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Abstract

Retiring coal power plants can reduce air pollution and health damages. However, the spatial
distribution of those impacts remains unclear due to complex power system operations and
pollution chemistry and transport. Focusing on coal retirements in Pennsylvania (PA), we
analyze six counterfactual scenarios for 2019 that differ in retirement targets (e.g., reducing
50% of coal-based installed capacity vs. generation) and priorities (e.g., closing plants with
higher cost, closer to Environmental Justice Areas, or with higher CO, emissions). Using a
power system model of the PJM Interconnection, we find that coal retirements in PA shift power
generation across PA and the Rest of PJM region, leading to scenario-varying changes in the
plant-level release of air pollutants. Considering pollution transport and size of the exposed
population, these emissions changes, in turn, give rise to a reduction of 6 to 136 PM.s-
attributable deaths in PJM across the six scenarios, with most reductions occurring in PA.
Among our designed scenarios, those that reduce more coal power generation yield greater
aggregate health benefits due to air quality improvements in PA and adjacent downwind
regions. In addition, comparing across the six scenarios evaluated in this study, vulnerable
populations—in both PA and Rest of PJM—benefit most in scenarios that prioritize plant
closures near Environmental Justice Areas in PA. These results demonstrate the importance of
considering cross-regional linkages and socio-demographics in designing equitable retirement

strategies.

Keywords: Coal retirement, air quality, human health, environmental justice

Synopsis

Retiring coal power plants in Pennsylvania can improve air quality and health outcomes

throughout the PJM Interconnection.
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1. Introduction

The U.S. is in the midst of a significant energy transition. The last decade has seen a
national decline in coal-fired electricity generation of nearly 50%."? Pennsylvania (PA) mirrors
this trend due to its policy landscape and access to cheap and plentiful natural gas and
renewable energy sources.®® Coal plant retirements in PA provide a potential avenue for
mitigating emissions of not only carbon dioxide (CO), but also criteria air pollutants such as
nitrogen oxides (NOx), sulfur dioxide (SOz), and fine particulate matter (PM.5)%7. Accordingly,
such closures are expected to improve air quality and reduce health damages®"".

Prior studies have found that air quality and health benefits from coal generation are
unevenly distributed across regions and sociodemographic groups.?'?>-'® Optimizing coal-fired
power plant closures based on climate, cost, or health objectives can lead to substantial
variation in both the magnitude and distribution of health benefits.®'*-2'23 |n practice, coal
retirement decisions in PA and much of the country are largely based on economic and
feasibility considerations and thus unlikely to address long-standing environmental justice
concerns. This motivates a need to understand the equity implications of coal plant
retirements—in particular, how to better design coal retirements so as to more effectively
mitigate disproportionate environmental burdens historically borne by disadvantaged
communities.

In addition, research into how cross-regional linkages across power systems, air pollution
transport, and socio-demographics influence the distribution of health impacts is fairly limited.
PA provides a distinctive setting to examine such linkages. First, PA is a major power exporter
in the PJM Interconnection, a Regional Transmission Organization that manages a wholesale
electricity market spanning thirteen states which is one of the largest in the world. Thus, coal
retirements in PA affect power generation and flows throughout the PJM grid, leading to
potentially significant emissions impacts elsewhere.'®'%22 Second, due to historical plant siting
decisions, chemical formation, and wind transport of pollution, reducing PA’s emissions provide
an avenue to also improve air quality in downwind states.?®?* These complex dynamics and
resulting distributional outcomes are not well understood nor incorporated into coal retirement
decisions in PA.

In this study, we respond to the above-mentioned knowledge gaps by evaluating the air
quality and health effects of various coal retirement scenarios in PA. In particular, we contribute
by: i) establishing a modeling system with improved representation of cross-regional linkages

as key determinants of distributional air quality and health effects from coal plant retirements
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(Figure 1); and ii) assessing tradeoffs between aggregate and distributional effects across

different coal plant retirement strategies.
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Figure 1. Schematic diagram of our modeling framework and coal retirement scenarios.

2. Methodology
2.1 Scenario design

Based on the generation and emissions for the year 2019 (i.e., Base Case), we design
six counterfactual scenarios that vary across two dimensions: targets and priorities. We
consider two targets—"Capacity-based” (retiring coal-fired power plants until at least 50% of
PA’s 2019 coal-fired baseline capacity is eliminated) and “Generation-based” (retiring coal-fired
power plants until at least 50% of PA’s 2019 coal-fired baseline generation is eliminated)—and
three priorities—Cost (sorting PA’s 2019 coal-fired power plants by average annual cost
($/MWh) and retiring highest-cost plants until reaching the target); Environmental Justice
(sorting by the number of Environmental Justice (EJ) Areas within 10 miles of a plant and retiring
plants with the most EJ Areas until reaching the target); and Climate (sorting by CO, emissions
intensity and retiring the highest-emitting plants until reaching the target). Notably, our EJ
scenario design is driven by the fact that 73% of PA’s population and 64% of EJ communities
in PA resided within 25 miles from a coal power plant in 2019 (Supporting Information 2 (SI2:
Figure B.2). We therefore use 10 miles in our main EJ scenarios with sensitivity analyses
exploring 5-25 miles. Additional information on scenario design and policy relevance is provided
in Table 1, the supplementary data file, SI2: Section |.A and |.B (including Figure A.1 and Table
A.1).



112 Table 1. Summary of scenarios
Scenario Name Explanations
Base Case All coal power plants active based on actual 2019 generation
Target Priority
Cost:
Policy relevance: Current practice of
retirements based primarily on economic and
Capacity- feasibility considerations
b Method: Plants with the highest marginal costs
ased_Cost . ) :
of generation are retired first
Intention: Assess how closures of high
marginal cost plants affect emissions, air
quality, and health throughout PJM
EJ:
Capacity-based Policy relevance: Efforts to prioritize EJ in PA
. . such as the revisions to the Environmental
retirement: . ;
Capacity- Justice _P:)Ilcy _
based EJ Method: Retire ~50% AM—ethOS; .;‘?”ts 1"‘6”“ .tlhe "'i;_geSt ”“mtt?er do]ﬁ E;’
of total installed coal | reas \{VI in a 10-mile radius a;e retired firs
power capacity in PA ntention: Assess how clpsures_o plants close
to EJ Areas affect emissions, air quality, and
Retirement health throughout PJM
Scenarios Climate:
Policy relevance: Policy efforts to reduce
emissions such as the Regional Greenhouse
Capacity- Gas Initiative (RGGI)
. Method: Plants with the highest CO2 emission
based_Climate . \
rates are retired first
Intention: Assess how closures of high CO:2
emitting plants affect emissions, air quality,
and health throughout PJM
Generation-
based_Cost Generation-based
retirement:
Generation-
based EJ Method: Retire ~50%  Same above
of total coal power
Generation- generation in PA
based_Climate
113
114 * See alternative EJ scenarios with varying radii and based on population size in SI2: Section I.C (SI2: Figure C.3
115 and Figure D.4).
116 ** EJ Areas are defined by the Pennsylvania Department of Environmental Protection’s (PA DEP) as census tracts
117 where at least 20% of individuals live at or below the federal poverty line and/or where at least 30% of the
118  population identifies as a non-white minority.25
119
120
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2.2 Electricity market modeling (RPAM)

We use the RGGI + PJM Policy Analysis Model (RPAM) to examine how each coal
retirement scenario induces changes in power market and plant-level emissions outcomes
within PA and Rest of PJM region (see Supporting Information 1 (SI1) for detailed model
description and validation).

RPAM is a multi-market equilibrium model that accounts for critical features of the
wholesale power market operated by PJM Interconnection, preexisting state and federal
policies, the supply of external renewable energy credits (RECs) from outside of PJM, and
abatement and banking from the partially overlapping RGGI allowance market (see Sl1: Section
I for datasets used to calibrate and estimate RPAM).*?® On the demand-side, there are five
aggregate load zones connected by five aggregate transmission lines (SI1: Section Il.A). On
the supply-side, the model captures capacity and maintenance constrained supply from 845
representative electric generation units (EGUs) aggregated from 3,095 existing power plants in
PJM (SI1: Section II.B). The model also predicts new capacity expansion for natural gas, wind,
and solar on a state by load zone basis (SI1: Section 11.C), considering anticipated annual profits
net of annualized capital and financing costs. See SI1 Section Il for datasets used to calibrate
and estimate RPAM come from several dozen datasets (SI1: Section Il) including from PJM
Interconnection, S&P Global, EP, EIA, and Census. Subject to capacity, transmission, and
policy/market clearing constraints, RPAM maximizes the sum of net benefits to PJM’s wholesale
customers (i.e., consumer surplus), total profits to PJM electricity producers (i.e., producer
surplus) net of the costs of adding new capacity, total abatement costs from non-PJM RGGI
states, and total net benefits to holders of RGGI banked allowances. This consideration of total
welfare implications distinguishes the RPAM model from other electricity dispatch models that
typically only considers the physical cost.'82021.27

RPAM is solved on an annual time-step from 2016 to 2019. This analysis focuses on
2019, including the Base Case that considers the observed generation fleet and six
counterfactual scenarios that update the generation fleet with coal retirements in PA. RPAM
reports plant-level emissions from existing power plants in 2019 (CO,, SO2, NOyx, PM25, NHs,
and VOC) (SI1: Section Il.1). Emissions from new natural gas power plants added in each state-
load zone are assumed to be released evenly across the corresponding sub-region. Emissions

from new solar and wind are assumed to be zero.
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2.3 Air quality modeling (ISRM)

Based on plant-level emissions from RPAM, we use the INMAP Source-Receptor Matrix
(ISRM) to simulate the impacts on annual average ambient PM.s concentrations. ISRM is
derived from thousands of simulations of a reduced-form air quality model, InNMAP, which uses
meteorology and emissions data from 2005 and average population data spanning from 2008
to 2012 (S12: Section Il.A). ISRM quantifies the impact of one ton of precursor emissions from
each individual source location on the ambient PM.s concentration in each receptor location.
ISRM assumes a linear relationship between changes in precursor emissions and PMgzs
concentrations. Despite these simplifications, ISRM provides reasonable estimates for PMas
pollution levels when compared to observational data?®2?° and has been used to assess pollution
impacts in many different contexts.'222:3

ISRM includes approximately 52,411 spatial grid cells across the contiguous United
States, including roughly 2,297 grid cells in PA and 13,228 grid cells over the PJM region. The
grid resolution increases with population density, ranging from 1km x 1km in densely populated
urban areas to 48 km x 48 km in remote or rural areas. ISRM inputs are precursor annual
emissions of NOy, SOz, NH3, primary PM2s, and VOC for each grid cell, or the sum of plant-level
emissions of these pollutants from RPAM for each grid cell. ISRM outputs are the grid-level
simulated ambient concentrations of PM. s, including primary and secondary PM.s. Based on
the distribution of the smokestack height of coal power plants in PA (see SI2: Figure F.6), we
use high smokestack height (>379m) in ISRM.

The following equation describes the change in PM2s concentration at receptor

location b (AC,) as a result of changes in emissions in location a:
ACh= YpX8=18Eap * flap)-b (1)

where p is the primary emitted pollutant (an element of P = {primary PM.s, NH3, NO,, SO,
VOC}); AE, , is the change in emissions for source grid cell a for pollutant type p emitted; and
f(a‘p)_b is the relationship between annual total emissions in location a and annual average
PM:s in location b. Each INMAP simulation used to generate ISRM involves altering emissions
of a specific pollutant from a single source by one ton. Thus, it generates a vector, f, ),
representing impacts on all N receptors; the b™ component of this vector is denoted f(4 )-»-
The total change in ambient PM..s concentration (ug/m?) at location b is the aggregate impact

from all precursor emissions and all locations.?8
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2.4 Health impact assessment (BenMAP)

We use the U.S. EPA’s Benefits Mapping and Analysis Program (BenMAP) model®*' to
assess premature deaths associated with long-term exposure to ambient PM.s.32 BenMAP has
been applied widely in health impact assessment.'%2":33-37 BenMAP inputs include county and
census tract averaged PM.s concentrations calculated using the gridded concentrations from
ISRM; outputs are annual total PM.s-attributable deaths at the county and census tract levels
(SI2: Section 11.B). For our county-level analysis, we use gridded ISRM results to calculate
population-weighted county-average PM. s concentrations. If the ISRM grid size is smaller than
a county, we calculate the population weighted average PM.s concentrations for the county
using multiple ISRM grids. For the geographic analysis in 3.4, we use ISRM results to calculate
census-tract level PM2 s concentrations. If the census tract size is smaller than the ISRM grid,
we use the same PM;s concentration for all census tracts within one ISRM grid.

BenMAP uses the following log-linear health impact function to calculate changes in all-
cause mortality attributable to ambient PM..s exposure?®, described in Table 2:

AY = (1—e FAPM) .Y - Pop (2)

Table 2. Summary of input data for the health impact assessment

Variable* Definition Data Source
All-cause baseline mortality rate for Center for Disease Control (CDC) WONDER
Yo 2019 database.
2010 U.S. Census Bureau census block data
Pop Population in 2019 ) o
with projection to 2019
Concentration-Response coefficient The main results use the estimate from the
from epidemiological studies. Changes American Cancer Society.3° The sensitivity
B in mortality risk resulting from changes @ analyses use the estimates from Laden et al.
in PM2.5 exposure level 200640 and Thurston et al. 2016.41
Changes in PM25 concentration in a County or census-tract level PM2.s
APM coal retirement scenario relative to the concentrations averaged from gridded
Base Case concentrations simulated by ISRM

* For more detailed information on these variables, see the BenMAP manual.38

** For additional information on sensitivity analyses using other concentration-response functions and g

values, see Figure 6 and SI2: Section IV.



214 3. Results

215 3.1 Impacts on electricity generation

216 Coal-fired power plants account for 13% and 12% of total generation in PA and the rest
217  of PJM, respectively in the Base Case (Figure 2a). Retiring coal-fired power plants in PA based
218  on capacity or generation targets have different impacts on the power system. For the “Capacity-
219 based” scenarios, declines in coal-fired electricity generation in PA vary substantially by 2.1
220 TWh, 13 TWh, and 18 TWh in the Cost, EJ, and Climate scenarios, respectively, relative to the
221 Base Case (Figure 2b). This variation is primarily influenced by disparities in Base Case
222  utilization rates. For instance, coal plants retired in the Capacity-based _Cost scenario have
223  lower utilization rates on average than the other two “Capacity-based” scenarios. However,
224 reductions in coal-fired electricity generation are roughly the same across all “Generation-
225 based” scenarios which implicitly control for variation in utilization rates.

226 Coal power plant retirements in PA drive changes in the transmission constrained
227  dispatch of power both within and between PA and Rest of PUM. These changes are driven by:
228 (i) the amount of coal generation displaced by retirements; (ii) the marginal costs and available
229 capacities of remaining units; and (iii) the location of retired generation and associated
230 transmission constraints. Generally, our results are similar to findings in previous studies*? that
231  coal retirements in PA lead to an increase in dispatch from natural gas plants, because
232  dispatching existing plants is cheaper than installing new capacity to make up for foregone
233  generation and natural gas plants are dispatched more often due to their cost advantage (Figure
234 2b). However, the scale and location of additional generation may be affected by changes in
235 transmission congestion. For instance, in the Generation-based_Cost scenario, natural gas-

236  based generation in PA also declines slightly.

237
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Figure 2. Electricity generation (TWh) by fuel source. Panel (a) depicts Base Case electricity
generation in PA and Rest of PJM. Panel (b) reports changes in generation relative to the Base Case for
the six scenarios in PA and Rest of PJM by power plant source (Coal, Natural Gas, and Others). “Others”

in Panel (b) refers to generation from all non-coal or natural gas sources.

3.2 Impacts on emissions of CO; and other air pollutants

Our main results focus on emissions of CO,, due to its climate impacts, and of SOz, NOy,
and PMo.sbecause prior studies found these three pollutants to be the most
important precursors from the power sector, contributing to 81%, 12%, and 6% of ambient PM s,
respectively at the national level.?® (SI2: Figure D.4 provides results for NHz and VOC, which
contribute 0.2% and 0.1% to ambient PM2 s, respectively). In the Base Case, we estimate annual
total CO,, NOy, SO», and PM25s emissions from all power plants in the PJM region to be 426
million tons, 206 thousand tons, 187 thousand tons, and 38 thousand tons, respectively, of
which 17 to 25% are from PA plants (Figure 3a).

Although all six scenarios reduce CO-, and air pollutant emissions in aggregate across
PJM relative to the Base Case, the spatial distribution of emissions changes varies considerably
across scenarios (Figure 3b and Figure 3c). As noted above, changes in the spatial pattern of
precursor emissions follow from changes in power generation which, in turn, through ISRM,
correspond to changes in the spatial pattern of receptor emissions. Reductions in coal power
generation in PA largely explain observed declines in emissions there. For example, the
Capacity-based_Climate scenario leads to the largest reduction in coal-fired electricity
generation and thus emissions in PA of 18% for CO,, 50% for SO, 32% for NOy, and 75% for
PM2s. Changes in power generation in Rest of PJM also largely explain changes in emissions
there. For example, we find almost no emissions increase in Rest of PJM in the Generation-
based EJ scenario (Figure 3b and Figure 3c) consistent with the negligible change in
generation there (Figure 2b). However, in the Capacity-based_Cost scenario, we find small
increases in CO2(0.6%), NOx (0.9%), SO (0.8%), and PMz5s (0.6%) emissions due to more

substantial increases in natural gas generation in Rest of PJM (Figure 2b).

10
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278 Figure 3. Annual total emissions of CO,, NOy, SO2, and PM_ s from all power plants located in PA
279 and Rest of PJM. Panel (a) reports emissions under the Base Case; Panels (b) and (c) show the changes
280 in COz2 and criteria air pollutants in each of the six retirement scenarios relative to the Base Case. The
281 white circles show the net change across the whole PJM region. Results for NHs and VOC are reported
282  in SI2: Figure G.7.

283

284 3.3 Impacts on ambient PM.s concentrations and PM;s-attributable deaths

285 In the Base Case, power sector emissions from all electricity generation in PJM result in
286  an annual PM_sconcentration of up to 5.7 ug/m? across PJM counties, which is associated with
287 1,300 PM2s-attributable deaths annually (95% confidence interval: 1,200 to 1,600) (Figure 4a).
288 The low concentration level results from estimating the effects only from power sector
289  emissions, while other sectors, such as transportation and residential, contribute additional
290  pollution in this region.042:43

291 Although changes in precursor emissions are negative in some counties and positive in
292  others depending on the scenario, almost all counties experience a reduction in ambient PM; s
293  concentrations and associated deaths relative to the Base Case (see Sl2, Table B.2 for
294  population-weighted annual average PM. s concentrations by scenario). This is because retired
295 coal plants are often more polluting than the generation that replaces them (such as natural

296 gas), causing precursor emissions to fall in aggregate across PJM. Despite spatial variation in

11
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precursor emissions from retired and replacement generation predicted by RPAM and
corresponding spatial variation in receptor emissions arising from air pollution formation and
transport via ISRM, the aggregate decline in precursor emissions dominates, leading to lower
ambient PM2 s concentrations and associated deaths for most counties in southeastern PA.

Nonetheless, these complex linkages, together with differences in socio-demographics
that characterize pollution exposure across counties, cumulatively determine the magnitude and
distribution of avoided PM.s-attributable deaths (see SI2: Table C.3 for absolute changes in
PM.s-attributable deaths relative to the Base Case). Of the six scenarios, Capacity-
based_Climate reduces PM..sconcentrations and associated deaths the most: by 84 in PA (95%
Cl: 52 to 118) or 20% relative to the Base Case; Rest of PJM also observes a reduction of 52
PM: s-attributable deaths (95% CI: 41 to 85) or 5% relative to the Base Case (Figure 4b).

a b Changes Relative to the Base Case
Base Case Retire 50% capacity in PA Retire 50% generation in PA
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P c
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Figure 4. Annual total PM.s-attributable deaths from power sector emissions in the Base Case

(Panel a) and the changes in the six coal retirement scenarios relative to the Base Case in PA

and Rest of PJM (Panel b). Here we use the concentration-response coefficients from Krewski et al.,

2009.%° Error bars represent the estimates based on the 95% confidence interval of the concentration-

response coefficients for the total deaths throughout the whole PJM region.
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3.4 Insights on geographic distribution and environmental justice communities

We find important spatial variation across the PJM region regarding the patterns of
electricity generation, air pollutant emissions, ambient concentrations of PM.s, and PMas-
attributable deaths. We focus on the results for the Generation-based_EJ scenario (Figure 5),
with results for the other scenarios in SI12: Figures H.8-1.9. Under this scenario, the majority of
health benefits in Rest of PJM occur in PA’s southern neighbors Delaware, Maryland, and New
Jersey. Thus, regional impacts are still largely determined by close proximity to PA coal plant
closures (see SI2: Figure L.12) for an expanded air quality assessment that also includes states
outside PJM).

Electricity Generation S0, Emissions Ambient PM, ¢ PM, s —-Attributable Deaths
a b ¢ d
8.0 7300 -
el Bt R 14 g . e 20 L sl et
"y I 12 T SRR e i ¢ e T . 4 0,9
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Figure 5. Geographical distribution of impacts. The first row provides results for the Base Case; The

Base Case

second row shows the changes in the Generation-based_EJ scenario relative to the Base Case. From
left to right, the four columns depict county-level annual total electricity generation, annual total SOz
emissions from power generation, simulated county-level annual average ambient PM2s concentrations,
and annual total PM2.s-attributable deaths. SI2: Figures H.8 and 1.9 provide results for other five scenarios,

and SI2: Figures J.10 and K.11 report results for NOx and Primary PMzs emissions for all scenarios.

To further understand the distributional implications of PA coal plant closures, we
compare the health effects in EJ Areas and non-EJ Areas (Figure 6). To assess impacts in EJ
Areas outside of PA, we apply the PA DEP EJ Area definition to census tracts in Rest of PJM.
Because EJ Areas are defined at the census tract level, we perform the health impact
assessment at the census tract level using gridded PM2s concentrations from ISRM. As some
census tracts are smaller than ISRM grids, we are unable to identify exposure disparities across
different census tracts in these circumstances. For “Capacity-based” scenarios, we find that the
Climate scenario provides the largest overall reduction as well as the largest benefit to EJ Areas,

driven again by the largest reduction in coal power generation from the same capacity

13
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retirement. In comparison, for “Generation-based” scenarios, we find that the EJ scenario
provides the largest overall reduction in deaths as well as the largest benefit to EJ Areas. In
particular, 61% of the avoided deaths occur within 10 miles from coal plant closures (the relevant
distance based on our scenario design), of which 77% occur within the EJ Areas (SI2: Figure
E.5). This result demonstrates potential equity-improving outcomes by prioritizing EJ Areas in
coal retirement decisions. While the EJ scenarios do not consider constraints to “safeguard” EJ
Areas in Rest of PJM from experiencing worse exposure outcomes, we observe distributional
co-benefits in these areas. This result is largely driven by the unique feature that the EJ Areas
outside PA happen to be the downwind areas of some retired plants, suggesting that cross-
regional linkages may impact distributional impacts outside PA too.

We further consider sensitivity in concentration-response coefficients (8), as one of the
largest sources of uncertainty in health assessment*~6, Using higher or lower values for g
increases and decreases the level of reduced deaths, respectively, yet we observe similar
patterns in terms of the spatial distribution of health benefits in PA and Rest of PJM, as well as
in EJ and non-EJ Areas.

Finally, recognizing that closing plants based on its proximity to EJ Areas may not protect
the largest number of vulnerable people, we also investigate the sensitivity of EJ scenario
design by: i) varying the radius (15, 20, and 25 miles in addition to 10 miles in the main EJ
scenarios), and ii) considering the population size of EJ Areas instead of the number of census
tracts that are defined by PA DEP as EJ Areas. We find the main pattern of retirements is not
sensitive to the radius choice, despite some minor differences in plant retirements (SI2: Figure
C.3). Using population size instead of number of EJ Areas, we find that scenarios generate
more diffuse unit closures, suggesting that the geographical unit of aggregation is important for

assessing distributional impacts (SI2: Figure D.4).
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Figure 6. Sensitivity analysis using different concentration-response coefficients (#) Panel a and
b show the reduction in deaths for “Capacity-based” scenarios and “Generation-based” scenarios,
respectively. We show the estimates based on the concentration-response coefficients in Krewski et al.
2009 (main B)%, Laden et al. 2006 (high B)*°, Thurston et al. 2016 (low B)*'. Here we categorize census
tracts based on their location (PA vs. Rest of PJM) and if they are EJ Areas or non-EJ Areas. Error bars

show the 95% confidence interval of the concentration-response coefficients.

4. Discussion

We find that reducing coal capacity and generation in Pennsylvania would improve
regional air quality and reduce premature deaths; the distribution of these benefits depends on
the targets and priorities set for power plant retirements. For example, among scenarios that
use reduced capacity targets, retiring plants by CO, emissions would result in the largest shift
in the composition of fuels used for energy generation—away from coal in PA and towards
natural gas in Rest of PJM. This, in turn, generates the largest net CO, benefits under a

capacity-reduction target. Alternatively, among scenarios that use reduced generation targets,
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retiring plants by marginal cost of operation would result in the largest shift in the composition
of fuels—away from both coal and natural gas in PA and towards natural gas, and, to a lesser
extent, additional coal in Rest of PJM. Yet, the largest net CO. benefits under a generation-
reduction target result from the scenario that prioritizes retirements near EJ census tracts. This
is due to a smaller increase in natural gas generation in Rest of PJM in response to plant
closures in PA.

Combining these fuel composition changes and the effects of pollution transport and
population exposure, the air quality and health impacts also vary by retirement targets and
priorities. We find that the largest reduction in deaths among capacity-based scenarios comes
from prioritizing retirements by CO. emissions, and the largest reduction in deaths among
generation-based scenarios comes from prioritizing retirements by proximity to EJ census
tracts. Furthermore, we find complex distributional implications for air quality and health.
Geographically, among the EJ-oriented scenarios that we tested, more of these health benefits
are found in EJ Areas, highlighting the additional equity benefits by placing vulnerable
communities at the center of energy decision making. In addition, many of the air quality
improvements occur in southern and eastern Pennsylvania and neighboring states such as NJ
and DE, suggesting that regional analysis is necessary for assessing air quality impacts of low
carbon energy transitions. Thus, it is important for regional transmission organizations and
federal regulators to look beyond reliability rules that largely guide the current coal retirement
decisions,*” and start to consider the electricity market operations and resulting air quality and
health impacts as additional considerations for plant closures.

Notably, our results are driven by a few key features of PA and PJM grid, including: i)
the spatial relationship between where coal plants locate and where EJ communities live (see
SI2: Figure B.2), ii) the characteristics of existing power plants and transmission grid, and iii)
the wind transport pattern of the region. While our quantitative conclusions may not be
generalizable, the key underlying factors and the importance of considering plant closure targets
and priorities are likely to be relevant to other regions and decision makers.

Finally, we highlight a few areas for future work. First, how can modeling frameworks be
improved to assess finer-scale decisions, impacts and disparities? While our analysis focuses
on annual aggregate impacts due to the time step of RPAM, a finer temporal resolution would
be useful to understand power dispatch and transmission decisions, short-term pollution events,
and acute health impacts such as morbidity and hospital admissions. Further, our current
approach involves a one-way coupling from energy to air quality and then to health. Thus, our

model takes pre-designed scenarios that do not optimize the energy system to achieve health
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or equity objectives. Future research that optimizes scenario design based on aggregate health
impacts, environmental improvements, or protections for the most vulnerable populations would
provide valuable policy insights®*. Second, how will coal retirement decisions interact with other
trends in electricity and end-use sectors to collectively shape air quality and health outcomes?
While we focus only on coal retirements in PA, increased renewable penetration and
accelerated adoption of electric vehicles, heat pumps, and other energy efficient durable goods
may significantly alter future electricity and energy consumption with difficult-to-predict impacts
on air quality and health. Third, how do varying sources of uncertainty influence environmental
impact assessment? Uncertainties exist in the energy system (policy implementation,
behavioral response, future technology choices, etc.)**%', air quality modelling (chemical and
physical transport processes, spatial distribution of different groups, etc.),%2-%* and health impact
assessment (baseline health conditions, health attributes of different groups, etc.)®>%. In
addition, here we monetize air quality and health impacts (SI2: Table F.6 and Table G.7) and
changes in operational costs across PJM (SI2: Table E.5). Extending this analysis to conduct a
comprehensive equity and cost-benefit assessment that includes climate damages, sunk capital
costs, and broader economy-wide socioeconomic impacts of coal retirement may be a useful
direction for future research.

In conclusion, shifts in U.S. electricity production demand a careful analysis of transitions
in key states like PA and across grid regions like PJM Interconnection. Using energy systems
and health impact modeling, this study explores the consequences of retiring coal-fired power
plants in PA. Natural gas often replaces coal, reducing overall air pollution. Spatial analysis
highlights air pollution variations, emphasizing the need for pre-retirement impact assessments

to estimate the economic and distributional effects of plant closures in the region.
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