hand movements of children with
ASD and how vibrotactile patterns may influence such touch interactions.

Touch. Although all participants used the same mobile phone and there were no differences in the screen size,
there were differences in the space used by children with ASD to perform touch interactions. The literature has
found similar results by using mobile devices with a larger screen, like tablets [9, 76]. In addition to the space
touched we explored the total acceleration produced by the touch interactions, this digital marker has previously
been explored in other contexts, such as analyzing the total acceleration of adults to be used as a unique ID to
unblock mobile phones [18]; but has not been used in the screening of ASD. Our results show that there are
differences in how ASD and NT children perform touch interactions. The total acceleration produced by children
is a prominent feature that distinguishes children with ASD from NT children. This digital marker had a large
effect size (d = .85) which means that there is a significant difference between the total acceleration produced by
children with ASD, this result may be related to the vibrotactile patterns provided by Feel and Touch and the
sensory difficulties presented by children with ASD [34].

While research has shown that children with ASD have difficulties to process vibrations [38, 64]; more explicit
studies are needed to fully understand how vibrotactile patterns affect the touch interactions of children with
ASD and what component of the vibrotactile patterns is more important to distinguish between children with
ASD and NT. To our knowledge, little research has been conducted about the use of touch vibration produced
to distinguish children with ASD. Touch-based digital markers could also be related to sensory-motor-related
impairments [? ] and differences in visual processing [72] of children with ASD. Our findings align with existing
research on digital markers of ASD that focus on touch interactions [9, 76].
Further exploration is required to investigate if there are touch interaction behavior patterns that can also

signal differences between children with ASD and NT.

6.2 Potential as an innovative screening tool for ASD
The widespread availability and portability of smartphones present a unique opportunity for deploying screening
tools across diverse demographics, including those in remote or underserved areas [99]. Utilizing smartphones
for data collection and analysis can alleviate some burdens on healthcare systems [16]. Traditional screening
methods often require substantial resources and may be limited by geographic or socioeconomic factors. A
smartphone-based screening tool offers a cost-effective solution that is both scalable and accessible, reducing the
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need for extensive infrastructure and allowing for broader reach [59]. The integration of such technology could
enhance screening efficiency and reduce costs, making early detection and ongoing monitoring more feasible for
a larger population. Building on this potential, our study explored leveraging touch interaction data to develop a
classification model designed to distinguish the touch interactions of children with ASD from those of NT.

6.2.1 Developing a Classification Model and Integrating It into a Mobile App for Early . Our study explored the
potential of leveraging touch interaction data to develop a classification model designed to distinguish the touch
interactions of children with ASD from those of NT children.Previous research has highlighted the importance
of touch interactions in understanding behavioral and developmental differences in children with ASD [9, 76].
We constructed a classification model with promising precision and recall metrics, indicating its effectiveness in
accurately distinguishing touch interactions of ASD from NT. This model can be integrated into the Feel and Touch
mobile app, enabling seamless and continuous monitoring of touch interaction data. It can provide immediate
feedback to caregivers, guiding them to seek further diagnostic evaluation and confirmation from healthcare
professionals. It is important to note that our approach does not promote excessive smartphone usage among
children. Rather, it is intended as a support tool to aid in ASD screening, used in a controlled and minimal manner
to complement existing diagnostic practices. The goal is to enhance early detection without compromising healthy
development and ensuring that technology serves as an adjunct to, rather than a replacement for, traditional
evaluation methods.

6.2.2 Addressing Challenges and Enhancing Model Performance. Despite these promising aspects, several chal-
lenges must be addressed before widespread implementation can be achieved. Our model’s high recall compared
to precision indicates a higher rate of false positives, which could lead to unnecessary concern among parents
and caregivers. This issue underscores the importance of managing uncertainty effectively to prevent undue
alarm. Strategies to address this include refining the model to balance sensitivity and specificity. Sensitivity
measures the model’s ability to correctly identify true positives, while specificity assesses its ability to correctly
identify true negatives [5, 39]. Improving this balance is essential for reducing false positives and enhancing
the model’s overall reliability. Understanding the relationship between digital markers and specific screening
assessment scores is crucial for refining the model and integrating it into existing diagnostic protocols. Further
studies should focus on validating the model’s effectiveness in real-world settings.

6.2.3 Clinical Decision-Making and Model Integration. The role of this model in clinical decision-making requires
further exploration. While it can predict the class of each touch interaction, additional research is needed to
determine the optimal amount of data required and the appropriate thresholds for referring children to specialists.
Preliminary findings suggest that an average of 329 touch interactions can successfully identify about 85%
of children needing further assessment. However, it is essential to refine these thresholds and validate their
accuracy to improve the early identification of ASD. Moreover, enabling specialists to adjust the tool’s sensitivity
and providing clear indications of its confidence levels are critical for managing uncertainty. Transparent
communication about the model’s predictions and confidence can help caregivers make more informed decisions,
reducing unnecessary anxiety [84]. Understanding the likelihood of true positives and negatives allows parents
to seek further evaluation when appropriate.

6.3 Unlocking the sensory frontier through mobile sensing and haptic interfaces
There is significant untapped potential in developing and leveraging accessible technology for tracking touch
interactions and hand movements to assist in the screening and monitoring of children with neurodevelopmental
disorders [9, 76]. Even though we followed a user-centered approach to design Feel and Touch, there remain
numerous research questions concerning user engagement and gamification to sustain users’ interest when
designing similar applications. Key inquiries include determining the appropriate incentives to motivate users to
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collect and share their touch interactions data [103], and drawing insights from the field of Personal Informatics to
enhance user engagement and ensure long-term usage is crucial [69]. Furthermore, investigating methods to tailor
the application to individual user needs and preferences, considering factors such as age, sensory sensitivities,
and developmental stage, can enhance its effectiveness and user experience. Moreover, ongoing collaboration
with clinicians, educators, and caregivers is essential to ensure that the technology meets the diverse needs of
its users and aligns with clinical objectives. By addressing research questions related to data sharing and user
engagement, we can further optimize the utility and impact of technology-based tools like Feel and Touch in
supporting the assessment and intervention for children with neurodevelopmental disorders.

Mobile sensing offers a promising avenue for uncovering digital markers in healthcare, presenting a paradigm
shift in how we monitor and understand various health conditions [13]. By leveraging the sensors embedded
in smartphones, such as accelerometers, gyroscopes, GPS, cameras, and microphones, researchers can collect
a diverse array of data in real-time and in naturalistic settings . This continuous and unobtrusive monitoring
enables the capture of nuanced behavioral, physiological, and environmental signals that may serve as digital
markers for health and disease. Importantly, mobile sensing provides a holistic view of individuals’ daily lives,
capturing patterns and trends that may go unnoticed in traditional clinical settings [48]. These digital markers
have the potential to revolutionize healthcare by enabling early detection, personalized interventions, and remote
monitoring of various conditions, including mental health disorders, neurological conditions, cardiovascular
diseases, and respiratory illnesses [31]. However, challenges such as data privacy, security, validation, and
integration into existing healthcare systems need to be addressed to fully realize the potential of mobile sensing
in uncovering digital markers for healthcare. Nonetheless, the prospect of harnessing ubiquitous smartphones as
powerful health monitoring tools holds immense promise for improving patient outcomes and advancing our
understanding of health and disease.

Moreover, haptic interfaces hold immense promise as a versatile tool for advancing our understanding of tactile
processing differences and paving the way for innovative interventions in the realm of neurodevelopmental
disorders. By harnessing the power of tactile feedback, these interfaces present an opportunity to delve deeper
into the nuances of sensory processing and tactile sensitivity among individuals, particularly those with neu-
rodevelopmental disorders like ASD. Our prototype was limited in the sense of relying on the motors available
in a smartphone, which restricted control over the characteristics of the motor vibration. The use of multiple
vibration motors could enable richer and more complex vibrotactile patterns, facilitating developers in creating
diverse experiences. Without the ability to adjust vibration levels, the application may lack adaptability to the
individual preferences of children with ASD, who often exhibit diverse tactile sensitivities.

Through carefully designed haptic feedback patterns, researchers can elucidate how variations in vibrotactile
stimulation influence the sensory experiences and behavioral responses of individuals across different populations.
Indeed, numerous research projects are underway to investigate methods for altering surfaces using vibrotactile
patterns to simulate textures [70] such as roughness, adhesion, sharpness, and more. These efforts aim to replicate
tactile sensations through haptic feedback, offering users a multisensory experience that enhances immersion
and interaction in virtual environments. By leveraging advancements in haptic technology, researchers are
exploring innovative ways to mimic real-world textures and sensations, thereby expanding the possibilities
for applications across various domains, including gaming [93], virtual reality [102], and assistive technology
[51]. These developments not only contribute to the advancement of haptic interfaces but also hold promise
for revolutionizing touch interactions. Furthermore, exploring the interplay between haptic interfaces and
sensory integration processes can shed light on potential therapeutic interventions aimed at modulating sensory
processing and improving sensory integration abilities in clinical settings.
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6.4 Ethical considerations
Data privacy is a significant concern in health technology applications [14, 44], while we are recording touch
interactions, no sensitive information about children is being collected. The data is anonymized using an ID, and
we strictly record interactions within the Feel and Touch app. We do not access or record any information that
could potentially reveal sensitive data, such as passwords. Furthermore, if a child closes the game or sends it
to the background, Feel and Touch immediately ceases recording. At this point, the data is temporarily stored
in the phone’s internal storage. However, it is important to acknowledge that future work will need to address
encryption techniques to further safeguard this data and ensure comprehensive protection against unauthorized
access.

The literature emphasizes the importance of providing users with clear explanations about the results, avoiding
the use of machine learning models to black boxes [84]. By incorporating digital markers, we aim to offer
transparency and understanding of the results. For future real-world applications, it is crucial that clinicians
receive not only the classification results but also the digital markers to comprehend these outcomes fully. We
need to collaborate closely with experts to determine how best to convey this information, define appropriate
thresholds, and ensure the practical and ethical application of these models in clinical settings.

It is important to highlight that we are not attempting to replace the diagnosis made by an expert. The literature
has shown that the use of machine learning applications must be taken as a complement to the diagnostic process
to avoid misuse [100]. Machine learning models can assist in early detection and provide valuable insights [100],
but they cannot replace the nuanced judgment of a trained clinician. Ethically, it is essential to maintain the
clinician’s role in the diagnostic process to ensure patient safety and uphold the integrity of medical practice.
One ethical issue in applications such as the one presented in this study is the risk of stakeholders misinter-

preting or manipulating results. To address this, it is essential to establish guidelines for interpreting results and
ensure clear communication with parents. This includes discussing the potential for false positives and false
negatives, the confidence level in the model’s predictions, and the appropriate actions to take based on the results.

By addressing these ethical considerations and potential risks proactively, we can ensure that the deployment
of this screening tool is both responsible and effective, ultimately contributing to better outcomes for children
with ASD and their families.

6.5 ASD diagnostic in Latin America
Cultural and socio-economical factors play a significant role in how ASD is identified and understood in different
regions [11]. Cultural dynamics significantly impact both the timing and accuracy of ASD diagnoses, as well as
the availability and accessibility of intervention services [33]. In many Latin American cultures, there is often a
lack of awareness or understanding of ASD among the public and healthcare professionals, which can delay the
recognition of symptoms and subsequently postpone diagnosis [68]. Cultural beliefs and stigmas may lead to
misinterpretation of developmental delays as mere behavioral issues, thereby preventing early identification and
intervention [73]. Additionally, varying cultural attitudes toward mental health and developmental disorders
can influence how symptoms are perceived by parents, educators, and healthcare providers, potentially leading
to underreporting or misdiagnosis [73]. Furthermore, cultural stigma and misconceptions about developmental
disorders can also affect the willingness of parents to seek professional help. In many Latin American communities,
there may be a reluctance to acknowledge or address developmental issues due to fear of social ostracism or
misunderstanding of the condition [67].
Moreover, the availability and accessibility of intervention services are heavily influenced by cultural and

socioeconomic factors. Differences in healthcare infrastructure and access to specialized services can impact
the consistency and accuracy of diagnoses and can restrict access to specialized ASD services, which are often
concentrated in urban areas, leaving rural populations underserved [17]. Cultural barriers, such as mistrust of
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medical professionals or preference for traditional healing practices, may also impact the willingness of families
to engage with formal healthcare services. This situation is compounded by socioeconomic disparities that can
hinder families’ ability to afford and access necessary interventions.
By focusing on this underrepresented region, our study not only addresses critical gaps in current research,

regarding studies from these countries but also provides valuable insights that can inform and improve ASD
diagnosis and perception in Latin America.

7 LIMITATIONS
The main limitation of our work, like that of others addressing similar research questions, is the sample size
and the fact that we conducted the study in only one clinic and one school in central Mexico. Consequently,
like many studies conducted in real-world settings, our dataset is imbalanced. It is interesting to note that the
sample collected reflect the inherent difficulties in recruiting children with ASD in Mexico, especially as many
Mexican children remain undiagnosed or receive diagnosis after the age of 5 [43]. However, our chosen sample
size strikes a balance between precision and feasibility, enabling a thorough exploration of the research questions
of this work. Past studies investigating machine learning for identifying digital markers of individuals with
neurodevelopmental disorders have demonstrated that sample sizes ranging from as low as 11 [98] to as high
as 45 participants ensure adequate statistical power and representativeness [35]. This body of work strongly
advocates that a small sample can suffice for a study when the dataset maintains high-quality standards. By
adhering to these insights, our study attains the requisite statistical power to discern meaningful effects and
furnish dependable insights within the targeted domain. Expanding the sample of children diagnosed with ASD
could provide more information and improve the accuracy of the current model.
Another limitation of our dataset is that by the size we were unable to explore a multi classification task. By

moving beyond binary classification and embracing the complexity of the spectrum, we can make significant
strides in meeting the diverse needs of the ASD community [101]. This approach will enable us to develop more
personalized and effective diagnostic tools, which can identify subtle differences and specific characteristics
within subgroups of ASD. It will also facilitate the creation of tailored intervention strategies, ensuring that
each individual receives support that is precisely suited to their unique profile. To improve the robustness and
applicability of our model, future research should focus on collecting larger, more diverse datasets. Such datasets
should include a wider range of participants, representing various ages, genders, ethnicities, and comorbid
conditions. By doing so, we can develop more sophisticated and nuanced classification systems that better reflect
the spectrum nature of ASD. This would allow for more accurate identification of subgroups within the spectrum,
leading to tailored interventions and support strategies that address the specific needs of individuals. Additionally,
employing unsupervised learning techniques and clustering methods could help uncover hidden patterns and
relationships within the data, providing deeper insights into the heterogeneity of ASD

One of the limitations of the Feel and Touch game is its exclusive compatibility with iOS devices, which restricts
its accessibility to a broader audience that could potentially benefit from this tool. Additionally, iOS devices
feature only a single vibration motor, imposing constraints on the range of vibration intensity levels that can be
utilized. These limitations may impede the comprehensive exploration of crucial aspects of tactile interactions in
children with ASD. For instance, the limited capacity to vary vibration intensity may hinder the assessment of
the child’s ability to discern the precise location of haptic feedback, potentially limiting the depth of insights
gained into the tactile processing abilities of these children. Consequently, while the Feel and Touch game offers
valuable insights into tactile interactions, its platform compatibility and hardware limitations pose challenges in
fully capturing the nuances of tactile processing in children with ASD. Addressing these limitations through
platform diversification and enhanced vibration control mechanisms could significantly enhance the utility and
effectiveness of the Feel and Touch game as a diagnostic and therapeutic tool in ASD research and intervention.
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The identification of digital markers for children with ASD has been a persistent endeavor in the field. While
many studies have utilized environmental sensors and mobile devices to collect data and extract features, few have
tapped into the full potential of mobile technology, particularly haptic interfaces, to gather touch interactions.
Our study introduces an innovative approach by exploring the design and deployment of a mobile haptic game
named Feel and Touch. By continuing to explore more effective methods for extracting digital markers, we aim to
enrich the literature and contribute to developing a tactile phenotype for ASD, which could enhance screening
processes.
Additionally, the intervention was conducted in two distinct locations, which may have introduced environ-

mental factors affecting the results. To address this, the research team standardized the protocol, used identical
equipment, and had a single researcher deliver the intervention. However, there are uncontrollable variables
might limit the generalizability of the findings across other settings and populations, and should be considered
when interpreting the results.

8 CONCLUSION
In this paper, we described a study aimed at measuring touch interactions for children with ASD and NT children.
The design of Feel and Touch and results from its usage demonstrated the feasibility of leveraging the haptic
capabilities of smartphones to collect touch interaction data that can uncover differences in the way children
with ASD interact with a smartphone. Our research addressed several key questions: We confirmed that haptic
mobile games like Feel and Touch can effectively capture detailed touch interactions from children. We also
identified three digital markers, categorized into touch and tilt. These markers have been used to build models
with promising precision and recall, suggesting their potential for accurate classification of touch interactions.
Furthermore, we found that alterations in tactile processing in children with ASD can be measured through their
interactions with haptic interfaces, as evidenced by the distinct touch patterns and phone movements observed.
These findings suggest that digital markers based on touch interactions could lead to the development of an

innovative screening tool that could potentially pave the way for more accessible and cost-effective solutions that
empower parents and caregivers to seek timely support and early intervention for their children’s well-being,
as well as expand the awareness of motor differences for children with ASD. Significantly, this study is among
the first to collect touch interaction data from Mexican children, broadening the population scope and adding
valuable context underrepresented in the field. It is imperative to support this line of work and continue exploring
the potential of touch interactions in the screening and monitoring of neurological disorders. This study is also
one of the first to exemplify the use of haptic interfaces in smartphones to collect touch interactions of children
with ASD.

ACKNOWLEDGMENTS
We thank everyone involved in this project. To CONACHYT, Jacobs Foundation, CERES Network and National
Science Foundation (NSF) under award 2245495. Specially thanks to the institutions that gave us their support in
the recruitment of children with ASD and NT

REFERENCES
[1] George Aalbers, Andrew T Hendrickson, Mariek Mp Vanden Abeele, and Loes Keijsers. 2023. Smartphone-Tracked Digital Markers of

Momentary Subjective Stress in College Students: Idiographic Machine Learning Analysis. JMIR mHealth and uHealth 11 (March 2023),
e37469. https://doi.org/10.2196/37469

[2] Pratibha Keshav Agarwal, Huichao Xie, Anu Sathyan Sathyapalan Rema, Victor Samuel Rajadurai, Sok Bee Lim, Michael Meaney, and
Lourdes Mary Daniel. 2020. Evaluation of the Ages and Stages Questionnaire (ASQ 3) as a developmental screener at 9, 18, and 24
months. Early Human Development 147 (Aug. 2020), 105081. https://doi.org/10.1016/j.earlhumdev.2020.105081

[3] Mariano Alcañiz Raya, Javier Marín-Morales, Maria Eleonora Minissi, Gonzalo Teruel Garcia, Luis Abad, and Irene Alice Chicchi Giglioli.
2020. Machine Learning and Virtual Reality on Body Movements’ Behaviors to Classify Children with Autism Spectrum Disorder.

23

https://doi.org/10.2196/37469
https://doi.org/10.1016/j.earlhumdev.2020.105081


1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128

Interact. Mob. Wearable Ubiquitous Technol., 978-1-4503-XXXX-X/18/06,
Ivonne Monarca, Franceli L. Cibrian, Isabel López Hurtado, and Monica Tentori

Journal of Clinical Medicine 9, 5 (April 2020), 1260. https://doi.org/10.3390/jcm9051260
[4] Carrie Allison, Bonnie Auyeung, and Simon Baron-Cohen. 2012. Toward Brief “Red Flags” for Autism Screening: The Short Autism

Spectrum Quotient and the Short Quantitative Checklist in 1,000 Cases and 3,000 Controls. Journal of the American Academy of Child
& Adolescent Psychiatry 51, 2 (Feb. 2012), 202–212.e7. https://doi.org/10.1016/j.jaac.2011.11.003

[5] Douglas G Altman and J Martin Bland. 1994. Diagnostic tests. 1: Sensitivity and specificity. BMJ: British Medical Journal 308, 6943
(1994), 1552.

[6] American Psychiatric Association. 2013. Diagnostic and statistical manual of mental disorders : DSM-5. American Psychiatric Association.
[7] Bernhard Angele and Jon Andoni Duñabeitia. 2024. Closing the eye-tracking gap in reading research. Frontiers in psychology 15 (2024),

1425219. https://doi.org/10.3389/fpsyg.2024.1425219 Place: Switzerland.
[8] Lisa Anthony, Radu-Daniel Vatavu, and Jacob O Wobbrock. 2013. Understanding the Consistency of Users’ Pen and Finger Stroke

Gesture Articulation. In Graphics Interface. https://doi.org/10.5555/2532129.2532145
[9] Anna Anzulewicz, Krzysztof Sobota, and Jonathan T Delafield-butt. 2016. Toward the Autism Motor Signature : Gesture patterns during

smart tablet gameplay identify children with autism. Nature Publishing Group August (2016), 1–13. https://doi.org/10.1038/srep31107
[10] Adel Ardalan, Amir H. Assadi, Olivia J. Surgent, and Brittany G. Travers. 2019. Whole-Body Movement during Videogame Play

Distinguishes Youth with Autism from Youth with Typical Development. Scientific Reports 9, 1 (Dec. 2019), 20094. https://doi.org/10.
1038/s41598-019-56362-6

[11] Brandon S Aylward, Diana E Gal-Szabo, and Sharief Taraman. 2021. Racial, ethnic, and sociodemographic disparities in diagnosis of
children with autism spectrum disorder. Journal of Developmental & Behavioral Pediatrics 42, 8 (2021), 682–689.

[12] Bilikis Banire, Dena Al Thani, Marwa Qaraqe, and Bilal Mansoor. 2021. Face-Based Attention Recognition Model for Children with
Autism Spectrum Disorder. Journal of Healthcare Informatics Research 5, 4 (Dec. 2021), 420–445. https://doi.org/10.1007/s41666-021-
00101-y

[13] Harald Baumeister and Christian Montag. 2019. Digital phenotyping and mobile sensing. Springer.
[14] Jean-Christophe Bélisle-Pipon, Vincent Couture, Marie-Christine Roy, Isabelle Ganache, Mireille Goetghebeur, and I Glenn Cohen. 2021.

What makes artificial intelligence exceptional in health technology assessment? Frontiers in artificial intelligence 4 (2021), 736697.
[15] Antoine Bernas, Albert P Aldenkamp, and Svitlana Zinger. 2018. Wavelet coherence-based classifier: A resting-state functional MRI

study on neurodynamics in adolescents with high-functioning autism. Computer methods and programs in biomedicine 154 (Feb. 2018),
143–151. https://doi.org/10.1016/j.cmpb.2017.11.017

[16] Paras Bhatt, Jia Liu, Yanmin Gong, Jing Wang, and Yuanxiong Guo. 2022. Emerging artificial intelligence–empowered mhealth: scoping
review. JMIR mHealth and uHealth 10, 6 (2022), e35053.

[17] Fatema Ali Bivarchi, Vahe Kehyayan, and Sadriya Mohd Al-Kohji. 2021. Barriers to the early detection and intervention of children
with autism spectrum disorders: A literature review. Journal of Nursing Education and Practice 11, 11 (July 2021), 72. https:
//doi.org/10.5430/jnep.v11n11p72

[18] Cheng Bo, Lan Zhang, Xiang-Yang Li, Qiuyuan Huang, and Yu Wang. 2013. SilentSense: silent user identification via touch and
movement behavioral biometrics. In Proceedings of the 19th annual international conference on Mobile computing & networking (MobiCom
’13). Association for Computing Machinery, New York, NY, USA, 187–190. https://doi.org/10.1145/2500423.2504572

[19] Jaclin Boorse, Meredith Cola, Samantha Plate, Lisa Yankowitz, Juhi Pandey, Robert T. Schultz, and Julia Parish-Morris. 2019. Linguistic
markers of autism in girls: evidence of a “blended phenotype” during storytelling. Molecular Autism 10, 1 (Dec. 2019), 14. https:
//doi.org/10.1186/s13229-019-0268-2

[20] Tyler J. Bradshaw, Zachary Huemann, Junjie Hu, and Arman Rahmim. 2023. A Guide to Cross-Validation for Artificial Intelligence in
Medical Imaging. Radiology: Artificial Intelligence 5, 4 (July 2023), e220232. https://doi.org/10.1148/ryai.220232

[21] Frédéric Briend, Céline David, Silvia Silleresi, Joëlle Malvy, Sandrine Ferré, and Marianne Latinus. 2023. Voice acoustics allow classifying
autism spectrum disorder with high accuracy. Translational Psychiatry 13, 1 (July 2023), 250. https://doi.org/10.1038/s41398-023-02554-8

[22] Jason Brownlee. 2020. Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and Data Transformation in Python.
[23] Rachael Bevill Burns, Hasti Seifi, Hyosang Lee, and Katherine J. Kuchenbecker. 2021. A Haptic Empathetic Robot Animal for Children

with Autism. In Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction. ACM, Boulder CO USA,
583–585. https://doi.org/10.1145/3434074.3446352

[24] Bill Byrom, Chris Watson, Helen Doll, Stephen Joel Coons, Sonya Eremenco, Rachel Ballinger, Marie Mc Carthy, Mabel Crescioni, Paul
O’Donohoe, and Cindy Howry. 2018. Selection of and Evidentiary Considerations for Wearable Devices and Their Measurements
for Use in Regulatory Decision Making: Recommendations from the ePRO Consortium. Value in Health 21, 6 (June 2018), 631–639.
https://doi.org/10.1016/j.jval.2017.09.012

[25] Kimberly L. H. Carpenter, Jordan Hahemi, Kathleen Campbell, Steven J. Lippmann, Jeffrey P. Baker, Helen L. Egger, Steven Espinosa,
Saritha Vermeer, Guillermo Sapiro, and Geraldine Dawson. 2021. Digital Behavioral Phenotyping Detects Atypical Pattern of Facial
Expression in Toddlers with Autism. Autism Research 14, 3 (March 2021), 488–499. https://doi.org/10.1002/aur.2391

[26] MD Pamela C DiLavore Susan Risi Katherine Gotham Somer L Bishop Rhiannon J LuysterWhitney Guthrie Catherine Lord, Michael Rut-
ter. 2012. (ADOS®-2) Autism Diagnostic Observation Schedule, Second Edition \textbar WPS. Pearson. https://www.wpspublish.com/

24

https://doi.org/10.3390/jcm9051260
https://doi.org/10.1016/j.jaac.2011.11.003
https://doi.org/10.3389/fpsyg.2024.1425219
https://doi.org/10.5555/2532129.2532145
https://doi.org/10.1038/srep31107
https://doi.org/10.1038/s41598-019-56362-6
https://doi.org/10.1038/s41598-019-56362-6
https://doi.org/10.1007/s41666-021-00101-y
https://doi.org/10.1007/s41666-021-00101-y
https://doi.org/10.1016/j.cmpb.2017.11.017
https://doi.org/10.5430/jnep.v11n11p72
https://doi.org/10.5430/jnep.v11n11p72
https://doi.org/10.1145/2500423.2504572
https://doi.org/10.1186/s13229-019-0268-2
https://doi.org/10.1186/s13229-019-0268-2
https://doi.org/10.1148/ryai.220232
https://doi.org/10.1038/s41398-023-02554-8
https://doi.org/10.1145/3434074.3446352
https://doi.org/10.1016/j.jval.2017.09.012
https://doi.org/10.1002/aur.2391
https://www.wpspublish.com/store/p/2648/ados-2-autism-diagnostic-observation-schedule-second-edition
https://www.wpspublish.com/store/p/2648/ados-2-autism-diagnostic-observation-schedule-second-edition


1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175

Smartphone Haptics: Touch Differences Between ASD and NT
Interact. Mob. Wearable Ubiquitous Technol., 978-1-4503-XXXX-X/18/06,

store/p/2648/ados-2-autism-diagnostic-observation-schedule-second-edition
[27] Andrea Cavallo, Luca Romeo, Caterina Ansuini, Francesca Battaglia, Lino Nobili, Massimiliano Pontil, Stefano Panzeri, and Cristina

Becchio. 2021. Identifying the signature of prospective motor control in children with autism. Scientific Reports 11, 1 (Feb. 2021), 3165.
https://doi.org/10.1038/s41598-021-82374-2

[28] Gokul Chittaranjan, Jan Blom, and Daniel Gatica-Perez. 2011. Who’s Who with Big-Five: Analyzing and Classifying Personality
Traits with Smartphones. In 2011 15th Annual International Symposium on Wearable Computers. IEEE, San Francisco, CA, USA, 29–36.
https://doi.org/10.1109/ISWC.2011.29

[29] Franceli Cibrian, Jesus Beltran, and Monica Tentori. 2018. Assessing the Force and Timing control of Children with Motor Problems
using Elastic Displays. In Proceedings of the Proceedings of the 12th EAI International Conference on Pervasive Computing Technologies
for Healthcare – Demos, Posters, Doctoral Colloquium. EAI, 1–4. https://doi.org/10.4108/eai.20-4-2018.2276348

[30] Andrea Coravos, Sean Khozin, and Kenneth D. Mandl. 2019. Developing and adopting safe and effective digital biomarkers to improve
patient outcomes. npj Digital Medicine 2019 2:1 2, 1 (March 2019), 1–5. https://doi.org/10.1038/s41746-019-0090-4 Publisher: Nature
Publishing Group.

[31] Andrea Coravos, Sean Khozin, and Kenneth D Mandl. 2019. Developing and adopting safe and effective digital biomarkers to improve
patient outcomes. npj Digital Medicine 2, 1 (2019), 14.

[32] Lucrezia Crescenzi Lanna and Mariona Grané Oro. 2019. Touch gesture performed by children under 3 years old when drawing and
coloring on a tablet. International Journal of Human-Computer Studies 124 (April 2019), 1–12. https://doi.org/10.1016/j.ijhcs.2018.11.008

[33] Anne De Leeuw, Francesca Happé, and Rosa A. Hoekstra. 2020. A Conceptual Framework for Understanding the Cultural and
Contextual Factors on Autism Across the Globe. Autism Research 13, 7 (July 2020), 1029–1050. https://doi.org/10.1002/aur.2276

[34] Anne M Donnellan, David A Hill, and Martha R Leary. 2013. Rethinking autism: implications of sensory and movement differences for
understanding and support. 6 (Jan. 2013), 124. https://doi.org/10.3389/fnint.2012.00124

[35] Hanna Drimalla, Tobias Scheffer, Niels Landwehr, Irina Baskow, Stefan Roepke, Behnoush Behnia, and Isabel Dziobek. 2020. Towards
the automatic detection of social biomarkers in autism spectrum disorder: introducing the simulated interaction task (SIT). npj Digital
Medicine 3, 1 (Feb 2020), 1–10. https://doi.org/10.1038/s41746-020-0227-5

[36] Indu Dubey, Rahul Bishain, Jayashree Dasgupta, Supriya Bhavnani, Matthew K Belmonte, Teodora Gliga, Debarati Mukherjee,
Georgia Lockwood Estrin, Mark H Johnson, Sharat Chandran, Vikram Patel, Sheffali Gulati, Gauri Divan, and Bhismadev Chakrabarti.
2024. Using mobile health technology to assess childhood autism in low-resource community settings in India: An innovation to
address the detection gap. Autism 28, 3 (2024), 755–769. https://doi.org//doi.org/10.1177/1362361323118280

[37] Mats Anders Eriksson Elisabeth Fernell and Christopher Gillberg. 2013. Early diagnosis of autism and impact on prognosis: a
narrative review. Clinical Epidemiology 5 (2013), 33–43. https://doi.org/10.2147/CLEP.S41714 Publisher: Dove Medical Presseprint:
https://www.tandfonline.com/doi/pdf/10.2147/CLEP.S41714.

[38] Svenja Espenhahn, Kate J. Godfrey, Sakshi Kaur, Carly McMorris, Kara Murias, Mark Tommerdahl, Signe Bray, and Ashley D.
Harris. 2022. Atypical Tactile Perception in Early Childhood Autism. Journal of Autism and Developmental Disorders (April 2022).
https://doi.org/10.1007/s10803-022-05570-7

[39] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters 27, 8 (2006), 861–874.
[40] Mareike Gabele, Simon Schröer, Steffi Husslein, and Christian Hansen. 2019. An AR Sandbox as a Collaborative Multiplayer Rehabilita-

tion Tool for Children with ADHD. Mensch und Computer 2019 - Workshopband. https://doi.org/10.18420/muc2019-ws-632
[41] Isaac R. Galatzer-Levy, Anzar Abbas, Vijay Yadav, Vidya Koesmahargyo, Allison Aghjayan, Serena Marecki, Miriam

Evans, and Colin Sauder. 2020. Remote digital measurement of visual and auditory markers of Major Depres-
sive Disorder severity and treatment response. medRxiv (2020). https://doi.org/10.1101/2020.08.24.20178004
arXiv:https://www.medrxiv.org/content/early/2020/08/26/2020.08.24.20178004.full.pdf

[42] Jie Gao, Leijing Zhou, Miaomiao Dong, and Fan Zhang. 2018. Expressive Plant: A Multisensory Interactive System for Sensory Training
of Children with Autism. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive
and Ubiquitous Computing and Wearable Computers. ACM, Singapore Singapore, 46–49. https://doi.org/10.1145/3267305.3267588

[43] Tania González-Cortés, Elizabeth Gutiérrez-Contreras, Perla Karina Espino-Silva, Jorge Haro-Santa Cruz, Diana Álvarez Cruz, Clau-
dia Cecilia Rosales-González, Cristina Sida-Godoy, Martha Patricia Nava-Hernández, Francisco Carlos López-Márquez, and Pablo
Ruiz-Flores. 2019. Clinical Profile of Autism Spectrum Disorder in a Pediatric Population from Northern Mexico. Journal of Autism
and Developmental Disorders 2019 49:11 49, 11 (Aug. 2019), 4409–4420. https://doi.org/10.1007/S10803-019-04154-2

[44] Hafsa Habehh and Suril Gohel. 2021. Machine learning in healthcare. Current genomics 22, 4 (2021), 291.
[45] Nava Haghighi, Nathalie Vladis, Yuanbo Liu, and Arvind Satyanarayan. 2020. The Effectiveness of Haptic Properties Under Cognitive

Load: An Exploratory Study. (May 2020). http://arxiv.org/abs/2006.00372
[46] Takashi Hamatani, Keiichi Ochiai, Akiya Inagaki, Naoki Yamamoto, Yusuke Fukazawa, Masatoshi Kimoto, Kazuki Kiriu, Kouhei

Kaminishi, Jun Ota, Yuri Terasawa, Tsukasa Okimura, and Takaki Maeda. 2019. Automated inference of cognitive performance by
fusing multimodal information acquired by smartphone. In Adjunct Proceedings of the 2019 ACM International Joint Conference on
Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers. ACM, London

25

https://www.wpspublish.com/store/p/2648/ados-2-autism-diagnostic-observation-schedule-second-edition
https://www.wpspublish.com/store/p/2648/ados-2-autism-diagnostic-observation-schedule-second-edition
https://doi.org/10.1038/s41598-021-82374-2
https://doi.org/10.1109/ISWC.2011.29
https://doi.org/10.4108/eai.20-4-2018.2276348
https://doi.org/10.1038/s41746-019-0090-4
https://doi.org/10.1016/j.ijhcs.2018.11.008
https://doi.org/10.1002/aur.2276
https://doi.org/10.3389/fnint.2012.00124
https://doi.org/10.1038/s41746-020-0227-5
https://doi.org//doi.org/10.1177/1362361323118280
https://doi.org/10.2147/CLEP.S41714
https://doi.org/10.1007/s10803-022-05570-7
https://doi.org/10.18420/muc2019-ws-632
https://doi.org/10.1101/2020.08.24.20178004
https://arxiv.org/abs/https://www.medrxiv.org/content/early/2020/08/26/2020.08.24.20178004.full.pdf
https://doi.org/10.1145/3267305.3267588
https://doi.org/10.1007/S10803-019-04154-2
http://arxiv.org/abs/2006.00372


1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222

Interact. Mob. Wearable Ubiquitous Technol., 978-1-4503-XXXX-X/18/06,
Ivonne Monarca, Franceli L. Cibrian, Isabel López Hurtado, and Monica Tentori

United Kingdom, 921–928. https://doi.org/10.1145/3341162.3346275
[47] Elizabeth’ C. Hames, Brandi Murphy, Ravi Rajmohan, Ronald C. Anderson, Mary Baker, Stephen Zupancic, Michael O’Boyle, and

David Richman. 2016. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI
Investigation. Frontiers in Human Neuroscience 10, APR2016 (April 2016), 1–18. https://doi.org/10.3389/fnhum.2016.00167

[48] Gabriella M Harari, Nicholas D Lane, Rui Wang, Benjamin S Crosier, Andrew T Campbell, and Samuel D Gosling. 2016. Using
smartphones to collect behavioral data in psychological science: Opportunities, practical considerations, and challenges. Perspectives
on Psychological Science 11, 6 (2016), 838–854.

[49] Apple Inc. [n. d.]. UITouch - UIKit Documentation. https://developer.apple.com/documentation/uikit/uitouch. Accessed: 2024-10-08.
[50] INEGI. 2021. PresentaciónEncuesta Nacional sobre Disponibilidad y Uso de Tecnologías de la Información en los Hogares (ENDUTIH)

2021imprimir. Technical Report. INEGI. https://www.inegi.org.mx/programas/dutih/2021/ pages.
[51] Majid Janidarmian, Atena Roshan Fekr, Katarzyna Radecka, and Zeljko Zilic. 2022. Wearable vibrotactile system as an assistive

technology solution. Mobile Networks and Applications (2022), 1–9.
[52] Laveen Kanal and B. Chandrasekaran. 1971. On dimensionality and sample size in statistical pattern classification. Pattern Recognition

3, 3 (Oct. 1971), 225–234. https://doi.org/10.1016/0031-3203(71)90013-6
[53] Shaun K. Kane, Jacob O. Wobbrock, and Richard E. Ladner. 2011. Usable gestures for blind people: understanding preference and

performance. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11). Association for Computing
Machinery, New York, NY, USA, 413–422. https://doi.org/10.1145/1978942.1979001

[54] Ankit Koirala, Amy Van Hecke, Zhiwei Yu, Kathleen A. Koth, Hillary Schiltz, Zhi Zheng, and Hillary Schiltz. 2019. An exploration
of using virtual reality to assess the sensory abnormalities in children with autism spectrum disorder. Proceedings of the 18th ACM
International Conference on Interaction Design and Children, IDC 2019 (2019), 293–300. https://doi.org/10.1145/3311927.3323118

[55] Jeffrey L. Krichmar and Ting Shuo Chou. 2018. A tactile robot for developmental disorder therapy. Association for Computing
Machinery. https://doi.org/10.1145/3183654.3183657

[56] Ernst Kruijff, Saugata Biswas, Christina Trepkowski, Jens Maiero, George Ghinea, and Wolfgang Stuerzlinger. 2019. Multilayer
haptic feedback for pen-based tablet interaction. Conference on Human Factors in Computing Systems - Proceedings Chi (2019), 1–14.
https://doi.org/10.1145/3290605.3300373

[57] Elena Lyakso, Olga Frolova, and Yuri Matveev. 2023. Voice Features as the Diagnostic Marker of Autism. Transl Psychiatry 16, 7 (2023),
6. https://doi.org/10.1038/s41398-023-02554-8

[58] K.E. MacLean. 2000. Designing with haptic feedback. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), Vol. 1. IEEE, 783–788. https://doi.org/10.1109/ROBOT.2000.844146

[59] Sreekar Mantena, Leo Anthony Celi, Salmaan Keshavjee, and Andrea Beratarrechea. 2021. Improving community health-care screenings
with smartphone-based AI technologies. The Lancet Digital Health 3, 5 (2021), e280–e282.

[60] DN McIntosh, LJ Miller, Vu Shyu, and W Dunn. 1999. Development and validation of the short sensory profile. Sensory profile manual
61 (1999), 59–73.

[61] Elizabeth P. McKernan, Ying Wu, and Natalie Russo. 2020. Sensory Overresponsivity as a Predictor of Amplitude Discrimination
Performance in Youth with ASD. Journal of Autism and Developmental Disorders 50, 9 (Sept. 2020), 3140–3148. https://doi.org/10.1007/
s10803-019-04013-0

[62] Sven Meister, Wolfgang Deiters, and Stefan Becker. 2016. Digital health and digital biomarkers – enabling value chains on health data.
Current Directions in Biomedical Engineering 2, 1 (Jan. 2016), 577–581. https://doi.org/10.1515/cdbme-2016-0128

[63] Jose Mercado, Lizbeth Escobedo, and Monica Tentori. 2021. A BCI video game using neurofeedback improves the attention of children
with autism. Journal on Multimodal User Interfaces 15, 3 (Sept. 2021), 273–281. https://doi.org/10.1007/s12193-020-00339-7

[64] Mark Mikkelsen, Ericka L. Wodka, Stewart H. Mostofsky, and Nicolaas A.J. Puts. 2018. Autism spectrum disorder in the scope of tactile
processing. Developmental Cognitive Neuroscience 29 (Jan. 2018), 140–150. https://doi.org/10.1016/j.dcn.2016.12.005

[65] Ivonne Monarca, Monica Tentori, and Franceli L. Cibrian. 2021. Feel and touch: a haptic mobile game to assess tactile processing.
Avances en Interacción Humano-Computadora 0, 1 (Nov. 2021), 31–35. https://doi.org/10.47756/AIHC.Y6I1.83

[66] Christian Montag, Jon D. Elhai, and Paul Dagum. 2021. On Blurry Boundaries When Defining Digital Biomarkers: How Much Biology
Needs to Be in a Digital Biomarker? Frontiers in Psychiatry 12 (Sept. 2021), 740292. https://doi.org/10.3389/fpsyt.2021.740292

[67] María Cecilia Montenegro, Monica Abdul-Chani, Daniel Valdez, Analia Rosoli, Gabriela Garrido, Sebastian Cukier, Cristiane Silvestre
Paula, Ricardo Garcia, Alexia Rattazzi, and Cecilia Montiel-Nava. 2022. Perceived Stigma and Barriers to Accessing Services: Experience
of Caregivers of Autistic Children Residing in Latin America. Research in Developmental Disabilities 120 (Jan. 2022), 104123. https:
//doi.org/10.1016/j.ridd.2021.104123

[68] Cecilia Montiel-Nava, Maria C Montenegro, Ana C Ramirez, Daniel Valdez, Analia Rosoli, Ricardo Garcia, Gabriela Garrido, Sebastian
Cukier, Alexia Rattazzi, and Cristiane Silvestre Paula. 2024. Age of autism diagnosis in Latin American and Caribbean countries.
Autism 28, 1 (Jan. 2024), 58–72. https://doi.org/10.1177/13623613221147345

[69] Abdulsalam Salihu Mustafa, Nor’ashikin Ali, Jaspaljeet Singh Dhillon, Gamal Alkawsi, and Yahia Baashar. 2022. User engagement and
abandonment of mHealth: a cross-sectional survey. In Healthcare, Vol. 10. MDPI, 221.

26

https://doi.org/10.1145/3341162.3346275
https://doi.org/10.3389/fnhum.2016.00167
https://developer.apple.com/documentation/uikit/uitouch
https://doi.org/10.1016/0031-3203(71)90013-6
https://doi.org/10.1145/1978942.1979001
https://doi.org/10.1145/3311927.3323118
https://doi.org/10.1145/3183654.3183657
https://doi.org/10.1145/3290605.3300373
https://doi.org/10.1038/s41398-023-02554-8
https://doi.org/10.1109/ROBOT.2000.844146
https://doi.org/10.1007/s10803-019-04013-0
https://doi.org/10.1007/s10803-019-04013-0
https://doi.org/10.1515/cdbme-2016-0128
https://doi.org/10.1007/s12193-020-00339-7
https://doi.org/10.1016/j.dcn.2016.12.005
https://doi.org/10.47756/AIHC.Y6I1.83
https://doi.org/10.3389/fpsyt.2021.740292
https://doi.org/10.1016/j.ridd.2021.104123
https://doi.org/10.1016/j.ridd.2021.104123
https://doi.org/10.1177/13623613221147345


1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269

Smartphone Haptics: Touch Differences Between ASD and NT
Interact. Mob. Wearable Ubiquitous Technol., 978-1-4503-XXXX-X/18/06,

[70] Weizhi Nai, Jianyu Liu, Chongyang Sun, Qinglong Wang, Guohong Liu, and Xiaoying Sun. 2021. Vibrotactile feedback rendering of
patterned textures using a waveform segment table method. IEEE Transactions on Haptics 14, 4 (2021), 849–861.

[71] Donald A. Norman and Stephen W. Draper (Eds.). 1986. User centered system design: new perspectives on human-computer interaction. L.
Erlbaum Associates, Hillsdale, N.J.

[72] Jessica S. Oliveira, Felipe O. Franco, Mirian C. Revers, Andréia F. Silva, Joana Portolese, Helena Brentani, Ariane Machado-Lima, and
Fátima L. S. Nunes. 2021. Computer-aided autism diagnosis based on visual attention models using eye tracking. Scientific Reports 11, 1
(May 2021), 10131. https://doi.org/10.1038/s41598-021-89023-8

[73] Despina Papoudi, Clara Rübner Jørgensen, Karen Guldberg, and Hedda Meadan. 2021. Perceptions, Experiences, and Needs of Parents
of Culturally and Linguistically Diverse Children with Autism: a Scoping Review. Review Journal of Autism and Developmental Disorders
8, 2 (June 2021), 195–212. https://doi.org/10.1007/s40489-020-00210-1

[74] Wanjoo Park, Vahan Babushkin, Samra Tahir, and Mohamad Eid. 2021. Haptic Guidance to Support Handwriting for Children With
Cognitive and Fine Motor Delays. IEEE Transactions on Haptics 14, 3 (July 2021), 626–634. https://doi.org/10.1109/TOH.2021.3068786

[75] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research 12 (2011), 2825–2830. https://doi.org/10.5555/1953048.2078195

[76] Sam Perochon, J. Matias Di Martino, Kimberly L. H. Carpenter, Scott Compton, Naomi Davis, Brian Eichner, Steven Espinosa, Lauren
Franz, Pradeep Raj Krishnappa Babu, Guillermo Sapiro, and Geraldine Dawson. 2023. Early detection of autism using digital behavioral
phenotyping. Nature Medicine 29, 10 (Oct. 2023), 2489–2497. https://doi.org/10.1038/s41591-023-02574-3

[77] Sam Perochon, J. Matias Di Martino, Kimberly L. H. Carpenter, Scott Compton, Naomi Davis, Steven Espinosa, Lauren Franz, Amber D.
Rieder, Connor Sullivan, Guillermo Sapiro, and Geraldine Dawson. 2023. A tablet-based game for the assessment of visual motor skills
in autistic children. npj Digital Medicine 6, 1 (Feb. 2023), 17. https://doi.org/10.1038/s41746-023-00762-6

[78] Elena Serena Piccardi, Jannath Begum Ali, Emily J. H. Jones, Luke Mason, Tony Charman, Mark H. Johnson, Teodora Gliga, Mary
Agyapong, Tessel Bazelmans, Leila Dafner,Mutluhan Ersoy, AmyGoodwin, RianneHaartsen, AlexandraHendry, RebeccaHolman, Sarah
Kalwarowsky, Anna Kolesnik, Sarah Lloyd-Fox, Greg Pasco, Andrew Pickles, Laura Pirazzoli, Chloë Taylor, and BASIS/STAARS Team.
2021. Behavioural and neural markers of tactile sensory processing in infants at elevated likelihood of autism spectrum disorder and/or
attention deficit hyperactivity disorder. Journal of Neurodevelopmental Disorders 13, 1 (Jan. 2021), 1. https://doi.org/10.1186/s11689-
020-09334-1

[79] Sonia Ponzo, Merle May, Miren Tamayo-Elizalde, Kerri Bailey, Alanna J Shand, Ryan Bamford, Jan Multmeier, Ivan Griessel, Benedek
Szulyovszky, William Blakey, Sophie Valentine, and David Plans. 2023. App Characteristics and Accuracy Metrics of Available Digital
Biomarkers for Autism: Scoping Review. JMIR mHealth and uHealth 11 (Nov. 2023), e52377. https://doi.org/10.2196/52377

[80] Nicholas Pudjihartono, Tayaza Fadason, Andreas W. Kempa-Liehr, and Justin M. O’Sullivan. 2022. A Review of Feature Selection
Methods for Machine Learning-Based Disease Risk Prediction. Frontiers in Bioinformatics 2 (June 2022), 927312. https://doi.org/10.
3389/fbinf.2022.927312

[81] Nicolaas A. J. Puts, Ericka L. Wodka, Mark Tommerdahl, Stewart H. Mostofsky, and Richard A. E. Edden. 2014. Impaired tactile
processing in children with autism spectrum disorder. Journal of Neurophysiology 111, 9 (May 2014), 1803–1811. https://doi.org/10.
1152/jn.00890.2013

[82] Insha Rafique, Kashmala Fatima, Anum Dastagir, Sajid Mahmood, and Muzammil Hussain. 2019. Autism Identification and Learning
Through Motor Gesture Patterns. In 2019 International Conference on Innovative Computing (ICIC). IEEE, Lahore, Pakistan, 1–7.
https://doi.org/10.1109/ICIC48496.2019.8966740

[83] Roope Raisamo, Saija Patomäki, Matias Hasu, and Virpi Pasto. 2007. Design and evaluation of a tactile memory game for visually
impaired children. Interacting with Computers 19, 2 (2007), 196–205. https://doi.org/10.1016/j.intcom.2006.08.011

[84] Khansa Rasheed, Adnan Qayyum, Mohammed Ghaly, Ala Al-Fuqaha, Adeel Razi, and Junaid Qadir. 2022. Explainable, trustworthy,
and ethical machine learning for healthcare: A survey. Computers in Biology and Medicine 149 (2022), 106043.

[85] Caroline E. Robertson and Simon Baron-Cohen. 2017. Sensory perception in autism. Nature Reviews Neuroscience 18, 11 (Nov. 2017),
671–684. https://doi.org/10.1038/nrn.2017.112

[86] José Luis Rodríguez, Ramiro Velázquez, Carolina Del-Valle-soto, Sebastián Gutiérrez, Jorge Varona, and Josué Enríquez-Zarate. 2019.
Active and passive haptic perception of shape: Passive haptics can support navigation. Electronics (Switzerland) 8, 3 (2019), 1–12.
https://doi.org/10.3390/electronics8030355

[87] Dean Rubine. [n. d.]. Specifying Gestures by Example. ([n. d.]).
[88] Dean Rubine. 1991. Specifying gestures by example. ACM SIGGRAPH Computer Graphics 25, 4 (July 1991), 329–337. https:

//doi.org/10.1145/127719.122753
[89] Nilesh P. Sable, Omkar Wanve, Anjali Singh, Siddhesh Wable, and Yash Hanabar. 2023. Pressure Prediction System in Lung Circuit

Using Deep Learning. In ICT with Intelligent Applications, Jyoti Choudrie, Parikshit Mahalle, Thinagaran Perumal, and Amit Joshi
(Eds.). Vol. 311. Springer Nature Singapore, Singapore, 605–615. https://doi.org/10.1007/978-981-19-3571-8_56 Series Title: Smart
Innovation, Systems and Technologies.

27

https://doi.org/10.1038/s41598-021-89023-8
https://doi.org/10.1007/s40489-020-00210-1
https://doi.org/10.1109/TOH.2021.3068786
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1038/s41591-023-02574-3
https://doi.org/10.1038/s41746-023-00762-6
https://doi.org/10.1186/s11689-020-09334-1
https://doi.org/10.1186/s11689-020-09334-1
https://doi.org/10.2196/52377
https://doi.org/10.3389/fbinf.2022.927312
https://doi.org/10.3389/fbinf.2022.927312
https://doi.org/10.1152/jn.00890.2013
https://doi.org/10.1152/jn.00890.2013
https://doi.org/10.1109/ICIC48496.2019.8966740
https://doi.org/10.1016/j.intcom.2006.08.011
https://doi.org/10.1038/nrn.2017.112
https://doi.org/10.3390/electronics8030355
https://doi.org/10.1145/127719.122753
https://doi.org/10.1145/127719.122753
https://doi.org/10.1007/978-981-19-3571-8_56


1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316

Interact. Mob. Wearable Ubiquitous Technol., 978-1-4503-XXXX-X/18/06,
Ivonne Monarca, Franceli L. Cibrian, Isabel López Hurtado, and Monica Tentori

[90] Naim Salki, Emira vraka, Namik Trtak, and Lara Krnjojelac. 2022. Difficulties of sensory integration of the tactile sensory system
of children with visual impairment. International Journal of Medical Reviews and Case Reports 0 (2022), 1. https://doi.org/10.5455/
IJMRCR.172-1645730510

[91] Melanie D. Schaffler, Leah J. Middleton, and Ishmail Abdus-Saboor. 2019. Mechanisms of Tactile Sensory Phenotypes in Autism: Current
Understanding and Future Directions for Research. Current Psychiatry Reports 21, 12 (Dec. 2019), 134. https://doi.org/10.1007/s11920-
019-1122-0

[92] Hasti Seifi, Kailun Zhang, and Karon E. MacLean. 2015. VibViz: Organizing, visualizing and navigating vibration libraries. In IEEE
World Haptics Conference (WHC). https://doi.org/10.1109/WHC.2015.7177722

[93] Tanay Singhal and Oliver Schneider. 2021. Juicy Haptic Design: Vibrotactile Embellishments Can Improve Player Experience in
Games. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for
Computing Machinery, New York, NY, USA, Article 126, 11 pages. https://doi.org/10.1145/3411764.3445463

[94] Tanya Talkar, James R. Williamson, Daniel J. Hannon, Hrishikesh M. Rao, Sophia Yuditskaya, Kajal T. Claypool, Douglas Sturim,
Lisa Nowinski, Hannah Saro, Carol Stamm, Maria Mody, Christopher J. McDougle, and Thomas F. Quatieri. 2020. Assessment of
Speech and Fine Motor Coordination in Children with Autism Spectrum Disorder. IEEE Access 8 (2020), 127535–127545. https:
//doi.org/10.1109/ACCESS.2020.3007348 Publisher: Institute of Electrical and Electronics Engineers Inc..

[95] Hiroki Tanaka, Sakriani Sakti, Graham Neubig, Tomoki Toda, and Satoshi Nakamura. [n. d.]. Linguistic and Acoustic Features for
Automatic Identification of Autism Spectrum Disorders in Children’s Narrative. Technical Report. http://www.speech.kth.se/snack/

[96] David Ternes and Karon E Maclean. 2008. LNCS 5024 - Designing Large Sets of Haptic Icons with Rhythm. (2008), 199–208.
https://doi.org/10.1007/978-3-540-69057-3_24

[97] Vincent Ws Tseng, Jean Dos Reis Costa, Malte F Jung, and Tanzeem Choudhury. 2020. Using Smartphone Sensor Data to Assess
Inhibitory Control in the Wild: Longitudinal Study. JMIR mHealth and uHealth 8, 12 (Dec. 2020), e21703. https://doi.org/10.2196/21703

[98] Andrius Vabalas, Emma Gowen, Ellen Poliakoff, and Alexander J. Casson. 2020. Applying Machine Learning to Kinematic and
Eye Movement Features of a Movement Imitation Task to Predict Autism Diagnosis. Scientific Reports 10, 1 (May 2020). https:
//doi.org/10.1038/s41598-020-65384-4

[99] Tara Van Veen, Sophia Binz, Meri Muminovic, Kaleem Chaudhry, Katie Rose, Sean Calo, Jo-Ann Rammal, John France, and Joseph B
Miller. 2019. Potential of mobile health technology to reduce health disparities in underserved communities. Western Journal of
Emergency Medicine 20, 5 (2019), 799.

[100] Victor Volovici, Nicholas L Syn, Ari Ercole, Joseph J Zhao, and Nan Liu. 2022. Steps to avoid overuse and misuse of machine learning
in clinical research. Nature Medicine 28, 10 (2022), 1996–1999.

[101] Einat Waizbard-Bartov, Deborah Fein, Catherine Lord, and David G Amaral. 2023. Autism severity and its relationship to disability.
Autism Research 16, 4 (2023), 685–696.

[102] Chyanna Wee, Kian Meng Yap, and Woan Ning Lim. 2021. Haptic interfaces for virtual reality: Challenges and research directions.
IEEE access 9 (2021), 112145–112162.

[103] Shichang Xuan, Li Zheng, Ilyong Chung, Wei Wang, Dapeng Man, Xiaojiang Du, Wu Yang, and Mohsen Guizani. 2020. An incentive
mechanism for data sharing based on blockchain with smart contracts. Computers & Electrical Engineering 83 (2020), 106587.

[104] Victoria Yaneva, Le An Ha, Sukru Eraslan, Yeliz Yesilada, and Ruslan Mitkov. 2020. Detecting High-Functioning Autism in Adults
Using Eye Tracking and Machine Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 6 (June 2020),
1254–1261. https://doi.org/10.1109/TNSRE.2020.2991675

[105] Nesra Yannier, Ali Israr, Jill Fain Lehman, and Roberta L. Klatzky. 2015. Feel sleeve: Haptic Feedback to enhance early reading. Conference
on Human Factors in Computing Systems - Proceedings 2015-April (2015), 1015–1024. https://doi.org/10.1145/2702123.2702396

[106] Huan Zhao, Zhaobo Zheng, Amy Swanson, Amy Weitlauf, Zachary Warren, and Nilanjan Sarkar. 2018. Design of a Haptic-Gripper
Virtual Reality System (Hg) for Analyzing Fine Motor Behaviors in Children with Autism. ACM Transactions on Accessible Computing
11, 4 (Nov. 2018), 1–21. https://doi.org/10.1145/3231938

A TABLE OF SUPPLEMENTARY DATA: DIGITAL MARKERS AND FEATURES

Table 5. Detailed Description of Digital Markers Used in Touch Interaction Analysis

Feature Description

x_neg_count Counts the negative values from the acceleration.
y_neg_count Counts the negative values for the y-axis from the acceleration.
z_neg_count Counts the negative values for the z-axis from the acceleration.
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Feature Description

x_pos_count Counts the positive values from the acceleration.
y_pos_count Counts the positive values for the y-axis from the acceleration.
z_pos_count Counts the positive values for the z-axis from the acceleration.
variability The cumulative sum of the Euclidean distance between underlying points [8].
area Total area of the tactile interaction.
Bounding box Two two-dimensional vectors (x, y) representing the origin and the end of the box

around each tactile interaction.
Angle of the bounding box, The angle formed by the diagonal of the bounding box [88].
Diagonal of the bounding box Length of the bounding box diagonal [88].
avgSpeed The speed at which a tactile interaction occurs. [8]
aspectRatio Proportional relationship between the width and height of the bounding box. [53]
density Relationship between the length of the tactile interaction and the distance .
Distance Distance between the first and the last point of the tactile interaction in points [88].
total acceleration Total acceleration of the vibration produced by the children’s interaction. [18]
angular The speed at which the mobile phone rotates [18].
production-time Duration of the touch interaction.
Game performance Total number of tactile interactions.
x_ini Point where the touch interaction starts in x.
x_fin Point where the touch interaction ends in x.
x_mean, x_max, x_min, x_std Statistical measures (mean, maximum, minimum, standard deviation) of x-coordinate

values during the interaction.
y_ini Point where the touch interaction starts in y.
y_fin Point where the touch interaction ends in y.
y_mean, y_max, y_min, y_std Statistical measures of y-coordinate values during the interaction.
acX_ini Accelerometer initial x-value.
acX_fin Accelerometer final x-value.
acX_mean Average x-value recorded by the accelerometer.
acX_max Maximum x-value recorded by the accelerometer.
acX_min Minimum x-value recorded by the accelerometer.
acX_std Standard deviation of the accelerometer x-values.
acY_ini Initial accelerometer y-value.
acY_fin Final accelerometer y-value.
acY_mean Average y-value recorded by the accelerometer.
acY_max Maximum y-value recorded by the accelerometer.
acY_min Minimum y-value recorded by the accelerometer.
acY_std Standard deviation of the accelerometer y-values.
acZ_ini Initial accelerometer z-value.
acZ_fin Final accelerometer z-value.
acZ_mean Average z-value recorded by the accelerometer.
acZ_max Maximum z-value recorded by the accelerometer.
acZ_min Minimum z-value recorded by the accelerometer.
acZ_std Standard deviation of the accelerometer z-values.
gX_ini Initial gyroscope x-value.
gX_fin Final gyroscope x-value.
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Feature Description

gX_mean Average x-value recorded by the gyroscope.
gX_max Maximum x-value recorded by the gyroscope.
gX_min Minimum x-value recorded by the gyroscope.
gX_std Standard deviation of the gyroscope x-values.
gY_ini Initial gyroscope y-value.
gY_fin Final gyroscope y-value.
gY_mean Average y-value recorded by the gyroscope.
gY_max Maximum y-value recorded by the gyroscope.
gY_min Minimum y-value recorded by the gyroscope.
gY_std Standard deviation of the gyroscope y-values.
gZ_ini Initial gyroscope z-value.
gZ_fin Final gyroscope z-value.
gZ_mean Average z-value recorded by the gyroscope.
gZ_max Maximum z-value recorded by the gyroscope.
gZ_min Minimum z-value recorded by the gyroscope.
gZ_std Standard deviation of the gyroscope z-values.
mRadius_ini Initial radius of the tactile interaction as provided by iOS.
mRadius_fin Final radius of the tactile interaction as provided by iOS.
mRadius_mean Average radius during the tactile interaction.
mRadius_max Maximum radius recorded during the tactile interaction.
mRadius_min Minimum radius recorded during the tactile interaction.
mRadius_std Standard deviation of the radius values during the interaction.
force_ini Initial force of the touch interaction provided by iOS.
force_fin Final force of the touch interaction.
force_mean Average force during the touch interaction.
force_max Maximum force recorded during the touch interaction.
force_min Minimum force recorded during the touch interaction.
force_std Standard deviation of the force values during the interaction.
reactionTime Time between the start of the vibration and the child’s response.
population Category of participant, ASD or NT. [8]
time Time when the touch interaction starts.
ID_participant ID of the participant.
Cosine Cosine of the angle of the diagonal of the bounding box. [8]
Sine Sine of the angle of the diagonal of the bounding box.[8]
instruction Type of instruction given during the interaction. [8]
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B TABLE OF DIGITAL MARKERS RELATED WORK

Digital Markers Participants Precision (%)
G V M T O ASD NT Other

Digital markers based on sensing
Devices in the environment Carette et al., 2018 X 18* 18* 95

Yaneva, 2018 X 18* 18* 75
Nakano et al., 2010 X 25 25 /
Hashemi et al., 2012 X 1 /
Santos et al,2013 X 20 23 97.7
Xu et al., 2009 X 34 30 90
Dongxin et al.,2009 X 34 76 30 90
Deng et al., 2017 X /
Dai & Keshi, 2007 X /
Crippa et al., 2015 X 15 15 96.70
Bidwell et al, 2014 X 93.3%
Liu,et al., 2016 X 29 29 88.51%
Vabalas,et al., 2019 X 24* 22* 71%
Kanhirakadavath et al., 2022 X 219 328 91.38
Banire et al., 2021 X 20 26 96.5
Oliveira et al., 2021 X 76 30 93
Yaneva et al., 2020 X 31 40 74
Wan et al., 2019 X 37 37 83.8
Briend et al., 2023 X 38 24 91
Lyakso et a., 2022 X 95 150 60.2
Boorse et al., 2019 62 40 /
Cavallo et al., 2021 X 20 20 75
Alcañiz-Raya et al., 2020 X 24 25 82.98
Ardalan et al., 2019 X 39 23 89

Digital markers based on interaction
Mobile devices Vargas-Cuentas et al., 2017 X 8 23 98.5

Gong et al., 2018 X 18 9 8 /
Mahmoudi-Nejad et al., 2017 X 5 7 /
Anzulewicz et al.,2016 X 37 45 93
Chen et al., 2019 40 51 /
Perochon et al., 2023 X X 233 147 74
Lu et al, 2019 X 37 45 /
Rafique et al., 2019 X 22 22 91

Table 6. Table 1 The table shows related works on digital markers of ASD. It describes the type of digital marker studied in
each work: Gaze (G), Voice (V), Motor Skills (M), Touch interactions (T), Others (O); the number and type of participants; and
the accuracy achieved in classifying ASD and NT
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