

1 **Designing retirement strategies for coal-fired power plants to mitigate air
2 pollution and health impacts**

4 *Carla Campos Morales^{1,6}, Emily L. Pakhtigian² *, Joel R. Landry³, Hannah Wiseman⁴, An T.
5 Pham⁵, Wei Peng⁶ **

6
7 ¹ Department of Civil and Environmental Engineering, The Pennsylvania State University,
8 University Park, Pennsylvania 16802, United States

9
10 ² School of Public Policy, The Pennsylvania State University; 322 Pond Laboratory, University
11 Park, PA, 16802, United States

12
13 ³ The Pennsylvania State University, University Park, Pennsylvania 16802, United States

14
15 ⁴ Penn State Law, The Pennsylvania State University, University Park, Pennsylvania 16802,
16 United States

17
18 ⁵ Energy System Integration Directorate, National Renewable Energy Laboratory, Denver,
19 Colorado 80401, United States

20
21 ⁶ School of Public and International Affairs and Andlinger Center for Energy and the
22 Environment, Princeton University, NJ 08540, United States

23
24 ***Corresponding authors:** weipeng@princeton.edu, emilypakhtigian@psu.edu

25
26 Note: Campos Morales and Pakhtigian have contributed equally.

28 **Abstract**

29

30 Retiring coal power plants can reduce air pollution and health damages. However, the spatial
31 distribution of those impacts remains unclear due to complex power system operations and
32 pollution chemistry and transport. Focusing on coal retirements in Pennsylvania (PA), we
33 analyze six counterfactual scenarios for 2019 that differ in retirement targets (e.g., reducing
34 50% of coal-based installed capacity vs. generation) and priorities (e.g., closing plants with
35 higher cost, closer to Environmental Justice Areas, or with higher CO₂ emissions). Using a
36 power system model of the PJM Interconnection, we find that coal retirements in PA shift power
37 generation across PA and the Rest of PJM region, leading to scenario-varying changes in the
38 plant-level release of air pollutants. Considering pollution transport and size of the exposed
39 population, these emissions changes, in turn, give rise to a reduction of 6 to 136 PM_{2.5}-
40 attributable deaths in PJM across the six scenarios, with most reductions occurring in PA.
41 Among our designed scenarios, those that reduce more coal power generation yield greater
42 aggregate health benefits due to air quality improvements in PA and adjacent downwind
43 regions. In addition, comparing across the six scenarios evaluated in this study, vulnerable
44 populations—in both PA and Rest of PJM—benefit most in scenarios that prioritize plant
45 closures near Environmental Justice Areas in PA. These results demonstrate the importance of
46 considering cross-regional linkages and socio-demographics in designing equitable retirement
47 strategies.

48

49 **Keywords:** Coal retirement, air quality, human health, environmental justice

50

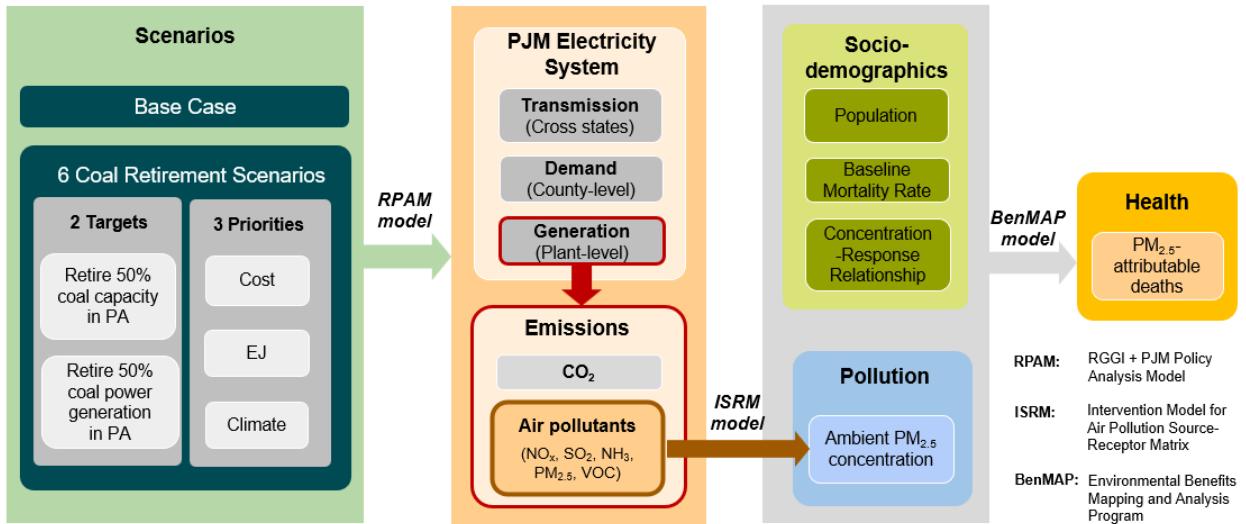
51 **Synopsis**

52

53 Retiring coal power plants in Pennsylvania can improve air quality and health outcomes
54 throughout the PJM Interconnection.

55

56 **1. Introduction**


57 The U.S. is in the midst of a significant energy transition. The last decade has seen a
58 national decline in coal-fired electricity generation of nearly 50%.^{1,2} Pennsylvania (PA) mirrors
59 this trend due to its policy landscape and access to cheap and plentiful natural gas and
60 renewable energy sources.³⁻⁵ Coal plant retirements in PA provide a potential avenue for
61 mitigating emissions of not only carbon dioxide (CO₂), but also criteria air pollutants such as
62 nitrogen oxides (NO_x), sulfur dioxide (SO₂), and fine particulate matter (PM_{2.5}).^{6,7} Accordingly,
63 such closures are expected to improve air quality and reduce health damages⁸⁻¹¹.

64 Prior studies have found that air quality and health benefits from coal generation are
65 unevenly distributed across regions and sociodemographic groups.^{8,12-18} Optimizing coal-fired
66 power plant closures based on climate, cost, or health objectives can lead to substantial
67 variation in both the magnitude and distribution of health benefits.^{9,19-21,23} In practice, coal
68 retirement decisions in PA and much of the country are largely based on economic and
69 feasibility considerations and thus unlikely to address long-standing environmental justice
70 concerns. This motivates a need to understand the equity implications of coal plant
71 retirements—in particular, how to better design coal retirements so as to more effectively
72 mitigate disproportionate environmental burdens historically borne by disadvantaged
73 communities.

74 In addition, research into how cross-regional linkages across power systems, air pollution
75 transport, and socio-demographics influence the distribution of health impacts is fairly limited.
76 PA provides a distinctive setting to examine such linkages. First, PA is a major power exporter
77 in the PJM Interconnection, a Regional Transmission Organization that manages a wholesale
78 electricity market spanning thirteen states which is one of the largest in the world. Thus, coal
79 retirements in PA affect power generation and flows throughout the PJM grid, leading to
80 potentially significant emissions impacts elsewhere.^{16,19,22} Second, due to historical plant siting
81 decisions, chemical formation, and wind transport of pollution, reducing PA's emissions provide
82 an avenue to also improve air quality in downwind states.^{23,24} These complex dynamics and
83 resulting distributional outcomes are not well understood nor incorporated into coal retirement
84 decisions in PA.

85 In this study, we respond to the above-mentioned knowledge gaps by evaluating the air
86 quality and health effects of various coal retirement scenarios in PA. In particular, we contribute
87 by: i) establishing a modeling system with improved representation of cross-regional linkages
88 as key determinants of distributional air quality and health effects from coal plant retirements

89 (Figure 1); and ii) assessing tradeoffs between aggregate and distributional effects across
 90 different coal plant retirement strategies.

91
 92 **Figure 1. Schematic diagram of our modeling framework and coal retirement scenarios.**

93

94 **2. Methodology**

95 **2.1 Scenario design**

96 Based on the generation and emissions for the year 2019 (i.e., *Base Case*), we design
 97 six counterfactual scenarios that vary across two dimensions: *targets* and *priorities*. We
 98 consider two targets—"Capacity-based" (retiring coal-fired power plants until at least 50% of
 99 PA's 2019 coal-fired baseline capacity is eliminated) and "Generation-based" (retiring coal-fired
 100 power plants until at least 50% of PA's 2019 coal-fired baseline generation is eliminated)—and
 101 three priorities—*Cost* (sorting PA's 2019 coal-fired power plants by average annual cost
 102 (\$/MWh) and retiring highest-cost plants until reaching the target); *Environmental Justice*
 103 (sorting by the number of Environmental Justice (EJ) Areas within 10 miles of a plant and retiring
 104 plants with the most EJ Areas until reaching the target); and *Climate* (sorting by CO₂ emissions
 105 intensity and retiring the highest-emitting plants until reaching the target). Notably, our EJ
 106 scenario design is driven by the fact that 73% of PA's population and 64% of EJ communities
 107 in PA resided within 25 miles from a coal power plant in 2019 (Supporting Information 2 (SI2:
 108 Figure B.2). We therefore use 10 miles in our main EJ scenarios with sensitivity analyses
 109 exploring 5-25 miles. Additional information on scenario design and policy relevance is provided
 110 in Table 1, the supplementary data file, SI2: Section I.A and I.B (including Figure A.1 and Table
 111 A.1).

Table 1. Summary of scenarios

Scenario Name		Explanations		
Base Case		All coal power plants active based on actual 2019 generation		
		Target	Priority	
Retirement Scenarios	Capacity-based_Cost	Capacity-based retirement: <u>Method:</u> Retire ~50% of total installed coal power capacity in PA	Cost: <u>Policy relevance:</u> Current practice of retirements based primarily on economic and feasibility considerations <u>Method:</u> Plants with the highest marginal costs of generation are retired first <u>Intention:</u> Assess how closures of high marginal cost plants affect emissions, air quality, and health throughout PJM	
	Capacity-based_EJ		EJ: <u>Policy relevance:</u> Efforts to prioritize EJ in PA such as the revisions to the Environmental Justice Policy <u>Method:</u> * Plants with the largest number of EJ Areas** within a 10-mile radius are retired first <u>Intention:</u> Assess how closures of plants close to EJ Areas affect emissions, air quality, and health throughout PJM	
	Capacity-based_Climate		Climate: <u>Policy relevance:</u> Policy efforts to reduce emissions such as the Regional Greenhouse Gas Initiative (RGGI) <u>Method:</u> Plants with the highest CO ₂ emission rates are retired first <u>Intention:</u> Assess how closures of high CO ₂ emitting plants affect emissions, air quality, and health throughout PJM	
	Generation-based_Cost	Generation-based retirement:	Same above	
	Generation-based_EJ	<u>Method:</u> Retire ~50% of total coal power generation in PA		
	Generation-based_Climate			

114 * See alternative EJ scenarios with varying radii and based on population size in SI2: Section I.C (SI2: Figure C.3
 115 and Figure D.4).

116 ** EJ Areas are defined by the Pennsylvania Department of Environmental Protection's (PA DEP) as census tracts
 117 where at least 20% of individuals live at or below the federal poverty line and/or where at least 30% of the
 118 population identifies as a non-white minority.²⁵

124 **2.2 Electricity market modeling (RPAM)**

125 We use the RGGI + PJM Policy Analysis Model (RPAM) to examine how each coal
126 retirement scenario induces changes in power market and plant-level emissions outcomes
127 within PA and Rest of PJM region (see Supporting Information 1 (SI1) for detailed model
128 description and validation).

129 RPAM is a multi-market equilibrium model that accounts for critical features of the
130 wholesale power market operated by PJM Interconnection, preexisting state and federal
131 policies, the supply of external renewable energy credits (RECs) from outside of PJM, and
132 abatement and banking from the partially overlapping RGGI allowance market (see SI1: Section
133 II for datasets used to calibrate and estimate RPAM).^{4,26} On the demand-side, there are five
134 aggregate load zones connected by five aggregate transmission lines (SI1: Section II.A). On
135 the supply-side, the model captures capacity and maintenance constrained supply from 845
136 representative electric generation units (EGUs) aggregated from 3,095 existing power plants in
137 PJM (SI1: Section II.B). The model also predicts new capacity expansion for natural gas, wind,
138 and solar on a state by load zone basis (SI1: Section II.C), considering anticipated annual profits
139 net of annualized capital and financing costs. See SI1 Section II for datasets used to calibrate
140 and estimate RPAM come from several dozen datasets (SI1: Section II) including from PJM
141 Interconnection, S&P Global, EP, EIA, and Census. Subject to capacity, transmission, and
142 policy/market clearing constraints, RPAM maximizes the sum of net benefits to PJM's wholesale
143 customers (i.e., consumer surplus), total profits to PJM electricity producers (i.e., producer
144 surplus) net of the costs of adding new capacity, total abatement costs from non-PJM RGGI
145 states, and total net benefits to holders of RGGI banked allowances. This consideration of total
146 welfare implications distinguishes the RPAM model from other electricity dispatch models that
147 typically only considers the physical cost.^{18,20,21,27}

148 RPAM is solved on an annual time-step from 2016 to 2019. This analysis focuses on
149 2019, including the Base Case that considers the observed generation fleet and six
150 counterfactual scenarios that update the generation fleet with coal retirements in PA. RPAM
151 reports plant-level emissions from existing power plants in 2019 (CO₂, SO₂, NO_x, PM_{2.5}, NH₃,
152 and VOC) (SI1: Section II.I). Emissions from new natural gas power plants added in each state-
153 load zone are assumed to be released evenly across the corresponding sub-region. Emissions
154 from new solar and wind are assumed to be zero.

155

156

157

158 **2.3 Air quality modeling (ISRM)**

159 Based on plant-level emissions from RPAM, we use the InMAP Source-Receptor Matrix
160 (ISRM) to simulate the impacts on annual average ambient PM_{2.5} concentrations. ISRM is
161 derived from thousands of simulations of a reduced-form air quality model, InMAP, which uses
162 meteorology and emissions data from 2005 and average population data spanning from 2008
163 to 2012 (SI2: Section II.A). ISRM quantifies the impact of one ton of precursor emissions from
164 each individual source location on the ambient PM_{2.5} concentration in each receptor location.
165 ISRM assumes a linear relationship between changes in precursor emissions and PM_{2.5}
166 concentrations. Despite these simplifications, ISRM provides reasonable estimates for PM_{2.5}
167 pollution levels when compared to observational data^{28,29} and has been used to assess pollution
168 impacts in many different contexts.^{12,22,30}

169 ISRM includes approximately 52,411 spatial grid cells across the contiguous United
170 States, including roughly 2,297 grid cells in PA and 13,228 grid cells over the PJM region. The
171 grid resolution increases with population density, ranging from 1km x 1km in densely populated
172 urban areas to 48 km x 48 km in remote or rural areas. ISRM inputs are precursor annual
173 emissions of NO_x, SO₂, NH₃, primary PM_{2.5}, and VOC for each grid cell, or the sum of plant-level
174 emissions of these pollutants from RPAM for each grid cell. ISRM outputs are the grid-level
175 simulated ambient concentrations of PM_{2.5}, including primary and secondary PM_{2.5}. Based on
176 the distribution of the smokestack height of coal power plants in PA (see SI2: Figure F.6), we
177 use high smokestack height (>379m) in ISRM.

178 The following equation describes the change in PM_{2.5} concentration at receptor
179 location *b* (ΔC_b) as a result of changes in emissions in location *a*:

$$180 \Delta C_b = \sum_p \sum_{a=1}^N \Delta E_{a,p} \cdot f_{(a,p)-b} \quad (1)$$

181 where *p* is the primary emitted pollutant (an element of $P = \{\text{primary PM}_{2.5}, \text{NH}_3, \text{NO}_x, \text{SO}_2,$
182 VOC\}); $\Delta E_{a,p}$ is the change in emissions for source grid cell *a* for pollutant type *p* emitted; and
183 $f_{(a,p)-b}$ is the relationship between annual total emissions in location *a* and annual average
184 PM_{2.5} in location *b*. Each InMAP simulation used to generate ISRM involves altering emissions
185 of a specific pollutant from a single source by one ton. Thus, it generates a vector, $f_{(a,p)}$,
186 representing impacts on all *N* receptors; the *b*th component of this vector is denoted $f_{(a,p)-b}$.
187 The total change in ambient PM_{2.5} concentration ($\mu\text{g}/\text{m}^3$) at location *b* is the aggregate impact
188 from all precursor emissions and all locations.²⁸

189

190

191 **2.4 Health impact assessment (BenMAP)**

192 We use the U.S. EPA's Benefits Mapping and Analysis Program (BenMAP) model³¹ to
 193 assess premature deaths associated with long-term exposure to ambient PM_{2.5}.³² BenMAP has
 194 been applied widely in health impact assessment.^{10,21,33-37} BenMAP inputs include county and
 195 census tract averaged PM_{2.5} concentrations calculated using the gridded concentrations from
 196 ISRM; outputs are annual total PM_{2.5}-attributable deaths at the county and census tract levels
 197 (SI2: Section II.B). For our county-level analysis, we use gridded ISRM results to calculate
 198 population-weighted county-average PM_{2.5} concentrations. If the ISRM grid size is smaller than
 199 a county, we calculate the population weighted average PM_{2.5} concentrations for the county
 200 using multiple ISRM grids. For the geographic analysis in 3.4, we use ISRM results to calculate
 201 census-tract level PM_{2.5} concentrations. If the census tract size is smaller than the ISRM grid,
 202 we use the same PM_{2.5} concentration for all census tracts within one ISRM grid.

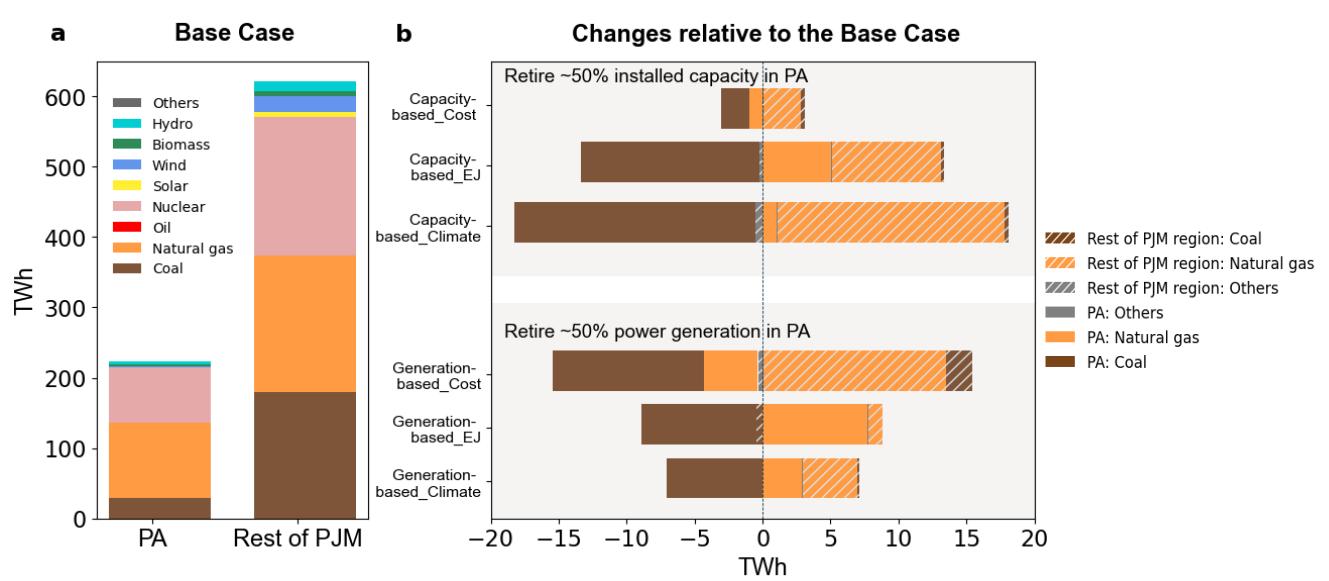
203 BenMAP uses the following log-linear health impact function to calculate changes in all-
 204 cause mortality attributable to ambient PM_{2.5} exposure³⁸, described in Table 2:

$$205 \Delta Y = (1 - e^{-\beta \cdot \Delta PM}) \cdot Y_0 \cdot Pop \quad (2)$$

207 **Table 2. Summary of input data for the health impact assessment**

Variable*	Definition	Data Source
Y_0	All-cause baseline mortality rate for 2019	Center for Disease Control (CDC) WONDER database.
Pop	Population in 2019	2010 U.S. Census Bureau census block data with projection to 2019
β	Concentration-Response coefficient from epidemiological studies. Changes in mortality risk resulting from changes in PM _{2.5} exposure level	The main results use the estimate from the American Cancer Society. ³⁹ The sensitivity analyses use the estimates from Laden et al. 2006 ⁴⁰ and Thurston et al. 2016. ⁴¹
ΔPM	Changes in PM _{2.5} concentration in a coal retirement scenario relative to the Base Case	County or census-tract level PM _{2.5} concentrations averaged from gridded concentrations simulated by ISRM

208 * For more detailed information on these variables, see the BenMAP manual.³⁸

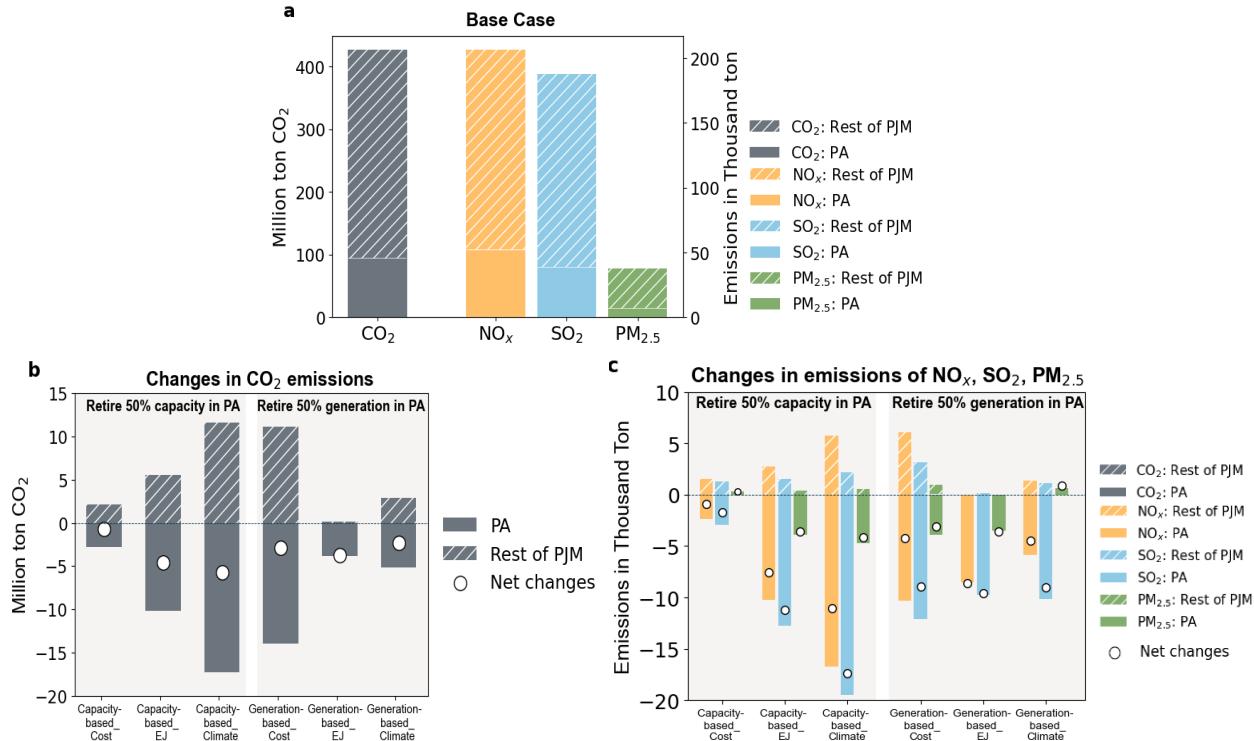

209 ** For additional information on sensitivity analyses using other concentration-response functions and β 210 values, see Figure 6 and SI2: Section IV.

214 **3. Results**

215 **3.1 Impacts on electricity generation**

216 Coal-fired power plants account for 13% and 12% of total generation in PA and the rest
 217 of PJM, respectively in the *Base Case* (Figure 2a). Retiring coal-fired power plants in PA based
 218 on capacity or generation targets have different impacts on the power system. For the “Capacity-
 219 based” scenarios, declines in coal-fired electricity generation in PA vary substantially by 2.1
 220 TWh, 13 TWh, and 18 TWh in the *Cost*, *EJ*, and *Climate* scenarios, respectively, relative to the
 221 *Base Case* (Figure 2b). This variation is primarily influenced by disparities in *Base Case*
 222 utilization rates. For instance, coal plants retired in the *Capacity-based_Cost* scenario have
 223 lower utilization rates on average than the other two “Capacity-based” scenarios. However,
 224 reductions in coal-fired electricity generation are roughly the same across all “Generation-
 225 based” scenarios which implicitly control for variation in utilization rates.

226 Coal power plant retirements in PA drive changes in the transmission constrained
 227 dispatch of power both within and between PA and Rest of PJM. These changes are driven by:
 228 (i) the amount of coal generation displaced by retirements; (ii) the marginal costs and available
 229 capacities of remaining units; and (iii) the location of retired generation and associated
 230 transmission constraints. Generally, our results are similar to findings in previous studies⁴² that
 231 coal retirements in PA lead to an increase in dispatch from natural gas plants, because
 232 dispatching existing plants is cheaper than installing new capacity to make up for foregone
 233 generation and natural gas plants are dispatched more often due to their cost advantage (Figure
 234 2b). However, the scale and location of additional generation may be affected by changes in
 235 transmission congestion. For instance, in the *Generation-based_Cost* scenario, natural gas-
 236 based generation in PA also declines slightly.


249 **Figure 2. Electricity generation (TWh) by fuel source.** Panel (a) depicts *Base Case* electricity
250 generation in PA and Rest of PJM. Panel (b) reports changes in generation relative to the *Base Case* for
251 the six scenarios in PA and Rest of PJM by power plant source (Coal, Natural Gas, and Others). “Others”
252 in Panel (b) refers to generation from all non-coal or natural gas sources.

253

254 **3.2 Impacts on emissions of CO₂ and other air pollutants**

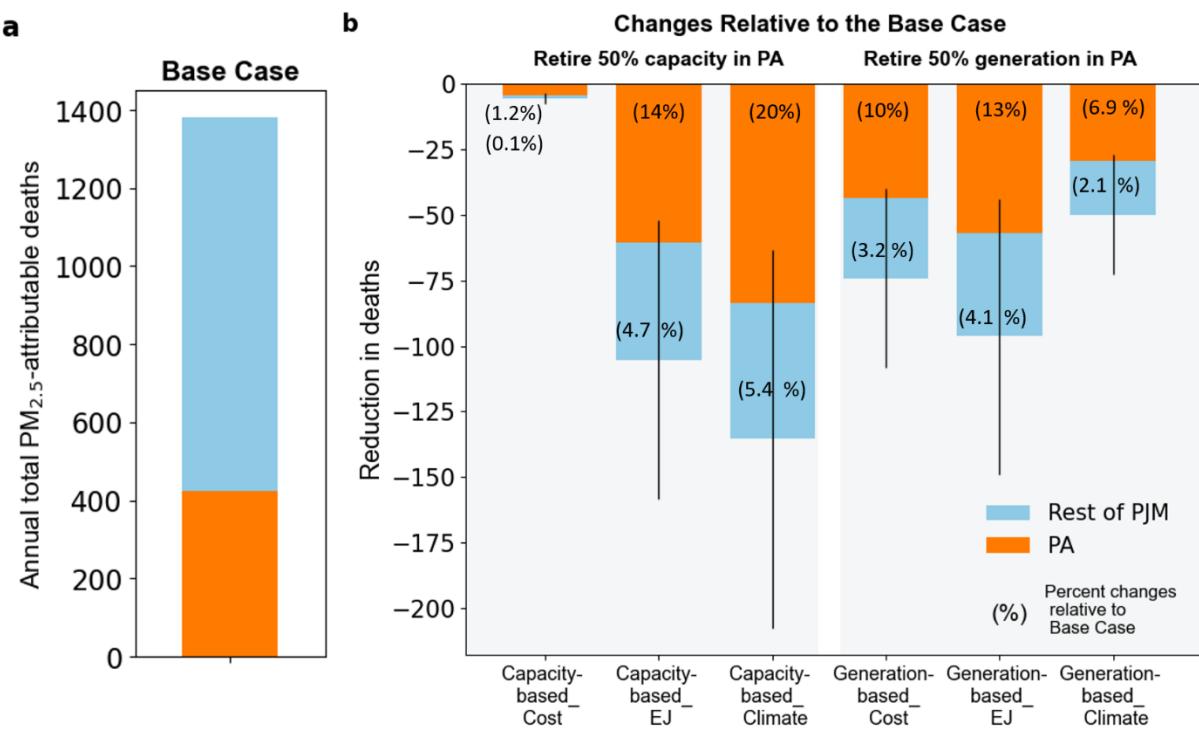
255 Our main results focus on emissions of CO₂, due to its climate impacts, and of SO₂, NO_x,
256 and PM_{2.5} because prior studies found these three pollutants to be the most
257 important precursors from the power sector, contributing to 81%, 12%, and 6% of ambient PM_{2.5},
258 respectively at the national level.²⁸ (SI2: Figure D.4 provides results for NH₃ and VOC, which
259 contribute 0.2% and 0.1% to ambient PM_{2.5}, respectively). In the *Base Case*, we estimate annual
260 total CO₂, NO_x, SO₂, and PM_{2.5} emissions from all power plants in the PJM region to be 426
261 million tons, 206 thousand tons, 187 thousand tons, and 38 thousand tons, respectively, of
262 which 17 to 25% are from PA plants (Figure 3a).

263 Although all six scenarios reduce CO₂ and air pollutant emissions in aggregate across
264 PJM relative to the *Base Case*, the spatial distribution of emissions changes varies considerably
265 across scenarios (Figure 3b and Figure 3c). As noted above, changes in the spatial pattern of
266 precursor emissions follow from changes in power generation which, in turn, through ISRM,
267 correspond to changes in the spatial pattern of receptor emissions. Reductions in coal power
268 generation in PA largely explain observed declines in emissions there. For example, the
269 *Capacity-based_Climate* scenario leads to the largest reduction in coal-fired electricity
270 generation and thus emissions in PA of 18% for CO₂, 50% for SO₂, 32% for NO_x, and 75% for
271 PM_{2.5}. Changes in power generation in Rest of PJM also largely explain changes in emissions
272 there. For example, we find almost no emissions increase in Rest of PJM in the *Generation-*
273 *based_EJ* scenario (Figure 3b and Figure 3c) consistent with the negligible change in
274 generation there (Figure 2b). However, in the *Capacity-based_Cost* scenario, we find small
275 increases in CO₂ (0.6%), NO_x (0.9%), SO₂ (0.8%), and PM_{2.5} (0.6%) emissions due to more
276 substantial increases in natural gas generation in Rest of PJM (Figure 2b).

277

278 **Figure 3. Annual total emissions of CO₂, NO_x, SO₂, and PM_{2.5} from all power plants located in PA**
279 **and Rest of PJM.** Panel (a) reports emissions under the *Base Case*; Panels (b) and (c) show the changes
280 in CO₂ and criteria air pollutants in each of the six retirement scenarios relative to the *Base Case*. The
281 white circles show the net change across the whole PJM region. Results for NH₃ and VOC are reported
282 in SI2: Figure G.7.

283

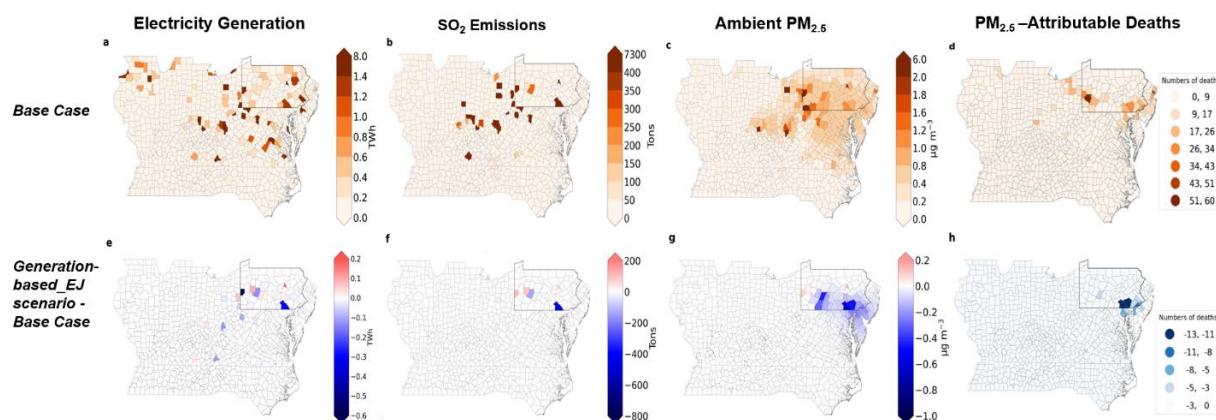

284 3.3 Impacts on ambient PM_{2.5} concentrations and PM_{2.5}-attributable deaths

285 In the *Base Case*, power sector emissions from all electricity generation in PJM result in
286 an annual PM_{2.5} concentration of up to 5.7 $\mu\text{g}/\text{m}^3$ across PJM counties, which is associated with
287 1,300 PM_{2.5}-attributable deaths annually (95% confidence interval: 1,200 to 1,600) (Figure 4a).
288 The low concentration level results from estimating the effects only from power sector
289 emissions, while other sectors, such as transportation and residential, contribute additional
290 pollution in this region.^{10,42,43}

291 Although changes in precursor emissions are negative in some counties and positive in
292 others depending on the scenario, almost all counties experience a reduction in ambient PM_{2.5}
293 concentrations and associated deaths relative to the *Base Case* (see SI2, Table B.2 for
294 population-weighted annual average PM_{2.5} concentrations by scenario). This is because retired
295 coal plants are often more polluting than the generation that replaces them (such as natural
296 gas), causing precursor emissions to fall in aggregate across PJM. Despite spatial variation in

297 precursor emissions from retired and replacement generation predicted by RPAM and
 298 corresponding spatial variation in receptor emissions arising from air pollution formation and
 299 transport via ISRM, the aggregate decline in precursor emissions dominates, leading to lower
 300 ambient PM_{2.5} concentrations and associated deaths for most counties in southeastern PA.

301 Nonetheless, these complex linkages, together with differences in socio-demographics
 302 that characterize pollution exposure across counties, cumulatively determine the magnitude and
 303 distribution of avoided PM_{2.5}-attributable deaths (see SI2: Table C.3 for absolute changes in
 304 PM_{2.5}-attributable deaths relative to the *Base Case*). Of the six scenarios, *Capacity-
 305 based_Climate* reduces PM_{2.5} concentrations and associated deaths the most: by 84 in PA (95%
 306 CI: 52 to 118) or 20% relative to the *Base Case*; Rest of PJM also observes a reduction of 52
 307 PM_{2.5}-attributable deaths (95% CI: 41 to 85) or 5% relative to the *Base Case* (Figure 4b).

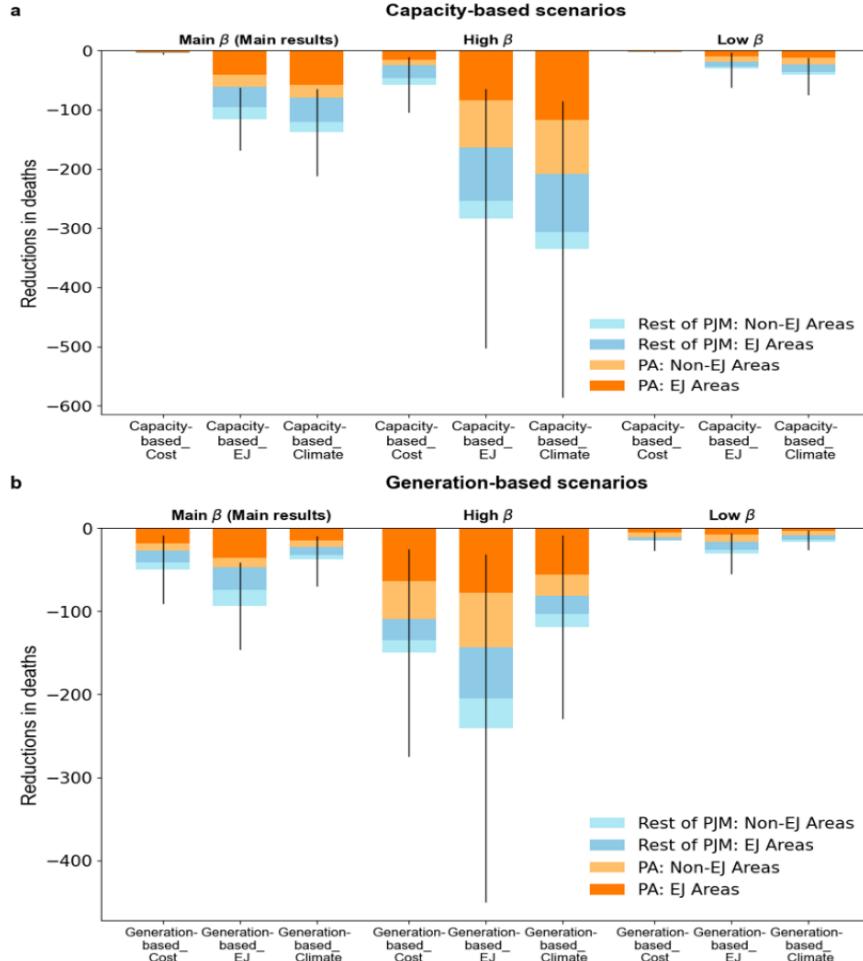

308
 309 **Figure 4. Annual total PM_{2.5}-attributable deaths from power sector emissions in the *Base Case***
 310 **(Panel a) and the changes in the six coal retirement scenarios relative to the *Base Case* in PA**
 311 **and Rest of PJM (Panel b).** Here we use the concentration-response coefficients from Krewski et al.,
 312 2009.³⁹ Error bars represent the estimates based on the 95% confidence interval of the concentration-
 313 response coefficients for the total deaths throughout the whole PJM region.

314

315 **3.4 Insights on geographic distribution and environmental justice communities**

316 We find important spatial variation across the PJM region regarding the patterns of
 317 electricity generation, air pollutant emissions, ambient concentrations of $PM_{2.5}$, and $PM_{2.5}$ -
 318 attributable deaths. We focus on the results for the *Generation-based_EJ* scenario (Figure 5),
 319 with results for the other scenarios in SI2: Figures H.8-I.9. Under this scenario, the majority of
 320 health benefits in Rest of PJM occur in PA's southern neighbors Delaware, Maryland, and New
 321 Jersey. Thus, regional impacts are still largely determined by close proximity to PA coal plant
 322 closures (see SI2: Figure L.12) for an expanded air quality assessment that also includes states
 323 outside PJM).

324


325
 326 **Figure 5. Geographical distribution of impacts.** The first row provides results for the *Base Case*; The
 327 second row shows the changes in the *Generation-based_EJ* scenario relative to the *Base Case*. From
 328 left to right, the four columns depict county-level annual total electricity generation, annual total SO_2
 329 emissions from power generation, simulated county-level annual average ambient $PM_{2.5}$ concentrations,
 330 and annual total $PM_{2.5}$ -attributable deaths. SI2: Figures H.8 and I.9 provide results for other five scenarios,
 331 and SI2: Figures J.10 and K.11 report results for NO_x and Primary $PM_{2.5}$ emissions for all scenarios.

327
 328
 329
 330
 331
 332
 333 To further understand the distributional implications of PA coal plant closures, we
 334 compare the health effects in EJ Areas and non-EJ Areas (Figure 6). To assess impacts in EJ
 335 Areas outside of PA, we apply the PA DEP EJ Area definition to census tracts in Rest of PJM.
 336 Because EJ Areas are defined at the census tract level, we perform the health impact
 337 assessment at the census tract level using gridded $PM_{2.5}$ concentrations from ISRM. As some
 338 census tracts are smaller than ISRM grids, we are unable to identify exposure disparities across
 339 different census tracts in these circumstances. For "Capacity-based" scenarios, we find that the
 340 *Climate* scenario provides the largest overall reduction as well as the largest benefit to EJ Areas,
 341 driven again by the largest reduction in coal power generation from the same capacity

342 retirement. In comparison, for “Generation-based” scenarios, we find that the *EJ* scenario
343 provides the largest overall reduction in deaths as well as the largest benefit to EJ Areas. In
344 particular, 61% of the avoided deaths occur within 10 miles from coal plant closures (the relevant
345 distance based on our scenario design), of which 77% occur within the EJ Areas (SI2: Figure
346 E.5). This result demonstrates potential equity-improving outcomes by prioritizing EJ Areas in
347 coal retirement decisions. While the *EJ* scenarios do not consider constraints to “safeguard” EJ
348 Areas in Rest of PJM from experiencing worse exposure outcomes, we observe distributional
349 co-benefits in these areas. This result is largely driven by the unique feature that the EJ Areas
350 outside PA happen to be the downwind areas of some retired plants, suggesting that cross-
351 regional linkages may impact distributional impacts outside PA too.

352 We further consider sensitivity in concentration-response coefficients (β), as one of the
353 largest sources of uncertainty in health assessment^{44–46}. Using higher or lower values for β
354 increases and decreases the level of reduced deaths, respectively, yet we observe similar
355 patterns in terms of the spatial distribution of health benefits in PA and Rest of PJM, as well as
356 in EJ and non-EJ Areas.

357 Finally, recognizing that closing plants based on its proximity to EJ Areas may not protect
358 the largest number of vulnerable people, we also investigate the sensitivity of *EJ* scenario
359 design by: i) varying the radius (15, 20, and 25 miles in addition to 10 miles in the main EJ
360 scenarios), and ii) considering the population size of EJ Areas instead of the number of census
361 tracts that are defined by PA DEP as EJ Areas. We find the main pattern of retirements is not
362 sensitive to the radius choice, despite some minor differences in plant retirements (SI2: Figure
363 C.3). Using population size instead of number of EJ Areas, we find that scenarios generate
364 more diffuse unit closures, suggesting that the geographical unit of aggregation is important for
365 assessing distributional impacts (SI2: Figure D.4).

366

367 **Figure 6. Sensitivity analysis using different concentration-response coefficients (β)** Panel a and
 368 b show the reduction in deaths for “Capacity-based” scenarios and “Generation-based” scenarios,
 369 respectively. We show the estimates based on the concentration-response coefficients in Krewski et al.
 370 2009 (main β)³⁹, Laden et al. 2006 (high β)⁴⁰, Thurston et al. 2016 (low β)⁴¹. Here we categorize census
 371 tracts based on their location (PA vs. Rest of PJM) and if they are EJ Areas or non-EJ Areas. Error bars
 372 show the 95% confidence interval of the concentration-response coefficients.

373

374 **4. Discussion**

375 We find that reducing coal capacity and generation in Pennsylvania would improve
 376 regional air quality and reduce premature deaths; the distribution of these benefits depends on
 377 the targets and priorities set for power plant retirements. For example, among scenarios that
 378 use reduced capacity targets, retiring plants by CO₂ emissions would result in the largest shift
 379 in the composition of fuels used for energy generation—away from coal in PA and towards
 380 natural gas in Rest of PJM. This, in turn, generates the largest net CO₂ benefits under a
 381 capacity-reduction target. Alternatively, among scenarios that use reduced generation targets,

382 retiring plants by marginal cost of operation would result in the largest shift in the composition
383 of fuels—away from both coal and natural gas in PA and towards natural gas, and, to a lesser
384 extent, additional coal in Rest of PJM. Yet, the largest net CO₂ benefits under a generation-
385 reduction target result from the scenario that prioritizes retirements near EJ census tracts. This
386 is due to a smaller increase in natural gas generation in Rest of PJM in response to plant
387 closures in PA.

388 Combining these fuel composition changes and the effects of pollution transport and
389 population exposure, the air quality and health impacts also vary by retirement targets and
390 priorities. We find that the largest reduction in deaths among capacity-based scenarios comes
391 from prioritizing retirements by CO₂ emissions, and the largest reduction in deaths among
392 generation-based scenarios comes from prioritizing retirements by proximity to EJ census
393 tracts. Furthermore, we find complex distributional implications for air quality and health.
394 Geographically, among the EJ-oriented scenarios that we tested, more of these health benefits
395 are found in EJ Areas, highlighting the additional equity benefits by placing vulnerable
396 communities at the center of energy decision making. In addition, many of the air quality
397 improvements occur in southern and eastern Pennsylvania and neighboring states such as NJ
398 and DE, suggesting that regional analysis is necessary for assessing air quality impacts of low
399 carbon energy transitions. Thus, it is important for regional transmission organizations and
400 federal regulators to look beyond reliability rules that largely guide the current coal retirement
401 decisions,⁴⁷ and start to consider the electricity market operations and resulting air quality and
402 health impacts as additional considerations for plant closures.

403 Notably, our results are driven by a few key features of PA and PJM grid, including: i)
404 the spatial relationship between where coal plants locate and where EJ communities live (see
405 SI2: Figure B.2), ii) the characteristics of existing power plants and transmission grid, and iii)
406 the wind transport pattern of the region. While our quantitative conclusions may not be
407 generalizable, the key underlying factors and the importance of considering plant closure targets
408 and priorities are likely to be relevant to other regions and decision makers.

409 Finally, we highlight a few areas for future work. First, how can modeling frameworks be
410 improved to assess finer-scale decisions, impacts and disparities? While our analysis focuses
411 on annual aggregate impacts due to the time step of RPAM, a finer temporal resolution would
412 be useful to understand power dispatch and transmission decisions, short-term pollution events,
413 and acute health impacts such as morbidity and hospital admissions. Further, our current
414 approach involves a one-way coupling from energy to air quality and then to health. Thus, our
415 model takes pre-designed scenarios that do not optimize the energy system to achieve health

416 or equity objectives. Future research that optimizes scenario design based on aggregate health
417 impacts, environmental improvements, or protections for the most vulnerable populations would
418 provide valuable policy insights^{8,48}. Second, how will coal retirement decisions interact with other
419 trends in electricity and end-use sectors to collectively shape air quality and health outcomes?
420 While we focus only on coal retirements in PA, increased renewable penetration and
421 accelerated adoption of electric vehicles, heat pumps, and other energy efficient durable goods
422 may significantly alter future electricity and energy consumption with difficult-to-predict impacts
423 on air quality and health. Third, how do varying sources of uncertainty influence environmental
424 impact assessment? Uncertainties exist in the energy system (policy implementation,
425 behavioral response, future technology choices, etc.)^{49–51}, air quality modelling (chemical and
426 physical transport processes, spatial distribution of different groups, etc.),^{52–54} and health impact
427 assessment (baseline health conditions, health attributes of different groups, etc.)^{55,56}. In
428 addition, here we monetize air quality and health impacts (SI2: Table F.6 and Table G.7) and
429 changes in operational costs across PJM (SI2: Table E.5). Extending this analysis to conduct a
430 comprehensive equity and cost-benefit assessment that includes climate damages, sunk capital
431 costs, and broader economy-wide socioeconomic impacts of coal retirement may be a useful
432 direction for future research.

433 In conclusion, shifts in U.S. electricity production demand a careful analysis of transitions
434 in key states like PA and across grid regions like PJM Interconnection. Using energy systems
435 and health impact modeling, this study explores the consequences of retiring coal-fired power
436 plants in PA. Natural gas often replaces coal, reducing overall air pollution. Spatial analysis
437 highlights air pollution variations, emphasizing the need for pre-retirement impact assessments
438 to estimate the economic and distributional effects of plant closures in the region.

439

440 **Supporting Information**

441 Supporting Information 1: RGGI + PJM Policy Analysis Model documentation

442 Supporting Information 2: Methods information, scenario design, additional results (tables and
443 figures), sensitivity analysis, cost analysis

444

445 **Acknowledgements**

446 This work was supported by a grant from the Pennsylvania State University Institutes of Energy
447 and the Environment. Campos Morales and Peng also received funding support from the Penn
448 State College of Engineering and Princeton's Andlinger Center for Energy and the Environment.
449 Stuart Vas and Anna Lee provided excellent research assistance.

450 **References**

451

452 (1) Linn, J.; McCormack, K. The Roles of Energy Markets and Environmental Regulation in
453 Reducing Coal-fired Plant Profits and Electricity Sector Emissions. *The RAND Journal of
454 Economics* **2019**, *50* (4), 733–767. <https://doi.org/10.1111/1756-2171.12294>.

455 (2) *Electricity explained - U.S. Energy Information Administration (EIA)*.
<https://www.eia.gov/energyexplained/electricity/> (accessed 2023-06-09).

456 (3) *U.S. Energy Information Administration - EIA - Independent Statistics and Analysis*.
<https://www.eia.gov/state/analysis.php?sid=PA#55> (accessed 2023-06-22).

457 (4) An T. Pham, and Seth A. Blumsack. *Understanding The Direct and Strategic Effects
458 Voluntary Entry into Regional Cap and Trade Systems. RGGI_Manuscript.pdf*. Google Docs.
459 [https://drive.google.com/file/d/1SgLfBHHYmPg2Tx9ukB82_SQ6ODTYOv_X/view?usp=sha
461 ring&usp=embed_facebook](https://drive.google.com/file/d/1SgLfBHHYmPg2Tx9ukB82_SQ6ODTYOv_X/view?usp=sha
460 ring&usp=embed_facebook) (accessed 2023-06-09).

462 (5) Blumsack, S. Prospects for Pennsylvania in the Regional Greenhouse Gas Initiative
463 Working Paper, December 2020. **2020**.

464 (6) *Coal and the environment - U.S. Energy Information Administration (EIA)*.
<https://www.eia.gov/energyexplained/coal/coal-and-the-environment.php> (accessed
465 2023-06-09).

466 (7) Filonchyk, M.; Peterson, M. P. An Integrated Analysis of Air Pollution from US Coal-Fired
467 Power Plants. *Geoscience Frontiers* **2023**, *14* (2), 101498.
<https://doi.org/10.1016/j.gsf.2022.101498>.

468 (8) Mayfield, E. N. Phasing out Coal Power Plants Based on Cumulative Air Pollution Impact
469 and Equity Objectives in Net Zero Energy System Transitions. *Environ. Res.: Infrastruct.
470 Sustain.* **2022**, *2* (2), 021004. <https://doi.org/10.1088/2634-4505/ac70f6>.

471 (9) Fan, M.; Wang, Y. The Impact of PM2.5 on Mortality in Older Adults: Evidence from
472 Retirement of Coal-Fired Power Plants in the United States. *Environ Health* **2020**, *19* (1),
473 28. <https://doi.org/10.1186/s12940-020-00573-2>.

474 (10) Fann, N.; Fulcher, C. M.; Baker, K. The Recent and Future Health Burden of Air
475 Pollution Apportioned Across U.S. Sectors. *Environ. Sci. Technol.* **2013**, *47* (8), 3580–3589.
476 <https://doi.org/10.1021/es304831q>.

477 (11) Fann, N.; Fulcher, C. M.; Hubbell, B. J. The Influence of Location, Source, and Emission
478 Type in Estimates of the Human Health Benefits of Reducing a Ton of Air Pollution. *Air
479 Qual Atmos Health* **2009**, *2* (3), 169–176. <https://doi.org/10.1007/s11869-009-0044-0>.

480 (12) Thind, M. P. S.; Tessum, C. W.; Azevedo, I. L.; Marshall, J. D. Fine Particulate Air
481 Pollution from Electricity Generation in the US: Health Impacts by Race, Income, and
482 Geography. *Environ. Sci. Technol.* **2019**, *53* (23), 14010–14019.
<https://doi.org/10.1021/acs.est.9b02527>.

483 (13) Martenies, S. E.; Akherati, A.; Jathar, S.; Magzamen, S. Health and Environmental
484 Justice Implications of Retiring Two Coal-Fired Power Plants in the Southern Front Range
485 Region of Colorado. *GeoHealth* **2019**, *3* (9), 266–283.
<https://doi.org/10.1029/2019GH000206>.

486

487

488

489

490

491 (14) Henneman, L. R. F.; Rasel, M. M.; Choirat, C.; Anenberg, S. C.; Zigler, C. Inequitable
492 Exposures to U.S. Coal Power Plant–Related PM2.5: 22 Years and Counting. *Environ*
493 *Health Perspect* **2023**, *131* (3), 037005. <https://doi.org/10.1289/EHP11605>.

494 (15) Polonik, P.; Ricke, K.; Reese, S.; Burney, J. Air Quality Equity in US Climate Policy. *Proc.*
495 *Natl. Acad. Sci. U.S.A.* **2023**, *120* (26), e2217124120.
496 <https://doi.org/10.1073/pnas.2217124120>.

497 (16) Goforth, T.; Nock, D. Air Pollution Disparities and Equality Assessments of US National
498 Decarbonization Strategies. *Nat Commun* **2022**, *13* (1), 7488.
499 <https://doi.org/10.1038/s41467-022-35098-4>.

500 (17) Dimanchev, E. G.; Paltsev, S.; Yuan, M.; Rothenberg, D.; Tessum, C. W.; Marshall, J. D.;
501 Selin, N. E. Health Co-Benefits of Sub-National Renewable Energy Policy in the US.
502 *Environ. Res. Lett.* **2019**, *14* (8), 085012. <https://doi.org/10.1088/1748-9326/ab31d9>.

503 (18) Deetjen, T. A.; Azevedo, I. L. Climate and Health Benefits of Rapid Coal-to-Gas Fuel
504 Switching in the U.S. Power Sector Offset Methane Leakage and Production Cost
505 Increases. *Environ. Sci. Technol.* **2020**, *54* (18), 11494–11505.
506 <https://doi.org/10.1021/acs.est.9b06499>.

507 (19) Bin Thaneya, A.; Horvath, A. Exploring Regional Fine Particulate Matter (PM_{2.5})
508 Exposure Reduction Pathways Using an Optimal Power Flow Model: The Case of the
509 Illinois Power Grid. *Environ. Sci. Technol.* **2023**, *57* (21), 7989–8001.
510 <https://doi.org/10.1021/acs.est.2c08698>.

511 (20) Sergi, B. J.; Adams, P. J.; Muller, N. Z.; Robinson, A. L.; Davis, S. J.; Marshall, J. D.;
512 Azevedo, I. L. Optimizing Emissions Reductions from the U.S. Power Sector for Climate
513 and Health Benefits. *Environ. Sci. Technol.* **2020**, *54* (12), 7513–7523.
514 <https://doi.org/10.1021/acs.est.9b06936>.

515 (21) Luo, Q.; Copeland, B.; Garcia-Menendez, F.; Johnson, J. X. Diverse Pathways for Power
516 Sector Decarbonization in Texas Yield Health Cobenefits but Fail to Alleviate Air Pollution
517 Exposure Inequities. *Environ. Sci. Technol.* **2022**, *56* (18), 13274–13283.
518 <https://doi.org/10.1021/acs.est.2c00881>.

519 (22) Yang, H.; Pham, A. T.; Landry, J. R.; Blumsack, S. A.; Peng, W. Emissions and Health
520 Implications of Pennsylvania’s Entry into the Regional Greenhouse Gas Initiative. *Environ.*
521 *Sci. Technol.* **2021**, *55* (18), 12153–12161. <https://doi.org/10.1021/acs.est.1c02797>.

522 (23) Hernandez-Cortes, D.; Meng, K. C. Do Environmental Markets Cause Environmental
523 Injustice? Evidence from California’s Carbon Market. *Journal of Public Economics* **2023**,
524 *217*, 104786. <https://doi.org/10.1016/j.jpubeco.2022.104786>.

525 (24) Peng, W.; Ou, Y. Integrating Air Quality and Health Considerations into Power Sector
526 Decarbonization Strategies. *Environ. Res. Lett.* **2022**, *17* (8), 081002.
527 <https://doi.org/10.1088/1748-9326/ac8361>.

528 (25) PA Environmental Justice Areas. Department of Environmental Protection.
529 <https://www.dep.pa.gov:443/PublicParticipation/OfficeofEnvironmentalJustice/Pages/PA>
530 -Environmental-Justice-Areas.aspx (accessed 2023-06-15).

531 (26) Welcome / RGGI, Inc. <https://www.rggi.org/> (accessed 2023-06-22).

532 (27) Kerl, P. Y.; Zhang, W.; Moreno-Cruz, J. B.; Nenes, A.; Realff, M. J.; Russell, A. G.; Sokol,
533 J.; Thomas, V. M. New Approach for Optimal Electricity Planning and Dispatching with
534 Hourly Time-Scale Air Quality and Health Considerations. *Proceedings of the National*

535 *Academy of Sciences* **2015**, *112* (35), 10884–10889.
536 <https://doi.org/10.1073/pnas.1413143112>.

537 (28) Goodkind, A. L.; Tessum, C. W.; Coggins, J. S.; Hill, J. D.; Marshall, J. D. Fine-Scale
538 Damage Estimates of Particulate Matter Air Pollution Reveal Opportunities for Location-
539 Specific Mitigation of Emissions. *Proc. Natl. Acad. Sci. U.S.A.* **2019**, *116* (18), 8775–8780.
540 <https://doi.org/10.1073/pnas.1816102116>.

541 (29) Wang, Y.; Apte, J. S.; Hill, J. D.; Ivey, C. E.; Patterson, R. F.; Robinson, A. L.; Tessum, C.
542 W.; Marshall, J. D. Location-Specific Strategies for Eliminating US National Racial-Ethnic
543 PM2.5 Exposure Inequality. *Proc. Natl. Acad. Sci. U.S.A.* **2022**, *119* (44), e2205548119.
544 <https://doi.org/10.1073/pnas.2205548119>.

545 (30) Bin Thaneya, A.; S Apte, J.; Horvath, A. A Human Exposure-Based Traffic Assignment
546 Model for Minimizing Fine Particulate Matter (PM_{2.5}) Intake from on-Road Vehicle
547 Emissions. *Environ. Res. Lett.* **2022**, *17* (7), 074034. <https://doi.org/10.1088/1748-9326/ac78f6>.

549 (31) US EPA, O. *Environmental Benefits Mapping and Analysis Program - Community
550 Edition (BenMAP-CE)*. <https://www.epa.gov/benmap> (accessed 2023-06-15).

551 (32) Sacks, J. D.; Lloyd, J. M.; Zhu, Y.; Anderton, J.; Jang, C. J.; Hubbell, B.; Fann, N. The
552 Environmental Benefits Mapping and Analysis Program – Community Edition (BenMAP-
553 CE): A Tool to Estimate the Health and Economic Benefits of Reducing Air Pollution.
554 *Environmental Modelling & Software* **2018**, *104*, 118–129.
555 <https://doi.org/10.1016/j.envsoft.2018.02.009>.

556 (33) Mirzaei, A.; Tahriri, H.; Khorsandi, B. Comparison between AirQ+ and BenMAP-CE in
557 Estimating the Health Benefits of PM2.5 Reduction. *Air Qual Atmos Health* **2021**, *14* (6),
558 807–815. <https://doi.org/10.1007/s11869-021-00980-5>.

559 (34) Yang, P.; Zhang, Y.; Wang, K.; Doraiswamy, P.; Cho, S.-H. Health Impacts and Cost-
560 Benefit Analyses of Surface O₃ and PM2.5 over the U.S. under Future Climate and
561 Emission Scenarios. *Environmental Research* **2019**, *178*, 108687.
562 <https://doi.org/10.1016/j.envres.2019.108687>.

563 (35) Fann, N.; Risley, D. The Public Health Context for PM2.5 and Ozone Air Quality Trends.
564 *Air Qual Atmos Health* **2013**, *6* (1), 1–11. <https://doi.org/10.1007/s11869-010-0125-0>.

565 (36) Punger, E. M.; West, J. J. The Effect of Grid Resolution on Estimates of the Burden of
566 Ozone and Fine Particulate Matter on Premature Mortality in the USA. *Air Qual Atmos
567 Health* **2013**, *6* (3), 563–573. <https://doi.org/10.1007/s11869-013-0197-8>.

568 (37) Li, Y.; Henze, D. K.; Jack, D.; Kinney, P. L. The Influence of Air Quality Model Resolution
569 on Health Impact Assessment for Fine Particulate Matter and Its Components. *Air Qual
570 Atmos Health* **2016**, *9* (1), 51–68. <https://doi.org/10.1007/s11869-015-0321-z>.

571 (38) US EPA, O. *BenMAP-CE Manual and Appendices*.
572 <https://www.epa.gov/benmap/benmap-ce-manual-and-appendices> (accessed 2023-06-
573 15).

574 (39) Krewski, D.; Jerrett, M.; Burnett, R. T.; Ma, R.; Shi, Y.; Turner, M. C.; Ili, C. A. P.;
575 Thurston, G.; Calle, E. E.; Thun, M. J. Extended Follow-Up and Spatial Analysis of the
576 American Cancer Society Study Linking Particulate Air Pollution and Mortality. **2009**.

577 (40) Laden, F.; Schwartz, J.; Speizer, F. E.; Dockery, D. W. Reduction in Fine Particulate Air
578 Pollution and Mortality: Extended Follow-up of the Harvard Six Cities Study. *Am J Respir
579 Crit Care Med* **2006**, 173 (6), 667–672. <https://doi.org/10.1164/rccm.200503-443OC>.

580 (41) Thurston, G. D.; Ahn, J.; Cromar, K. R.; Shao, Y.; Reynolds, H. R.; Jerrett, M.; Lim, C. C.;
581 Shanley, R.; Park, Y.; Hayes, R. B. Ambient Particulate Matter Air Pollution Exposure and
582 Mortality in the NIH-AARP Diet and Health Cohort. *Environ Health Perspect* **2016**, 124 (4),
583 484–490. <https://doi.org/10.1289/ehp.1509676>.

584 (42) Russell, M. C.; Belle, J. H.; Liu, Y. The Impact of Three Recent Coal-Fired Power Plant
585 Closings on Pittsburgh Air Quality: A Natural Experiment. *Journal of the Air & Waste
586 Management Association* **2017**, 67 (1), 3–16.
587 <https://doi.org/10.1080/10962247.2016.1170738>.

588 (43) Tessum, C. W.; Apte, J. S.; Goodkind, A. L.; Muller, N. Z.; Mullins, K. A.; Paoletta, D. A.;
589 Polasky, S.; Springer, N. P.; Thakrar, S. K.; Marshall, J. D.; Hill, J. D. Inequity in Consumption
590 of Goods and Services Adds to Racial–Ethnic Disparities in Air Pollution Exposure. *Proc.
591 Natl. Acad. Sci. U.S.A.* **2019**, 116 (13), 6001–6006.
592 <https://doi.org/10.1073/pnas.1818859116>.

593 (44) Kodros, J. K.; Carter, E.; Brauer, M.; Volckens, J.; Bilsback, K. R.; L’Orange, C.; Johnson,
594 M.; Pierce, J. R. Quantifying the Contribution to Uncertainty in Mortality Attributed to
595 Household, Ambient, and Joint Exposure to PM_{2.5} From Residential Solid Fuel Use.
596 *GeoHealth* **2018**, 2 (1), 25–39. <https://doi.org/10.1002/2017GH000115>.

597 (45) Burnett, R.; Cohen, A. Relative Risk Functions for Estimating Excess Mortality
598 Attributable to Outdoor PM_{2.5} Air Pollution: Evolution and State-of-the-Art. *Atmosphere*
599 **2020**, 11 (6), 589. <https://doi.org/10.3390/atmos11060589>.

600 (46) Burnett, R. T.; Pope, C. A.; Ezzati, M.; Olives, C.; Lim, S. S.; Mehta, S.; Shin, H. H.; Singh,
601 G.; Hubbell, B.; Brauer, M.; Anderson, H. R.; Smith, K. R.; Balmes, J. R.; Bruce, N. G.; Kan,
602 H.; Laden, F.; Prüss-Ustün, A.; Turner, M. C.; Gapstur, S. M.; Diver, W. R.; Cohen, A. An
603 Integrated Risk Function for Estimating the Global Burden of Disease Attributable to
604 Ambient Fine Particulate Matter Exposure. *Environ Health Perspect* **2014**, 122 (4), 397–
605 403. <https://doi.org/10.1289/ehp.1307049>.

606 (47) *PJM - Ensuring a Reliable Energy Transition*. <https://www.pjm.com/about-pjm/ensuring-a-reliable-energy-transition> (accessed 2023-12-12).

607 (48) Heleno, M.; Sigrin, B.; Popovich, N.; Heeter, J.; Jain Figueroa, A.; Reiner, M.; Reames, T.
608 Optimizing Equity in Energy Policy Interventions: A Quantitative Decision-Support
609 Framework for Energy Justice. *Applied Energy* **2022**, 325, 119771.
610 <https://doi.org/10.1016/j.apenergy.2022.119771>.

611 (49) Bridges, A.; Felder, F. A.; McKelvey, K.; Niyogi, I. Uncertainty in Energy Planning:
612 Estimating the Health Impacts of Air Pollution from Fossil Fuel Electricity Generation.
613 *Energy Research & Social Science* **2015**, 6, 74–77.
614 <https://doi.org/10.1016/j.erss.2014.12.002>.

615 (50) Bistline, J. E. Electric Sector Capacity Planning under Uncertainty: Climate Policy and
616 Natural Gas in the US. *Energy Economics* **2015**, 51, 236–251.
617 <https://doi.org/10.1016/j.eneco.2015.07.008>.

618 (51) Bistline, J. E. Natural Gas, Uncertainty, and Climate Policy in the US Electric Power
619 Sector. *Energy Policy* **2014**, 74, 433–442. <https://doi.org/10.1016/j.enpol.2014.08.017>.

621 (52) Molitor, J.; Jerrett, M.; Chang, C.-C.; Molitor, N.-T.; Gauderman, J.; Berhane, K.;
622 McConnell, R.; Lurmann, F.; Wu, J.; Winer, A.; Thomas, D. Assessing Uncertainty in Spatial
623 Exposure Models for Air Pollution Health Effects Assessment. *Environmental Health
624 Perspectives* **2007**, *115* (8), 1147–1153. <https://doi.org/10.1289/ehp.9849>.

625 (53) Özkaynak, H.; Frey, H. C.; Burke, J.; Pinder, R. W. Analysis of Coupled Model
626 Uncertainties in Source-to-Dose Modeling of Human Exposures to Ambient Air Pollution:
627 A PM2.5 Case Study. *Atmospheric Environment* **2009**, *43* (9), 1641–1649.
628 <https://doi.org/10.1016/j.atmosenv.2008.12.008>.

629 (54) Gerharz, L. E.; Klemm, O.; Broich, A. V.; Pebesma, E. Spatio-Temporal Modelling of
630 Individual Exposure to Air Pollution and Its Uncertainty. *Atmospheric Environment* **2013**,
631 *64*, 56–65. <https://doi.org/10.1016/j.atmosenv.2012.09.069>.

632 (55) Mesa-Frias, M.; Chalabi, Z.; Vanni, T.; Foss, A. M. Uncertainty in Environmental Health
633 Impact Assessment: Quantitative Methods and Perspectives. *International Journal of
634 Environmental Health Research* **2013**, *23* (1), 16–30.
635 <https://doi.org/10.1080/09603123.2012.678002>.

636 (56) Briggs, D. J.; Sabel, C. E.; Lee, K. Uncertainty in Epidemiology and Health Risk and
637 Impact Assessment. *Environ Geochem Health* **2009**, *31* (2), 189–203.
638 <https://doi.org/10.1007/s10653-008-9214-5>.

639