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Intermolecular functionalization of tertiary C-H bonds to construct fully
substituted stereogenic carbon centres represents a formidable challenge:

without the assistance of directing groups, state-of-the-art catalysts
struggle to introduce chirality to racemic tertiary sp*>-carbon centres. Direct
asymmetric functionalization of such centresis a worthy reactivity and
selectivity goal for modern biocatalysis. Here we present an engineered
nitrene transferase (P411-TEA-5274), derived from a bacterial cytochrome
P450, that is capable of aminating tertiary C-H bonds to provide chiral
o-tertiary primary amines with high efficiency (up to 2,300 total turnovers)
and selectivity (up to >99% enantiomeric excess). The construction of

fully substituted stereocentres with methyl and ethyl groups underscores
the enzyme’s remarkable selectivity. Acomprehensive substrate scope
study demonstrates the biocatalyst’s compatibility with diverse functional
groups and tertiary C-H bonds. Mechanistic studies explain how active-site
residues distinguish between the enantiomers and enable the enzyme to
perform this transformation with excellent enantioselectivity.

Direct enantioselective functionalization of C(sp*)-Hbonds is anideal
approach to synthesize high-value-added chiral molecules from the
viewpoints of atom and step economy'”. In recent years, many pow-
erful catalytic methods have been developed towards this goal, with
notable advances made for enantioselective functionalization of sec-
ondary C-Hbonds (Fig.1a)''°. By contrast, intermolecular asymmetric
functionalization of racemic tertiary C-H bonds, particularly those
withathelogarithmic scale of the acid dissociation constant (pK,)> 25
andinthe absence of directing groups, towards the formation of fully
substituted sp*-carbon stereocentres remains unexplored in synthetic
chemistry (Fig. 1b). The challenges of this transformation include
the difficulty of precisely recognizing three different substituents
attached to a tertiary carbon centre (Fig. 1b), especially when those
substituents have only subtle steric and/or electronic differences;
thelack of anintermolecular counterparttorecent breakthroughsin
intramolecular enantioselective tertiary C-H functionalizations" ™"
and, finally, potential steric clash between the catalyst and the
tertiary carbon. Chemists often achieve precise facial recognition by

strategically incorporating bulky substituents or functional groups
intoa chiral catalyst. However, when it comes to the functionalization
ofatertiary C-Hbond, the steric clash between the bulky catalyst and
the crowded surrounding of atertiary carboninhibits the approach of
the catalyst to the tertiary C-Hbond. Consequently, atrade-off arises
between increasing the catalyst’s steric bulk to better control stere-
oselectivity and decreasing it to avoid a steric clash with the tertiary
sp*>-carbon surroundings (Fig. 1b).

Unlike small-molecule catalysts, enzymes have large,
three-dimensional (3D) structures determined by the folding of their
polypeptide chain(s). With precisely sculpted 3D structures, enzymes
can differentiate steric and electronic nuances as subtle as those
between methane and ethane molecules'. With precise adjustments
of their folded structures, enzymes can also achieve excellent stere-
oselectivity while maintaining high activity by avoiding severe steric
clasheswith bulky substrates”. We thus consider enzyme catalysis to be
apromising approach to tackle existing challenges in the enantioselec-
tive functionalization of tertiary C-H bonds.
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Fig. 1| Direct enantioselective functionalization of C(sp®)-H bonds.

a, General scenario for intermolecular enantioselective functionalization of
secondary carbon centres. Secondary carbons offer less steric hindrance, which
facilitates the construction of chirality. This type of transformation has been
well documented. b, General scenario for intermolecular enantioselective
functionalization of tertiary carbon centres. Tertiary carbons that possess
chiral centres are difficult for catalysts to approach and recognize. This type of
transformationisrarely reported. ¢, This work: biocatalytic, enantioselective
primary amination of tertiary C-H bonds. M, metal catalysts; FG, functional
groups; Piv, pivaloyl.

Cytochromes P450 represent nature’s most prevalent catalysts for
C-H functionalization', with enzymes from this vast family directly
activating C-Hbonds for awide range of oxidative transformations'®.
Furthermore, cytochromes P450 are excellent candidates for directed
evolution and discovery of non-natural activities due to their structural
flexibility and remarkable promiscuity'. Several reports have demon-
strated abiological C-H functionalizations achieved by expanding the
catalytic repertoire of the iron-haem-containing cytochrome P450
family®*?°, The activity and selectivity of these biocatalytic C-H func-
tionalizations frequently complement state-of-the-art methodologies
based onsmall-molecule catalysts, making them valuable additions to
the synthetic chemist’s toolbox®”'. Motivated by these precedents, we
soughtto leverage these enzymes for enantioselective intermolecular
functionalization of tertiary C-H bonds.

Given the widespread presence of o-tertiary amines in bioactive
compounds?, the initial focus was on the primary amination of tertiary
C-H bonds. Despite the existence of many methods for synthesiz-
ing chiral a-tertiary amines with stoichiometric amounts of auxiliary
reagents, such as Ellman’s sulfinamides**, catalytic strategies for
enantioselective conversion of substratesinto chiral a-tertiary amines
are rare' *?>% because classical methods for synthesizing chiral
a-secondary amines, including asymmetric reduction of imines®, bio-
catalytic transamination” and reductive amination®®, are notapplicable

to the synthesis of chiral a-tertiary amines due to the absence of pro-
tonsinthe fully substituted carbon centre. Fromaretrosynthetic per-
spective, intermolecular amination of tertiary C-Hbonds provides an
idealand straightforward method for the assembly of chiral a-tertiary
amines (Fig.1c). The Arnold group recently reported primary amination
of these tertiary C-H bonds, but all the products were non-chiral*°.
Here we present abiocatalytic system that exhibits remarkable ability
to aminate tertiary C-H bonds, providing high-value chiral a-tertiary
primary amines with exceptional efficiency and selectivity.

Results

Initial discovery and evolution of tertiary C-H primary
aminase P411-TEA-5274

We initiated the study by testing the coupling of sec-butylbenzene
1a and hydroxylamine ester 2a (Fig. 2a) catalysed by an in-house col-
lection of engineered cytochromes P411 (serine-ligated cytochrome
P450 variants). These reagents were chosen for several reasons: first,
compared to the elaborated starting materials used for many other
tertiary C-H functionalizations, 1a is simple, inexpensive and readily
available" ™. Second, the tertiary carbon centre of 1a is racemic and
attaches to a methyl and an ethyl substituent; distinguishing these
is notoriously difficult in asymmetric catalysis'*"** Last, hydroxy-
lamine ester 2a has recently been shown to serve as a nitrene precur-
sor for haemoprotein-catalysed secondary C-H primary amination®;
we wanted to expand that demonstration to primary amination of
tertiary C-H bonds.

Apanel of 48 cytochromes P411 previously engineered for nitrene
transformations was screened in whole Escherichia coli cells against
1a and 2a under anaerobic conditions (Fig. 2). The resulting reaction
mixtures were monitored and analysed after 20 h for the formation of
o-tertiary primary amine 3a. Variant P411-TEA-5267 (tertiary C-H pri-
mary aminase), which has three mutations (C324L, N395R and G438V)
withrespect to P411g,, (previously engineered for benzylic C-H primary
amination)”, produced the desired product 3a with a total turnover
number (TTN) of 20 (Fig. 2b; 1% yield, Supplementary Table 1). The
primary amine 3a synthesized by P411-TEA-5267 was determined to
have excellent stereopurity, with 90% enantiomeric excess (e.e.).

P411-TEA-5267 served as the starting point for directed evolution.
Sequential rounds of site-saturation mutagenesis (SSM)**** and screen-
ing were performed to improve catalytic activity towards synthesis
of 3a. We referred to the crystal structure of related P411 variant E10
(ref. 35) (haem domain only) and mainly targeted for mutagenesis
amino acid residues proximal to the haem cofactor and/or residing
on flexible loops, or those distal sites that have been shown to play an
important role in enhancing abiological carbene and nitrene transfer
activities (Fig. 2¢)®. During each round of SSM, enzyme libraries were
generated and screened for product formation in 96-well plates in
the form of bacterial whole-cell catalysts. Three rounds of SSM and
screening introduced mutations M354E, R395S and A327V, leadingtoa
threefoldimprovement of the TTN from 20 to 64 (Fig. 2b,d). Subsequent
rounds of evolution introduced the M177Y and S72T mutations on the
a-helices above the haem cofactor, as well as the A399G mutation on
the loop directly below the haem cofactor. These mutations boosted
the activity more than twofold, reaching 140 TTN (Fig. 2). The Q403A
mutation located on the a-helix below the haem cofactor doubled the
enzyme activity to 270 TTN (Fig. 2). On re-evaluation of position 395
in the loop beneath the haem cofactor, we found the S395V mutation
increased the enzyme’s activity almost fourfold to 970 TTN (26% yield,
Supplementary Table 2), culminatingin the final variant, P411-TEA-5274
(Fig.2).Inthe standard conditions, an oxygen depletion system (catalase
and glucose oxidase) was introduced to ensure a strict anaerobic envi-
ronment. However, in the absence of this oxygen depletion system the
yieldand TTN only decrease slightly (entries 8 and 10, Supplementary
Table2), demonstrating the synthetic utility of this biotransformation.
Notably, the enzyme’s enantioselectivity towards the formation of 3a
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Fig.2|Directed evolution for enzymatic primary amination of tertiary
C-Hbonds. a, Reaction conditions: 5 mM 1a, 10 mM 2a, E. coli whole cells
harbouring P411 variants (OD, = 30) in M9-N aqueous buffer (pH 8.0), 5% (v/v)
EtOH (cosolvent), 10 °C, anaerobic conditions, 20 h. b, Evolution trajectory of
tertiary C-H primary aminase (P411-TEA) for the synthesis of a-tertiary primary
amine 3a. ¢, The mutations (572, M177, A327, M354, R395, A399 and Q403) that
enhance activity or enantioselectivity are highlighted in the active site of closely

related P411variant E10 (Protein Data Bank ID SUCW)*. d, Summary of beneficial
mutations leading to P411-TEA-5274. TTN is defined as the (molar) amount of
indicated product divided by the amount of haem proteinin the reaction, as
measured by the haemochrome assay (see Supplementary Method 7 for more
details). Yields were calculated from high-performance liquid chromatography
calibration curves and the average of triplicate experiments (n = 3).

alsoimproved slightly during the evolution campaign, increasing from
90%e.e. (P411-TEA-5267, Fig. 2d) to 92%e.e. (P411-TEA-5274, Fig. 2d).

Substrate scope study of tertiary C-H primary aminase
P411-TEA-5274
With C-H primary aminase P411-TEA-5274 in hand, we proceeded to
exploreits performance on various substrates (Fig. 3). Representative
substrates were designed with mixed kinds of C-Hbond (1a, Fig. 3) and
with diverse spatial hindrances (laand 1c-1e, Fig. 3), electronic effects
(1f-1g, Fig.3), structures (1i-1j, Fig. 3) and two different types of tertiary
C-Hbond (1k-11, Fig. 3) to examine the impact of these factors on the
activity and selectivity of the enzyme, as well as the enzyme’s regional
selectivity. We incorporated both methyl and ethyl groups at the ter-
tiary carbon centres of most substrates (1a, 1c-1g and 1i-11, Fig. 3)"*"*2,
These substrates allow us to assess the selectivity of the enzyme in
conditions that present considerable challenges for other systems.
To investigate enzyme regioselectivity, we tested substrate 1a
(Fig. 3). Substrate 1a has an sp® tertiary C-H bond and sp* C-H bonds.
Existing reports have demonstrated iron catalysts can efficiently cata-
lyse primary amination of sp? C-Hbonds***%. By contrast, this enzyme
exclusively catalysed the amination of the sp* tertiary C-H bond of 1a,
giving 3a with high efficiency (970 TTN, Fig. 3) and exclusive regiose-
lectivity (>99:1regioselectivity ratio (r.r.), Fig. 3) and enantioselectivity

(92%e.e., Fig.3). A1.0 mmol reaction was performed under the stand-
ard conditions, and primary amine 3a could beisolated in17%isolated
yield and with 92% e.e. by using simple acid-base extraction (Fig. 3).
Substrates (1b-1d) possess an sp® tertiary C—H bond and sp® primary
C-H bonds. Although the former has a smaller bond-dissociation
energy than the latter®, the latter is kinetically more favourable for
activation. This enzyme aminated the tertiary C-H bond of 1b-1d,
delivering 3b-3d with high efficiency (up to 860 TTN). We nextinstalled
amethylgroup (1c) and amethoxy group (If) at the para-position of the
phenylring. The enzyme’s activity towards the construction of 3cand 3f
droppedto310and110 TTN, respectively. However, the enantioselec-
tivities for both compounds were >99%e.e. (Fig. 3). Conversely, whena
methylgroup was introduced at the meta-position of the phenyl ring,
the enantioselectivity decreased to 60%e.e.,but the enzyme’s activity
was high (3d, 860 TTN, Fig. 3). When a methyl group was introduced at
the ortho-position, the enzyme struggled to convert 1e to 3e (Fig. 3).
When a fluoro-substituent was introduced at the para-position, the
enzyme maintained high enantioselectivity, albeit with decreased
activity (3g,95%e.e.,73TTN, Fig. 3). When aminating an achiral tertiary
carbon centre, we found the efficiency was also good (3h, 300 TTN,
Fig.3).Inaddition, when the aryl moiety was replaced with heteroaryl
moieties, suchas a pyridyl (1i) or a thienyl (1j) substituent, the enzyme
retained satisfactory catalytic activity and good enantioselectivity
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Fig.3|Substrate scope study. Reaction conditions were: 5 mM1a,10 mM 2a,

E. coliwhole cells harbouring P411-TEA-5274 (OD¢,, = 30) in M9-N aqueous buffer
(pH 8.0), 5% (v/v) EtOH (cosolvent), 10 °C, anaerobic conditions, 20 h.*17%
isolated yield at 1.0 mmol scale. ®16% isolated yield at 0.5 mmol scale. “9% isolated

yield at 0.5 mmol scale. “10% isolated yield at 0.5 mmol scale. TTNis defined as
the (molar) amount of indicated product divided by the amount of haem protein
inthereaction, as measured by the haemochrome assay (see Supplementary
Method 7 for more details). r.r., regioisomeric ratio.

(3i (52 TTN, 82% e.e.) and 3j (420 TTN, 92% e.e.)). Moreover, the
biocatalytic system is not only applicable to benzylic tertiary C-H
bondsbutalsotoallylic (3k,70 TTN, 90% e.e.) and propargylic tertiary
C-Hbonds (31,120 TTN, 67% e.e.). The absolute stereochemistry for
enzymatic product 3fwas assigned as Sby comparing the elution order
of the two enantiomers with a literature report*° and through X-ray
crystallography (Supplementary Table 8 and Supplementary Fig. 21).
The other a-tertiary primary amines 3 were assigned by analogy.

Experimental and computational study of P411-TEA-5274
To better understand the mechanism of this biotransformation, we
designed a series of substrate probes (Fig. 4). First, enantiopure sub-
strates (R)-1f and (S)-1f were synthesized (see Supplementary Infor-
mation for more details) and used to react with 2a under standard
conditions catalysed by P411-TEA-5274 (Fig. 4a,b). Experimental results
showed that the efficiency of (R)-1f transforming into 3f (420 TTN,
Fig.4a) was much higher (more than 16-fold difference) than that of (S)-
1ftransforminginto3f(26 TTN, Fig. 4b), indicating the enzyme prefers
the (R)-enantiomer. Moreover, we observed that (R)-1f was converted to
(5)-3f(>99% e.e.) and (S)-1fwas converted to (R)-3f (-85% e.e.), indicat-
ing that the enzyme achieves enantioselectivity viakinetic resolution
and maintains the stereoconfiguration of the favoured enantiomer.
Next, we synthesized substrates thatincorporate astereodefined
olefin moiety ((£)-Im and (2)-1m, Fig. 4c,d), and subjected them to

enzymaticreactions. Sscrambling of the olefin geometry was observed
inthe (2)-substrate, with the (2)-substrate yielding a considerable pro-
portionof the scrambled product that harbours athermodynamically
morestable product (£)-3m (£/Z>99:1, Fig. 4d). Inline with established
literature on related iron-based catalysts™*~**, this observed erosion
of C=C stereochemistry supports the generation of a carbon-centred
radical at the allylic position and a stepwise pathway, contradicting a
concerted C-Hinsertion mechanism.

Tounderstand the rate-determining step of this enzyme-catalysed
reaction, the kinetic isotope effect (KIE) between cumene 1b and
cumene-d,1b’ was measured (Fig. 4¢e,f). The non-competitive KIE was
9.5, while the competitive KIE was 22.9. These results contrast with
previously measured KIEs for the benzylic C-H amidation of ethyl
benzene®, while aligning with those for the nitrogen insertion into
unactivated C-Hbonds**, suggesting that the hydrogen-atom transfer
(HAT) is the rate-limiting step and a higher degree of tunnelling than
previously observed in these systems*.

To gain further insight into the reaction of lawith theiron-nitrene
intermediateintheactive site of the enzyme, molecular dynamics simula-
tions were performed onamimic of the enantioselectivity-determining
HAT transitionstate, using the closely related P411 enzyme E10 (ref. 35)
asthe starting point (beneficial mutations were introduced manually and
arestraint was applied to the Njene—H-Cieriary distance; Supplementary
Figs.22-26).Simulations on the hydrogen-atom transfer with substrate
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Fig. 4 |Mechanistic studies of enantioenriched enzymatic primary amination
of tertiary C-Hbonds. a,b, Nitrene transfer reactions catalysed by P411-TEA-5274
using (R)- (a) or (S)-1f (b). Reaction conditions were: 5 mM (R)- or (S)-1f,10 mM 2a,
E. coliwhole cells harbouring P411-TEA-5274 (ODy,, = 30) in M9-N aqueous

buffer (pH 8.0), 5% (v/v) EtOH (cosolvent), 10 °C, anaerobic conditions, 20 h.

c,d, Nitrene transfer reactions catalysed by P411-TEA-5274 using (E)- (c) or (2)-1Im
(d).Reaction conditions were 5 mM (£)- or (Z)-1m, 10 mM 2a, E. coli whole cells
harbouring P411-TEA-5274 (OD(, = 30) in M9-N aqueous buffer (pH 8.0), 5% (v/v)
EtOH (cosolvent), 10 °C, anaerobic conditions, 20 h. E/Zratios were determined

S)-1f TEAL -85% e.e.
(S) P411-TEA-5274 26 TTN
d 2a
Me_ NH,
/ P
Me H — M T
=
Me
(E/2)-3m
(2)-1m P411-TEA-5274 34 TN
E/Z > 99:1
f 2a
XsC. X X3C_ NH,
\/
XSC XsC/ \©
1b (X = H) 3b (X =H)
and P411-TEA-5274 and
1b’ (X = D) Competitive Ky/Kp = 22.9 3b' (X =D)

by 'H nuclear magnetic resonance. e,f, Nitrene transfer reactions catalysed by
P411-TEA-5274 using 1b or 1b’ (d,-1b); non-competitive (e) and competitive (f).
Reaction conditions were: 5 mM 1b or 1b’, 10 mM 2a, £. coli whole cells harbouring
P411-TEA-5274 (ODyq, = 30) in M9-N aqueous buffer (pH 8.0), 5% (v/v) EtOH
(cosolvent), 10 °C, anaerobic conditions, 20 h. TTN is defined as the (molar)
amount of indicated product divided by the amount of haem proteinin the
reaction, as measured by the haemochrome assay (see Supplementary Method 7
for more details). “TTNs were calculated based on all stereoisomers. °45% isolated
yield at 0.6 mmol scale (Supplementary Method 17).

(R)-1a, which in the experiment delivers the major enantiomer (S)-3a,
and the other enantiomer (S)-1a revealed that with both substrates the
phenyl-substituent is preferentially oriented towards the left-hand side of
theactivesite, corresponding to an N1-Fe-Nene"Cpnenyi dihedral angle of
approximately 20° (Fig. 5). In this orientation, the phenyl-substituentis
tightly positioned between anumber of surrounding hydrophobic resi-
dues, withminimum C-C distances ascloseas 3.5,3.9and 3.9 Abetween1a
and A87,A264 and M263, respectively, indicating the possibility of stabi-
lizing C-H-minteractions (see Supplementary Figs. 22 and 23 for details).
Thistightfit prevents substantialmovement of the carbon-centred radical
species after hydrogen-atomtransfer, precluding reorientation and rota-
tionaround the C,.enyi~Ceerriary bONd, thus avoiding an interconversion of
the radical intermediates formed from (R)-1a and (5)-1a and ablation of
enantioselectivity. Inaddition, for substrate (R)-1a, the ethyl substituent
isplacedinasterically accessible areabetween residues P268 and V328,
while the methyl group is oriented towards the outwards-facing side of
the active site (see Supplementary Figs. 22-26 for details). By contrast,
for the other enantiomer, (S)-1a, the ethyl substituent mostly rotates
upwards to avoid an otherwise close contact of the CH, group of the
ethylsubstituent with the haemring system. However, the rotation of the
ethyl group causes a substantial movement of F437 and the respective
open-loop proteinbackbone, which resultsin exclusion of (S)-1afrom the
enzyme pocket or a destabilization of the HAT transition state, thereby
disfavouring reaction with (5)-1a (see Supplementary Figs. 22-26 for
details). The computational results are consistent with the experimental

findings based on the biotransformation of enantiomers (R)-1f (Fig. 4a)
and (S)-1f (Fig. 4b).

Conclusions

We have developed an engineered enzyme, P411-TEA-5274, that can
directly aminate tertiary C-H bonds, efficiently and selectively to
produce high-value chiral a-tertiary primary amines. This biocatalyst
provides an alternative to small-molecule catalysts, which struggle to
functionalize tertiary C-Hbonds, and demonstrates remarkable enan-
tioselectivity and activity. The substrate scope study demonstrated the
compatibility of this biotransformation towards various substrates,
the exclusive regioselectivity to tertiary C-H bonds and the broad
applicability against different tertiary C-H bonds. Experimental and
computational investigations indicate that the enzyme’s excellent
enantioselectivity arises from its enantiomeric substrate specificity.
Giventhe prevalence of a-tertiary aminesin bioactive molecules, this
work provides a straightforward disconnection strategy to construct
these fragments. Leveraging this workin the future, we hope to expand
the limited repertoire of catalysts for asymmetric intermolecular func-
tionalization of tertiary C-H bonds.

Methods

Expression of P411-TEA variants

E. coli (E. cloni BL21(DE3)) cells carrying plasmid encoding the appro-
priate P411-TEA variant were grown overnight in 5 ml of Luria-Bertani
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Fig. 5|Molecular dynamics simulations of iron-haem-catalysed tertiary
C-Hamination. a,b, Molecular dynamics simulations of HAT transition state
mimics with (R)-1a (a) and (5)-1a (b). Plot of the N1-Fe-N ene~Cpheny dihedral
angle over time and respective probability density plot. During the simulations,
the Nyigrene=H~Ceerviary distance (dashed yellow line) was restrained. Structures
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correspond to representative structures of the most populated cluster.
Non-relevant, non-polar hydrogens are omitted for clarity. The colour scheme
for atoms of amino acid residues: carbon, blue; oxygen, red and sulfur, yellow;
for the atoms of 1a and the iron-nitrene intermediate: carbon, grey; iron, orange;
nitrogen, blue and oxygen, red.

mediumwith 0.1 mg ml™ ampicillin (LB,,,). Preculture (1 ml) was used
toinoculate 50 ml of Hyper Broth medium with 0.1 mg ml™ ampicillin
(HB,,) in an Erlenmeyer flask (125 ml). This culture was incubated
at 37 °C and 220 rpm for 2.5 h, cooled on ice for 30 min, and induced
with 0.5 mM isopropyl -D-1-thiogalactopyranoside and 1.0 mM
5-aminolevulinic acid (final concentrations). Expression was con-
ductedat22°C,140 rpmfor20-22 h. E. colicellswere then transferred
to a conical centrifuge tube (50 ml) and pelleted by centrifugation
(4,000g, 3 minand 4 °C). Supernatant was removed and the resulting
cellpellet wasresuspendedin M9-N (pH 8.0) buffer to an optical density
at 600 nm (ODy,,) of 38. An aliquot of this cell suspension (3 ml) was
taken to determine protein concentration using the pyridine haemo-
chromagen assay after lysis by sonication.

Primary amination of tertiary C-H bonds using whole

E. colicells harbouring P411-TEA

All the biocatalytic reactions were set up in an anaerobic chamber
(oxygen level <40 ppm). M9-N medium (pH 8.0) and D-glucose solu-
tion (500 mMin M9-N, pH 8.0) were placed in the anaerobic chamber
for at least 24 h. Collected cells were resuspended with M9-N buffer
(pH 8.0) into 0D, = 38 and 320 pl of resuspended cells were aliquoted
to 2 ml screw-cap vials. The screw-cap vials with cells were precooled
to 0 °Conanice bath. Then, 30 pl of the precooled glucose solution,
10 pl of a stock solution containing glucose oxidase (from Aspergillus
niger,1,000 U ml™) and catalase (from bovine liver, 14,000 U ml™) in
double-distilled water were added to make the total volume to 360 pl.
The resulting mixtures stayed on the ice bath for another 2 min, and

then the hydrocarbon substrate 1 (20 pl, 0.1 M stock in ethanol) and
the nitrene precursor 2a (20 pl, 0.2 M stock in water) were added in a
sequential manner. The reactions were then shaken at 10 °C for 20 h
at250 rpm.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Crystallographic dataare available free of charge from the Cambridge
Crystallographic Data Centre under no. CCDC 2287786 (3f derivative
(5)-N-(2-(4-methoxyphenyl)butan-2-yl)benzamide). The original mate-
rials and data that support the findings of this study are available within
the paperandits Supplementary Information or can be obtained from
the corresponding author upon reasonable request.
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