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ABSTRACT: In pursuit of potent pharmaceutical candidates and
to further improve their chemical traits, small ring systems can
serve as a potential starting point. Small ring units have the
additional merit of loaded strain at their core, making them suitable
reactants as they can capitalize on this intrinsic driving force. With
the introduction of cyclobutenone as a strained precursor to
ketene, the photocycloaddition with another strained unit,
bicyclo[1.1.0]butane (BCB), enables the reactivity of both -
units in the transient ketene. This double strain-release driven
[27+20]-photocycloaddition promotes the synthesis of diverse
heterobicyclo[2.1.1]hexane units, a pharmaceutically relevant
bioisostere. The effective reactivity under catalyst-free conditions with a high functional group tolerance defines its synthetic
utility. Experimental mechanistic studies and density functional theory (DFT) calculations suggest that the [27+20]-

photocycloaddition takes place via a triplet mechanism.

B INTRODUCTION

With the conceptual development of strain release,"
researchers have leveraged the inherent reactivity originating
from the thermodynamic push and destabilization. These
“spring-loaded” molecules provide a great platform for
accessing complex molecular entities under mild and
sustainable conditions by factoring out the requirement for
additional sources of energy (Scheme 1A). In 2016, Baran and
co-workers reported a strain-release-driven amination, which
fueled the interest in merging it with the rising concept of
bioisosterism.” Ring systems, especially small and strained ring
systems with a double bond or with a bridged bond, hold high-
profile importance in transformations that generate bioisosteric
systems. Recent works from Brown’ and our group™
demonstrated that a high energy-containing molecule,
bicyclo[1.1.0]butane (AE = 66.3 kcal/mol),” could be
efficiently engaged in [27+20]-photocycloadditions giving
rise to highly sought-after, yet complex sp’-rich units. Given
the influence of saturated isosteres as target molecules in
rational drug design, the demand for expanding its chemical
space’ promises to unravel new exit vectors, potency,
pharmacological properties, and physiological assessments
(Scheme 1B).® The spatially rigid distribution of substituents
and incorporation of heteroatoms in thereby generated 3D
chemical moieties dictate the degree and efliciency of
metabolic activity, thus bringing in a prospective replacement
for the closely resembling parent aromatic core in drug motifs.
For instance, Mykhailiuk and co-workers showed that 2-
oxabicyclo[2.1.1]Thexanes (oxa-BCHs), a potential bioisostere
for meta-substituted arene rings, proved to be more hydrophilic
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and less lipophilic than proclaimed bicyclo[1.1.1]pentanes.”*

The oxa-BCH unit is further claimed to be 30 times more
hydrophilic, less lipophilic, and more stable than the
corresponding parent meta-substituted benzene ring. Since
the conceptual advancement of “escape from flatland”, many
reports from Brown,” Studer,’’ Procter,'' Molander,'”
Leitch,"? Aggarwal,14 Li"® Walng,16 Waser,'” Shi,'® Bach,"”
and our group””’ displayed BCBs as potential precursors for
3D-chemical space exploration.

Cyclobutenone—another strained system—is well regarded
as a precursor for reactive vinyl ketene intermediates under
photochemical conditions.”’ Ketene represents one of the
keystone reactive intermediates™ that has offered myriads of
unique reactions over the last century.””> Staudinger and
Wilsmore independently landed on the serendipitous discovery
of this highly reactive species which plays a remarkable role in
the origin of numerous drug candidates, industrial manufacture
of acetic acid, acetic anhydride, and paper industry.”* In line
with being a reactive intermediate, ketenes offer an incredibly
rich reactivity continuum out of which the [27+27]-cyclo-
addition®® shares undivided attention.”””” Having two
orthogonal 7z-systems in a reactive intermediate grants an
extra edge of introducing divergence in a cycloaddition
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Scheme 1. Aim and Motivation: (A) Ring Systems with Increasing Strained X-Bond Energy; Bond Strain Energies Are
Estimated Using Homodesmotic Reactions (See the SI for Details), (B) Expansion of sp*>-Rich Chemical Space and
Comparison on Physiological Parameters, (C) Two Distinct II-Units in Ketene for Cycloaddition, (D) Historical Findings on
Ketene [27+27x]-Cycloaddition, and (E) Double Strain-Release-Assisted Divergent Photocycloaddition of Ketenes with

Bicyclo[1.1.0]butanes
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process, producing structurally diverse chemical entities
(Scheme 1C).

After the first report on the cgcloaddition of ketenes with
imines and the olefins in 1907,”* several follow-ups started
emerging (Scheme 1D).”>*° After decades of extensive
research, cycloaddition methodologies involving ketenes were
limited to the alkenyl part of the ketene reacting with an olefin
partner to produce cyclobutanones. Besides the dimerization of
ketenes,””" limited examples are reported for the ketene
carbonyl acting as a 277 component.*”

Incorporating these two strained units from the higher end
of the ring strain spectrum would enhance the thermodynamic
feasibility of the system, allowing them to operate under mild
conditions (Scheme 1E). In this work, we went on to explore
the concept of double strain-release, which eventually unveils
the orthogonal reactivity of two z-units of ketene for practical
and straightforward access to new sp’-enriched species of
heterobicyclo[2.1.1]hexanes under catalyst-free conditions.

B RESULTS AND DISCUSSION

Reaction Optimization. Based on a report stating the
comparatively high reactivity of haloketenes,>® we commenced
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with reacting a bench-stable halogen-based cyclobutenone—
4,4-dichloro-3-(4-methoxyphenyl)cyclo-but-2-en-1-one—1a
(3.0 equiv) with BCB 2a (1.0 equiv) in toluene under visible
light irradiation with blue LEDs (10 W per vial). This setup
without photocatalyst accounts for the process to be benign
and simple.34 To our delight, cycloadduct 3a was observed as
an exclusive product after overnight stirring with a 71% 'H
NMR yield. Intrigued by the findings, we began to probe the
reaction conditions which offered an incremented yield of 82%
under diluted conditions (0.05 M). Notably, the addition of a
catalytic amount of triplet sensitizers did not bring any
significant improvement (‘H NMR yield = 71%) (see the SI
for the full optimization table). This imposed the utilization of
direct, visible-light-induced excitation to achieve the excited
states of cyclobutenone la. No product formation took place
in the absence of irradiation at room temperature or even at 60
°C in control experiments which speaks against a thermal
background activity. Captivated by the outputs, a phenyl-
attached disubstituted BCB was employed using the optimized
parameters. Surprisingly, a cycloadduct with the carbonyl part
of the ketene was observed to be the major product with a

https://doi.org/10.1021/jacs.3c11563
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Scheme 2. Substrate Scope for C=C Cycloaddition and Sensitivity Assessment: Standard Reaction Conditions: 1 (3.0 equiv),
BCB 2 (0.20 mmol, 1.0 equiv) in Toluene (0.05 M) at 27—30 °C under Irradiation with Blue LEDs (4,,,, = 400 nm, 10 W Per
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Vial) for 16 h; Atropdiastereomeric, Diastereomeric, and E:Z Ratios Are Obtained from Crude'H NMR Analysis
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Scheme 3. Substrate Scope for C=O Cycloaddition: Standard Reaction Conditions: 1 (3.0 equiv), BCB 2 (0.20 mmol, 1.0
equiv) in Toluene (0.05 M) at 27—30 °C under Irradiation with Blue LEDs (4,,,, = 400 nm, 10 W per Vial)
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(unless otherwise mentioned) obtained from crude 'H NMR analysis. [X-Ray] = crystal structure. °5.0 equiv of 1.

good selectivity of 83:17, thereby offering a divergent synthesis
of bioisostere cores (see SI for additional details).

Reaction Scope. Under the optimized set of conditions,
we began to systematically investigate the generality of this
protocol (Scheme 2). First, a wide range of substituted
aromatic cyclobutenones were tested with BCB 2a under the
optimal settings. A series of arenes bearing mono- and
multialiphatic substitution were well transformed to sub-
stituted bicyclo[2.1.1]hexan-2-one units (3b—3d). The steric
clash between the ortho-substituted methyl and alkenyl
chlorine fostered the formation of atropodiastereomers in 3c.
Extension of conjugated m-units to naphthalene and biaryl
(3e—3g) proved to be fruitful, furnishing the desired
cycloadducts in good yields. Fluorine incorporation at both
the meta-(3h) and ortho-positions (3i) was successfully tested,
offering generous yields of 52% and 59%, respectively. Aryl
bromide (3j) also survived under the present protocol with a

66% isolated yield, thereby highlighting a potential reactive site
for further downstream modification. Both ester (3k) and silyl
group (31) also displayed the desired reactivity with 2a. The
reaction of a cyclobutenone bearing a pendant alkynyl moiety
(3m), believably a suitable unit for click chemistry, participated
well under the optimized condition. In addition, a thiophene-
derived strained ketene precursor (3n) offered a decent yield
of 54%. A bicyclic monoterpene unit—(—)-isopinocam-
pheol—embedded in a cyclobutenone (30), underwent
smooth conversion with a moderate yield. Examples with
monochloro alkenyl (3p) and gem-dihydroalkenyl group (3q)
discard the mandate of having a gem-dichloro unit in the
ketene backbone. Nonetheless, disubstituted ketene (3r) poses
a limitation in the current protocol.

Along the line of our hypothesis, the aliphatic ketene
synthon (3s) did not provide any cycloaddition product, thus
asserting the need for a light-absorbing unit in the molecule
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Scheme 4. Post Modification of Catalytically Obtained Products
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(see SI for more unsuccessful entries). The projection of
substituents across the strained BCB determines the behavior
of corresponding isosteres in the physiological platform, for
example, engaging in drug-target interactivity, exposed polarity,
and solvation. In this regard, we set out to investigate the effect
of substitution patterns on BCBs. Subjecting various amides
constituting thiomorpholine (3t), morpholine (3u), Boc-
protected piperazine (3v), and disubstituted alkyl group
(3w—3x) substantiates the tolerance of amide—in general—
under the present scheme. Both aromatic (3y) and aliphatic
ester (3z) coupled successfully, albeit consuming the standard
ketene precursor la in excess (5.0 equiv) for the former case.
Similar performance was observed when aromatic (3aa),
aliphatic (3ab), and heteroaromatic ketone (3ac) containing
BCBs were submitted to the reaction conditions. The
cycloadduct formation across the strained bond despite the
presence of a competitively reactive alkynyl moiety (3ad)
emphasizes the chemoselectivity of the underlined strategy.
Next, a sulfoxide-based BCB was tested, delivering the
anticipated ring closure product 3ae in a modest diastereo-
meric ratio. Further, a BPin-substituted BCB delivered the
photocycloadduct 3af in a diminished yield, whereas for the
disubstituted BCB (3ag), no product was detected.

Moving on, we set out to explore the underrepresented
divergent aspect in the arsenal of ketene chemistry (Scheme
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3). Selected cyclobutenones were applied for testing the
generality of the divergent protocol with BCB 2q. Diverse
aromatic backbones were applied including phenyl (4b), n-
propyl (4c), naphthalene (4d), alkynyl (4e), and biaryl system
(4f) to provide the desired [27+26]-cycloaddition products in
good yields. Extending the scope to fluoro- (4g) and ester-
substituted (4h) cyclobutenones exhibited good tolerance, as
well. It is pertinent to note that monohalo-bearing cyclo-
butenone (4i) provided satisfactory yields with good C=0/
C=C selectivity, whereas changing the BCB’s ester unit to
Weinreb amide gave an exclusive C=0 cycloaddition product
4j. Pleasingly, several electronically neutral (4k—41), electron-
withdrawing (4m—4n), and electron-donating substituents on
disubstituted BCBs (40) could be engaged in the ongoing
methodology conveniently with attractive selectivity. Tempted
by the competitive reactivity of BCBs over alkenes, we
questioned whether a similar behavior could be realized under
this divergent photocycloaddition approach. Indeed, a BCB
with a tethered alkene reacted in a chemoselective fashion,
affording the sought-after product (4p) in a good yield. Finally,
installing menthol (4q) and isopinocampheol (4r) also
provided access to the diverse BCH motifs in synthetically
useful yields.

Product Modifications. The [27+20]-coupled products
generated by our method provide multiple synthetic linchpins

https://doi.org/10.1021/jacs.3c11563
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Scheme S. Experimental and Computational Mechanistic Highlights: (A) UV—Vis Absorption Spectrum Showing 1a as
Exclusive Absorbing Species at 400 nm, (B) Quadratic Dependency Study as a Proof for a Two-Photon Process, (C) Proof of
Formation of Ketene after Excitation, (D) Triplet Quenching Studies with f-Ionone, and (E) Computed Reaction Coordinate
Surface with Monosubstituted BCB 2a and Disubstituted BCB 2q
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for further post-diversification (Scheme 4). Subjecting 3a to
classical nucleophilic addition reactions furnished a quantita-
tive amount of synthetically important secondary alcohol Sa
and tertiary alcohol Sb with excellent diastereoselectivity. The
cyclic ketone moiety of 3a could be smoothly converted into
another popular class of biosiostere 5¢,* closely mimicking the
meta-substituted benzenes via Baeyer—Villiger oxidation. Next,
Wittig conditions were applied to access cyclic external alkene
Sd from the ketone group. Fortunately, by treating 3a with
trimethylsulfonium iodide under a basic medium, we managed
to obtain the epoxide-embedded spiro compound Se in
excellent yield. Noteworthy, the coupling of phenylboronic
acid with 3a gives smooth entry into tetracarbon-substituted
alkene unit Sf; thus extending the scope of substituents at the
alkenyl position. We could successfully administer compound
Sa under hydrogenation conditions which resulted in
dechlorination and thereby formed a hydrocarbon unit
containing bicyclic unit Sg. Finally, basic hydrolysis of 4c
converted the ester group to carboxylic acid Sh, followed by
installation of an estrone molecule, delivering another drug
unit containing the entity Si.

Mechanistic Highlights. We performed several mecha-
nistic experiments to probe the reaction mechanism. The UV—
visible spectrum revealed that only cyclobutenone 1a absorbs
in the visible region of the spectrum, suggesting that direct
excitation of cyclobutanone la forms the ketene intermediate
via a retro 4m-electrocyclic ring opening reaction. We also
performed density functional theory (DFT) calculations to
support the ketene formation mechanism (see SI for details;
Scheme SA). Considering the earlier reports on photolysis of
cyclobutenone,” we postulate that a consecutive two-photon
process’”*® would be operating under the standard reaction
conditions. Indeed, the quadratic dependency study displayed
a 2.75 times increase in the reaction yield with the doubling of
light intensity (Scheme SB). This showed a deviation from
linearity, demonstrating a possible consumption of two
photons. The first photon initiates the photoelectrocyclization
ring opening of cyclobutenone to form a ketene intermediate.
The second photon excites the in situ generated ketene
intermediate and initiates the subsequent [27+20] cyclo-
addition with BCB. In addition, using allyl amine, we
successfully captured the reactive ketene intermediate from
1a with complete conversion (Scheme SC). The addition of -
Tonone, a known triplet quencher,” to the standard reaction
condition resulted in a decreased yield of 3a from 79 to 34%
(Scheme SD). Because the rapid ketene formation from la
follows an open-shell singlet profile, an efficient quenching of
the next step by a triplet quencher could suggest a viable triple
pathway after the second excitation. The quantum yield of the
reaction was determined to be @ = 0.07, which eliminates the
possibility of the chain process being operative. Trapping
experiments with TEMPO yielded no product (3a), which is in
agreement with Tidwell’s trapping studies on related systems.*’

We conducted DFT studies to further probe the origin of
regioselectivity in the [27+20] photocycloaddition of mono-
and 1,3-disubstituted BCBs (2a and 2q) into the ketene
intermediate IM1 (Scheme SE). Based on the triplet
quenching experiments, photoexcitation followed by intersys-
tem crossing (ISC) of the ketene intermediate IM1 forms the
diradical intermediate IM1-T1, in which the spin densities are
located on the dichloro-substituted alkene (7 to 7* excitation).
Isomerization of IM1-T1 forms IM2-T1 which consists of an
allyl radical and a carbonyl radical. Both monosubstituted BCB
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2a and 1,3-disubstituted BCB 2q favor insertion into the
carbonyl radical in IM2-T1 via TS1-T1 (AGrg,* = 20.5 kcal/
mol) and TS5-T1 (AGygs* = 21.6 keal/mol), correspondingly.
Consistent with our previous studies, for both TS1-T1 and
TSS-T1, the strained BCB o-bond is cleaved simultaneously
with the C—C bond formation at the carbonyl of the ketene
triplet. The competing regioisomeric BCB insertion transition
states (TS2-T1 & TS3-T1, TS6-T1 & TS7-T1) are kinetically
and thermodynamically disfavored. Competing BCB insertions
to the allyl group also have higher free energy barriers (see the
SI for additional details). The origin of C=C/C=0
selectivity is decided in the radical—radical recombination
step from IM3 and IM6. The origin of BCB substitution on
product selectivity is the subject of further investigation and is
beyond the synthetic aspect of this current study.

B CONCLUSIONS

The displayed strategy allowed the straightforward formation
of two distinct heteroatom-containing isosteres in synthetically
rewarding yields. Here, with cyclobutenones being a source of
in situ ketene equivalents and BCBs providing the conforma-
tional rigidity, this work also highlights the ongoing double
strain-release event making the [27+20]-photocycloaddition
thermodynamically feasible. The broad functional group
tolerance and the bicyclic core modification demonstrate the
high synthetic utility of this methodology. The stagewise
mechanism and selectivity queries are well-supported by
experimental evidence and extensive DFT calculations. Overall,
we believe our findings have far-reaching potential in the field
of ketene-photocycloaddition and could eventually spur
interest in harnessing potential energies from reaction partners
in a sustainable way.
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