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Biocatalytic, enantioenriched primary 
amination of tertiary C–H bonds

Runze Mao    1,4, Shilong Gao1,4, Zi-Yang Qin1,4, Torben Rogge    2,3, 
Sophia J. Wu    1, Zi-Qi Li1, Anuvab Das    1, K. N. Houk    2 & Frances H. Arnold    1 

Intermolecular functionalization of tertiary C–H bonds to construct fully 
substituted stereogenic carbon centres represents a formidable challenge: 
without the assistance of directing groups, state-of-the-art catalysts 
struggle to introduce chirality to racemic tertiary sp3-carbon centres. Direct 
asymmetric functionalization of such centres is a worthy reactivity and 
selectivity goal for modern biocatalysis. Here we present an engineered 
nitrene transferase (P411-TEA-5274), derived from a bacterial cytochrome 
P450, that is capable of aminating tertiary C–H bonds to provide chiral 
α-tertiary primary amines with high efficiency (up to 2,300 total turnovers) 
and selectivity (up to >99% enantiomeric excess). The construction of 
fully substituted stereocentres with methyl and ethyl groups underscores 
the enzyme’s remarkable selectivity. A comprehensive substrate scope 
study demonstrates the biocatalyst’s compatibility with diverse functional 
groups and tertiary C–H bonds. Mechanistic studies explain how active-site 
residues distinguish between the enantiomers and enable the enzyme to 
perform this transformation with excellent enantioselectivity.

Direct enantioselective functionalization of C(sp3)–H bonds is an ideal 
approach to synthesize high-value-added chiral molecules from the 
viewpoints of atom and step economy1–5. In recent years, many pow-
erful catalytic methods have been developed towards this goal, with 
notable advances made for enantioselective functionalization of sec-
ondary C–H bonds (Fig. 1a)1–10. By contrast, intermolecular asymmetric 
functionalization of racemic tertiary C–H bonds, particularly those 
with a the logarithmic scale of the acid dissociation constant (pKa)> 25 
and in the absence of directing groups, towards the formation of fully 
substituted sp3-carbon stereocentres remains unexplored in synthetic 
chemistry (Fig. 1b). The challenges of this transformation include 
the difficulty of precisely recognizing three different substituents 
attached to a tertiary carbon centre (Fig. 1b), especially when those 
substituents have only subtle steric and/or electronic differences; 
the lack of an intermolecular counterpart to recent breakthroughs in 
intramolecular enantioselective tertiary C–H functionalizations11–15 
and, finally, potential steric clash between the catalyst and the  
tertiary carbon. Chemists often achieve precise facial recognition by 

strategically incorporating bulky substituents or functional groups 
into a chiral catalyst. However, when it comes to the functionalization 
of a tertiary C–H bond, the steric clash between the bulky catalyst and 
the crowded surrounding of a tertiary carbon inhibits the approach of 
the catalyst to the tertiary C–H bond. Consequently, a trade-off arises 
between increasing the catalyst’s steric bulk to better control stere-
oselectivity and decreasing it to avoid a steric clash with the tertiary 
sp3-carbon surroundings (Fig. 1b).

Unlike small-molecule catalysts, enzymes have large, 
three-dimensional (3D) structures determined by the folding of their 
polypeptide chain(s). With precisely sculpted 3D structures, enzymes 
can differentiate steric and electronic nuances as subtle as those 
between methane and ethane molecules16. With precise adjustments 
of their folded structures, enzymes can also achieve excellent stere-
oselectivity while maintaining high activity by avoiding severe steric 
clashes with bulky substrates17. We thus consider enzyme catalysis to be 
a promising approach to tackle existing challenges in the enantioselec-
tive functionalization of tertiary C–H bonds.
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to the synthesis of chiral α-tertiary amines due to the absence of pro-
tons in the fully substituted carbon centre. From a retrosynthetic per-
spective, intermolecular amination of tertiary C–H bonds provides an 
ideal and straightforward method for the assembly of chiral α-tertiary 
amines (Fig. 1c). The Arnold group recently reported primary amination 
of these tertiary C–H bonds, but all the products were non-chiral29,30. 
Here we present a biocatalytic system that exhibits remarkable ability 
to aminate tertiary C–H bonds, providing high-value chiral α-tertiary 
primary amines with exceptional efficiency and selectivity.

Results
Initial discovery and evolution of tertiary C–H primary 
aminase P411-TEA-5274
We initiated the study by testing the coupling of sec-butylbenzene 
1a and hydroxylamine ester 2a (Fig. 2a) catalysed by an in-house col-
lection of engineered cytochromes P411 (serine-ligated cytochrome 
P450 variants). These reagents were chosen for several reasons: first, 
compared to the elaborated starting materials used for many other 
tertiary C–H functionalizations, 1a is simple, inexpensive and readily 
available11–15. Second, the tertiary carbon centre of 1a is racemic and 
attaches to a methyl and an ethyl substituent; distinguishing these 
is notoriously difficult in asymmetric catalysis11,31,32. Last, hydroxy-
lamine ester 2a has recently been shown to serve as a nitrene precur-
sor for haemoprotein-catalysed secondary C–H primary amination29; 
we wanted to expand that demonstration to primary amination of 
tertiary C–H bonds.

A panel of 48 cytochromes P411 previously engineered for nitrene 
transformations was screened in whole Escherichia coli cells against 
1a and 2a under anaerobic conditions (Fig. 2). The resulting reaction 
mixtures were monitored and analysed after 20 h for the formation of 
α-tertiary primary amine 3a. Variant P411-TEA-5267 (tertiary C–H pri-
mary aminase), which has three mutations (C324L, N395R and G438V) 
with respect to P411BPA (previously engineered for benzylic C–H primary 
amination)29, produced the desired product 3a with a total turnover 
number (TTN) of 20 (Fig. 2b; 1% yield, Supplementary Table 1). The 
primary amine 3a synthesized by P411-TEA-5267 was determined to 
have excellent stereopurity, with 90% enantiomeric excess (e.e.).

P411-TEA-5267 served as the starting point for directed evolution. 
Sequential rounds of site-saturation mutagenesis (SSM)33,34 and screen-
ing were performed to improve catalytic activity towards synthesis 
of 3a. We referred to the crystal structure of related P411 variant E10  
(ref. 35) (haem domain only) and mainly targeted for mutagenesis 
amino acid residues proximal to the haem cofactor and/or residing 
on flexible loops, or those distal sites that have been shown to play an 
important role in enhancing abiological carbene and nitrene transfer 
activities (Fig. 2c)8. During each round of SSM, enzyme libraries were 
generated and screened for product formation in 96-well plates in 
the form of bacterial whole-cell catalysts. Three rounds of SSM and 
screening introduced mutations M354E, R395S and A327V, leading to a 
threefold improvement of the TTN from 20 to 64 (Fig. 2b,d). Subsequent 
rounds of evolution introduced the M177Y and S72T mutations on the 
α-helices above the haem cofactor, as well as the A399G mutation on 
the loop directly below the haem cofactor. These mutations boosted 
the activity more than twofold, reaching 140 TTN (Fig. 2). The Q403A 
mutation located on the α-helix below the haem cofactor doubled the 
enzyme activity to 270 TTN (Fig. 2). On re-evaluation of position 395 
in the loop beneath the haem cofactor, we found the S395V mutation 
increased the enzyme’s activity almost fourfold to 970 TTN (26% yield, 
Supplementary Table 2), culminating in the final variant, P411-TEA-5274 
(Fig. 2). In the standard conditions, an oxygen depletion system (catalase 
and glucose oxidase) was introduced to ensure a strict anaerobic envi-
ronment. However, in the absence of this oxygen depletion system the 
yield and TTN only decrease slightly (entries 8 and 10, Supplementary 
Table 2), demonstrating the synthetic utility of this biotransformation. 
Notably, the enzyme’s enantioselectivity towards the formation of 3a 

Cytochromes P450 represent nature’s most prevalent catalysts for 
C–H functionalization10, with enzymes from this vast family directly 
activating C–H bonds for a wide range of oxidative transformations18. 
Furthermore, cytochromes P450 are excellent candidates for directed 
evolution and discovery of non-natural activities due to their structural 
flexibility and remarkable promiscuity19. Several reports have demon-
strated abiological C–H functionalizations achieved by expanding the 
catalytic repertoire of the iron-haem-containing cytochrome P450 
family8,9,20. The activity and selectivity of these biocatalytic C–H func-
tionalizations frequently complement state-of-the-art methodologies 
based on small-molecule catalysts, making them valuable additions to 
the synthetic chemist’s toolbox8,21. Motivated by these precedents, we 
sought to leverage these enzymes for enantioselective intermolecular 
functionalization of tertiary C–H bonds.

Given the widespread presence of α-tertiary amines in bioactive 
compounds22, the initial focus was on the primary amination of tertiary 
C–H bonds. Despite the existence of many methods for synthesiz-
ing chiral α-tertiary amines with stoichiometric amounts of auxiliary 
reagents, such as Ellman’s sulfinamides23,24, catalytic strategies for 
enantioselective conversion of substrates into chiral α-tertiary amines 
are rare11–13,22,25, because classical methods for synthesizing chiral 
α-secondary amines, including asymmetric reduction of imines26, bio-
catalytic transamination27 and reductive amination28, are not applicable 
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also improved slightly during the evolution campaign, increasing from 
90% e.e. (P411-TEA-5267, Fig. 2d) to 92% e.e. (P411-TEA-5274, Fig. 2d).

Substrate scope study of tertiary C–H primary aminase 
P411-TEA-5274
With C–H primary aminase P411-TEA-5274 in hand, we proceeded to 
explore its performance on various substrates (Fig. 3). Representative 
substrates were designed with mixed kinds of C–H bond (1a, Fig. 3) and 
with diverse spatial hindrances (1a and 1c–1e, Fig. 3), electronic effects 
(1f–1g, Fig. 3), structures (1i–1j, Fig. 3) and two different types of tertiary 
C–H bond (1k–1l, Fig. 3) to examine the impact of these factors on the 
activity and selectivity of the enzyme, as well as the enzyme’s regional 
selectivity. We incorporated both methyl and ethyl groups at the ter-
tiary carbon centres of most substrates (1a, 1c–1g and 1i–1l, Fig. 3)11,31,32. 
These substrates allow us to assess the selectivity of the enzyme in 
conditions that present considerable challenges for other systems.

To investigate enzyme regioselectivity, we tested substrate 1a 
(Fig. 3). Substrate 1a has an sp3 tertiary C–H bond and sp2 C–H bonds. 
Existing reports have demonstrated iron catalysts can efficiently cata-
lyse primary amination of sp2 C–H bonds36–38. By contrast, this enzyme 
exclusively catalysed the amination of the sp3 tertiary C–H bond of 1a, 
giving 3a with high efficiency (970 TTN, Fig. 3) and exclusive regiose-
lectivity (>99:1 regioselectivity ratio (r.r.), Fig. 3) and enantioselectivity 

(92% e.e., Fig. 3). A 1.0 mmol reaction was performed under the stand-
ard conditions, and primary amine 3a could be isolated in 17% isolated 
yield and with 92% e.e. by using simple acid–base extraction (Fig. 3). 
Substrates (1b–1d) possess an sp3 tertiary C–H bond and sp3 primary 
C–H bonds. Although the former has a smaller bond-dissociation 
energy than the latter39, the latter is kinetically more favourable for 
activation. This enzyme aminated the tertiary C–H bond of 1b–1d, 
delivering 3b–3d with high efficiency (up to 860 TTN). We next installed 
a methyl group (1c) and a methoxy group (1f) at the para-position of the 
phenyl ring. The enzyme’s activity towards the construction of 3c and 3f 
dropped to 310 and 110 TTN, respectively. However, the enantioselec-
tivities for both compounds were >99% e.e. (Fig. 3). Conversely, when a 
methyl group was introduced at the meta-position of the phenyl ring, 
the enantioselectivity decreased to 60% e.e., but the enzyme’s activity 
was high (3d, 860 TTN, Fig. 3). When a methyl group was introduced at 
the ortho-position, the enzyme struggled to convert 1e to 3e (Fig. 3). 
When a fluoro-substituent was introduced at the para-position, the 
enzyme maintained high enantioselectivity, albeit with decreased 
activity (3g, 95% e.e., 73 TTN, Fig. 3). When aminating an achiral tertiary 
carbon centre, we found the efficiency was also good (3h, 300 TTN, 
Fig. 3). In addition, when the aryl moiety was replaced with heteroaryl 
moieties, such as a pyridyl (1i) or a thienyl (1j) substituent, the enzyme 
retained satisfactory catalytic activity and good enantioselectivity  
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Fig. 2 | Directed evolution for enzymatic primary amination of tertiary 
C–H bonds. a, Reaction conditions: 5 mM 1a, 10 mM 2a, E. coli whole cells 
harbouring P411 variants (OD600 = 30) in M9-N aqueous buffer (pH 8.0), 5% (v/v) 
EtOH (cosolvent), 10 °C, anaerobic conditions, 20 h. b, Evolution trajectory of 
tertiary C–H primary aminase (P411-TEA) for the synthesis of α-tertiary primary 
amine 3a. c, The mutations (S72, M177, A327, M354, R395, A399 and Q403) that 
enhance activity or enantioselectivity are highlighted in the active site of closely 

related P411 variant E10 (Protein Data Bank ID 5UCW)35. d, Summary of beneficial 
mutations leading to P411-TEA-5274. TTN is defined as the (molar) amount of 
indicated product divided by the amount of haem protein in the reaction, as 
measured by the haemochrome assay (see Supplementary Method 7 for more 
details). Yields were calculated from high-performance liquid chromatography 
calibration curves and the average of triplicate experiments (n = 3).
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(3i (52 TTN, 82% e.e.) and 3j (420 TTN, 92% e.e.)). Moreover, the  
biocatalytic system is not only applicable to benzylic tertiary C–H 
bonds but also to allylic (3k, 70 TTN, 90% e.e.) and propargylic tertiary 
C–H bonds (3l, 120 TTN, 67% e.e.). The absolute stereochemistry for 
enzymatic product 3f was assigned as S by comparing the elution order 
of the two enantiomers with a literature report40 and through X-ray 
crystallography (Supplementary Table 8 and Supplementary Fig. 21). 
The other α-tertiary primary amines 3 were assigned by analogy.

Experimental and computational study of P411-TEA-5274
To better understand the mechanism of this biotransformation, we 
designed a series of substrate probes (Fig. 4). First, enantiopure sub-
strates (R)-1f and (S)-1f were synthesized (see Supplementary Infor-
mation for more details) and used to react with 2a under standard 
conditions catalysed by P411-TEA-5274 (Fig. 4a,b). Experimental results 
showed that the efficiency of (R)-1f transforming into 3f (420 TTN, 
Fig. 4a) was much higher (more than 16-fold difference) than that of (S)-
1f transforming into 3f (26 TTN, Fig. 4b), indicating the enzyme prefers 
the (R)-enantiomer. Moreover, we observed that (R)-1f was converted to 
(S)-3f (>99% e.e.) and (S)-1f was converted to (R)-3f (−85% e.e.), indicat-
ing that the enzyme achieves enantioselectivity via kinetic resolution 
and maintains the stereoconfiguration of the favoured enantiomer.

Next, we synthesized substrates that incorporate a stereodefined 
olefin moiety ((E)-1m and (Z)-1m, Fig. 4c,d), and subjected them to 

enzymatic reactions. Sscrambling of the olefin geometry was observed 
in the (Z)-substrate, with the (Z)-substrate yielding a considerable pro-
portion of the scrambled product that harbours a thermodynamically 
more stable product (E)-3m (E/Z > 99:1, Fig. 4d). In line with established 
literature on related iron-based catalysts11,41–43, this observed erosion 
of C=C stereochemistry supports the generation of a carbon-centred 
radical at the allylic position and a stepwise pathway, contradicting a 
concerted C–H insertion mechanism.

To understand the rate-determining step of this enzyme-catalysed 
reaction, the kinetic isotope effect (KIE) between cumene 1b and 
cumene-d7 1b′ was measured (Fig. 4e,f). The non-competitive KIE was 
9.5, while the competitive KIE was 22.9. These results contrast with 
previously measured KIEs for the benzylic C–H amidation of ethyl 
benzene35, while aligning with those for the nitrogen insertion into 
unactivated C–H bonds44, suggesting that the hydrogen-atom transfer 
(HAT) is the rate-limiting step and a higher degree of tunnelling than 
previously observed in these systems44.

To gain further insight into the reaction of 1a with the iron–nitrene 
intermediate in the active site of the enzyme, molecular dynamics simula-
tions were performed on a mimic of the enantioselectivity-determining 
HAT transition state, using the closely related P411 enzyme E10 (ref. 35) 
as the starting point (beneficial mutations were introduced manually and 
a restraint was applied to the Nnitrene–H–Ctertiary distance; Supplementary 
Figs. 22–26). Simulations on the hydrogen-atom transfer with substrate 
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(R)-1a, which in the experiment delivers the major enantiomer (S)-3a, 
and the other enantiomer (S)-1a revealed that with both substrates the 
phenyl-substituent is preferentially oriented towards the left-hand side of 
the active site, corresponding to an N1-Fe-Nnitrene-Cphenyl dihedral angle of 
approximately 20° (Fig. 5). In this orientation, the phenyl-substituent is 
tightly positioned between a number of surrounding hydrophobic resi-
dues, with minimum C–C distances as close as 3.5, 3.9 and 3.9 Å between 1a 
and A87, A264 and M263, respectively, indicating the possibility of stabi-
lizing C–H–π interactions (see Supplementary Figs. 22 and 23 for details). 
This tight fit prevents substantial movement of the carbon-centred radical 
species after hydrogen-atom transfer, precluding reorientation and rota-
tion around the Cphenyl–Ctertiary bond, thus avoiding an interconversion of 
the radical intermediates formed from (R)-1a and (S)-1a and ablation of 
enantioselectivity. In addition, for substrate (R)-1a, the ethyl substituent 
is placed in a sterically accessible area between residues P268 and V328, 
while the methyl group is oriented towards the outwards-facing side of 
the active site (see Supplementary Figs. 22–26 for details). By contrast, 
for the other enantiomer, (S)-1a, the ethyl substituent mostly rotates 
upwards to avoid an otherwise close contact of the CH3 group of the 
ethyl substituent with the haem ring system. However, the rotation of the 
ethyl group causes a substantial movement of F437 and the respective 
open-loop protein backbone, which results in exclusion of (S)-1a from the 
enzyme pocket or a destabilization of the HAT transition state, thereby 
disfavouring reaction with (S)-1a (see Supplementary Figs. 22–26 for 
details). The computational results are consistent with the experimental 

findings based on the biotransformation of enantiomers (R)-1f (Fig. 4a) 
and (S)-1f (Fig. 4b).

Conclusions
We have developed an engineered enzyme, P411-TEA-5274, that can 
directly aminate tertiary C–H bonds, efficiently and selectively to 
produce high-value chiral α-tertiary primary amines. This biocatalyst 
provides an alternative to small-molecule catalysts, which struggle to 
functionalize tertiary C–H bonds, and demonstrates remarkable enan-
tioselectivity and activity. The substrate scope study demonstrated the 
compatibility of this biotransformation towards various substrates, 
the exclusive regioselectivity to tertiary C–H bonds and the broad 
applicability against different tertiary C–H bonds. Experimental and 
computational investigations indicate that the enzyme’s excellent 
enantioselectivity arises from its enantiomeric substrate specificity. 
Given the prevalence of α-tertiary amines in bioactive molecules, this 
work provides a straightforward disconnection strategy to construct 
these fragments. Leveraging this work in the future, we hope to expand 
the limited repertoire of catalysts for asymmetric intermolecular func-
tionalization of tertiary C–H bonds.

Methods
Expression of P411-TEA variants
E. coli (E. cloni BL21(DE3)) cells carrying plasmid encoding the appro-
priate P411-TEA variant were grown overnight in 5 ml of Luria-Bertani 
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EtOH (cosolvent), 10 °C, anaerobic conditions, 20 h. E/Z ratios were determined 

by 1H nuclear magnetic resonance. e,f, Nitrene transfer reactions catalysed by 
P411-TEA-5274 using 1b or 1b′ (d7-1b); non-competitive (e) and competitive (f). 
Reaction conditions were: 5 mM 1b or 1b′, 10 mM 2a, E. coli whole cells harbouring 
P411-TEA-5274 (OD600 = 30) in M9-N aqueous buffer (pH 8.0), 5% (v/v) EtOH 
(cosolvent), 10 °C, anaerobic conditions, 20 h. TTN is defined as the (molar) 
amount of indicated product divided by the amount of haem protein in the 
reaction, as measured by the haemochrome assay (see Supplementary Method 7 
for more details). aTTNs were calculated based on all stereoisomers. b45% isolated 
yield at 0.6 mmol scale (Supplementary Method 17).
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medium with 0.1 mg ml−1 ampicillin (LBamp). Preculture (1 ml) was used 
to inoculate 50 ml of Hyper Broth medium with 0.1 mg ml−1 ampicillin 
(HBamp) in an Erlenmeyer flask (125 ml). This culture was incubated 
at 37 °C and 220 rpm for 2.5 h, cooled on ice for 30 min, and induced 
with 0.5 mM isopropyl β-d-1-thiogalactopyranoside and 1.0 mM 
5-aminolevulinic acid (final concentrations). Expression was con-
ducted at 22 °C, 140 rpm for 20–22 h. E. coli cells were then transferred 
to a conical centrifuge tube (50 ml) and pelleted by centrifugation 
(4,000g, 3 min and 4 °C). Supernatant was removed and the resulting 
cell pellet was resuspended in M9-N (pH 8.0) buffer to an optical density 
at 600 nm (OD600) of 38. An aliquot of this cell suspension (3 ml) was 
taken to determine protein concentration using the pyridine haemo-
chromagen assay after lysis by sonication.

Primary amination of tertiary C–H bonds using whole  
E. coli cells harbouring P411-TEA
All the biocatalytic reactions were set up in an anaerobic chamber 
(oxygen level <40 ppm). M9-N medium (pH 8.0) and d-glucose solu-
tion (500 mM in M9-N, pH 8.0) were placed in the anaerobic chamber 
for at least 24 h. Collected cells were resuspended with M9-N buffer 
(pH 8.0) in to OD600 = 38 and 320 µl of resuspended cells were aliquoted 
to 2 ml screw-cap vials. The screw-cap vials with cells were precooled 
to 0 °C on an ice bath. Then, 30 µl of the precooled glucose solution, 
10 µl of a stock solution containing glucose oxidase (from Aspergillus 
niger, 1,000 U ml−1) and catalase (from bovine liver, 14,000 U ml−1) in 
double-distilled water were added to make the total volume to 360 µl. 
The resulting mixtures stayed on the ice bath for another 2 min, and 

then the hydrocarbon substrate 1 (20 µl, 0.1 M stock in ethanol) and 
the nitrene precursor 2a (20 µl, 0.2 M stock in water) were added in a 
sequential manner. The reactions were then shaken at 10 °C for 20 h 
at 250 rpm.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Crystallographic data are available free of charge from the Cambridge 
Crystallographic Data Centre under no. CCDC 2287786 (3f derivative 
(S)-N-(2-(4-methoxyphenyl)butan-2-yl)benzamide). The original mate-
rials and data that support the findings of this study are available within 
the paper and its Supplementary Information or can be obtained from 
the corresponding author upon reasonable request.
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