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Abstract 28 

 29 

Retiring coal power plants can reduce air pollution and health damages. However, the spatial 30 

distribution of those impacts remains unclear due to complex power system operations and 31 

pollution chemistry and transport. Focusing on coal retirements in Pennsylvania (PA), we 32 

analyze six counterfactual scenarios for 2019 that differ in retirement targets (e.g., reducing 33 

50% of coal-based installed capacity vs. generation) and priorities (e.g., closing plants with 34 

higher cost, closer to Environmental Justice Areas, or with higher CO2 emissions). Using a 35 

power system model of the PJM Interconnection, we find that coal retirements in PA shift power 36 

generation across PA and the Rest of PJM region, leading to scenario-varying changes in the 37 

plant-level release of air pollutants. Considering pollution transport and size of the exposed 38 

population, these emissions changes, in turn, give rise to a reduction of 6 to 136 PM2.5-39 

attributable deaths in PJM across the six scenarios, with most reductions occurring in PA. 40 

Among our designed scenarios, those that reduce more coal power generation yield greater 41 

aggregate health benefits due to air quality improvements in PA and adjacent downwind 42 

regions. In addition, comparing across the six scenarios evaluated in this study, vulnerable 43 

populations—in both PA and Rest of PJM—benefit most in scenarios that prioritize plant 44 

closures near Environmental Justice Areas in PA. These results demonstrate the importance of 45 

considering cross-regional linkages and socio-demographics in designing equitable retirement 46 

strategies. 47 

 48 

Keywords: Coal retirement, air quality, human health, environmental justice 49 

 50 

Synopsis 51 

 52 

Retiring coal power plants in Pennsylvania can improve air quality and health outcomes 53 

throughout the PJM Interconnection.  54 

55 
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1. Introduction  56 

The U.S. is in the midst of a significant energy transition. The last decade has seen a 57 

national decline in coal-fired electricity generation of nearly 50%.1,2 Pennsylvania (PA) mirrors 58 

this trend due to its policy landscape and access to cheap and plentiful natural gas and 59 

renewable energy sources.3–5 Coal plant retirements in PA provide a potential avenue for 60 

mitigating emissions of not only carbon dioxide (CO2), but also criteria air pollutants such as 61 

nitrogen oxides (NOx), sulfur dioxide (SO2), and fine particulate matter (PM2.5)6,7. Accordingly, 62 

such closures are expected to improve air quality and reduce health damages8–11. 63 

Prior studies have found that air quality and health benefits from coal generation are 64 

unevenly distributed across regions and sociodemographic groups.8,12–18 Optimizing coal-fired 65 

power plant closures based on climate, cost, or health objectives can lead to substantial 66 

variation in both the magnitude and distribution of health benefits.9,19–21,23 In practice, coal 67 

retirement decisions in PA and much of the country are largely based on economic and 68 

feasibility considerations and thus unlikely to address long-standing environmental justice 69 

concerns. This motivates a need to understand the equity implications of coal plant 70 

retirements—in particular, how to better design coal retirements so as to more effectively 71 

mitigate disproportionate environmental burdens historically borne by disadvantaged 72 

communities.  73 

In addition, research into how cross-regional linkages across power systems, air pollution 74 

transport, and socio-demographics influence the distribution of health impacts is fairly limited. 75 

PA provides a distinctive setting to examine such linkages. First, PA is a major power exporter 76 

in the PJM Interconnection, a Regional Transmission Organization that manages a wholesale 77 

electricity market spanning thirteen states which is one of the largest in the world. Thus, coal 78 

retirements in PA affect power generation and flows throughout the PJM grid, leading to 79 

potentially significant emissions impacts elsewhere.16,19,22 Second, due to historical plant siting 80 

decisions, chemical formation, and  wind transport of pollution, reducing PA’s emissions provide 81 

an avenue to also improve air quality in downwind states.23,24 These complex dynamics and 82 

resulting distributional outcomes are not well understood nor incorporated into coal retirement 83 

decisions in PA. 84 

In this study, we respond to the above-mentioned knowledge gaps by evaluating the air 85 

quality and health effects of various coal retirement scenarios in PA. In particular, we contribute 86 

by: i) establishing a modeling system with improved representation of cross-regional linkages 87 

as key determinants of distributional air quality and health effects from coal plant retirements 88 
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(Figure 1); and ii) assessing tradeoffs between aggregate and distributional effects across 89 

different coal plant retirement strategies.  90 

 91 

Figure 1. Schematic diagram of our modeling framework and coal retirement scenarios. 92 

 93 

2. Methodology  94 

2.1 Scenario design 95 

Based on the generation and emissions for the year 2019 (i.e., Base Case), we design 96 

six counterfactual scenarios that vary across two dimensions: targets and priorities. We 97 

consider two targets—"Capacity-based” (retiring coal-fired power plants until at least 50% of 98 

PA’s 2019 coal-fired baseline capacity is eliminated) and “Generation-based” (retiring coal-fired 99 

power plants until at least 50% of PA’s 2019 coal-fired baseline generation is eliminated)—and 100 

three priorities—Cost (sorting PA’s 2019 coal-fired power plants by average annual cost 101 

($/MWh) and retiring highest-cost plants until reaching the target); Environmental Justice 102 

(sorting by the number of Environmental Justice (EJ) Areas within 10 miles of a plant and retiring 103 

plants with the most EJ Areas until reaching the target); and Climate (sorting by CO2 emissions 104 

intensity and retiring the highest-emitting plants until reaching the target). Notably, our EJ 105 

scenario design is driven by the fact that 73% of PA’s population and 64% of EJ communities 106 

in PA resided within 25 miles from a coal power plant in 2019 (Supporting Information 2 (SI2: 107 

Figure B.2). We therefore use 10 miles in our main EJ scenarios with sensitivity analyses 108 

exploring 5-25 miles. Additional information on scenario design and policy relevance is provided 109 

in Table 1, the supplementary data file, SI2: Section I.A and I.B (including Figure A.1 and Table 110 

A.1). 111 
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Table 1. Summary of scenarios 112 

Scenario Name  Explanations 

Base Case  All coal power plants active based on actual 2019 generation 

  Target Priority 

Retirement 
Scenarios 

Capacity-
based_Cost  

Capacity-based 
retirement:  
 
Method: Retire ~50% 
of total installed coal 
power capacity in PA 

Cost:  
Policy relevance: Current practice of 
retirements based primarily on economic and 
feasibility considerations  
Method: Plants with the highest marginal costs 
of generation are retired first 
Intention: Assess how closures of high 
marginal cost plants affect emissions, air 
quality, and health throughout PJM 

Capacity-
based_EJ  

EJ:  
Policy relevance: Efforts to prioritize EJ in PA 
such as the revisions to the Environmental 
Justice Policy 
Method: * Plants with the largest number of EJ 
Areas** within a 10-mile radius are retired first 
Intention: Assess how closures of plants close 
to EJ Areas affect emissions, air quality, and 
health throughout PJM   

Capacity-
based_Climate  

Climate:  
Policy relevance: Policy efforts to reduce 
emissions such as the Regional Greenhouse 
Gas Initiative (RGGI) 
Method: Plants with the highest CO2 emission 
rates are retired first 
Intention: Assess how closures of high CO2 
emitting plants affect emissions, air quality, 
and health throughout PJM 

Generation-
based_Cost  Generation-based 

retirement: 
 
Method: Retire ~50% 
of total coal power 
generation in PA 

Same above Generation-
based_EJ  

Generation-
based_Climate  

 113 

* See alternative EJ scenarios with varying radii and based on population size in SI2: Section I.C (SI2: Figure C.3 114 
and Figure D.4). 115 
** EJ Areas are defined by the Pennsylvania Department of Environmental Protection’s (PA DEP) as census tracts 116 
where at least 20% of individuals live at or below the federal poverty line and/or where at least 30% of the 117 
population identifies as a non-white minority.25 118 
 119 
 120 
 121 
 122 
 123 
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2.2 Electricity market modeling (RPAM) 124 

We use the RGGI + PJM Policy Analysis Model (RPAM) to examine how each coal 125 

retirement scenario induces changes in power market and plant-level emissions outcomes 126 

within PA and Rest of PJM region (see Supporting Information 1 (SI1) for detailed model 127 

description and validation). 128 

RPAM is a multi-market equilibrium model that accounts for critical features of the 129 

wholesale power market operated by PJM Interconnection, preexisting state and federal 130 

policies, the supply of external renewable energy credits (RECs) from outside of PJM, and 131 

abatement and banking from the partially overlapping RGGI allowance market (see SI1: Section 132 

II for datasets used to calibrate and estimate RPAM).4,26 On the demand-side, there are five 133 

aggregate load zones connected by five aggregate transmission lines (SI1: Section II.A). On 134 

the supply-side, the model captures capacity and maintenance constrained supply from 845 135 

representative electric generation units (EGUs) aggregated from 3,095 existing power plants in 136 

PJM (SI1: Section II.B).  The model also predicts new capacity expansion for natural gas, wind, 137 

and solar on a state by load zone basis (SI1: Section II.C), considering anticipated annual profits 138 

net of annualized capital and financing costs. See SI1 Section II for datasets used to calibrate 139 

and estimate RPAM come from several dozen datasets (SI1: Section II) including from PJM 140 

Interconnection, S&P Global, EP, EIA, and Census. Subject to capacity, transmission, and 141 

policy/market clearing constraints, RPAM maximizes the sum of net benefits to PJM’s wholesale 142 

customers (i.e., consumer surplus), total profits to PJM electricity producers (i.e., producer 143 

surplus) net of the costs of adding new capacity, total abatement costs from non-PJM RGGI 144 

states, and total net benefits to holders of RGGI banked allowances. This consideration of total 145 

welfare implications distinguishes the RPAM model from other electricity dispatch models that 146 

typically only considers the physical cost.18,20,21,27  147 

RPAM is solved on an annual time-step from 2016 to 2019. This analysis focuses on 148 

2019, including the Base Case that considers the observed generation fleet and six 149 

counterfactual scenarios that update the generation fleet with coal retirements in PA. RPAM 150 

reports plant-level emissions from existing power plants in 2019 (CO2, SO2, NOx, PM2.5, NH3, 151 

and VOC) (SI1: Section II.I). Emissions from new natural gas power plants added in each state-152 

load zone are assumed to be released evenly across the corresponding sub-region. Emissions 153 

from new solar and wind are assumed to be zero.  154 

 155 

 156 

 157 
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2.3 Air quality modeling (ISRM) 158 

Based on plant-level emissions from RPAM, we use the InMAP Source-Receptor Matrix 159 

(ISRM) to simulate the impacts on annual average ambient PM2.5 concentrations. ISRM is 160 

derived from thousands of simulations of a reduced-form air quality model, InMAP, which uses 161 

meteorology and emissions data from 2005 and average population data spanning from 2008 162 

to 2012 (SI2: Section II.A). ISRM quantifies the impact of one ton of precursor emissions from 163 

each individual source location on the ambient PM2.5 concentration in each receptor location. 164 

ISRM assumes a linear relationship between changes in precursor emissions and PM2.5 165 

concentrations. Despite these simplifications, ISRM provides reasonable estimates for PM2.5 166 

pollution levels when compared to observational data28,29 and has been used to assess pollution 167 

impacts in many different contexts.12,22,30  168 

ISRM includes approximately 52,411 spatial grid cells across the contiguous United 169 

States, including roughly 2,297 grid cells in PA and 13,228 grid cells over the PJM region. The 170 

grid resolution increases with population density, ranging from 1km x 1km in densely populated 171 

urban areas to 48 km x 48 km in remote or rural areas. ISRM inputs are precursor annual 172 

emissions of NOx, SO2, NH3, primary PM2.5, and VOC for each grid cell, or the sum of plant-level 173 

emissions of these pollutants from RPAM for each grid cell.  ISRM outputs are the grid-level 174 

simulated ambient concentrations of PM2.5, including primary and secondary PM2.5. Based on 175 

the distribution of the smokestack height of coal power plants in PA (see SI2: Figure F.6), we 176 

use high smokestack height (>379m) in ISRM.   177 

            The following equation describes the change in PM2.5 concentration at receptor 178 

location b (∆∁𝑏) as a result of changes in emissions in location a: 179 

      ∆∁𝑏=  ∑ ∑ ∆𝐸𝑎,𝑝   
𝑁
𝑎=1𝑝 ⋅ 𝑓(𝑎,𝑝)−𝑏            (1)                                180 

where 𝑝 is the primary emitted pollutant (an element of 𝑃 = {primary PM2.5, NH3, NOx, SO2, 181 

VOC}); ∆𝛦𝑎,𝑝 is the change in emissions for source grid cell a for pollutant type p emitted; and 182 

𝑓(𝑎,𝑝)−𝑏 
 is the relationship between annual total emissions in location a and annual average 183 

PM2.5 in location b. Each InMAP simulation used to generate ISRM involves altering emissions 184 

of a specific pollutant from a single source by one ton. Thus, it generates a vector, 𝑓(𝑎,𝑝) , 185 

representing impacts on all 𝑁 receptors; the 𝑏th component of this vector is denoted 𝑓(𝑎,𝑝)−𝑏. 186 

The total change in ambient PM2.5 concentration (𝜇𝑔/m3) at location b is the aggregate impact 187 

from all precursor emissions and all locations.28  188 

 189 

      190 
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2.4 Health impact assessment (BenMAP)  191 

We use the U.S. EPA’s Benefits Mapping and Analysis Program (BenMAP) model31 to 192 

assess premature deaths associated with long-term exposure to ambient PM2.5.32 BenMAP has 193 

been applied widely in health impact assessment.10,21,33–37 BenMAP inputs include county and 194 

census tract averaged PM2.5 concentrations calculated using the gridded concentrations from 195 

ISRM; outputs are annual total PM2.5-attributable deaths at the county and census tract levels 196 

(SI2: Section II.B). For our county-level analysis, we use gridded ISRM results to calculate 197 

population-weighted county-average PM2.5 concentrations. If the ISRM grid size is smaller than 198 

a county, we calculate the population weighted average PM2.5 concentrations for the county 199 

using multiple ISRM grids. For the geographic analysis in 3.4, we use ISRM results to calculate 200 

census-tract level PM2.5 concentrations. If the census tract size is smaller than the ISRM grid, 201 

we use the same PM2.5 concentration for all census tracts within one ISRM grid. 202 

BenMAP uses the following log-linear health impact function to calculate changes in all-203 

cause mortality attributable to ambient PM2.5 exposure38, described in Table 2:  204 

                                       ∆𝑌 = (1 − 𝑒−𝛽⋅∆𝑃𝑀) ⋅ 𝑌0 ⋅ 𝑃𝑜𝑝            (2) 205 
 206 

Table 2. Summary of input data for the health impact assessment 207 

Variable* Definition Data Source 

𝒀𝟎 
All-cause baseline mortality rate for 

2019 

Center for Disease Control (CDC) WONDER 

database. 

𝑷𝒐𝒑 Population in 2019 
2010 U.S. Census Bureau census block data 

with projection to 2019 

𝜷 

Concentration-Response coefficient 

from epidemiological studies. Changes 

in mortality risk resulting from changes 

in PM2.5 exposure level 

The main results use the estimate from the 

American Cancer Society.39 The sensitivity 

analyses use the estimates from Laden et al. 

200640 and Thurston et al. 2016.41 

∆𝑷𝑴 

Changes in PM2.5 concentration in a 

coal retirement scenario relative to the 

Base Case 

County or census-tract level PM2.5 

concentrations averaged from gridded 

concentrations simulated by ISRM 

* For more detailed information on these variables, see the BenMAP manual.38  208 

** For additional information on sensitivity analyses using other concentration-response functions and 𝛽 209 

values, see Figure 6 and SI2: Section IV. 210 

 211 

 212 

 213 
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3. Results  214 

3.1 Impacts on electricity generation  215 

Coal-fired power plants account for 13% and 12% of total generation in PA and the rest 216 

of PJM, respectively in the Base Case (Figure 2a). Retiring coal-fired power plants in PA based 217 

on capacity or generation targets have different impacts on the power system. For the “Capacity-218 

based” scenarios, declines in coal-fired electricity generation in PA vary substantially by 2.1 219 

TWh, 13 TWh, and 18 TWh in the Cost, EJ, and Climate scenarios, respectively, relative to the 220 

Base Case (Figure 2b). This variation is primarily influenced by disparities in Base Case 221 

utilization rates. For instance, coal plants retired in the Capacity-based_Cost scenario have 222 

lower utilization rates on average than the other two “Capacity-based” scenarios. However, 223 

reductions in coal-fired electricity generation are roughly the same across all “Generation-224 

based” scenarios which implicitly control for variation in utilization rates. 225 

Coal power plant retirements in PA drive changes in the transmission constrained 226 

dispatch of power both within and between PA and Rest of PJM. These changes are driven by: 227 

(i) the amount of coal generation displaced by retirements; (ii) the marginal costs and available 228 

capacities of remaining units; and (iii) the location of retired generation and associated 229 

transmission constraints. Generally, our results are similar to findings in previous studies42 that 230 

coal retirements in PA lead to an increase in dispatch from natural gas plants, because 231 

dispatching existing plants is cheaper than installing new capacity to make up for foregone 232 

generation and natural gas plants are dispatched more often due to their cost advantage (Figure 233 

2b). However, the scale and location of additional generation may be affected by changes in 234 

transmission congestion. For instance, in the Generation-based_Cost scenario, natural gas-235 

based generation in PA also declines slightly.   236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 
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Figure 2. Electricity generation (TWh) by fuel source. Panel (a) depicts Base Case electricity 249 

generation in PA and Rest of PJM. Panel (b) reports changes in generation relative to the Base Case for 250 

the six scenarios in PA and Rest of PJM by power plant source (Coal, Natural Gas, and Others). “Others” 251 

in Panel (b) refers to generation from all non-coal or natural gas sources.  252 

 253 

3.2 Impacts on emissions of CO2 and other air pollutants 254 

 Our main results focus on emissions of CO2, due to its climate impacts, and of SO2, NOx, 255 

and PM2.5 because prior studies found these three pollutants to be the most 256 

important precursors from the power sector, contributing to 81%, 12%, and 6% of ambient PM2.5, 257 

respectively at the national level.28 (SI2: Figure D.4 provides results for NH3 and VOC, which 258 

contribute 0.2% and 0.1% to ambient PM2.5, respectively). In the Base Case, we estimate annual 259 

total CO2, NOx, SO2, and PM2.5 emissions from all power plants in the PJM region to be 426 260 

million tons, 206 thousand tons, 187 thousand tons, and 38 thousand tons, respectively, of 261 

which 17 to 25% are from PA plants (Figure 3a).   262 

 Although all six scenarios reduce CO2 and air pollutant emissions in aggregate across 263 

PJM relative to the Base Case, the spatial distribution of emissions changes varies considerably 264 

across scenarios (Figure 3b and Figure 3c). As noted above, changes in the spatial pattern of 265 

precursor emissions follow from changes in power generation which, in turn, through ISRM, 266 

correspond to changes in the spatial pattern of receptor emissions. Reductions in coal power 267 

generation in PA largely explain observed declines in emissions there. For example, the 268 

Capacity-based_Climate scenario leads to the largest reduction in coal-fired electricity 269 

generation and thus emissions in PA of 18% for CO2, 50% for SO2, 32% for NOx, and 75% for 270 

PM2.5. Changes in power generation in Rest of PJM also largely explain changes in emissions 271 

there. For example, we find almost no emissions increase in Rest of PJM in the Generation-272 

based_EJ scenario (Figure 3b and Figure 3c) consistent with the negligible change in 273 

generation there (Figure 2b). However, in the Capacity-based_Cost scenario, we find small 274 

increases in CO2 (0.6%), NOx (0.9%), SO2 (0.8%), and PM2.5 (0.6%) emissions due to more 275 

substantial increases in natural gas generation in Rest of PJM (Figure 2b). 276 
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 277 

Figure 3. Annual total emissions of CO2, NOx, SO2, and PM2.5 from all power plants located in PA 278 

and Rest of PJM. Panel (a) reports emissions under the Base Case; Panels (b) and (c) show the changes 279 

in CO2 and criteria air pollutants in each of the six retirement scenarios relative to the Base Case. The 280 

white circles show the net change across the whole PJM region. Results for NH3 and VOC are reported 281 

in SI2: Figure G.7.  282 

 283 

3.3 Impacts on ambient PM2.5 concentrations and PM2.5-attributable deaths 284 

In the Base Case, power sector emissions from all electricity generation in PJM result in 285 

an annual PM2.5 concentration of up to 5.7 μg/m3 across PJM counties, which is associated with 286 

1,300 PM2.5-attributable deaths annually (95% confidence interval: 1,200 to 1,600) (Figure 4a). 287 

The low concentration level results from estimating the effects only from power sector 288 

emissions, while other sectors, such as transportation and residential, contribute additional 289 

pollution in this region.10,42,43 290 

Although changes in precursor emissions are negative in some counties and positive in 291 

others depending on the scenario, almost all counties experience a reduction in ambient PM2.5 292 

concentrations and associated deaths relative to the Base Case (see SI2, Table B.2 for 293 

population-weighted annual average PM2.5 concentrations by scenario). This is because retired 294 

coal plants are often more polluting than the generation that replaces them (such as natural 295 

gas), causing precursor emissions to fall in aggregate across PJM. Despite spatial variation in 296 
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precursor emissions from retired and replacement generation predicted by RPAM and 297 

corresponding spatial variation in receptor emissions arising from air pollution formation and 298 

transport via ISRM, the aggregate decline in precursor emissions dominates, leading to lower 299 

ambient PM2.5 concentrations and associated deaths for most counties in southeastern PA.  300 

Nonetheless, these complex linkages, together with differences in socio-demographics 301 

that characterize pollution exposure across counties, cumulatively determine the magnitude and 302 

distribution of avoided PM2.5-attributable deaths (see SI2: Table C.3 for absolute changes in 303 

PM2.5-attributable deaths relative to the Base Case). Of the six scenarios, Capacity-304 

based_Climate reduces PM2.5 concentrations and associated deaths the most: by 84 in PA (95% 305 

CI: 52 to 118) or 20% relative to the Base Case; Rest of PJM also observes a reduction of 52 306 

PM2.5-attributable deaths (95% CI: 41 to 85) or 5% relative to the Base Case (Figure 4b).  307 

308 

Figure 4. Annual total PM2.5-attributable deaths from power sector emissions in the Base Case 309 

(Panel a) and the changes in the six coal retirement scenarios relative to the Base Case in PA 310 

and Rest of PJM (Panel b). Here we use the concentration-response coefficients from Krewski et al., 311 

2009.39 Error bars represent the estimates based on the 95% confidence interval of the concentration-312 

response coefficients for the total deaths throughout the whole PJM region. 313 

 314 



13 

 

3.4 Insights on geographic distribution and environmental justice communities 315 

 We find important spatial variation across the PJM region regarding the patterns of 316 

electricity generation, air pollutant emissions, ambient concentrations of PM2.5, and PM2.5-317 

attributable deaths. We focus on the results for the Generation-based_EJ scenario (Figure 5), 318 

with results for the other scenarios in SI2: Figures H.8-I.9. Under this scenario, the majority of 319 

health benefits in Rest of PJM occur in PA’s southern neighbors Delaware, Maryland, and New 320 

Jersey. Thus, regional impacts are still largely determined by close proximity to PA coal plant 321 

closures (see SI2: Figure L.12) for an expanded air quality assessment that also includes states 322 

outside PJM).  323 

  324 

 325 

Figure 5. Geographical distribution of impacts. The first row provides results for the Base Case; The 326 

second row shows the changes in the Generation-based_EJ scenario relative to the Base Case. From 327 

left to right, the four columns depict county-level annual total electricity generation, annual total SO2 328 

emissions from power generation, simulated county-level annual average ambient PM2.5 concentrations, 329 

and annual total PM2.5-attributable deaths. SI2: Figures H.8 and I.9 provide results for other five scenarios, 330 

and SI2: Figures J.10 and K.11 report results for NOx and Primary PM2.5 emissions for all scenarios. 331 

 332 

To further understand the distributional implications of PA coal plant closures, we 333 

compare the health effects in EJ Areas and non-EJ Areas (Figure 6). To assess impacts in EJ 334 

Areas outside of PA, we apply the PA DEP EJ Area definition to census tracts in Rest of PJM.  335 

Because EJ Areas are defined at the census tract level, we perform the health impact 336 

assessment at the census tract level using gridded PM2.5 concentrations from ISRM. As some 337 

census tracts are smaller than ISRM grids, we are unable to identify exposure disparities across 338 

different census tracts in these circumstances. For “Capacity-based” scenarios, we find that the 339 

Climate scenario provides the largest overall reduction as well as the largest benefit to EJ Areas, 340 

driven again by the largest reduction in coal power generation from the same capacity 341 
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retirement. In comparison, for “Generation-based” scenarios, we find that the EJ scenario 342 

provides the largest overall reduction in deaths as well as the largest benefit to EJ Areas. In 343 

particular, 61% of the avoided deaths occur within 10 miles from coal plant closures (the relevant 344 

distance based on our scenario design), of which 77% occur within the EJ Areas (SI2: Figure 345 

E.5).  This result demonstrates potential equity-improving outcomes by prioritizing EJ Areas in 346 

coal retirement decisions. While the EJ scenarios do not consider constraints to “safeguard” EJ 347 

Areas in Rest of PJM from experiencing worse exposure outcomes, we observe distributional 348 

co-benefits in these areas. This result is largely driven by the unique feature that the EJ Areas 349 

outside PA happen to be the downwind areas of some retired plants, suggesting that cross-350 

regional linkages may impact distributional impacts outside PA too.  351 

We further consider sensitivity in concentration-response coefficients (𝜷), as one of the 352 

largest sources of uncertainty in health assessment44–46. Using higher or lower values for 𝜷 353 

increases and decreases the level of reduced deaths, respectively, yet we observe similar 354 

patterns in terms of the spatial distribution of health benefits in PA and Rest of PJM, as well as 355 

in EJ and non-EJ Areas.  356 

Finally, recognizing that closing plants based on its proximity to EJ Areas may not protect 357 

the largest number of vulnerable people, we also investigate the sensitivity of EJ scenario 358 

design by: i) varying the radius (15, 20, and 25 miles in addition to 10 miles in the main EJ 359 

scenarios), and ii) considering the population size of EJ Areas instead of the number of census 360 

tracts that are defined by PA DEP as EJ Areas. We find the main pattern of retirements is not 361 

sensitive to the radius choice, despite some minor differences in plant retirements (SI2: Figure 362 

C.3). Using population size instead of number of EJ Areas, we find that scenarios generate 363 

more diffuse unit closures, suggesting that the geographical unit of aggregation is important for 364 

assessing distributional impacts (SI2: Figure D.4).  365 



15 

 

 366 

Figure 6. Sensitivity analysis using different concentration-response coefficients (𝜷) Panel a and 367 

b show the reduction in deaths for “Capacity-based” scenarios and “Generation-based” scenarios, 368 

respectively. We show the estimates based on the concentration-response coefficients in Krewski et al. 369 

2009 (main 𝜷)39, Laden et al. 2006 (high 𝜷)40, Thurston et al. 2016 (low 𝜷)41. Here we categorize census 370 

tracts based on their location (PA vs. Rest of PJM) and if they are EJ Areas or non-EJ Areas. Error bars 371 

show the 95% confidence interval of the concentration-response coefficients.  372 

 373 

4.  Discussion  374 

We find that reducing coal capacity and generation in Pennsylvania would improve 375 

regional air quality and reduce premature deaths; the distribution of these benefits depends on 376 

the targets and priorities set for power plant retirements. For example, among scenarios that 377 

use reduced capacity targets, retiring plants by CO2 emissions would result in the largest shift 378 

in the composition of fuels used for energy generation—away from coal in PA and towards 379 

natural gas in Rest of PJM. This, in turn, generates the largest net CO2 benefits under a 380 

capacity-reduction target. Alternatively, among scenarios that use reduced generation targets, 381 
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retiring plants by marginal cost of operation would result in the largest shift in the composition 382 

of fuels—away from both coal and natural gas in PA and towards natural gas, and, to a lesser 383 

extent, additional coal in Rest of PJM. Yet, the largest net CO2 benefits under a generation-384 

reduction target result from the scenario that prioritizes retirements near EJ census tracts. This 385 

is due to a smaller increase in natural gas generation in Rest of PJM in response to plant 386 

closures in PA. 387 

Combining these fuel composition changes and the effects of pollution transport and 388 

population exposure, the air quality and health impacts also vary by retirement targets and 389 

priorities. We find that the largest reduction in deaths among capacity-based scenarios comes 390 

from prioritizing retirements by CO2 emissions, and the largest reduction in deaths among 391 

generation-based scenarios comes from prioritizing retirements by proximity to EJ census 392 

tracts. Furthermore, we find complex distributional implications for air quality and health. 393 

Geographically, among the EJ-oriented scenarios that we tested, more of these health benefits 394 

are found in EJ Areas, highlighting the additional equity benefits by placing vulnerable 395 

communities at the center of energy decision making. In addition, many of the air quality 396 

improvements occur in southern and eastern Pennsylvania and neighboring states such as NJ 397 

and DE, suggesting that regional analysis is necessary for assessing air quality impacts of low 398 

carbon energy transitions. Thus, it is important for regional transmission organizations and 399 

federal regulators to look beyond reliability rules that largely guide the current coal retirement 400 

decisions,47 and start to consider the electricity market operations and resulting air quality and 401 

health impacts as additional considerations for plant closures. 402 

 Notably, our results are driven by a few key features of PA and PJM grid, including: i) 403 

the spatial relationship between where coal plants locate and where EJ communities live (see 404 

SI2: Figure B.2), ii) the characteristics of existing power plants and transmission grid, and iii) 405 

the wind transport pattern of the region. While our quantitative conclusions may not be 406 

generalizable, the key underlying factors and the importance of considering plant closure targets 407 

and priorities are likely to be relevant to other regions and decision makers.  408 

 Finally, we highlight a few areas for future work. First, how can modeling frameworks be 409 

improved to assess finer-scale decisions, impacts and disparities? While our analysis focuses 410 

on annual aggregate impacts due to the time step of RPAM, a finer temporal resolution would 411 

be useful to understand power dispatch and transmission decisions, short-term pollution events, 412 

and acute health impacts such as morbidity and hospital admissions. Further, our current 413 

approach involves a one-way coupling from energy to air quality and then to health. Thus, our 414 

model takes pre-designed scenarios that do not optimize the energy system to achieve health 415 
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or equity objectives. Future research that optimizes scenario design based on aggregate health 416 

impacts, environmental improvements, or protections for the most vulnerable populations would 417 

provide valuable policy insights8,48. Second, how will coal retirement decisions interact with other 418 

trends in electricity and end-use sectors to collectively shape air quality and health outcomes? 419 

While we focus only on coal retirements in PA, increased renewable penetration and 420 

accelerated adoption of electric vehicles, heat pumps, and other energy efficient durable goods 421 

may significantly alter future electricity and energy consumption with difficult-to-predict impacts 422 

on air quality and health. Third, how do varying sources of uncertainty influence environmental 423 

impact assessment? Uncertainties exist in the energy system (policy implementation, 424 

behavioral response, future technology choices, etc.)49–51, air quality modelling (chemical and 425 

physical transport processes, spatial distribution of different groups, etc.),52–54 and health impact 426 

assessment (baseline health conditions, health attributes of different groups, etc.)55,56. In 427 

addition, here we monetize air quality and health impacts (SI2: Table F.6 and Table G.7) and 428 

changes in operational costs across PJM (SI2: Table E.5). Extending this analysis to conduct a 429 

comprehensive equity and cost-benefit assessment that includes climate damages, sunk capital 430 

costs, and broader economy-wide socioeconomic impacts of coal retirement may be a useful 431 

direction for future research.    432 

In conclusion, shifts in U.S. electricity production demand a careful analysis of transitions 433 

in key states like PA and across grid regions like PJM Interconnection. Using energy systems 434 

and health impact modeling, this study explores the consequences of retiring coal-fired power 435 

plants in PA. Natural gas often replaces coal, reducing overall air pollution. Spatial analysis 436 

highlights air pollution variations, emphasizing the need for pre-retirement impact assessments 437 

to estimate the economic and distributional effects of plant closures in the region. 438 

 439 
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