

1 **Smartphone Haptics can Uncover Differences in Touch Interactions**
2 **Between ASD and Neurotypicals**
3

4 IVONNE MONARCA, FRANCELÍ L. CIBRIÁN, ISABEL LÓPEZ HURTADO, and MONICA
5 TENTORI
6

7 Utilizing touch interactions from smartphones for gathering data and identifying digital markers for screening and monitoring
8 neurological disorders, such as Autism Spectrum Disorder (ASD), is an emerging area of research. Smartphones provide
9 multiple benefits for this kind of study, including unobtrusive data collection via built-in sensors, integrated haptic feedback
10 systems, and the capability to create specialized applications. Acknowledging the significant yet understudied presence
11 of tactile processing differences in individuals with ASD, we designed and developed *Feel and Touch*, a mobile game that
12 leverages the haptic capabilities of smartphones. This game provides vibrotactile feedback in response to touch interactions
13 and collects data on these interactions. We conducted a deployment study with 83 Mexican children who played *Feel and*
14 *Touch* to capture their interactions with the game. Our analysis, comparing touch interactions between children with ASD
15 and neurotypical (NT) peers, uncovered three digital markers based on phone tilt and touch patterns that distinguish the
16 two groups. Additionally, we demonstrated the ability of a machine learning model to accurately classify these interactions
17 between ASD and NT children. Our findings discuss the implications in terms of accessibility and ubiquity, as well as the
possibilities for the development of digital markers and their application in pervasive computing for healthcare.

18 CCS Concepts: • **Human-centered computing** → **Haptic devices; Smartphones**; • **Applied computing** → **Life and**
19 **medical sciences**.

20 Additional Key Words and Phrases: Vibrotactile Pattern, Digital Markers, Autism Spectrum Disorder

21 **ACM Reference Format:**

22 Ivonne Monarca, Francelí L. Cibrian, Isabel López Hurtado, and Monica Tentori. 2024. Smartphone Haptics can Uncover
23 Differences in Touch Interactions Between ASD and Neurotypicals. In *Proceedings of (Interact. Mob. Wearable Ubiquitous*
24 *Technol.)*. ACM, New York, NY, USA, 31 pages. <https://doi.org/XXXXXXX.XXXXXXX>

25 **1 INTRODUCTION**

26 Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is marked by a wide array of
27 social and behavioral symptoms [6]. There is consensus in the field that early diagnosis of ASD can not only impact
28 early access to high impact treatments but also support the development of an ASD-friendly environment [37]
29 improving outcomes for ASD children. Obtaining a full diagnosis usually requires working with specialists who
30 use validated tests, such as the Denver Scale, the Autism Diagnostic Observation Schedule, Second Edition (ADOS-
31 2), and the Autism Diagnostic Interview Revised (ADI-R). However, conducting these tests can be prohibitively
32 expensive, especially in contexts like Mexico. The cost of a comprehensive diagnostic assessment is approximately
33 \$10,000 Mexican Pesos, equivalent to around 2.3 months of work for individuals earning the minimum wage.
34 Consequently, the screening and diagnosis of ASD in Mexico are often beyond the reach of the majority of the
35 population, making them costly, delayed, and prone to errors [15].

36 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
37 copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
38 Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
39 otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
40 permissions@acm.org.

41 *Interact. Mob. Wearable Ubiquitous Technol.*, 978-1-4503-XXXX-X/18/06,

42 © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

43 ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

44 <https://doi.org/XXXXXXX.XXXXXXX>

48 In recent years, there has been a focus on identifying digital markers to support the early detection and screening
49 of ASD [25]. Despite not being entirely objective, digital markers offer a valuable approach to ubiquitously
50 collecting quantifiable behavioral data using different technologies, like smartphones. This data can be highly
51 relevant to the screening, diagnosis, and monitoring of healthcare delivery in ASD [66]. The extraction and
52 selection of digital markers for children with ASD opens up new possibilities for understanding neurobiological
53 mechanisms of the disorder, as well as the development of accessible screening programs.

54 While few studies identifying digital markers for ASD have traditionally focused on uncovering actions related
55 to emotional recognition and social attention [79], language [95], visual attention [72], and motor abilities [27],
56 few have explored touch interactions in depth. Tactile processing differences are highly prevalent in over 85% of
57 ASD children [90]. Children with ASD often either dislike being touched or carried, and they may present an
58 excessive fascination or avoidance of certain textures or fabrics [90]. Despite this, there is very little discussion
59 and evidence in the field investigating if the tactile processing differences exhibited by children with ASD can
60 become a potential marker of ASD [85] and how haptic capabilities of smartphones can be best utilized to uncover
61 such differences.

62 By leveraging advancements in haptic technology to stimulate the skin using actuators that replicate the
63 tactile or kinetic properties of an object [56, 58, 86], there is an opportunity to collect data about children's touch
64 interaction behavior in a non-invasive and accessible manner, particularly in the context of smartphones. These
65 devices incorporate haptic sensors, such as vibration feedback and force monitoring, to deliver tactile information
66 crucial for understanding how children engage with technology. In addition, given the significant increase in
67 smartphone usage over the past decade, with 82.8% of people in urban areas and 62.6% in rural areas having
68 access to a mobile phone in Mexico [50], there is a substantial opportunity to develop mobile tools that can
69 complement existing ASD screening methods. By leveraging the widespread availability of mobile phones, such
70 tools have the potential to offer more accessible and cost-effective screening options, tailored to the Mexican
71 context, thereby improving the early identification and support of children with ASD.

72 The link between neurodevelopmental disorders and tactile processing has historically received insufficient
73 research attention [64, 78, 91]. In this study, we extend the current state of the art by taking advantage of the
74 affordances of haptic computing to provide tactile stimulation while children interact with a mobile phone
75 through a haptic game named *Feel and Touch*, which incorporates vibrotactile patterns, a function of intensity,
76 rhythm, and sharpness, representing the shape of a vibratory waveform. This paper aims to address three key
77 research questions: 1) Can haptic mobile games be effectively used to collect touch interactions from children? 2)
78 Which touch interaction features are most effective for classifying children with ASD using machine learning
79 models. 3) Can alterations in tactile processing in children with ASD be measured through their interactions
80 with haptic interfaces? . These inquiries contribute to the field of IMWUT by: 1) providing empirical evidence
81 that demonstrates how a mobile haptic game can be used for neurotypical (NT) and children with ASD outside a
82 clinical setting to gather their touch data, 2) sharing lessons learned from the design and development of haptic
83 interface, which could potentially support the screening of ASD in everyday contexts, and 3) offering empirical
84 evidence showing that tactile differences can be used to unveil digital markers that can feed a machine learning
85 model to assist with the potentially automatic tactile screening of ASD. Our results uncovered differences between
86 children with ASD and NT related to tilt and touch features that describe how children hold and move the mobile
87 phone and perform touch interactions.

89 2 RELATED WORK

90 2.1 Using mobile technology to uncover digital markers

91 Digital markers provide quantifiable measurements of physiological and behavioral data [62]. These markers are
92 primarily collected via wearable sensors, interactive surfaces, mobile sensors, and tracking sensors. Some digital
93

95 markers replicate existing biological markers. For example, we can monitor glucose using a sensor placed on the
96 body and transmit the information to an application [24]; on the other hand, there are digital markers that are
97 more novel and are evolving [30].

98 Smartphones are increasingly utilized to gather digital markers due to their widespread use and capabilities
99 for pervasive sensing [62]. Research indicates that smartphones can capture a broad spectrum of psychologically
100 and physiologically relevant behaviors. For instance, their ability to uncover markers of stress-related behaviors
101 [1], personality traits [28] and depression [41] through the analysis of phone usage, voice, and video recordings.

102 Additionally, a segment of research focuses on exploiting smartphone sensors to monitor health-related
103 behaviors. Tseng et al. [97], for example, utilized the phone's accelerometer to gauge physical activity, which, in
104 combination with other features, predicted individuals' inhibitory control. In another study, researchers trained a
105 machine learning model using data from phone sensors—such as acceleration, gyroscope, and slope—to classify
106 individuals into categories of cognitive performance [46]. While the potential of utilizing internal smartphone
107 sensors to uncover digital markers is promising, this approach is largely unexplored in the field of digital markers
108 for ASD.

109 2.2 Digital markers for ASD

110 Significant research has been conducted on identifying digital markers for children with ASD. These studies have
111 primarily utilized sensors placed in the environment such as infrared camera [27] or Kinect Camera [3, 10] to
112 capture movement features; eye-takings to capture gaze features [12, 72, 104]; and microphones [19, 21, 57, 94]
113 to capture speech features.

114 For example, Oliveira et al. [72] employed an eye tracker to gather gaze data from 76 children with ASD and
115 30 NT children, aged 3 to 18 years, while they watched brief 6-second videos. Each video was divided into two
116 parts: one showing individuals performing natural movements (e.g., a child waving a hand) and another showing
117 geometric movements (e.g., the design of a moving fractal figure). They used the eye tracking data to extract
118 features related to visual attention. These features were then employed to train a machine learning model for
119 classifying children with ASD and NT, achieving an accuracy and recall of 90% and 69%, respectively. This study
120 demonstrated that children with ASD tend to focus their gaze in the center of the image, even when there is
121 nothing in the center, and exemplified the use of eye tracking data to extract digital markers for children with
122 ASD.

123 Other studies leverage voice recordings to analyze potential patterns in the vocalizations of children with
124 ASD, one example is the work of Lyakso et al. [57] who found significant differences in pitch values, pitch
125 range, frequency, and voice energy between children with ASD and NT. During the study, ASD and NT children,
126 aged 5-16, were recorded as they answered a series of questions and engaged in storytelling based on an image
127 presented to them. Similarly, this study extracted voice-related features, and trained a machine learning model,
128 achieving an accuracy of 60% and a recall of 67% in classifying children with ASD and NT.

129 Finally, another common approach to gathering digital marker is through cameras placed in the environment
130 to study the movements and motor coordination deficits of children with ASD. A study by Ardalan et al. [10]
131 found that children with ASD exhibit greater variability in their kinematic movements compared to NT children,
132 with the head, shoulders, feet, and left elbow movements being the most useful in distinguishing children with
133 ASD. Using motion capture technology, the study collected movement data from 39 children with ASD and 23
134 NT children aged 7 to 17 years. The children performed 10 static postures inspired by Yoga and Tai Chi practices.

135 These studies demonstrated the feasibility of using environmental devices to collect gaze, vocalization, and
136 movement-related data to identify digital markers of ASD. They also highlight the importance of selecting specific
137 features for building machine learning models capable of differentiating between children with ASD and NT
138 children. These studies marked an important advancement in the field of digital markers for children with ASD,

nonetheless the devices — such as eye tracking technology, sound equipment and motion sensing device — used to collect these digital markers are not widely available or accessible in countries with limited resources, for example, the cost of purchasing an eye-tracking system, which, is between 3,000 and 50,000 US [7]. Building on this research, another set of studies focuses on the use of interactive surfaces as an alternative approach, enabling the collection of additional markers such as touch interactions. Recent research has revealed that touch interactions with tablets can generate valuable information that could contribute to the identification of digital markers of ASD, as presented in the following section.

2.2.1 Digital markers using mobile devices. A wide range of studies have focused on collecting digital markers using tablets [9, 77] and smartphones [36]. One of the earliest significant studies leveraging mobile devices to identify digital markers of children with ASD was conducted by Anzulewicz et al. [9], who proposed the use of commercial video games on iPads to identify the motor signature of children with ASD. The study involved 37 children with ASD and 45 NT children who played two commercial video games on an iPad, each for a period of 5 minutes. During these gaming sessions, data from the screen and internal tablet sensors were recorded. A total of 262 features related to kinematic values (e.g., speed, acceleration) and touch-based metrics (e.g., number of touches) were calculated. The results obtained in this study were exceptional, the model trained with the features extracted reached an accuracy of 93% in classifying children with ASD from NT children. Additionally, significant differences were revealed in the touch behavior of children with ASD. It was found that children with ASD exerted more force in their touch interactions, performed touch interactions more rapidly, and used a larger screen area to carry out these interactions. This study marks a significant advancement in the field by offering valuable insights into how touch interactions can function as digital markers for ASD. It underscores the variations in tactile behavior among children with ASD, and lays the groundwork for future studies that seek to identify digital markers through tactile interactions.

Another example is the SensetoKnow app which uses a tablet to display short movies that prompt social attention, facial expressions, head movements, motor behaviors and name recognition. The app collects data using the tablet's front camera and quantifies it using computer vision analysis (CVA). In their 2023 study, Perochon et al. [77]. utilized the SensetoKnow app to extract 23 behavioral features from children interacting with the application. They then employed a machine learning classification model to analyze these features, and found that facing forwards, gaze, facial dynamics complexity, head movements, response to name and touch interactions were the most relevant features in the classification of ASD. Touch interactions included average touch length, average applied force, accuracy and popping rate all extracted during a pop the bubble activity.

In conjunction, this literature provides examples of employing mobile devices to collect digital markers of children with ASD, indicating that the way children with ASD interact with devices differs significantly from NT children, suggesting potential differences in motor skills or tactile processing. They also open up the possibility of using touch interaction as digital markers of ASD. However, to our knowledge, there has been limited exploration into how the haptic capabilities of mobile devices can be leveraged to stimulate touch interactions and identify digital markers of ASD. This represents a significant gap in the literature, as the use of haptics—specifically vibrotactile stimulation—in the context of ASD research is relatively novel. Children with ASD frequently experience challenges with tactile processing [64, 78, 91], which can affect their ability to respond to and interact with sensory stimuli.

2.3 Haptic technology and ASD

Haptic interfaces provide unique tactile responses to user interaction, these interfaces have garnered considerable attention in therapeutic contexts to support children in motor exercises [54, 106], sensory integration therapies [42, 55], therapeutic approaches related to emotions [83] within the context of ASD, rehabilitation [40] social skills [23] and as an educational tool to improve the reading experiences [105] and teach writing skills [74]

189 For example, FeelSleeve [105] is a protective glove-shaped sleeve that is placed over a tablet, and has two
190 actuators that generate vibrotactile patterns. These patterns are associated with specific events in a story, allowing
191 children to feel what they are reading. A study involving 44 NT children aged 6 to 9 showed that combining the
192 narrative events with the vibrotactile patterns in FeelSleeve can effectively enhance children's reading experience.
193

194 Another example is CARBO [55], a haptic robot designed to promote tactile interactions through a set of
195 interactive games. Results from a study conducted using CARBO revealed that children diagnosed with attention-
196 deficit/hyperactivity disorder (ADHD) and ASD were able to interact with CARBO and found it both interesting
197 and intuitive. This study also highlighted that the interaction patterns of children with ASD differ from those of
198 children with ADHD, underscoring the potential of haptic feedback to identify differences in the ways children
199 with neurodevelopmental disorders interact.
200

201 From a clinical perspective, research on haptics has focused on identifying differences in sensory processing
202 and the development of fine motor skills in children with ASD and NT, exploring the use of devices that transmit
203 vibrations to the fingers [38, 54, 61, 81]. For instance, a recent study conducted by Espenhahn et al. [38] with 33
204 children with ASD and 45 NT children aged 3 to 6 years. Participants completed vibrotactile activities involving
205 receiving vibrations of different intensities on their fingers and answering questions about their perception. The
206 results indicated that children with ASD had slower response times but showed greater ability to discriminate
207 between levels of vibration intensity compared to NT children.
208

209 In summary, these studies collectively demonstrate that haptic interfaces are both well-received and effectively
210 utilized by children diagnosed with ASD as well as NT children. Haptics also show great promise in differentiating
211 tactile responses from children with and without ASD. Showcasing versatility, these interfaces hold promise as
212 tools for skill assessment. However, current research indicates that the potential of haptic interfaces to identify
213 digital markers of ASD remains underexplored.
214

215 Additionally, these insights were garnered using specialized tools designed to deliver vibrations directly to the
216 fingers, but the accessibility of such tools has been a significant barrier. In contrast, today's mobile devices, which
217 are widely accessible, are capable of reproducing vibrotactile patterns using haptic interfaces. By investigating
218 how haptic feedback can be used to enhance touch interactions, our research aims to address these sensory
219 processing difficulties and provide new insights into the development of digital markers for ASD. This approach
220 not only contributes to the understanding of sensory processing in ASD, but also opens new avenues for creating
221 more effective screening tools and intervention strategies tailored to the unique needs of individuals with ASD in
222 a Latin America.
223

224 3 DESIGN AND DEVELOPMENT OF FEEL AND TOUCH

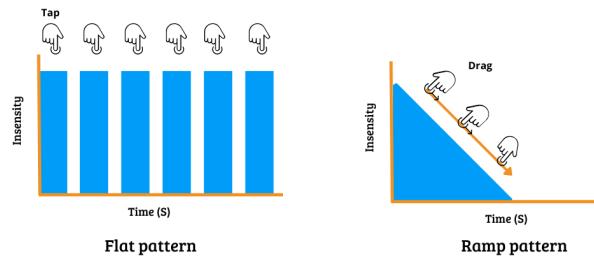
225 The design of *Feel and Touch* is built around the user-centered design philosophy [71], involving a comprehensive
226 iterative process to develop a mobile haptic game augmented with vibrotactile patterns to assess tactile processing
227 in children. To design the game, the research team conducted literature reviews, brainstorming sessions with
228 experts and children, and multiple design and testing phases to refine the game's features and ensure the game
229 design was appropriate for preschool-aged children.
230

231 The design process began with a comprehensive literature review to compile existing active haptic interfaces,
232 vibrotactile patterns, and interaction gestures. Following this, we conducted 6 participatory sessions with human-
233 computer interaction (HCI) experts, NT children, preschool teachers, and special education teachers. These
234 sessions aimed to identify appropriate gestures associated with vibrations. During each session, we first explained
235 the study's context and the session's objective to the participants. Then, we engaged in brainstorming to discuss
236 key design ideas. Finally, we proposed low-fidelity prototypes and discussed their advantages and disadvantages.
237 We analyzed the data collected during the design sessions and materialized it into sketches and storyboard scripts.
238

236 These two steps led to clear design decisions that determined the criteria for gestures captured and the vibrotactile
 237 patterns represented by the game.

238 **Gestures.** According to our experts and in line with literature [32], we select the tap and drag gesture for the
 239 game as children from 3 to 5 years old could perform easily, tap and drag.

240 **Vibrotactile patterns.** The two selected gestures were linked to distinct vibrotactile patterns: the tap gesture
 241 with a flat vibration pattern and the drag gesture with a ramp vibration pattern (see Figure 1). The flat vibration
 242 pattern included three rhythm variations: slow (1-second intervals), medium (500-millisecond intervals), and
 243 fast (250-millisecond intervals), based on the repeated monotone patterns of variable-length notes studied in
 244 the literature for haptic design [45, 92, 96]. For the ramp pattern, we designed variations, including ascending,
 245 descending, and mixed.



257 Fig. 1. Vibrotactile patterns. Left shows the Flat pattern. When children tap they will feel an array of pulse vibrations with a
 258 predefined offset that change intensity from slow (1 second between each vibration), to medium (500 milliseconds between
 259 each vibration) to fast (250 milliseconds between each vibration). Right shows ramp pattern. When children drag, the vibration
 260 intensity will increase or decrease depending on angular direction. Ascending ramps range from 40 to 100% intensity, while
 261 the descending ramps range from 100 to 40% intensity

263 **Activities** The design process also led to the design of the story and game activities. The goal of *Feel and*
 264 *Touch* is to help a hungry spider rebuild its web destroyed in a storm, mimicking the storytelling of the itsy bitsy
 265 spider nursery rhyme. To engage children while performing tap and drag touch interactions, *Feel and Touch* has
 266 two goal-oriented activities, *Build the web* and *Feed the spider*, and one open-ended activity, *Dancing on the web*.
 267 Following a scaffolding approach, activities are presented progressively, increasing the complexity of both the
 268 touch interaction and the type of vibrotactile pattern and its rhythm. For example, as tapping is generally easier
 269 than dragging [32], *Feel and Touch* initially presents the *Build the web* activity which requires children to tap
 270 around the screen, and then drag for a second activity.

271 *Build the web* (Figure 2-1). During this activity, children synchronize their taps anywhere on the screen with
 272 the rhythm of the flat vibration pattern. Each time they tap, the spider jumps from its current position to the
 273 location of the children's tap. This action creates a trajectory drawing, forming a colorful line that connects
 274 the spider's movement trajectory from its initial to its final location. This activity has three vibration rhythms,
 275 each with a different speed: slow (1 second between each vibration), medium (500 milliseconds between each
 276 vibration), and fast (250 milliseconds between each vibration).

277 *Feed the spider* (Figure 2-A). During this activity, children must drag the spider's feet to eat the bugs trapped
 278 in the web. A spider will catch a bug when the child releases its leg. While dragging, children will feel a ramp
 279 vibration pattern, which could be ascending, descending, or mixed of both. Ascending and descending ramps
 280 were designed to stimulate children in different ways and to assess any variance in their interactions. Vibration
 281 ramps are activated when a bug falls into the spider's web.

Dancing on the web (Figure 2-E). This activity encourages children to freely tap or drag, experiencing the corresponding vibrotactile pattern, flat, or ramps. The spider jumps when children tap and dances when being dragged.

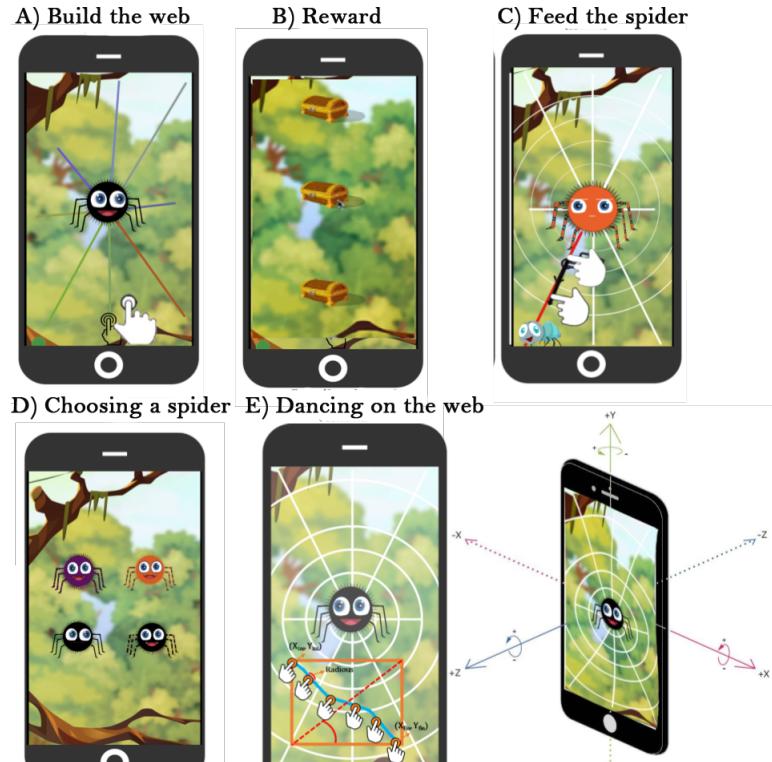
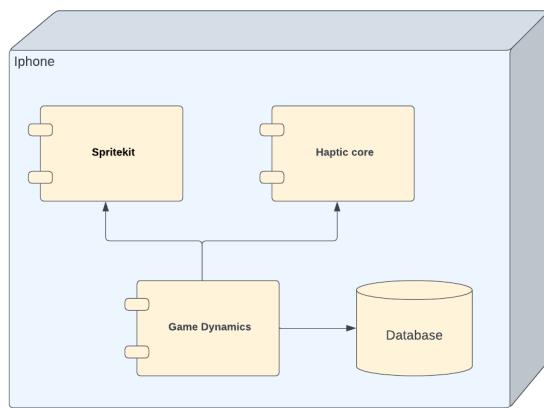


Fig. 2. The figure presents five screenshots showing the main features of Feel and Touch. A) Build the web: this activity presents a spider in the center of the screen and colorful lines representing the web being built. B) Rewards: this screenshot represents three treasure chests vertically aligned, allowing children to choose one to collect a surprise reward that is inside. C) Feed the spider: this activity presents the spider in the center with a red line and a representation of the dragging motion required to move the spider's feet to get one of the bugs located at the end of the red line. D) Spiders collected: this shows the spiders collected through the game as a reward, so children can select their favorite to play the last activity. E) Dancing on the web: it shows the selected spider in the center of the screen, and children can tap or drag the spider; the game reproduces the vibrotactile pattern associated with each gesture. The final image shows a blue line representing a drag, the orange box representing the bounding box, and a yellow line representing the angle of the bounding box.

Tutorial. Feel and Touch incorporates a tutorial at the beginning of the game and a reward upon completing each activity consisting of unlocking a new spider (Figure 2-B). Both the tutorial and the reward act as relaxation activities that were strategically placed between the vibrotactile stimulation (i.e., the three activities) to ensure that children remain engaged without feeling overwhelmed by the vibrations [47]. If the children need guidance during the activities, the game uses both verbal and visual prompts. Verbal prompts include voice-recorded instructions in Spanish, like “Tap the screen when you feel the vibration,” while visual prompts show colored dots displayed on the screen. Each prompt changes every 5 seconds in the absence of interactions from the children.

330 **Implementation** We implemented *Feel and Touch* to run on iPhone 8 and later versions with the iOS 14
 331 operating system onwards. The iPhone 8 provides sufficient technical capabilities for our study's requirements,
 332 including processing power, touch interactions sensors, and compatibility with necessary applications. By opting
 333 for the iPhone 8, we aim to demonstrate that our game can be effectively used on more affordable versions of the
 334 iPhone, making our tool more accessible to a broader segment of the population. *Feel and Touch* utilized the
 335 Swift programming language, the SpriteKit game framework, and Xcode version 13.3.1 (Figure 3). To implement
 336 vibrotactile patterns, we used the haptic engine of iOS, which allows the composition and reproduction of
 337 vibrotactile patterns to provide feedback to the user.
 338



339 Fig. 3. The figure displays a deployment diagram showcasing the components of *Feel and Touch*.
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352

353 **Initial evaluation.** The initial evaluation of *Feel and Touch* was with 5 NT children aged 3-5 and demonstrated
 354 that the game's design was effective in engaging children while testing their tactile responses. In general, children
 355 were able to 1) perform the required tap and drag gestures and respond appropriately, 2) understand and engage
 356 with the task, and 3) were not confused or frightened by the vibrations. More around the design and evaluation
 357 of the game can be seen in [65].
 358
 359

360 4 METHODS

361 4.1 Participants

362 Recruitment and data collection for this study took place in an urban city located in central Mexico. Children
 363 aged three years and older with ASD were recruited from a specialized center that focuses on children with ASD.
 364 We also recruited non-ASD or NT children from a preschool located in the same area (Table 1). Parental written
 365 consent from parents/guardians was obtained for each participant in the study, following ethical guidelines for
 366 research on minors. The study was approved by the Bioethics Committee of CICESE (no: BIOÉTICA.HUM.2021.02)
 367 and was conducted in accordance with the amended Declaration of Helsinki.
 368

369 Children in the ASD group were eligible to participate in the study if they met the following criteria: 1)
 370 diagnosed with ASD level 2 of severity ¹ using the Autism Diagnostic Observation Schedule, Second Edition
 371 (ADOS-2, [26]), 2) not currently taking pharmacological treatment, 3) capable of interacting with a mobile phone
 372

373
 374 ¹While there may be a greater understanding of ASD in certain contexts and the severity levels might not fully capture the complexity of the
 375 condition, these levels are still the standard within the context of our study. To align with established definitions, we will use the term 'level'
 376 to specify the severity of ASD.

377 and 4) between the ages of 3 to 6 years, The staff at the child care center for children with ASD was responsible
378 for selecting children who met the inclusion criteria. To protect the privacy of participants and adhering to our
379 ethical protocol, we did not request access to their clinical records. Children in the NT group were eligible to
380 participate if they met the following criteria: 1) capable of interacting with a mobile phone 2) between the ages of
381 3 to 6 years 3) to be free from developmental disorders

382 We used three screening tools to get the best understanding of participants' development, and to identify
383 children at risk of developmental delays. Furthermore, we implemented a robust screening process using three
384 complementary assessments. Firstly, parents from both groups were asked to complete the Autism Spectrum
385 Quotient (AQ-10), a well-established screening tool for identifying ASD test [4] and the Short Sensory Profile
386 (SSP) survey [60] which evaluates sensory processing abilities in children, to detect any atypical sensory processing.
387 As teachers/psychologist have most experience assessing motor skills, they completed the Ages & Stages
388 Questionnaires-3 (ASQ-3) [2]. Any child whose test results suggested a risk for undiagnosed developmental
389 disorders were invited to play and complete the game, but their data were excluded from the NT group. This
390 approach allowed us to confidently categorize the remaining participants as NT, thereby enhancing the reliability
391 of our study results.

392 Table 1. Characteristics of study participants reported separately for children with ASD and NT
393

	ASD (n = 19)	NT (n = 36)
Gender		
Female	5	19
Male	14	17
Age		
Mean ± SD	4.36±0.68	4.78±0.91
AQ-10 score		
Mean ± SD	6.75 ±0.95	3.18 ±0.98
SSP		
Mean ± SD	30.85 ± 6.59	20.81 ± 7.63
ASQ-3		
Mean ± SD	29.16 ± 2.83	43.45 ± 11.46

409 4.2 Study procedure

410 The study lasted three months and was conducted in two locations: a typical private kindergarten and a center
411 specializing in children with ASD. Due to the distinct samples, we couldn't bring the children to the same lab
412 setting, so we didn't randomize the order of participants between the two groups.

413 We used a similar setup in both settings (Figure 2). As the game follows a scaffolding approach, we did not
414 randomly assign the children to different setups. Participants completed two phases of the study individually, the
415 first was completed in two sessions within the same week, and the second was completed the following week in
416 one session. Both phases are described in detail below.

417 **(1) Sensitization session.** We conducted two sensitization sessions, each on a different day in the same
418 week and with a five-minute duration [29, 63]. These sessions aimed to help children with ASD become more
419 receptive to using a smartphone before playing with *Feel and Touch*, especially if they had previously associated
420 smartphones with specific activities. During the sensitization session, children played casual games designed for
421 children aged between 3 and 6 years.

(2) **Completing the game.** To minimize distractions, the study was conducted in an individual room in each setting, where all the visual and auditory stimuli were removed. The room only had a table and a child-sized chair. On top of the table, we placed an iPhone 8 with a 4.7" screen to run the game. We attached a grip phone ring holder to the back of the mobile phone to facilitate its manipulation 4. Two cameras were used in the study to enhance data collection: one to record the children's interactions and gather detailed information about their behavior, and a second camera to take photographs and document the study process. We asked the children to rest their arms on the table, allowing them to have better control of the mobile phone. Each child was accompanied during the session by a member of the research team. The head of the preschool and caregivers assisted children in navigating between their classroom and the therapy room where our intervention was held. We asked the head of the preschool and caregivers to stay at least 1.5 meters away from the children and not to touch the screen nor provide any further instructions to the child. This approach ensured that the children's interaction in the game remained uninfluenced

Children played and complete the *Feel and Touch* game. The game has a predetermined duration of 12 minutes. All children used their dominant hand to perform the touch interactions. First, they viewed the story of the spider and then completed a tutorial to ensure they understood the dynamics of the *Build the Web* activity. After engaging in the tutorial, participants completed three levels of the activity. Children then went through a similar procedure, completing a tutorial for the *Feed the spider* activity and finalized its three levels. The final part of the game is the *Dancing on the web* activity. At the end of the game, children completed a survey about their experience.

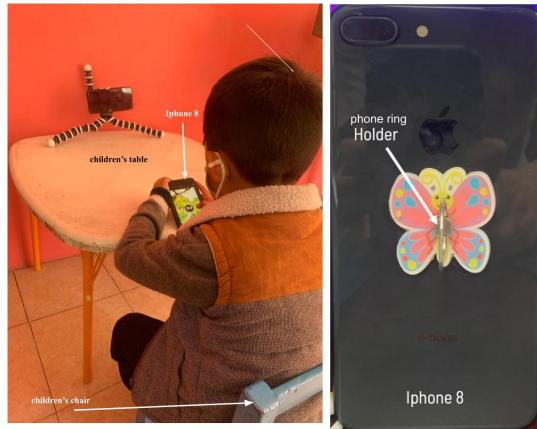


Fig. 4. The left side shows the setup used in the study, and the right side shows the phone ring holder attached to the iPhone.

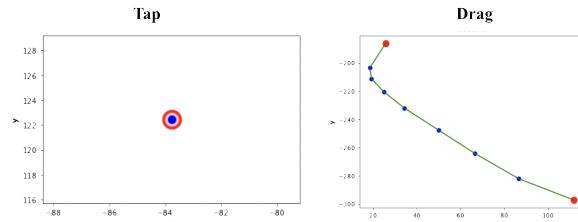
4.3 Data Collection

Touch interactions were captured at a resolution of 60 frames per second during the participant's interaction with the game. The final participant interaction data were stored in a CSV file used for statistical analysis. We collected a touch interaction when a finger touches the screen and continues until the user lifts the same finger from the screen. During this time, users can either keep their finger in place (tap gesture) or move it across the screen (drag gesture) (see Figure 5). For each touch interaction we created a vector of touch-objects [49] at a time t where each vector contains the timestamp indicating when the touch occurred, size of the area in points covered by the finger in a time t , centroid of the area covered by the finger location at the time t (x, y, z), force of

471 the touch occurring at the screen in N, the values of the inertial sensor at time t (accelerometer, ax , ay , az , and
 472 gyroscope, gx , gy , gz).

473

474



481

482 Fig. 5. The figure shows a representation of the touch interactions. The left-side shows a tap and the right-side shows a drag
 483

484

485 In addition to the touch interactions, we recorded in the same file the time when the game gave an instruction,
 486 and we recorded the type of instruction (verbal, visual, verbal+visual).

487

488

4.4 Data Preparation

489

490 To ensure data quality, we cleaned the dataset, which involved separating the touch interactions from the
 491 instructions and removing columns with the same or no variance.

492

493 Table 2. Dataset used for the statistical analysis and machine learning process. Labeling NT for neurotypical children, ASD
 494 for children with Autism Spectrum Disorder

	NT	ASD
subjects (n)	36	19
Total touch interactions,	10541	6043
Average touch interaction per participant \pm sd	335.72 ± 225.95	301.17 ± 195.46

500

501

502

4.5 Feature Extraction

503

504 From the touch interactions and the inertial motion sensors of the phone, we extracted a vector of features that
 505 describe the child's interaction with the mobile phone. In addition, we selected features explored in mobile touch
 506 interactions, focusing on aspects related to the geometry of touch interaction [8, 53, 87], performance [8], and
 507 movement produced in the phone [18] (For more details, see supplementary Table A). The consecutive data
 508 from each gesture were transformed into a single feature vector, which includes 13 features derived from the
 509 internal data of the phone, the screen, and the interaction of the children (e.g., force, accelerometer, gyroscope).
 510 For each feature, we calculated statistical values (i.e., mean, standard deviation). We categorized the features into
 511 two groups; (1) tilt: describes how children hold and rotate the phone. (2) touch: describes the screen space that
 512 children use to perform touch interactions and how children perform touch interactions over time.

513

514 To extract the features, we initially grouped the touch interactions by ID. We then calculated the features
 515 described in Appendix A for each touch interaction, obtaining statistical values to represent their distributions.
 516 Following this feature extraction process, we assigned labels to each touch interaction, categorizing them as ASD
 517 or NT.

518 4.6 Feature analysis
519

520 In order to understand how each feature distinguishes between children with ASD and NT, and identify digital
521 markers of ASD, we divided this analysis into two parts.

522 The first part of our approach involves reducing features by selecting the most relevant ones to build a touch
523 interaction classification model. The goal is to identify features that can improve the model's accuracy and
524 effectiveness. According to the literature, focusing on the most relevant features may aid in uncovering digital
525 markers in machine learning and filter the redundant and\or irrelevant features that could negatively impact the
526 model performance [52]. For this work, we used ANOVA F-test feature selection, which reduces overfitting since
527 the results are independent/separate from the classifier algorithm; in this manner, the selected feature set is more
528 general and not fine-tuned to any specific classifier [80]. The method calculated the ratio of variance between
529 groups and within a group for each feature; greater value of F-score means that the distances within the groups
530 are less and distances between the groups are more. The features were ranked based on higher values of F-score.
531 It's considered best practice to evaluate model configurations on classification tasks using repeated stratified
532 k-fold cross-validation [22]. Therefore, we employed a Grid SearchCV² to systematically test various numbers of
533 selected features and determine which configuration yielded the best-performing model.

534 The second part of our approach involves comparing the interactions of ASD and NT children using the
535 selected features, with the goal of identifying distinct patterns and digital markers. We first conducted a Shapiro
536 test to assess the normality of our data, which confirmed its non-normal distribution. Group differences in age,
537 sex, and features between children with ASD and NT were assessed using a two-sided Mann-Whitney-U test
538 with a significance at the 0.5 level. We calculated the effect size (d) using Cohen's D for each relevant features.
539 Additionally, we used Spearman correlation (r) to examine the association between demographic features (age,
540 sex) and game performance, and the association between the clinical tests administered during recruitment and
541 game performance. We manually grouped the relevant features to define digital markers, carefully selecting and
542 categorizing them based on their significance and relevance to create distinct and meaningful markers.

543 4.7 Modeling
544

545 For the classification task, we utilized 10,541 touch interactions from 36 NT children and 6,043 touch interactions
546 from 14 children with ASD. These interactions were crucial for training and evaluating our model's performance
547 in distinguishing between the two groups (i.e., interactions from NT vs interaction from ASD) based on their
548 touch interactions (Table 2)

549 4.7.1 *Classification Algorithm.* We recognize the importance of identifying subgroups of ASD [101], however, as
550 an initial step in addressing this problem's complexity, we focused our study on a supervised binary classification
551 task

552 We defined the binary classification task using a logistic regression model to distinguish the touch interactions
553 of children with ASD from NT children.

554 We used scikit-learn [75], a library for machine learning in Python, which provides both supervised and
555 unsupervised learning algorithms. Furthermore, our main goal was to evaluate the impact of feature selection on
556 model performance. To do this, we trained two models: one using all available features to establish a baseline,
557 and another using only the features selected in the previous stage. This comparison allowed us to assess the
558 effectiveness of our feature selection process in improving model accuracy and efficiency.

559 4.7.2 *Validation and performance evaluation.* To validate our results, we employed 10-fold cross-validation,
560 which is known to provide a reliable estimate of model performance [20]. However, when a dataset includes

561 ²https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

multiple measurements from the same participant, using Group K-fold cross-validation³ is recommended to avoid overfitting and assess the model's generalizability, considering individual variability [89]. Group K-Fold cross-validation prevents multiple touch interactions from the same child from being split between the training and validation or test sets. In our case, we set K equal to the number of participants, ensuring that each iteration designated one of the k groups as test data while using the remaining (k-1) groups as training data. This method provided a more accurate evaluation of our model's performance by accounting for the inherent variability between participants.

To evaluate the performance of the model, we selected standard evaluation metrics including precision, recall, F-score (F1), the area under the curve (AUC), and classification accuracy (CA). Given that our research aims to identify touch interactions of ASD, we wanted to avoid type 1 error; thus, we prioritize the metrics of precision and recall for model comparison.

575

576

577

5 RESULTS

578

5.1 Comparisons of interactions in children with ASD versus NT

579

There were no statistical significance differences in age ($p=0.13$; two-sided Mann-Whitney test) between NT (N=36 children) and ASD (N=19 children) children, indicating a similar balanced distribution of age. Children with ASD ($M= 301$, $SD= 19.05$) and NT ($M= 335$, $SD= 22.5$) did not statistically differ in terms of the mean number of touches ($p=0.88$; two-sided Mann Whitney test) indicating similar levels of overall engagement with the game.

580

581

582

583

584

585

586

5.2 Correlations between touch interactions and clinical scores

587

We examined the correlations between total touch interactions of all children – both ASD and NT – and the AQ-10, SSP, ASQ scores (Figure 6) with the 14 relevant markers identified during the feature analysis. The AQ-10 was found to be slightly positively correlated with: touch vibration ($r=0.06$, $p\text{-value}<0.05$), with the tilt direction along x-axis ($r=0.02$, $p\text{-value}<0.05$), and along y-axis ($r=0.13$, $p\text{-value}<0.05$), with the touch velocity ($r=0.07$, $p\text{-value}<0.05$); and negatively correlated with the touch size ($r=-0.10$, $p\text{-value}<0.05$), and horizontal touch distance to the center ($r=-0.03$, $p\text{-value}<0.05$) although the magnitude of the negative correlation was small.

588

The SSP was found to be slightly positively correlated with tilt direction along y-axis ($r= -0.15$, $p\text{-value}<0.05$), touch size ($r=-0.07$, $p\text{-value}<0.05$), horizontal touch distance to the center ($r= -0.03$, $p\text{-value}<0.05$), and touch velocity ($r=0.05$, $p\text{-value}<0.05$); and negatively correlated with touch vibration ($r= -0.11$, $p\text{-value}<0.05$), tilt direction along x-axis ($r= -0.01$, $p\text{-value}<0.05$), and touch size ($r=-0.06$, $p\text{-value}<0.05$).

589

The ASQ was found to be slightly positively correlated with touch vibration ($r= 0.10$, $p\text{-value}<0.05$), tilt direction along y-axis ($r=-0.02$, $p\text{-value}<0.05$), tilt velocity ($r=0.10$, $p\text{-value}<0.05$), touch velocity ($r=0.07$, $p\text{-value}<0.05$); and negatively correlated with touch size ($r=-0.21$, $p\text{-value}<0.05$), horizontal touch distance to the center ($r=-0.09$, $p\text{-value}<0.05$).

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

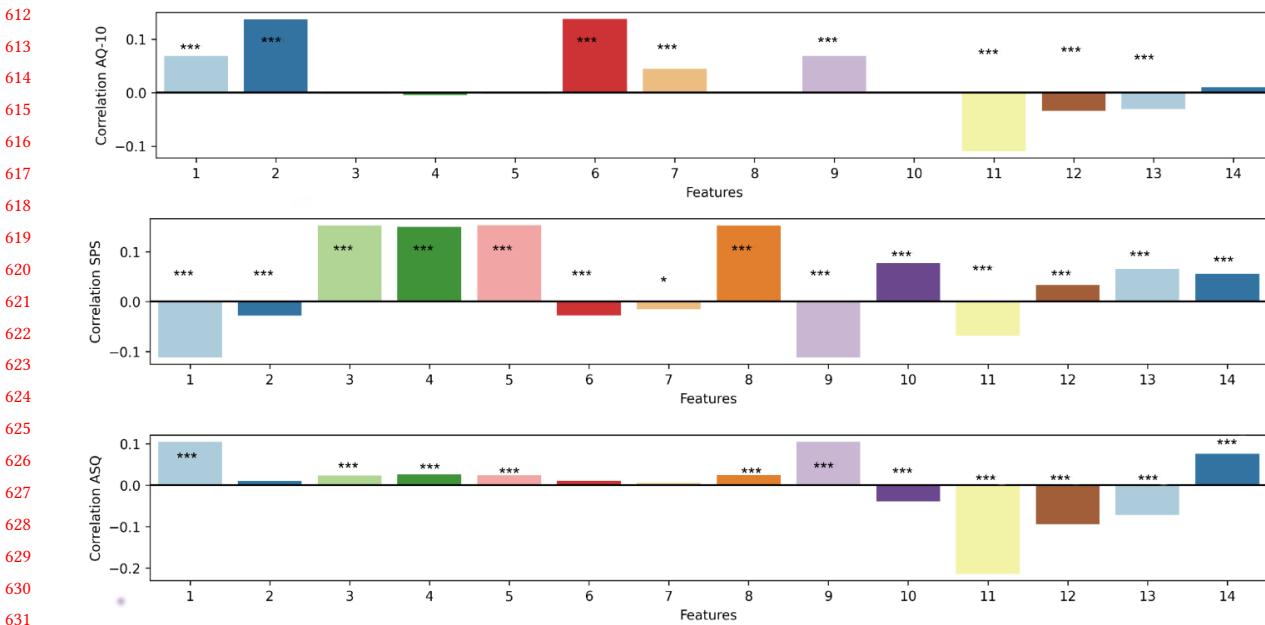
608

609

³https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GroupKFold.html

610

611



633 Fig. 6. Correlations between motor performance and clinical scores. (1) Final flick along X-axis. (2) Average flick along X-axis.
 634 (3) Average flick along Y-axis (4) Initial flick along Y-axis (5) Final flick along Y-axis (6) Max flick along Y-axis (7) Tilt (8)
 635 Angular velocity (9) Total acelerario (10) Average Radius (11) Std Radius (12) Distance to the center (13) Final touch in x (14)
 636 Average speed. * $p<0.05$; ** $p<0.01$; *** $p<0.001$;

651 5.3 Digital Markers

652 As previously noted, our feature analysis narrowed the scope to 14 features that were most pertinent in differ-
 653 entiating touch interactions between ASD and NT groups. Further analysis revealed three characteristics that
 654 showed significant differences between ASD and NT children (see Figure 7). These three features emerged as the
 655 most critical in our study (see Table 3).

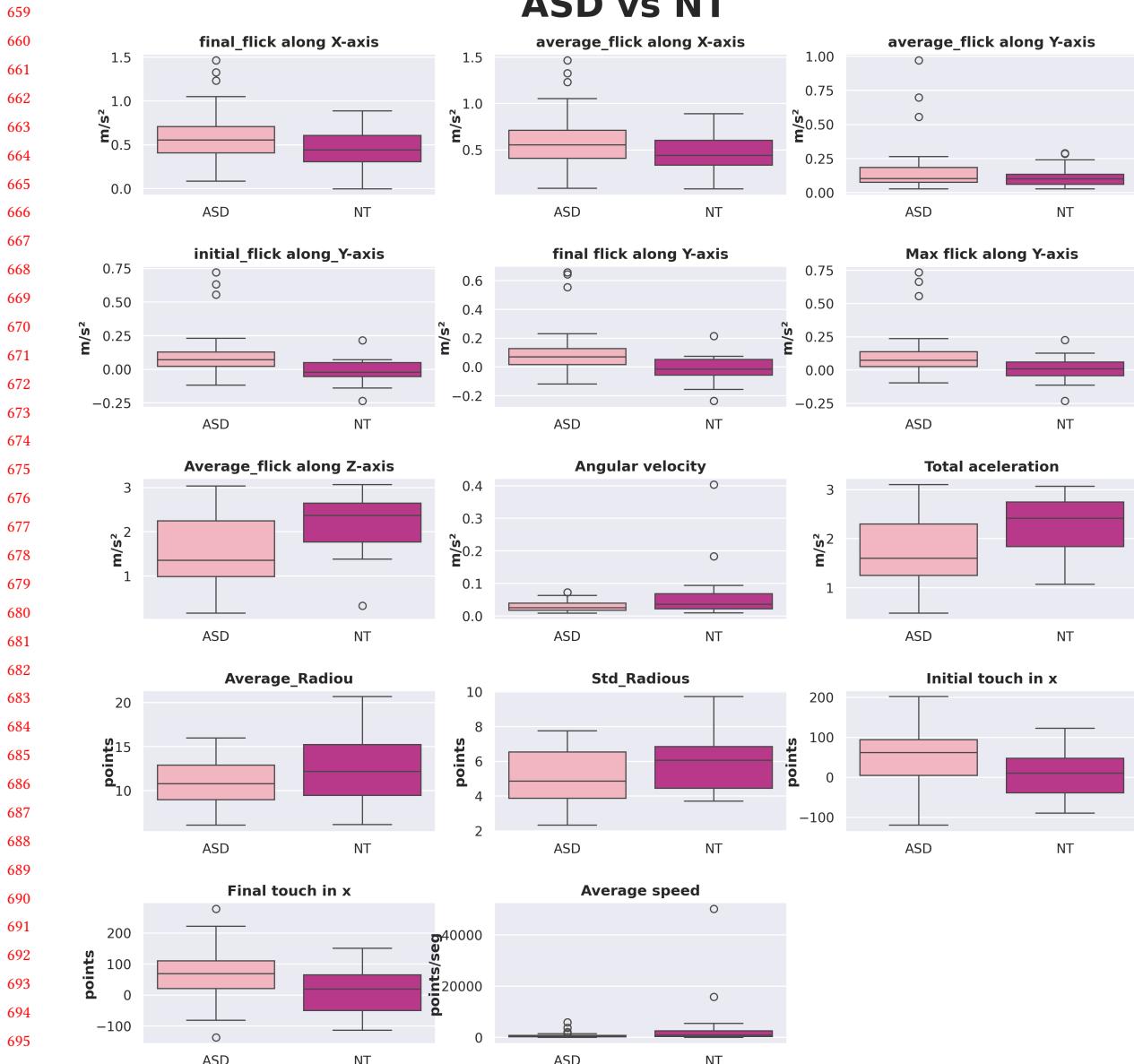
ASD vs NT

Fig. 7. Box plot of the features that best distinguish children with ASD and NT children. Box plots show median values for each population.

706 Table 3. Features and digital markers extracted from the touch interactions. The table shows the digital markers that best
 707 distinguish children with ASD from NT and from other neurodevelopmental disorders
 708

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729	720 721 722 723 724 725 726 727 728 729	720 721 722 723 724 725 726 727 728 729	720 721 722 723 724 725 726 727 728 729	720 721 722 723 724 725 726 727 728 729
Tilt	Tilt direction	The mobile phone is accelerated by tilting movement in the desired direction (Tilting). From the internal acceleration sensors, we compute changes different measurements by rotating the phone. The phone could be tilting to the left or right (horizontal rotation), up or down (vertical rotation), and back or forward (deep rotation).	Average flick along Z-axis	
Touch	Total acceleration	Acceleration of the vibration produced on the phone when a child performs a touch interaction.	Vibration wave total acceleration	
	Horizontal touch Distance to the center	Horizontal distance (x-axis) in points from the initial and end touch and the center of the phone display.	Initial touch in x.	

730
 731 5.3.1 *Tilt*. Although all participants used the mobile phone with a phone ring holder to reduce movement
 732 and make it more comfortable to use, touch interactions and the way they positioned the phone in their hands
 733 influenced the tilt direction. The tilt on the Z-axis shows that children with ASD (2.19 ± 0.68) on average tilt the
 734 phone more forward/backward than NT children (1.49 ± 0.67 , $d = 0.9$). Figure 7 shows that in the case of children
 735 with ASD, approximately 75% of interactions are between 2 and 3 m/s², while interactions for NT children are
 736 more scattered.

737 5.3.2 *Touch*. Although all participants used the same mobile phone and completed the same game, there were
 738 also differences in touch-related features. For instance, the total acceleration shows that on average, touch
 739 interactions of children with ASD (2.19 ± 0.68) result in higher acceleration compared to NT children (1.49 ± 0.67 , $d = 0.85$). Figure 7 illustrates how approximately 75% of interactions by children with ASD fall between 2 and 3
 740 m/s², whereas 75% of interactions by typically developing children are below 2.5 m/s².

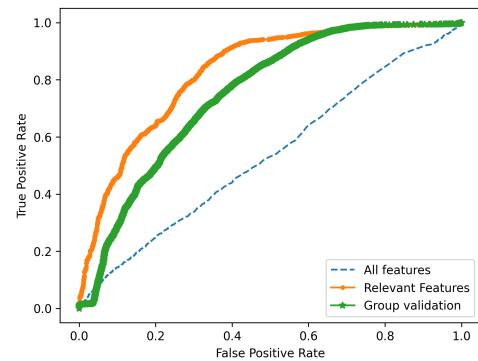
741 The horizontal distance to the center of the screen shows that, on average, children with ASD (5.04 ± 6.07) tend
 742 to make touch interactions closer to the center compared to typically developing children (51.79 ± 68.22 , $d = 0.7$).
 743

744 5.4 Touch classification performance

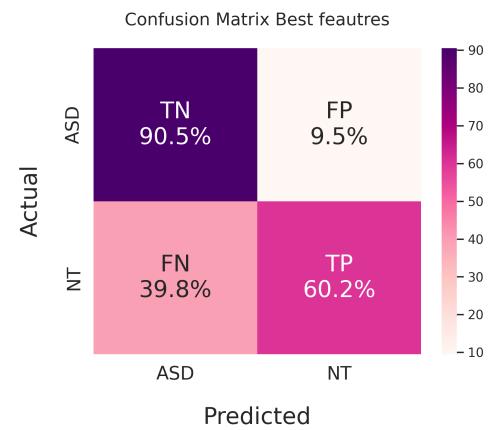
745 As described in 4.7 Modeling, we built two classification models, one with all features captured and another
 746 with the top features identified from the previous step. As shown in Figure 8, through the utilization of the most
 747 relevant features, our model achieves a precision of 79%, demonstrating its efficacy in accurately discerning
 748 children with ASD while mitigating false positives. Furthermore, with a recall of 80%, our model identifies most
 749 touch interactions of children with ASD in the dataset. Overall, we successfully constructed a model capable of
 750 accurately classifying touch interactions.
 751

The group validation shows similar results, we reached a precision of 76%-79% and a recall of 80%-87%. (Table 4). This performance is consistent with the individual touch interaction validation, demonstrating the model's efficacy in accurately discerning children with ASD and mitigating false positives across different datasets.

The model demonstrated the ability to classify touch interactions with high precision and recall, showcasing its effectiveness in distinguishing between touch interactions of ASD and NT children.



(a) ROCs and AUCs values were derived from logistic regression classifiers. These classifiers compared the performance of a model incorporating all extracted features to another model that included only the most relevant features for distinguishing between children with ASD and NT children.



(b) Confusion Matrix depicting the classification performance of a predictive model distinguishing between ASD and NT children, with True Negative (TN) rate of 90.5%, False Positive (FP) rate of 9.5%, False Negative (FN) rate of 39.8%, and True Positive (TP) rate of 60.2%

Fig. 8. The figure illustrates the model efficacy through a visual representation of the ROC curve and confusion matrix.

Cross validation	Features	Accuracy	Precision	Recall	F1
10-fold	All features	60%	63%	89%	74%
10-fold	Relevant features	77%	79%	87%	83%
Group validation	Relevant features	72%	76%	80%	78%

Table 4. Performance metrics for classification models evaluated using different cross-validation methods and feature sets. The table compares accuracy, precision, recall, and F1 scores for models using all features with 10-fold cross-validation, relevant features with 10-fold cross-validation, and relevant features with group validation.*

6 DISCUSSION

6.1 Touch interactions differences as digital markers

Our results show that the mobile haptic game we developed can effectively promote touch interactions among neurodiverse children and capture haptic data with sufficient detail. This addresses the question: *Can haptic mobile games be effectively used to collect touch interactions from children?* The data collected is useful for uncovering differences in touch interactions among children.

800 Through an extensive feature analysis, we identified a total of three potential ASD digital markers that could
801 be used as a starting point for analyzing children's touch interactions. Those markers can be categorized into
802 two distinct groups: tilt and touch.

803 **Tilt.** Although all participants used the mobile phone with a phone ring holder, small movements over time
804 were captured by the phone. Small movements naturally occur when performing gestures on a phone that is
805 not fully static. Our results show that these small movements can be analyzed and used to distinguish touch
806 patterns for individuals with neurological disorders. In our study, children with ASD exhibited more pronounced
807 patterns of moving the phone toward and away from themselves. This could be partially explained because
808 children with ASD might either seek intense sensory stimulation being received from the vibrotactile feedback
809 provided by *Feel and Touch* or have engaged in stereotyped behavior. Indeed, research has reported similar
810 findings regarding how motor patterns of children with ASD influence their manipulation of mobile devices
811 [9, 82], though previous studies primarily concentrated on tablet usage and did not use haptic stimulation. These
812 results suggest that the exploration of hand movements and the incorporation of 3D gestures could reveal other
813 unknown touch differences beyond those we can uncover from tracking 2D touch interactions. Further research
814 needs to explore the design space for refining the development of *Feel and Touch* or similar tracking applications
815 to incorporate interactions based on hand movements, such as 3D gestures, and their mapping to innovative
816 vibrotactile patterns. This approach could provide additional insights into the hand movements of children with
817 ASD and how vibrotactile patterns may influence such touch interactions.

818 **Touch.** Although all participants used the same mobile phone and there were no differences in the screen size,
819 there were differences in the space used by children with ASD to perform touch interactions. The literature has
820 found similar results by using mobile devices with a larger screen, like tablets [9, 76]. In addition to the space
821 touched we explored the total acceleration produced by the touch interactions, this digital marker has previously
822 been explored in other contexts, such as analyzing the total acceleration of adults to be used as a unique ID to
823 unblock mobile phones [18]; but has not been used in the screening of ASD. Our results show that there are
824 differences in how ASD and NT children perform touch interactions. The total acceleration produced by children
825 is a prominent feature that distinguishes children with ASD from NT children. This digital marker had a large
826 effect size ($d = .85$) which means that there is a significant difference between the total acceleration produced by
827 children with ASD, this result may be related to the vibrotactile patterns provided by *Feel and Touch* and the
828 sensory difficulties presented by children with ASD [34].

829 While research has shown that children with ASD have difficulties to process vibrations [38, 64]; more explicit
830 studies are needed to fully understand how vibrotactile patterns affect the touch interactions of children with
831 ASD and what component of the vibrotactile patterns is more important to distinguish between children with
832 ASD and NT. To our knowledge, little research has been conducted about the use of touch vibration produced
833 to distinguish children with ASD. Touch-based digital markers could also be related to sensory-motor-related
834 impairments [?] and differences in visual processing [72] of children with ASD. Our findings align with existing
835 research on digital markers of ASD that focus on touch interactions [9, 76].

836 Further exploration is required to investigate if there are touch interaction behavior patterns that can also
837 signal differences between children with ASD and NT.

839 6.2 Potential as an innovative screening tool for ASD

840 The widespread availability and portability of smartphones present a unique opportunity for deploying screening
841 tools across diverse demographics, including those in remote or underserved areas [99]. Utilizing smartphones
842 for data collection and analysis can alleviate some burdens on healthcare systems [16]. Traditional screening
843 methods often require substantial resources and may be limited by geographic or socioeconomic factors. A
844 smartphone-based screening tool offers a cost-effective solution that is both scalable and accessible, reducing the
845

need for extensive infrastructure and allowing for broader reach [59]. The integration of such technology could enhance screening efficiency and reduce costs, making early detection and ongoing monitoring more feasible for a larger population. Building on this potential, our study explored leveraging touch interaction data to develop a classification model designed to distinguish the touch interactions of children with ASD from those of NT.

6.2.1 Developing a Classification Model and Integrating It into a Mobile App for Early . Our study explored the potential of leveraging touch interaction data to develop a classification model designed to distinguish the touch interactions of children with ASD from those of NT children. Previous research has highlighted the importance of touch interactions in understanding behavioral and developmental differences in children with ASD [9, 76]. We constructed a classification model with promising precision and recall metrics, indicating its effectiveness in accurately distinguishing touch interactions of ASD from NT. This model can be integrated into the *Feel and Touch* mobile app, enabling seamless and continuous monitoring of touch interaction data. It can provide immediate feedback to caregivers, guiding them to seek further diagnostic evaluation and confirmation from healthcare professionals. It is important to note that our approach does not promote excessive smartphone usage among children. Rather, it is intended as a support tool to aid in ASD screening, used in a controlled and minimal manner to complement existing diagnostic practices. The goal is to enhance early detection without compromising healthy development and ensuring that technology serves as an adjunct to, rather than a replacement for, traditional evaluation methods.

6.2.2 Addressing Challenges and Enhancing Model Performance. Despite these promising aspects, several challenges must be addressed before widespread implementation can be achieved. Our model's high recall compared to precision indicates a higher rate of false positives, which could lead to unnecessary concern among parents and caregivers. This issue underscores the importance of managing uncertainty effectively to prevent undue alarm. Strategies to address this include refining the model to balance sensitivity and specificity. Sensitivity measures the model's ability to correctly identify true positives, while specificity assesses its ability to correctly identify true negatives [5, 39]. Improving this balance is essential for reducing false positives and enhancing the model's overall reliability. Understanding the relationship between digital markers and specific screening assessment scores is crucial for refining the model and integrating it into existing diagnostic protocols. Further studies should focus on validating the model's effectiveness in real-world settings.

6.2.3 Clinical Decision-Making and Model Integration. The role of this model in clinical decision-making requires further exploration. While it can predict the class of each touch interaction, additional research is needed to determine the optimal amount of data required and the appropriate thresholds for referring children to specialists. Preliminary findings suggest that an average of 329 touch interactions can successfully identify about 85% of children needing further assessment. However, it is essential to refine these thresholds and validate their accuracy to improve the early identification of ASD. Moreover, enabling specialists to adjust the tool's sensitivity and providing clear indications of its confidence levels are critical for managing uncertainty. Transparent communication about the model's predictions and confidence can help caregivers make more informed decisions, reducing unnecessary anxiety [84]. Understanding the likelihood of true positives and negatives allows parents to seek further evaluation when appropriate.

6.3 Unlocking the sensory frontier through mobile sensing and haptic interfaces

There is significant untapped potential in developing and leveraging accessible technology for tracking touch interactions and hand movements to assist in the screening and monitoring of children with neurodevelopmental disorders [9, 76]. Even though we followed a user-centered approach to design *Feel and Touch*, there remain numerous research questions concerning user engagement and gamification to sustain users' interest when designing similar applications. Key inquiries include determining the appropriate incentives to motivate users to

894 collect and share their touch interactions data [103], and drawing insights from the field of Personal Informatics to
895 enhance user engagement and ensure long-term usage is crucial [69]. Furthermore, investigating methods to tailor
896 the application to individual user needs and preferences, considering factors such as age, sensory sensitivities,
897 and developmental stage, can enhance its effectiveness and user experience. Moreover, ongoing collaboration
898 with clinicians, educators, and caregivers is essential to ensure that the technology meets the diverse needs of
899 its users and aligns with clinical objectives. By addressing research questions related to data sharing and user
900 engagement, we can further optimize the utility and impact of technology-based tools like *Feel and Touch* in
901 supporting the assessment and intervention for children with neurodevelopmental disorders.

902 Mobile sensing offers a promising avenue for uncovering digital markers in healthcare, presenting a paradigm
903 shift in how we monitor and understand various health conditions [13]. By leveraging the sensors embedded
904 in smartphones, such as accelerometers, gyroscopes, GPS, cameras, and microphones, researchers can collect
905 a diverse array of data in real-time and in naturalistic settings. This continuous and unobtrusive monitoring
906 enables the capture of nuanced behavioral, physiological, and environmental signals that may serve as digital
907 markers for health and disease. Importantly, mobile sensing provides a holistic view of individuals' daily lives,
908 capturing patterns and trends that may go unnoticed in traditional clinical settings [48]. These digital markers
909 have the potential to revolutionize healthcare by enabling early detection, personalized interventions, and remote
910 monitoring of various conditions, including mental health disorders, neurological conditions, cardiovascular
911 diseases, and respiratory illnesses [31]. However, challenges such as data privacy, security, validation, and
912 integration into existing healthcare systems need to be addressed to fully realize the potential of mobile sensing
913 in uncovering digital markers for healthcare. Nonetheless, the prospect of harnessing ubiquitous smartphones as
914 powerful health monitoring tools holds immense promise for improving patient outcomes and advancing our
915 understanding of health and disease.

916 Moreover, haptic interfaces hold immense promise as a versatile tool for advancing our understanding of tactile
917 processing differences and paving the way for innovative interventions in the realm of neurodevelopmental
918 disorders. By harnessing the power of tactile feedback, these interfaces present an opportunity to delve deeper
919 into the nuances of sensory processing and tactile sensitivity among individuals, particularly those with neu-
920 rodevelopmental disorders like ASD. Our prototype was limited in the sense of relying on the motors available
921 in a smartphone, which restricted control over the characteristics of the motor vibration. The use of multiple
922 vibration motors could enable richer and more complex vibrotactile patterns, facilitating developers in creating
923 diverse experiences. Without the ability to adjust vibration levels, the application may lack adaptability to the
924 individual preferences of children with ASD, who often exhibit diverse tactile sensitivities.

925 Through carefully designed haptic feedback patterns, researchers can elucidate how variations in vibrotactile
926 stimulation influence the sensory experiences and behavioral responses of individuals across different populations.
927 Indeed, numerous research projects are underway to investigate methods for altering surfaces using vibrotactile
928 patterns to simulate textures [70] such as roughness, adhesion, sharpness, and more. These efforts aim to replicate
929 tactile sensations through haptic feedback, offering users a multisensory experience that enhances immersion
930 and interaction in virtual environments. By leveraging advancements in haptic technology, researchers are
931 exploring innovative ways to mimic real-world textures and sensations, thereby expanding the possibilities
932 for applications across various domains, including gaming [93], virtual reality [102], and assistive technology
933 [51]. These developments not only contribute to the advancement of haptic interfaces but also hold promise
934 for revolutionizing touch interactions. Furthermore, exploring the interplay between haptic interfaces and
935 sensory integration processes can shed light on potential therapeutic interventions aimed at modulating sensory
936 processing and improving sensory integration abilities in clinical settings.

941 6.4 Ethical considerations

942 Data privacy is a significant concern in health technology applications [14, 44], while we are recording touch
943 interactions, no sensitive information about children is being collected. The data is anonymized using an ID, and
944 we strictly record interactions within the Feel and Touch app. We do not access or record any information that
945 could potentially reveal sensitive data, such as passwords. Furthermore, if a child closes the game or sends it
946 to the background, Feel and Touch immediately ceases recording. At this point, the data is temporarily stored
947 in the phone's internal storage. However, it is important to acknowledge that future work will need to address
948 encryption techniques to further safeguard this data and ensure comprehensive protection against unauthorized
949 access.

950 The literature emphasizes the importance of providing users with clear explanations about the results, avoiding
951 the use of machine learning models to black boxes [84]. By incorporating digital markers, we aim to offer
952 transparency and understanding of the results. For future real-world applications, it is crucial that clinicians
953 receive not only the classification results but also the digital markers to comprehend these outcomes fully. We
954 need to collaborate closely with experts to determine how best to convey this information, define appropriate
955 thresholds, and ensure the practical and ethical application of these models in clinical settings.

956 It is important to highlight that we are not attempting to replace the diagnosis made by an expert. The literature
957 has shown that the use of machine learning applications must be taken as a complement to the diagnostic process
958 to avoid misuse [100]. Machine learning models can assist in early detection and provide valuable insights [100],
959 but they cannot replace the nuanced judgment of a trained clinician. Ethically, it is essential to maintain the
960 clinician's role in the diagnostic process to ensure patient safety and uphold the integrity of medical practice.

961 One ethical issue in applications such as the one presented in this study is the risk of stakeholders misinter-
962 preting or manipulating results. To address this, it is essential to establish guidelines for interpreting results and
963 ensure clear communication with parents. This includes discussing the potential for false positives and false
964 negatives, the confidence level in the model's predictions, and the appropriate actions to take based on the results.

965 By addressing these ethical considerations and potential risks proactively, we can ensure that the deployment
966 of this screening tool is both responsible and effective, ultimately contributing to better outcomes for children
967 with ASD and their families.

968 6.5 ASD diagnostic in Latin America

969 Cultural and socio-economical factors play a significant role in how ASD is identified and understood in different
970 regions [11]. Cultural dynamics significantly impact both the timing and accuracy of ASD diagnoses, as well as
971 the availability and accessibility of intervention services [33]. In many Latin American cultures, there is often a
972 lack of awareness or understanding of ASD among the public and healthcare professionals, which can delay the
973 recognition of symptoms and subsequently postpone diagnosis [68]. Cultural beliefs and stigmas may lead to
974 misinterpretation of developmental delays as mere behavioral issues, thereby preventing early identification and
975 intervention [73]. Additionally, varying cultural attitudes toward mental health and developmental disorders
976 can influence how symptoms are perceived by parents, educators, and healthcare providers, potentially leading
977 to underreporting or misdiagnosis [73]. Furthermore, cultural stigma and misconceptions about developmental
978 disorders can also affect the willingness of parents to seek professional help. In many Latin American communities,
979 there may be a reluctance to acknowledge or address developmental issues due to fear of social ostracism or
980 misunderstanding of the condition [67].

981 Moreover, the availability and accessibility of intervention services are heavily influenced by cultural and
982 socioeconomic factors. Differences in healthcare infrastructure and access to specialized services can impact
983 the consistency and accuracy of diagnoses and can restrict access to specialized ASD services, which are often
984 concentrated in urban areas, leaving rural populations underserved [17]. Cultural barriers, such as mistrust of
985

988 medical professionals or preference for traditional healing practices, may also impact the willingness of families
989 to engage with formal healthcare services. This situation is compounded by socioeconomic disparities that can
990 hinder families' ability to afford and access necessary interventions.

991 By focusing on this underrepresented region, our study not only addresses critical gaps in current research,
992 regarding studies from these countries but also provides valuable insights that can inform and improve ASD
993 diagnosis and perception in Latin America.
994

995 7 LIMITATIONS

996 The main limitation of our work, like that of others addressing similar research questions, is the sample size
997 and the fact that we conducted the study in only one clinic and one school in central Mexico. Consequently,
998 like many studies conducted in real-world settings, our dataset is imbalanced. It is interesting to note that the
999 sample collected reflect the inherent difficulties in recruiting children with ASD in Mexico, especially as many
1000 Mexican children remain undiagnosed or receive diagnosis after the age of 5 [43]. However, our chosen sample
1001 size strikes a balance between precision and feasibility, enabling a thorough exploration of the research questions
1002 of this work. Past studies investigating machine learning for identifying digital markers of individuals with
1003 neurodevelopmental disorders have demonstrated that sample sizes ranging from as low as 11 [98] to as high
1004 as 45 participants ensure adequate statistical power and representativeness [35]. This body of work strongly
1005 advocates that a small sample can suffice for a study when the dataset maintains high-quality standards. By
1006 adhering to these insights, our study attains the requisite statistical power to discern meaningful effects and
1007 furnish dependable insights within the targeted domain. Expanding the sample of children diagnosed with ASD
1008 could provide more information and improve the accuracy of the current model.
1009

1010 Another limitation of our dataset is that by the size we were unable to explore a multi classification task. By
1011 moving beyond binary classification and embracing the complexity of the spectrum, we can make significant
1012 strides in meeting the diverse needs of the ASD community [101]. This approach will enable us to develop more
1013 personalized and effective diagnostic tools, which can identify subtle differences and specific characteristics
1014 within subgroups of ASD. It will also facilitate the creation of tailored intervention strategies, ensuring that
1015 each individual receives support that is precisely suited to their unique profile. To improve the robustness and
1016 applicability of our model, future research should focus on collecting larger, more diverse datasets. Such datasets
1017 should include a wider range of participants, representing various ages, genders, ethnicities, and comorbid
1018 conditions. By doing so, we can develop more sophisticated and nuanced classification systems that better reflect
1019 the spectrum nature of ASD. This would allow for more accurate identification of subgroups within the spectrum,
1020 leading to tailored interventions and support strategies that address the specific needs of individuals. Additionally,
1021 employing unsupervised learning techniques and clustering methods could help uncover hidden patterns and
1022 relationships within the data, providing deeper insights into the heterogeneity of ASD
1023

1024 One of the limitations of the *Feel and Touch* game is its exclusive compatibility with iOS devices, which restricts
1025 its accessibility to a broader audience that could potentially benefit from this tool. Additionally, iOS devices
1026 feature only a single vibration motor, imposing constraints on the range of vibration intensity levels that can be
1027 utilized. These limitations may impede the comprehensive exploration of crucial aspects of tactile interactions in
1028 children with ASD. For instance, the limited capacity to vary vibration intensity may hinder the assessment of
1029 the child's ability to discern the precise location of haptic feedback, potentially limiting the depth of insights
1030 gained into the tactile processing abilities of these children. Consequently, while the *Feel and Touch* game offers
1031 valuable insights into tactile interactions, its platform compatibility and hardware limitations pose challenges in
1032 fully capturing the nuances of tactile processing in children with ASD. Addressing these limitations through
1033 platform diversification and enhanced vibration control mechanisms could significantly enhance the utility and
1034 effectiveness of the *Feel and Touch* game as a diagnostic and therapeutic tool in ASD research and intervention.
1034

1035 The identification of digital markers for children with ASD has been a persistent endeavor in the field. While
1036 many studies have utilized environmental sensors and mobile devices to collect data and extract features, few have
1037 tapped into the full potential of mobile technology, particularly haptic interfaces, to gather touch interactions.
1038 Our study introduces an innovative approach by exploring the design and deployment of a mobile haptic game
1039 named *Feel and Touch*. By continuing to explore more effective methods for extracting digital markers, we aim to
1040 enrich the literature and contribute to developing a tactile phenotype for ASD, which could enhance screening
1041 processes.

1042 Additionally, the intervention was conducted in two distinct locations, which may have introduced environ-
1043 mental factors affecting the results. To address this, the research team standardized the protocol, used identical
1044 equipment, and had a single researcher deliver the intervention. However, there are uncontrollable variables
1045 might limit the generalizability of the findings across other settings and populations, and should be considered
1046 when interpreting the results.

1047 8 CONCLUSION

1048 In this paper, we described a study aimed at measuring touch interactions for children with ASD and NT children.
1049 The design of *Feel and Touch* and results from its usage demonstrated the feasibility of leveraging the haptic
1050 capabilities of smartphones to collect touch interaction data that can uncover differences in the way children
1051 with ASD interact with a smartphone. Our research addressed several key questions: We confirmed that haptic
1052 mobile games like *Feel and Touch* can effectively capture detailed touch interactions from children. We also
1053 identified three digital markers, categorized into touch and tilt. These markers have been used to build models
1054 with promising precision and recall, suggesting their potential for accurate classification of touch interactions.
1055 Furthermore, we found that alterations in tactile processing in children with ASD can be measured through their
1056 interactions with haptic interfaces, as evidenced by the distinct touch patterns and phone movements observed.
1057

1058 These findings suggest that digital markers based on touch interactions could lead to the development of an
1059 innovative screening tool that could potentially pave the way for more accessible and cost-effective solutions that
1060 empower parents and caregivers to seek timely support and early intervention for their children's well-being,
1061 as well as expand the awareness of motor differences for children with ASD. Significantly, this study is among
1062 the first to collect touch interaction data from Mexican children, broadening the population scope and adding
1063 valuable context underrepresented in the field. It is imperative to support this line of work and continue exploring
1064 the potential of touch interactions in the screening and monitoring of neurological disorders. This study is also
1065 one of the first to exemplify the use of haptic interfaces in smartphones to collect touch interactions of children
1066 with ASD.

1067 ACKNOWLEDGMENTS

1068 We thank everyone involved in this project. To CONACYT, Jacobs Foundation, CERES Network and National
1069 Science Foundation (NSF) under award 2245495. Specially thanks to the institutions that gave us their support in
1070 the recruitment of children with ASD and NT

1072 REFERENCES

1073

- [1] George Aalbers, Andrew T Hendrickson, Mariek Mp Vanden Abeele, and Loes Keijsers. 2023. Smartphone-Tracked Digital Markers of
1074 Momentary Subjective Stress in College Students: Idiographic Machine Learning Analysis. *JMIR mHealth and uHealth* 11 (March 2023),
1075 e37469. <https://doi.org/10.2196/37469>
- [2] Pratibha Keshav Agarwal, Huichao Xie, Anu Sathyana Sathyapalan Rema, Victor Samuel Rajadurai, Sok Bee Lim, Michael Meaney, and
1076 Lourdes Mary Daniel. 2020. Evaluation of the Ages and Stages Questionnaire (ASQ 3) as a developmental screener at 9, 18, and 24
1077 months. *Early Human Development* 147 (Aug. 2020), 105081. <https://doi.org/10.1016/j.earlhumdev.2020.105081>
- [3] Mariano Alcañiz Raya, Javier Marín-Morales, María Eleonora Minissi, Gonzalo Teruel García, Luis Abad, and Irene Alice Chicchi Giglioli.
1078 2020. Machine Learning and Virtual Reality on Body Movements' Behaviors to Classify Children with Autism Spectrum Disorder.
1079

1082 *Journal of Clinical Medicine* 9, 5 (April 2020), 1260. <https://doi.org/10.3390/jcm9051260>

1083 [4] Carrie Allison, Bonnie Auyeung, and Simon Baron-Cohen. 2012. Toward Brief “Red Flags” for Autism Screening: The Short Autism
1084 Spectrum Quotient and the Short Quantitative Checklist in 1,000 Cases and 3,000 Controls. *Journal of the American Academy of Child
& Adolescent Psychiatry* 51, 2 (Feb. 2012), 202–212.e7. <https://doi.org/10.1016/j.jaac.2011.11.003>

1085 [5] Douglas G Altman and J Martin Bland. 1994. Diagnostic tests. 1: Sensitivity and specificity. *BMJ: British Medical Journal* 308, 6943
(1994), 1552.

1086 [6] American Psychiatric Association. 2013. *Diagnostic and statistical manual of mental disorders: DSM-5*. American Psychiatric Association.

1087 [7] Bernhard Angele and Jon Andoni Duñabeitia. 2024. Closing the eye-tracking gap in reading research. *Frontiers in psychology* 15 (2024),
1425219. <https://doi.org/10.3389/fpsyg.2024.1425219> Place: Switzerland.

1088 [8] Lisa Anthony, Radu-Daniel Vatavu, and Jacob O Wobbrock. 2013. Understanding the Consistency of Users’ Pen and Finger Stroke
1089 Gesture Articulation. In *Graphics Interface*. <https://doi.org/10.5555/2532129.2532145>

1090 [9] Anna Anzulewicz, Krzysztof Sobota, and Jonathan T Delafield-butt. 2016. Toward the Autism Motor Signature : Gesture patterns during
1091 smart tablet gameplay identify children with autism. *Nature Publishing Group* August (2016), 1–13. <https://doi.org/10.1038/srep31107>

1092 [10] Adel Ardalan, Amir H. Assadi, Olivia J. Surgent, and Brittany G. Travers. 2019. Whole-Body Movement during Videogame Play
1093 Distinguishes Youth with Autism from Youth with Typical Development. *Scientific Reports* 9, 1 (Dec. 2019), 20094. <https://doi.org/10.1038/s41598-019-56362-6>

1094 [11] Brandon S Aylward, Diana E Gal-Szabo, and Sharief Taraman. 2021. Racial, ethnic, and sociodemographic disparities in diagnosis of
1095 children with autism spectrum disorder. *Journal of Developmental & Behavioral Pediatrics* 42, 8 (2021), 682–689.

1096 [12] Bilikis Banire, Dena Al Thani, Marwa Qaraqe, and Bilal Mansoor. 2021. Face-Based Attention Recognition Model for Children with
1097 Autism Spectrum Disorder. *Journal of Healthcare Informatics Research* 5, 4 (Dec. 2021), 420–445. <https://doi.org/10.1007/s41666-021-00101-y>

1098 [13] Harald Baumeister and Christian Montag. 2019. *Digital phenotyping and mobile sensing*. Springer.

1099 [14] Jean-Christophe Bélisle-Pipon, Vincent Couture, Marie-Christine Roy, Isabelle Ganache, Mireille Goetghebeur, and I Glenn Cohen. 2021.
1100 What makes artificial intelligence exceptional in health technology assessment? *Frontiers in artificial intelligence* 4 (2021), 736697.

1101 [15] Antoine Bernas, Albert P Aldenkamp, and Svitlana Zinger. 2018. Wavelet coherence-based classifier: A resting-state functional MRI
1102 study on neurodynamics in adolescents with high-functioning autism. *Computer methods and programs in biomedicine* 154 (Feb. 2018),
1103 143–151. <https://doi.org/10.1016/j.cmpb.2017.11.017>

1104 [16] Paras Bhatt, Jia Liu, Yanmin Gong, Jing Wang, and Yuanxiong Guo. 2022. Emerging artificial intelligence–empowered mhealth: scoping
1105 review. *JMIR mHealth and uHealth* 10, 6 (2022), e35053.

1106 [17] Fatema Ali Bivarchi, Vahe Kehyayan, and Sadriya Mohd Al-Kohji. 2021. Barriers to the early detection and intervention of children
1107 with autism spectrum disorders: A literature review. *Journal of Nursing Education and Practice* 11, 11 (July 2021), 72. <https://doi.org/10.5430/jnep.v11n11p72>

1108 [18] Cheng Bo, Lan Zhang, Xiang-Yang Li, Qiuyuan Huang, and Yu Wang. 2013. SilentSense: silent user identification via touch and
1109 movement behavioral biometrics. In *Proceedings of the 19th annual international conference on Mobile computing & networking (MobiCom
'13)*. Association for Computing Machinery, New York, NY, USA, 187–190. <https://doi.org/10.1145/2500423.2504572>

1110 [19] Jaclin Boorse, Meredith Cola, Samantha Plate, Lisa Yankowitz, Juhi Pandey, Robert T. Schultz, and Julia Parish-Morris. 2019. Linguistic
1111 markers of autism in girls: evidence of a “blended phenotype” during storytelling. *Molecular Autism* 10, 1 (Dec. 2019), 14. <https://doi.org/10.1186/s13229-019-0268-2>

1112 [20] Tyler J. Bradshaw, Zachary Huemann, Junjie Hu, and Arman Rahmim. 2023. A Guide to Cross-Validation for Artificial Intelligence in
1113 Medical Imaging. *Radiology: Artificial Intelligence* 5, 4 (July 2023), e220232. <https://doi.org/10.1148/ryai.220232>

1114 [21] Frédéric Briand, Céline David, Silvia Silleresi, Joëlle Malvy, Sandrine Ferré, and Marianne Latinus. 2023. Voice acoustics allow classifying
1115 autism spectrum disorder with high accuracy. *Translational Psychiatry* 13, 1 (July 2023), 250. <https://doi.org/10.1038/s41398-023-02554-8>

1116 [22] Jason Brownlee. 2020. *Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and Data Transformation in Python*.

1117 [23] Rachael Bevill Burns, Hasti Seif, Hyosang Lee, and Katherine J. Kuchenbecker. 2021. A Haptic Empathetic Robot Animal for Children
1118 with Autism. In *Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction*. ACM, Boulder CO USA,
1119 583–585. <https://doi.org/10.1145/3434074.3446352>

1120 [24] Bill Byrom, Chris Watson, Helen Doll, Stephen Joel Coons, Sonya Eremenco, Rachel Ballinger, Marie Mc Carthy, Mabel Crescioni, Paul
1121 O’Donohoe, and Cindy Howry. 2018. Selection of and Evidentiary Considerations for Wearable Devices and Their Measurements
1122 for Use in Regulatory Decision Making: Recommendations from the ePRO Consortium. *Value in Health* 21, 6 (June 2018), 631–639.
1123 <https://doi.org/10.1016/j.jval.2017.09.012>

1124 [25] Kimberly L. H. Carpenter, Jordan Hahemi, Kathleen Campbell, Steven J. Lippmann, Jeffrey P. Baker, Helen L. Egger, Steven Espinosa,
1125 Saritha Vermeer, Guillermo Sapiro, and Geraldine Dawson. 2021. Digital Behavioral Phenotyping Detects Atypical Pattern of Facial
1126 Expression in Toddlers with Autism. *Autism Research* 14, 3 (March 2021), 488–499. <https://doi.org/10.1002/aur.2391>

1127 [26] MD Pamela C DiLavore Susan Risi Katherine Gotham Somer L Bishop Rhiannon J Luyster Whitney Guthrie Catherine Lord, Michael Rutter.
1128 2012. (ADOS®-2) *Autism Diagnostic Observation Schedule, Second Edition* \textbar WPS. Pearson. <https://www.wpspublish.com/>

1129 store/p/2648/ados-2-autism-diagnostic-observation-schedule-second-edition
1130 [27] Andrea Cavallo, Luca Romeo, Caterina Ansuini, Francesca Battaglia, Lino Nobili, Massimiliano Pontil, Stefano Panzeri, and Cristina
1131 Becchio. 2021. Identifying the signature of prospective motor control in children with autism. *Scientific Reports* 11, 1 (Feb. 2021), 3165.
1132 <https://doi.org/10.1038/s41598-021-82374-2>
1133 [28] Gokul Chittaranjan, Jan Blom, and Daniel Gatica-Perez. 2011. Who's Who with Big-Five: Analyzing and Classifying Personality
1134 Traits with Smartphones. In *2011 15th Annual International Symposium on Wearable Computers*. IEEE, San Francisco, CA, USA, 29–36.
1135 <https://doi.org/10.1109/ISWC.2011.29>
1136 [29] Franceli Cibrian, Jesus Beltran, and Monica Tentori. 2018. Assessing the Force and Timing control of Children with Motor Problems
1137 using Elastic Displays. In *Proceedings of the Proceedings of the 12th EAI International Conference on Pervasive Computing Technologies
1138 for Healthcare – Demos, Posters, Doctoral Colloquium*. EAI, 1–4. <https://doi.org/10.4108/eai.20-4-2018.2276348>
1139 [30] Andrea Coravos, Sean Khozin, and Kenneth D. Mandl. 2019. Developing and adopting safe and effective digital biomarkers to improve
1140 patient outcomes. *npj Digital Medicine* 2019 2:1, 1 (March 2019), 1–5. <https://doi.org/10.1038/s41746-019-0090-4> Publisher: Nature
1141 Publishing Group.
1142 [31] Andrea Coravos, Sean Khozin, and Kenneth D Mandl. 2019. Developing and adopting safe and effective digital biomarkers to improve
1143 patient outcomes. *npj Digital Medicine* 2, 1 (2019), 14.
1144 [32] Lucrezia Crescenzi Lanna and Mariona Grané Oro. 2019. Touch gesture performed by children under 3 years old when drawing and
1145 coloring on a tablet. *International Journal of Human-Computer Studies* 124 (April 2019), 1–12. <https://doi.org/10.1016/j.ijhcs.2018.11.008>
1146 [33] Anne De Leeuw, Francesca Happé, and Rosa A. Hoekstra. 2020. A Conceptual Framework for Understanding the Cultural and
1147 Contextual Factors on Autism Across the Globe. *Autism Research* 13, 7 (July 2020), 1029–1050. <https://doi.org/10.1002/aur.2276>
1148 [34] Anne M Donnellan, David A Hill, and Martha R Leary. 2013. Rethinking autism: implications of sensory and movement differences for
1149 understanding and support. 6 (Jan. 2013), 124. <https://doi.org/10.3389/fnhum.2012.00124>
1150 [35] Hanna Drimalla, Tobias Scheffer, Niels Landwehr, Irina Baskow, Stefan Roepke, Behnoush Behnia, and Isabel Dziobek. 2020. Towards
1151 the automatic detection of social biomarkers in autism spectrum disorder: introducing the simulated interaction task (SIT). *npj Digital
1152 Medicine* 3, 1 (Feb 2020), 1–10. <https://doi.org/10.1038/s41746-020-0227-5>
1153 [36] Indu Dubey, Rahul Bishain, Jayashree Dasgupta, Supriya Bhavnani, Matthew K Belmonte, Teodora Gliga, Debarati Mukherjee,
1154 Georgia Lockwood Estrin, Mark H Johnson, Sharat Chandran, Vikram Patel, Sheffali Gulati, Gauri Divan, and Bhismadev Chakrabarti.
1155 2024. Using mobile health technology to assess childhood autism in low-resource community settings in India: An innovation to
1156 address the detection gap. *Autism* 28, 3 (2024), 755–769. <https://doi.org/10.1177/1362361323118280>
1157 [37] Mats Anders Eriksson Elisabeth Fernell and Christopher Gillberg. 2013. Early diagnosis of autism and impact on prognosis: a
1158 narrative review. *Clinical Epidemiology* 5 (2013), 33–43. <https://doi.org/10.2147/CLEP.S41714> Publisher: Dove Medical Presseprint:
1159 <https://www.tandfonline.com/doi/pdf/10.2147/CLEP.S41714>
1160 [38] Svenja Espenhahn, Kate J. Godfrey, Sakshi Kaur, Carly McMorris, Kara Murias, Mark Tommerdahl, Signe Bray, and Ashley D.
1161 Harris. 2022. Atypical Tactile Perception in Early Childhood Autism. *Journal of Autism and Developmental Disorders* (April 2022).
1162 <https://doi.org/10.1007/s10803-022-05570-7>
1163 [39] Tom Fawcett. 2006. An introduction to ROC analysis. *Pattern recognition letters* 27, 8 (2006), 861–874.
1164 [40] Mareike Gabele, Simon Schröer, Steffi Husslein, and Christian Hansen. 2019. An AR Sandbox as a Collaborative Multiplayer Rehabilitation
1165 Tool for Children with ADHD. *Mensch und Computer 2019 - Workshopband*. <https://doi.org/10.18420/muc2019-ws-632>
1166 [41] Isaac R. Galatzer-Levy, Anzar Abbas, Vijay Yadav, Vidya Koesmahargyo, Allison Aghjayan, Serena Marecki, Miriam
1167 Evans, and Colin Sauder. 2020. Remote digital measurement of visual and auditory markers of Major Depressive
1168 Disorder severity and treatment response. *medRxiv* (2020). <https://doi.org/10.1101/2020.08.24.20178004>
1169 arXiv:<https://www.medrxiv.org/content/early/2020/08/26/2020.08.24.20178004.full.pdf>
1170 [42] Jie Gao, Leijing Zhou, Miaomiao Dong, and Fan Zhang. 2018. Expressive Plant: A Multisensory Interactive System for Sensory Training
1171 of Children with Autism. In *Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive
1172 and Ubiquitous Computing and Wearable Computers*. ACM, Singapore Singapore, 46–49. <https://doi.org/10.1145/3267305.3267588>
1173 [43] Tania González-Cortés, Elizabeth Gutiérrez-Contreras, Perla Karina Espino-Silva, Jorge Haro-Santa Cruz, Diana Álvarez Cruz, Clau-
1174 dia Cecilia Rosales-González, Cristina Sida-Godoy, Martha Patricia Nava-Hernández, Francisco Carlos López-Márquez, and Pablo
1175 Ruiz-Flores. 2019. Clinical Profile of Autism Spectrum Disorder in a Pediatric Population from Northern Mexico. *Journal of Autism and
1176 Developmental Disorders* 2019 49:11 49, 11 (Aug. 2019), 4409–4420. <https://doi.org/10.1007/S10803-019-04154-2>
1177 [44] Hafsa Habehh and Suril Goel. 2021. Machine learning in healthcare. *Current genomics* 22, 4 (2021), 291.
1178 [45] Nava Haghghi, Nathalie Vladis, Yuanbo Liu, and Arvind Satyanarayan. 2020. The Effectiveness of Haptic Properties Under Cognitive
1179 Load: An Exploratory Study. (May 2020). <http://arxiv.org/abs/2006.00372>
1180 [46] Takashi Hamatani, Keiichi Ochiai, Akiya Inagaki, Naoki Yamamoto, Yusuke Fukazawa, Masatoshi Kimoto, Kazuki Kiri, Kouhei
1181 Kaminishi, Jun Ota, Yuri Terasawa, Tsukasa Okimura, and Takaki Maeda. 2019. Automated inference of cognitive performance by
1182 fusing multimodal information acquired by smartphone. In *Adjunct Proceedings of the 2019 ACM International Joint Conference on
1183 Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers*. ACM, London
1184

1176 United Kingdom, 921–928. <https://doi.org/10.1145/3341162.3346275>

1177 [47] Elizabeth' C. Hames, Brandi Murphy, Ravi Rajmohan, Ronald C. Anderson, Mary Baker, Stephen Zupancic, Michael O'Boyle, and
1178 David Richman. 2016. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI
1179 Investigation. *Frontiers in Human Neuroscience* 10, APR2016 (April 2016), 1–18. <https://doi.org/10.3389/fnhum.2016.00167>

1180 [48] Gabriella M Harari, Nicholas D Lane, Rui Wang, Benjamin S Crosier, Andrew T Campbell, and Samuel D Gosling. 2016. Using
1181 smartphones to collect behavioral data in psychological science: Opportunities, practical considerations, and challenges. *Perspectives
on Psychological Science* 11, 6 (2016), 838–854.

1182 [49] Apple Inc. [n. d.]. UIKit Documentation. <https://developer.apple.com/documentation/uikit/uitouch>. Accessed: 2024-10-08.

1183 [50] INEGI. 2021. *Presentación Encuesta Nacional sobre Disponibilidad y Uso de Tecnologías de la Información en los Hogares (ENDUTIH)*
1184 2021imprimir. Technical Report. INEGI. <https://www.inegi.org.mx/programas/dutih/2021/> pages.

1185 [51] Majid Janidarmian, Atena Roshan Fekr, Katarzyna Radecka, and Zeljko Zilic. 2022. Wearable vibrotactile system as an assistive
1186 technology solution. *Mobile Networks and Applications* (2022), 1–9.

1187 [52] Laveen Kanal and B. Chandrasekaran. 1971. On dimensionality and sample size in statistical pattern classification. *Pattern Recognition*
1188 3, 3 (Oct. 1971), 225–234. [https://doi.org/10.1016/0031-3203\(71\)90013-6](https://doi.org/10.1016/0031-3203(71)90013-6)

1189 [53] Shaun K. Kane, Jacob O. Wobbrock, and Richard E. Ladner. 2011. Usable gestures for blind people: understanding preference and
1190 performance. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '11)*. Association for Computing
1191 Machinery, New York, NY, USA, 413–422. <https://doi.org/10.1145/1978942.1979001>

1192 [54] Ankit Koirala, Amy Van Hecke, Zhiwei Yu, Kathleen A. Koth, Hillary Schiltz, Zhi Zheng, and Hillary Schiltz. 2019. An exploration
1193 of using virtual reality to assess the sensory abnormalities in children with autism spectrum disorder. *Proceedings of the 18th ACM
1194 International Conference on Interaction Design and Children, IDC 2019* (2019), 293–300. <https://doi.org/10.1145/3311927.3323118>

1195 [55] Jeffrey L. Krichmar and Ting Shuo Chou. 2018. A tactile robot for developmental disorder therapy. Association for Computing
1196 Machinery. <https://doi.org/10.1145/3183654.3183657>

1197 [56] Ernst Kruijff, Saugata Biswas, Christina Trepkowski, Jens Maiero, George Ghinea, and Wolfgang Stuerzlinger. 2019. Multilayer
1198 haptic feedback for pen-based tablet interaction. *Conference on Human Factors in Computing Systems - Proceedings Chi* (2019), 1–14.
1199 <https://doi.org/10.1145/3290605.3300373>

1200 [57] Elena Lyakso, Olga Frolova, and Yuri Matveev. 2023. Voice Features as the Diagnostic Marker of Autism. *Transl Psychiatry* 16, 7 (2023),
1201 6. <https://doi.org/10.1038/s41398-023-02554-8>

1202 [58] K.E. MacLean. 2000. Designing with haptic feedback. In *Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on
1203 Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)*, Vol. 1. IEEE, 783–788. <https://doi.org/10.1109/ROBOT.2000.844146>

1204 [59] Sreekar Mantena, Leo Anthony Celi, Salmaan Keshavjee, and Andrea Beratarrechea. 2021. Improving community health-care screenings
1205 with smartphone-based AI technologies. *The Lancet Digital Health* 3, 5 (2021), e280–e282.

1206 [60] DN McIntosh, LJ Miller, Vu Shyu, and W Dunn. 1999. Development and validation of the short sensory profile. *Sensory profile manual*
1207 61 (1999), 59–73.

1208 [61] Elizabeth P. McKernan, Ying Wu, and Natalie Russo. 2020. Sensory Overresponsivity as a Predictor of Amplitude Discrimination
1209 Performance in Youth with ASD. *Journal of Autism and Developmental Disorders* 50, 9 (Sept. 2020), 3140–3148. <https://doi.org/10.1007/s10803-019-04013-0>

1210 [62] Sven Meister, Wolfgang Deiters, and Stefan Becker. 2016. Digital health and digital biomarkers – enabling value chains on health data.
1211 *Current Directions in Biomedical Engineering* 2, 1 (Jan. 2016), 577–581. <https://doi.org/10.1515/cdbme-2016-0128>

1212 [63] Jose Mercado, Lizbeth Escobedo, and Monica Tentori. 2021. A BCI video game using neurofeedback improves the attention of children
1213 with autism. *Journal on Multimodal User Interfaces* 15, 3 (Sept. 2021), 273–281. <https://doi.org/10.1007/s12193-020-00339-7>

1214 [64] Mark Mikkelsen, Ericka L. Wodka, Stewart H. Mostofsky, and Nicolaas A.J. Puts. 2018. Autism spectrum disorder in the scope of tactile
1215 processing. *Developmental Cognitive Neuroscience* 29 (Jan. 2018), 140–150. <https://doi.org/10.1016/j.dcn.2016.12.005>

1216 [65] Ivonne Monarca, Monica Tentori, and Franceli L. Cibrian. 2021. Feel and touch: a haptic mobile game to assess tactile processing.
1217 *Avances en Interacción Humano-Computadora* 0, 1 (Nov. 2021), 31–35. <https://doi.org/10.47756/AIHC.Y6I1.83>

1218 [66] Christian Montag, Jon D. Elhai, and Paul Dagum. 2021. On Blurry Boundaries When Defining Digital Biomarkers: How Much Biology
1219 Needs to Be in a Digital Biomarker? *Frontiers in Psychiatry* 12 (Sept. 2021), 740292. <https://doi.org/10.3389/fpsyg.2021.740292>

1220 [67] María Cecilia Montenegro, Monica Abdul-Chani, Daniel Valdez, Analia Rosoli, Gabriela Garrido, Sebastian Cukier, Cristiane Silvestre
1221 Paula, Ricardo Garcia, Alexia Rattazzi, and Cecilia Montiel-Nava. 2022. Perceived Stigma and Barriers to Accessing Services: Experience
1222 of Caregivers of Autistic Children Residing in Latin America. *Research in Developmental Disabilities* 120 (Jan. 2022), 104123. <https://doi.org/10.1016/j.ridd.2021.104123>

1223 [68] Cecilia Montiel-Nava, Maria C Montenegro, Ana C Ramirez, Daniel Valdez, Analia Rosoli, Ricardo Garcia, Gabriela Garrido, Sebastian
1224 Cukier, Alexia Rattazzi, and Cristiane Silvestre Paula. 2024. Age of autism diagnosis in Latin American and Caribbean countries.
1225 *Autism* 28, 1 (Jan. 2024), 58–72. <https://doi.org/10.1177/13623613221147345>

1226 [69] Abdulsalam Salihu Mustafa, Nor'ashikin Ali, Jaspaljeet Singh Dhillon, Gamal Alkawsi, and Yahia Baashar. 2022. User engagement and
1227 abandonment of mHealth: a cross-sectional survey. In *Healthcare*, Vol. 10. MDPI, 221.

[70] Weizhi Nai, Jianyu Liu, Chongyang Sun, Qinglong Wang, Guohong Liu, and Xiaoying Sun. 2021. Vibrotactile feedback rendering of patterned textures using a waveform segment table method. *IEEE Transactions on Haptics* 14, 4 (2021), 849–861.

[71] Donald A. Norman and Stephen W. Draper (Eds.). 1986. *User centered system design: new perspectives on human-computer interaction*. L. Erlbaum Associates, Hillsdale, N.J.

[72] Jessica S. Oliveira, Felipe O. Franco, Mirian C. Revers, Andréia F. Silva, Joana Portolese, Helena Brentani, Ariane Machado-Lima, and Fátima L. S. Nunes. 2021. Computer-aided autism diagnosis based on visual attention models using eye tracking. *Scientific Reports* 11, 1 (May 2021), 10131. <https://doi.org/10.1038/s41598-021-89023-8>

[73] Despina Papoudi, Clara Rübner Jørgensen, Karen Guldberg, and Hedda Meadan. 2021. Perceptions, Experiences, and Needs of Parents of Culturally and Linguistically Diverse Children with Autism: a Scoping Review. *Review Journal of Autism and Developmental Disorders* 8, 2 (June 2021), 195–212. <https://doi.org/10.1007/s40489-020-00210-1>

[74] Wanjoo Park, Vahan Babushkin, Samra Tahir, and Mohamad Eid. 2021. Haptic Guidance to Support Handwriting for Children With Cognitive and Fine Motor Delays. *IEEE Transactions on Haptics* 14, 3 (July 2021), 626–634. <https://doi.org/10.1109/TOH.2021.3068786>

[75] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research* 12 (2011), 2825–2830. <https://doi.org/10.5555/1953048.2078195>

[76] Sam Perrochon, J. Matias Di Martino, Kimberly L. H. Carpenter, Scott Compton, Naomi Davis, Brian Eichner, Steven Espinosa, Lauren Franz, Pradeep Raj Krishnappa Babu, Guillermo Sapiro, and Geraldine Dawson. 2023. Early detection of autism using digital behavioral phenotyping. *Nature Medicine* 29, 10 (Oct. 2023), 2489–2497. <https://doi.org/10.1038/s41591-023-02574-3>

[77] Sam Perrochon, J. Matias Di Martino, Kimberly L. H. Carpenter, Scott Compton, Naomi Davis, Steven Espinosa, Lauren Franz, Amber D. Rieder, Connor Sullivan, Guillermo Sapiro, and Geraldine Dawson. 2023. A tablet-based game for the assessment of visual motor skills in autistic children. *npj Digital Medicine* 6, 1 (Feb. 2023), 17. <https://doi.org/10.1038/s41746-023-00762-6>

[78] Elena Serena Piccardi, Jannath Begum Ali, Emily J. H. Jones, Luke Mason, Tony Charman, Mark H. Johnson, Teodora Gliga, Mary Agyapong, Tessel Bazelmans, Leila Dafner, Muthuhan Ersoy, Amy Goodwin, Rianne Haartsen, Alexandra Hendry, Rebecca Holman, Sarah Kalwarowsky, Anna Kolesnik, Sarah Lloyd-Fox, Greg Pasco, Andrew Pickles, Laura Pirazzoli, Chloë Taylor, and BASIS/STAARS Team. 2021. Behavioural and neural markers of tactile sensory processing in infants at elevated likelihood of autism spectrum disorder and/or attention deficit hyperactivity disorder. *Journal of Neurodevelopmental Disorders* 13, 1 (Jan. 2021), 1. <https://doi.org/10.1186/s11689-020-09334-1>

[79] Sonia Ponzo, Merle May, Miren Tamayo-Elizalde, Kerri Bailey, Alanna J Shand, Ryan Bamford, Jan Multmeier, Ivan Griessel, Benedek Szulyovszky, William Blakey, Sophie Valentine, and David Plans. 2023. App Characteristics and Accuracy Metrics of Available Digital Biomarkers for Autism: Scoping Review. *JMIR mHealth and uHealth* 11 (Nov. 2023), e52377. <https://doi.org/10.2196/52377>

[80] Nicholas Pudjihartono, Tayaza Fadason, Andreas W. Kempa-Liehr, and Justin M. O'Sullivan. 2022. A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction. *Frontiers in Bioinformatics* 2 (June 2022), 927312. <https://doi.org/10.3389/fbinf.2022.927312>

[81] Nicolaas A. J. Puts, Ericka L. Wodka, Mark Tommerdahl, Stewart H. Mostofsky, and Richard A. E. Edden. 2014. Impaired tactile processing in children with autism spectrum disorder. *Journal of Neurophysiology* 111, 9 (May 2014), 1803–1811. <https://doi.org/10.1152/jn.00890.2013>

[82] Insha Rafique, Kashmala Fatima, Anum Dastagir, Sajid Mahmood, and Muzammil Hussain. 2019. Autism Identification and Learning Through Motor Gesture Patterns. In *2019 International Conference on Innovative Computing (ICIC)*. IEEE, Lahore, Pakistan, 1–7. <https://doi.org/10.1109/ICIC48496.2019.8966740>

[83] Roope Raisamo, Sajja Patomäki, Matias Hasu, and Virpi Pasto. 2007. Design and evaluation of a tactile memory game for visually impaired children. *Interacting with Computers* 19, 2 (2007), 196–205. <https://doi.org/10.1016/j.intcom.2006.08.011>

[84] Khansa Rasheed, Adnan Qayyum, Mohammed Ghaly, Ala Al-Fuqaha, Adeel Razi, and Junaid Qadir. 2022. Explainable, trustworthy, and ethical machine learning for healthcare: A survey. *Computers in Biology and Medicine* 149 (2022), 106043.

[85] Caroline E. Robertson and Simon Baron-Cohen. 2017. Sensory perception in autism. *Nature Reviews Neuroscience* 18, 11 (Nov. 2017), 671–684. <https://doi.org/10.1038/nrn.2017.112>

[86] José Luis Rodríguez, Ramiro Velázquez, Carolina Del-Valle-soto, Sebastián Gutiérrez, Jorge Varona, and Josué Enríquez-Zarate. 2019. Active and passive haptic perception of shape: Passive haptics can support navigation. *Electronics (Switzerland)* 8, 3 (2019), 1–12. <https://doi.org/10.3390/electronics8030355>

[87] Dean Rubine. [n. d.]. Specifying Gestures by Example. ([n. d.]).

[88] Dean Rubine. 1991. Specifying gestures by example. *ACM SIGGRAPH Computer Graphics* 25, 4 (July 1991), 329–337. <https://doi.org/10.1145/127719.122753>

[89] Nilesh P. Sable, Omkar Wanve, Anjali Singh, Siddhesh Wable, and Yash Hanabar. 2023. Pressure Prediction System in Lung Circuit Using Deep Learning. In *ICT with Intelligent Applications*, Jyoti Choudrie, Parikshit Mahalle, Thinagaraan Perumal, and Amit Joshi (Eds.). Vol. 311. Springer Nature Singapore, Singapore, 605–615. https://doi.org/10.1007/978-981-19-3571-8_56 Series Title: Smart Innovation, Systems and Technologies.

1270 [90] Naim Salki, Emira vraka, Namik Trtak, and Lara Krnjojelac. 2022. Difficulties of sensory integration of the tactile sensory system
1271 of children with visual impairment. *International Journal of Medical Reviews and Case Reports* 0 (2022), 1. <https://doi.org/10.5455/IJMRCR.172-1645730510>

1272 [91] Melanie D. Schaffler, Leah J. Middleton, and Ishmail Abdus-Saboor. 2019. Mechanisms of Tactile Sensory Phenotypes in Autism: Current
1273 Understanding and Future Directions for Research. *Current Psychiatry Reports* 21, 12 (Dec. 2019), 134. <https://doi.org/10.1007/s11920-019-1122-0>

1274 [92] Hasti Seifi, Kailun Zhang, and Karon E. MacLean. 2015. VibViz: Organizing, visualizing and navigating vibration libraries. In *IEEE
1275 World Haptics Conference (WHC)*. <https://doi.org/10.1109/WHC.2015.7177722>

1276 [93] Tanay Singhal and Oliver Schneider. 2021. Juicy Haptic Design: Vibrotactile Embellishments Can Improve Player Experience in
1277 Games. In *Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems* (Yokohama, Japan) (CHI '21). Association for
1278 Computing Machinery, New York, NY, USA, Article 126, 11 pages. <https://doi.org/10.1145/3411764.3445463>

1279 [94] Tanya Talkar, James R. Williamson, Daniel J. Hannon, Hrishikesh M. Rao, Sophia Yuditskaya, Kajal T. Claypool, Douglas Sturim,
1280 Lisa Nowinski, Hannah Saro, Carol Stamm, Maria Mody, Christopher J. McDougle, and Thomas F. Quatieri. 2020. Assessment of
1281 Speech and Fine Motor Coordination in Children with Autism Spectrum Disorder. *IEEE Access* 8 (2020), 127535–127545. <https://doi.org/10.1109/ACCESS.2020.3007348> Publisher: Institute of Electrical and Electronics Engineers Inc.

1282 [95] Hiroki Tanaka, Sakriani Sakti, Graham Neubig, Tomoki Toda, and Satoshi Nakamura. [n. d.]. *Linguistic and Acoustic Features for
1283 Automatic Identification of Autism Spectrum Disorders in Children's Narrative*. Technical Report. <http://www.speech.kth.se/snack/>

1284 [96] David Ternes and Karon E Maclean. 2008. LNCS 5024 - Designing Large Sets of Haptic Icons with Rhythm. (2008), 199–208.
1285 https://doi.org/10.1007/978-3-540-69057-3_24

1286 [97] Vincent Ws Tseng, Jean Dos Reis Costa, Malte F Jung, and Tanzeem Choudhury. 2020. Using Smartphone Sensor Data to Assess
1287 Inhibitory Control in the Wild: Longitudinal Study. *JMIR mHealth and uHealth* 8, 12 (Dec. 2020), e21703. <https://doi.org/10.2196/21703>

1288 [98] Andrius Vabalas, Emma Gowen, Ellen Poliakoff, and Alexander J. Casson. 2020. Applying Machine Learning to Kinematic and
1289 Eye Movement Features of a Movement Imitation Task to Predict Autism Diagnosis. *Scientific Reports* 10, 1 (May 2020). <https://doi.org/10.1038/s41598-020-65384-4>

1290 [99] Tara Van Veen, Sophia Binz, Meri Muminovic, Kaleem Chaudhry, Katie Rose, Sean Calo, Jo-Ann Rammal, John France, and Joseph B
1291 Miller. 2019. Potential of mobile health technology to reduce health disparities in underserved communities. *Western Journal of
1292 Emergency Medicine* 20, 5 (2019), 799.

1293 [100] Victor Volovici, Nicholas L Syn, Ari Ercole, Joseph J Zhao, and Nan Liu. 2022. Steps to avoid overuse and misuse of machine learning
1294 in clinical research. *Nature Medicine* 28, 10 (2022), 1996–1999.

1295 [101] Einat Waizbard-Bartov, Deborah Fein, Catherine Lord, and David G Amaral. 2023. Autism severity and its relationship to disability.
1296 *Autism Research* 16, 4 (2023), 685–696.

1297 [102] Chyanna Wee, Kian Meng Yap, and Woan Ning Lim. 2021. Haptic interfaces for virtual reality: Challenges and research directions.
1298 *IEEE access* 9 (2021), 112145–112162.

1299 [103] Shichang Xuan, Li Zheng, Ilyong Chung, Wei Wang, Dapeng Man, Xiaojiang Du, Wu Yang, and Mohsen Guizani. 2020. An incentive
1300 mechanism for data sharing based on blockchain with smart contracts. *Computers & Electrical Engineering* 83 (2020), 106587.

1301 [104] Victoria Yaneva, Le An Ha, Sukru Eraslan, Yeliz Yesilada, and Ruslan Mitkov. 2020. Detecting High-Functioning Autism in Adults
1302 Using Eye Tracking and Machine Learning. *IEEE Transactions on Neural Systems and Rehabilitation Engineering* 28, 6 (June 2020),
1254–1261. <https://doi.org/10.1109/TNSRE.2020.2991675>

1303 [105] Nesra Yannier, Ali Israr, Jill Fain Lehman, and Roberta L. Klatzky. 2015. Feel sleeve: Haptic Feedback to enhance early reading. *Conference
1304 on Human Factors in Computing Systems - Proceedings* 2015-April (2015), 1015–1024. <https://doi.org/10.1145/2702123.2702396>

1305 [106] Huan Zhao, Zhaobo Zheng, Amy Swanson, Amy Weitlauf, Zachary Warren, and Nilanjan Sarkar. 2018. Design of a Haptic-Gripper
1306 Virtual Reality System (Hg) for Analyzing Fine Motor Behaviors in Children with Autism. *ACM Transactions on Accessible Computing*
11, 4 (Nov. 2018), 1–21. <https://doi.org/10.1145/3231938>

1307 **A TABLE OF SUPPLEMENTARY DATA: DIGITAL MARKERS AND FEATURES**

1308 Table 5. Detailed Description of Digital Markers Used in Touch Interaction Analysis

1311 Feature	1312 Description
1313 x_neg_count	Counts the negative values from the acceleration.
1314 y_neg_count	Counts the negative values for the y-axis from the acceleration.
1315 z_neg_count	Counts the negative values for the z-axis from the acceleration.

1317	Feature	Description
1318	x_pos_count	Counts the positive values from the acceleration.
1319	y_pos_count	Counts the positive values for the y-axis from the acceleration.
1320	z_pos_count	Counts the positive values for the z-axis from the acceleration.
1321	variability	The cumulative sum of the Euclidean distance between underlying points [8].
1322	area	Total area of the tactile interaction.
1323	Bounding box	Two two-dimensional vectors (x, y) representing the origin and the end of the box around each tactile interaction.
1324		
1325	Angle of the bounding box,	The angle formed by the diagonal of the bounding box [88].
1326	Diagonal of the bounding box	Length of the bounding box diagonal [88].
1327	avgSpeed	The speed at which a tactile interaction occurs. [8]
1328	aspectRatio	Proportional relationship between the width and height of the bounding box. [53]
1329	density	Relationship between the length of the tactile interaction and the distance .
1330	Distance	Distance between the first and the last point of the tactile interaction in points [88].
1331	total acceleration	Total acceleration of the vibration produced by the children's interaction. [18]
1332	angular	The speed at which the mobile phone rotates [18].
1333	production-time	Duration of the touch interaction.
1334	Game performance	Total number of tactile interactions.
1335	x_ini	Point where the touch interaction starts in x.
1336	x_fin	Point where the touch interaction ends in x.
1337	x_mean, x_max, x_min, x_std	Statistical measures (mean, maximum, minimum, standard deviation) of x-coordinate values during the interaction.
1338		
1339	y_ini	Point where the touch interaction starts in y.
1340	y_fin	Point where the touch interaction ends in y.
1341	y_mean, y_max, y_min, y_std	Statistical measures of y-coordinate values during the interaction.
1342	acX_ini	Accelerometer initial x-value.
1343	acX_fin	Accelerometer final x-value.
1344	acX_mean	Average x-value recorded by the accelerometer.
1345	acX_max	Maximum x-value recorded by the accelerometer.
1346	acX_min	Minimum x-value recorded by the accelerometer.
1347	acX_std	Standard deviation of the accelerometer x-values.
1348	acY_ini	Initial accelerometer y-value.
1349	acY_fin	Final accelerometer y-value.
1350	acY_mean	Average y-value recorded by the accelerometer.
1351	acY_max	Maximum y-value recorded by the accelerometer.
1352	acY_min	Minimum y-value recorded by the accelerometer.
1353	acY_std	Standard deviation of the accelerometer y-values.
1354	acZ_ini	Initial accelerometer z-value.
1355	acZ_fin	Final accelerometer z-value.
1356	acZ_mean	Average z-value recorded by the accelerometer.
1357	acZ_max	Maximum z-value recorded by the accelerometer.
1358	acZ_min	Minimum z-value recorded by the accelerometer.
1359	acZ_std	Standard deviation of the accelerometer z-values.
1360	gX_ini	Initial gyroscope x-value.
1361	gX_fin	Final gyroscope x-value.
1362		
1363		

1364	Feature	Description
1365	gX_mean	Average x-value recorded by the gyroscope.
1366	gX_max	Maximum x-value recorded by the gyroscope.
1367	gX_min	Minimum x-value recorded by the gyroscope.
1368	gX_std	Standard deviation of the gyroscope x-values.
1369	gY_ini	Initial gyroscope y-value.
1370	gY_fin	Final gyroscope y-value.
1371	gY_mean	Average y-value recorded by the gyroscope.
1372	gY_max	Maximum y-value recorded by the gyroscope.
1373	gY_min	Minimum y-value recorded by the gyroscope.
1374	gY_std	Standard deviation of the gyroscope y-values.
1375	gZ_ini	Initial gyroscope z-value.
1376	gZ_fin	Final gyroscope z-value.
1377	gZ_mean	Average z-value recorded by the gyroscope.
1378	gZ_max	Maximum z-value recorded by the gyroscope.
1379	gZ_min	Minimum z-value recorded by the gyroscope.
1380	gZ_std	Standard deviation of the gyroscope z-values.
1381	mRadius_ini	Initial radius of the tactile interaction as provided by iOS.
1382	mRadius_fin	Final radius of the tactile interaction as provided by iOS.
1383	mRadius_mean	Average radius during the tactile interaction.
1384	mRadius_max	Maximum radius recorded during the tactile interaction.
1385	mRadius_min	Minimum radius recorded during the tactile interaction.
1386	mRadius_std	Standard deviation of the radius values during the interaction.
1387	force_ini	Initial force of the touch interaction provided by iOS.
1388	force_fin	Final force of the touch interaction.
1389	force_mean	Average force during the touch interaction.
1390	force_max	Maximum force recorded during the touch interaction.
1391	force_min	Minimum force recorded during the touch interaction.
1392	force_std	Standard deviation of the force values during the interaction.
1393	reactionTime	Time between the start of the vibration and the child's response.
1394	population	Category of participant, ASD or NT. [8]
1395	time	Time when the touch interaction starts.
1396	ID_participant	ID of the participant.
1397	Cosine	Cosine of the angle of the diagonal of the bounding box. [8]
1398	Sine	Sine of the angle of the diagonal of the bounding box. [8]
1399	instruction	Type of instruction given during the interaction. [8]
1400		
1401		
1402		
1403		
1404		
1405		
1406		
1407		
1408		
1409		
1410		

B TABLE OF DIGITAL MARKERS RELATED WORK

		Digital Markers				Participants			Precision (%)
		G	V	M	T	O	ASD	NT	
Digital markers based on sensing									
Devices in the environment	Carette et al., 2018	X				18*	18*		95
	Yaneva, 2018	X				18*	18*		75
	Nakano et al., 2010	X				25	25		/
	Hashemi et al., 2012	X				1			/
	Santos et al., 2013		X			20	23		97.7
	Xu et al., 2009		X			34	30		90
	Dongxin et al., 2009		X			34	76	30	90
	Deng et al., 2017		X						/
	Dai & Keshi, 2007		X						/
	Crippa et al., 2015			X		15	15		96.70
	Bidwell et al., 2014				X				93.3%
	Liu, et al., 2016	X				29	29		88.51%
	Vabalas, et al., 2019			X		24*	22*		71%
	Kanhirakadavath et al., 2022	X				219	328		91.38
	Banire et al., 2021	X				20	26		96.5
	Oliveira et al., 2021	X				76	30		93
	Yaneva et al., 2020	X				31	40		74
	Wan et al., 2019	X				37	37		83.8
	Briend et al., 2023		X			38	24		91
	Lyakso et al., 2022		X			95	150		60.2
	Boorse et al., 2019					62	40		/
	Cavallo et al., 2021			X		20	20		75
	Alcañiz-Raya et al., 2020			X		24	25		82.98
	Ardalan et al., 2019			X		39	23		89
Digital markers based on interaction									
Mobile devices	Vargas-Cuentas et al., 2017	X				8	23		98.5
	Gong et al., 2018		X			18	9	8	/
	Mahmoudi-Nejad et al., 2017				X	5	7		/
	Anzulewicz et al., 2016			X		37	45		93
	Chen et al., 2019					40	51		/
	Perochon et al., 2023	X		X		233	147		74
	Lu et al., 2019			X		37	45		/
	Rafique et al., 2019			X		22	22		91

Table 6. Table 1 The table shows related works on digital markers of ASD. It describes the type of digital marker studied in each work: Gaze (G), Voice (V), Motor Skills (M), Touch interactions (T), Others (O); the number and type of participants; and the accuracy achieved in classifying ASD and NT

Received May 1 2024