nature chemistry

Article

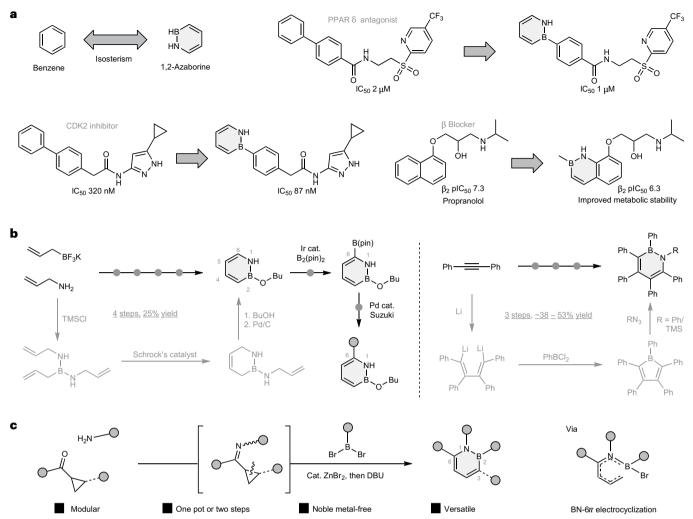
https://doi.org/10.1038/s41557-023-01343-6

Modular synthesis of 1,2-azaborines via ring-opening BN-isostere benzannulation

Received: 10 June 2022

Accepted: 8 September 2023

Published online: 2 October 2023


Hairong Lyu¹, Thomas H. Tugwell², Zhijie Chen¹, Garrett A. Kukier³, Aneta Turlik³, Yifei Wu¹, K. N. Houk 📵 ³ ⋈, Peng Liu 📵 ² ⋈ & Guangbin Dong 📵 ¹ ⋈

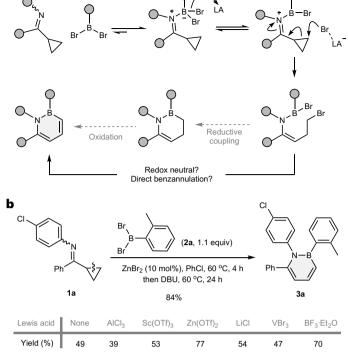
1,2-Azaborines represent a unique class of benzene isosteres that have attracted interest for developing pharmaceuticals with better potency and bioavailability. However, it remains a long-standing challenge to prepare monocyclic 1,2-azaborines, particularly multi-substituted ones, in an efficient and modular manner. Here we report a straightforward method to directly access diverse multi-substituted 1,2-azaborines from readily available cyclopropyl imines/ketones and dibromoboranes under relatively mild conditions. The reaction is scalable, shows a broad substrate scope, and tolerates a range of functional groups. The utility of this method is demonstrated in the concise syntheses of BN isosteres of a PD-1/PD-L1 inhibitor and pyrethroid insecticide, bifenthrin. Combined experimental and computational mechanistic studies suggest that the reaction pathway involves boron-mediated cyclopropane ring-opening and base-mediated elimination, followed by an unusual low-barrier 6π -electrocyclization accelerated by the BN/CC isomerism. This method is anticipated to find applications for the synthesis of BN-isostere analogues in medicinal chemistry, and the mechanistic insights gained here may guide developing other boron-mediated electrocyclizations.

As a consequence of the prevalence of arenes in small-molecule drugs, incorporating arene isosteres or bioisosteres has become an emerging strategy in medicinal chemistry for identifying candidates with enhanced performance without substantially altering the structures of lead compounds¹. 1,2-Azaborines, a class of boron-nitrogen (BN) heterocycles with substantial aromaticity, are viewed as unique BN isosteres of benzene (Fig. 1a) $^{2-6}$. They are generally more polar than benzene, leading to more localized electron distributions and better aqueous solubility7. Compared to the original carbonaceous compounds, improved biological activity and bioavailability have been observed in the 1,2-azaborine analogues⁸⁻¹³. For example, as shown in a 2017 report by Liu and colleagues, replacement of a phenyl group with a simple 1,2-azaborine moiety in a cyclin-dependent kinase 2 (CDK2) inhibitor led to a two- to fourfold increase in efficacy⁷. Similarly, Janssen Pharmaceuticals has disclosed systematic in vitro and in vivo profiling of 1,2-azaborine analogues of several drug candidates, with comparable or even better biological activity and ADMET (absorption, distribution, metabolism, excretion and toxicity) properties being observed¹⁴. These studies further suggest that 1,2-azaborines are stable under physiological, mildly basic, or oxidative conditions, serving as viable pharmacophores¹⁵.

Despite the great promise of using 1,2-azaborines as arene bioisosteres in drug discovery, only a limited number of bioactive BN analogues have been reported so far, and it is still not a trivial task to access multi-substituted 1,2-azaborines $^{2-6}$. In particular, unlike those in a fused a polyaromatic system $^{2.4}$, preparation of monocyclic 1,2-azaborines remains a substantial challenge 3 . The state-of-art synthesis employs allyl Molander salt and allyl amine as substrates to access B-alkoxy-1,2-azaborines in 25% yield over four steps, featured by a ring-closing metathesis with Schrock's catalyst and a Pd-catalysed dehydrogenative aromatization (Fig. 1b, left) 16 . Although this is a remarkable improvement over earlier approaches $^{17-19}$, extension of this

Department of Chemistry, University of Chicago, Chicago, IL, USA. Department of Chemistry, University of Pittsburgh, PA, USA. Department of Chemistry, University of Pittsburgh, PA, USA. Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA. Department of Chemistry, University of California, Los Angeles, CA, USA. Department of Chemistry, University of Pittsburgh, PA, USA. Department of Chemistry, University of Chemistr

 $\label{eq:Fig.1} \textbf{Fig.1}| \textbf{Synthetic methods to access 1,2-azaborines. a}, \textbf{Isosterism between benzene} \ and \textbf{1,2-azaborine} \ and their applications in medicinal chemistry. Improved biological activity and efficacies have been observed in the \textbf{1,2-azaborine} \ analogues. IC_{50}, half-maximum inhibitory concentration; \\ plC_{50}, -log(lC_{50}). \textbf{b}, \textbf{Representative} \ syntheses \ of monocyclic \textbf{1,2-azaborines}. \\ \textbf{Left}, \textbf{B-alkoxy-1,2-azaborines} \ are \ prepared \ from \ the \ reaction \ of \ allyl \ Molander \ salt \ and \ allyl \ amine, followed \ by \ ring-closing \ metathesis \ and \ dehydrogenative$


aromatization. Extension of this strategy to access C-substituted 1,2-azaborines is challenging. Right, poly-substituted 1,2-azaborines can be prepared from boroles, in which a divinyl lithium intermediate is involved. TMS, trimethylsilyl. ${\bf c}$, This work: a two-step or one-pot modular synthesis of multi-substituted 1,2-azaborines from simple building blocks. DBU, 1,8-diazabicyclo[5.4.0] undec-7-ene.

strategy to directly prepare C-substituted 1,2-azaborines has been elusive. For example, synthesis of C6-substituted 1,2-azaborines required an overall six-step sequence²⁰. Alternatively, Braunschweig et al. disclosed a distinct approach to access poly-substituted 1,2-azaborines through either insertion of a nitrene into boroles (generated from a divinyl lithium intermediate; Fig. 1b, right)²¹ or via a Rh-catalysed/ mediated cyclization between iminoboranes and alkynes^{22,23}. These reactions show limited scopes with moderate yields. To harness the full potential of the BN/CC isomerism for medicinal chemistry research, we recognized that it would be necessary to conceive of a more direct BN-benzannulation strategy to access monocyclic 1,2-azaborines. Ideally, this strategy can (1) use easily accessible substrates, (2) operate under mild conditions, (3) tolerate a broad range of functional groups, (4) give good overall yield, (5) avoid expensive noble metals, (6) be easily scalable and (7) be modular to access multi-substituted 1,2-azaborines with diverse structures in a straightforward manner. In this Article we describe the development of a general 1,2-azaborine-synthesis method that meets all the above criteria (Fig. 1c).

Results and discussion

Reaction discovery and optimization

From the outset, we guestioned whether 1,2-azaborines could be synthe sized from readily available cyclopropyl imines and a boron electrophile via a 'ring-opening-then-rebound' strategy²⁴. It was initially hypothesized that a tandem boron-mediated C-C bond cleavage²⁵/ reductive C-B bond formation should generate the six-membered BN-heterocycle, which then gives the 1,2-azaborines after oxidative aromatization (Fig. 2a). Although this proposal was indeed feasible (details are provided in Supplementary Fig. 1), to our surprise, a more straightforward and redox-neutral method to prepare 1,2-azaborines was realized simply by treating the ring-opened intermediate with a base in a one-pot manner (Fig. 2b). For example, when cyclopropyl phenyl imine 1a was employed as the model substrate, its reaction with (o-tolyl)BBr₂2a in the presence of 10 mol% ZnBr₂ at 60 °C for 4 h, followed by in situ addition of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), gave the desired 1,2-azaborine 3a in 84% yield. This protocol avoids oxidation and reduction and is easy to operate. The role of the Lewis acid was likely to activate the imine/dibromoborane adduct so

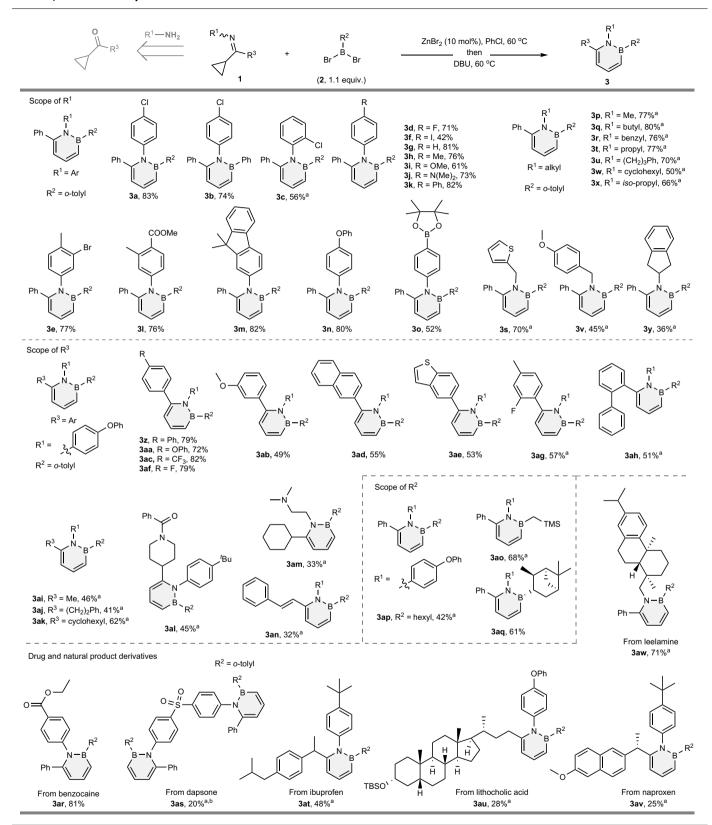
 $\label{lem:proposed} \textbf{Fig. 2} | \textbf{Proposed strategy and reaction discovery. a}, \textbf{The original proposal involved a tandem Lewis acid (LA)-catalysed boron-mediated C-C bond cleavage/reductive C-B bond formation, followed by an oxidative aromatization.$ **b** $, A redox-neutral condition was discovered with <math>\textbf{ZnBr}_2$ as the Lewis acid. Upon ring-opening of the cyclopropane, treatment with DBU in situ directly gave the desired 1,2-azaborine in good yield. Bottom: optimization of various Lewis acids shows that \textbf{ZnBr}_2 is optimal. The role of the Lewis acid is to promote the cyclopropane ring-opening by activating the imine/dibromoborane adduct.

as to promote the cyclopropane ring-opening. Among the various Lewis acids examined, $ZnBr_2$ proved to be optimal (Fig. 2b). Although $Zn(OTf)_2$ and BF_3 also offered good yields, other Lewis acids were less efficient. DBU was found to be the most suitable base. Weaker amines or inorganic bases were not effective for this transformation (details are provided in Supplementary Table 1).

Substrate scope and synthetic applications

Given that (1) cyclopropyl imines/ketones are readily accessible from the corresponding carboxylic-acid derivatives and (2) dibromoboranes can be in situ-generated from BBr₃ and silanes, the scope of the reaction appears to be quite broad (Table 1). First, diverse anilines can efficiently condense with cyclopropyl ketones, and they all generated the desired 1,2,6-trisubstituted 1,2-azaborines in good yields. The reaction temperature was increased to 80 °C for some challenging substrates to enhance the overall efficiency. In addition, alkylamine-derived products can also be produced efficiently (3p-3y and 3aw). Both aryl- and alkyl-substituted dibromoboranes, including the one derived from α -pinene (3aq), were suitable coupling partners. Notably, a B-silylmethyl 1,2-azaborine (3ao) was effectively obtained and the silyl group could serve as a handle for further functionalization. Furthermore, various C6 substitutents, including aryl, alkenyl and alkyl groups, can be installed. It is noteworthy that 1,2-azaborine with alkyl substituents at both C6 and N1 positions (3am) can be obtained. Finally, complex substrates derived from drug molecules, such as benzocaine, dapsone, ibuprofen and naproxen, as well as natural products such as lithocholic acid and leelamine, smoothly underwent the BN-isostere benzannulation reaction to deliver the desired products 3ar-3aw in

moderate to good yields. It is attractive that a range of functional groups were tolerated with this method. In particular, moieties reactive under various transition-metal catalysis conditions, such as halogens (-F, -Cl, -Br and -I, 3a-3f) and pinacol boronate (3o), remained intact. Electrophilic groups, such as esters (3l and 3ar), amide (3al) and sulfones (3as), as well as Lewis basic groups, such as ethers (3i, 3n, 3v and 3ab), tertiary amines (3i and 3am) and silyl ethers (3au), were also compatible.


Interestingly, apart from simple cyclopropyl, \(\beta\)-phenyl-substituted cyclopropyl imines were also competent substrates (Fig. 3a), delivering 1,2,3,6-tetrasubstituted azaborines 3ax or 3ay in moderate yield with complete selectivity of cleaving the more substituted C-C bond. Both the trans and cis isomers of the substrate (lax) gave the same product (3ax) in comparable yield, suggesting that the reactivity is not substantially affected by the cyclopropane stereochemistry. The relatively low yield was probably due to steric hindrance of the β-phenyl group during the annulation process. The structure of 3ay was further confirmed by X-ray crystallography. Note that synthesis of 1,2,3,6-tetrasubstituted azaborines has been very rare^{2-6,26}. Alternatively, such compounds can be prepared more efficiently via site-selective bromination of trisubstituted azaborine 3b followed by cross-couplings to introduce various functional groups at the C3 position (Fig. 3b)²⁶⁻²⁹. To show the synthetic utility of this method, a BN isostere of a PD-1/PD-L1 inhibitor 30 was first synthesized (Fig. 3c). Starting from imine 1az (prepared from the corresponding commercially available ketone and methylamine), the benzannulation with PhBBr₂ provided the 1,2-azaborine intermediate (3az), which then underwent a Pd-catalysed formylation³¹ and reductive amination to deliver the target BN isostere analogue 7. Compound 7 is stable to air and moisture and can be purified via silica gel chromatography. In addition, 1,2-azaborine 3p can be converted to a BN isostere (8) of the insecticide bifenthrin³² via a boryl diazo intermediate³³ (**3p-CN**₂) in a four-step sequence (Fig. 3d). Note that the aryl group on the boron can be easily converted to a more reactive alkoxy group that can be further transformed to other moieties³⁴. Bio-evaluation and pharmacological profiling of these BN-isostere analogues will be carried out in the future. Moreover, a one-pot protocol of preparing 1,2-azaborine 3a directly from commercially available cyclopropyl phenyl ketone was realized in good efficiency (Fig. 3e). Finally, the synthesis of 1,2-azaborine 3n is readily scalable; good yield can be retained in a gram-scale reaction (Fig. 3f).

Mechanistic studies

To gain some insights into the reaction mechanism, efforts were first made to isolate the intermediates from different reaction stages. After imine 1a reacted with (o-tolyl)BBr₂ 2a in the presence of ZnBr₂ (without adding DBU), the proposed dibromo intermediate 4a after the C-C cleavage was formed in high yield based on NMR analysis. Although 4a was not isolatable, the corresponding hydrolysis product 4a' can be purified and fully characterized (Fig. 4a), which suggests intermediacy of such an alkyl bromide in the ring-opening stage. This observation is consistent with a Lewis acid-promoted ring-opening pathway for cyclopropyl imines³⁵ and our previous understanding of the bromide anion abstraction/ring-opening process in the ArBBr₂/ZnBr₂ system (Fig. 4d)²⁴. When imine 11 was used as the substrate, shortening the DBU treatment time to 1 h led to isolation of a diene intermediate (51') in 75% yield along with 8%1,2-azaborine product 31 (Fig. 4b). In contrast, when the reaction was allowed to stir for 24 h after the addition of DBU, 5l' almost fully disappeared and was converted to 1,2-azaborine 3l. This observation indicates that a diene intermediate, generated via a base-mediated elimination of HBr, is probably involved in the cyclization stage^{36–38}. As a control experiment, the use of homoallylamine 1ba (mono alkene) as the substrate did not yield any cyclized product under the standard conditions, implying the important role of such a conjugate diene structure in the C-B bond-forming stage (Fig. 4c).

To understand how 1,2-azaborine is generated from the putative diene intermediate, density functional theory (DFT) calculations

Table 1 | Substrate scope

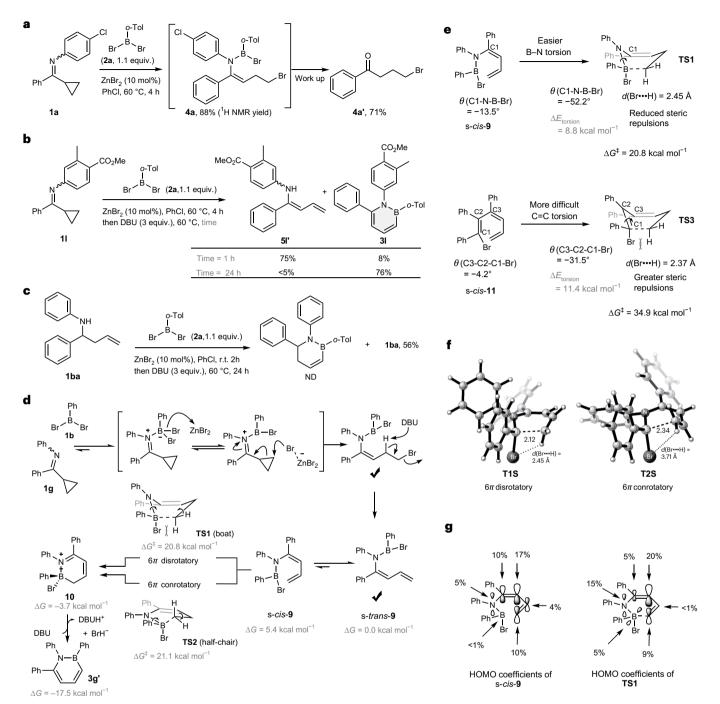

Conditions: all reactions were conducted with 0.2 mmol substrate, 0.22 mmol R^2BBr_2 and 0.02 mmol ZBr_2 in 1 ml of PhCl at 60 °C under nitrogen for 4 h, followed by the addition of 0.6 mmol DBU, and stirred at the same temperature for 24h. All yields are isolated yields after silica gel chromatography. The reaction was run at 80 °C. b 0.44 mmol R^2BBr_2 , 0.04 mmol ZBr_2 and 1.2 mmol DBU were used. DBU, 1,8-diazabicyclo(5.4.0) undec-7-ene; TMS, trimethylsilyl.

Fig. 3 | **Derivatization and synthetic applications. a**, One-step synthesis of 1,2,3,6-tetrasubstituted 1,2-azaborines from disubstituted cyclopropanes. The X-ray structure of compound **3ay** is shown. **b**, Synthesis of 1,2,3,6-tetrasubstituted azaborines from 3-bromo-1,2,6-triarylated azaborine via Pd-catalysed Suzuki

coupling, borylation and Sonogashira coupling. **c**, Synthesis of a BN isostere of a PD-1/PD-L1 inhibitor. **d**, Synthesis of a BN isostere of the insecticide bifenthrin. *o*-Tol, *o*-tolyl. OTf, triflate. **e**, One-pot synthesis from cyclopropyl phenyl ketone. **f**, The gram-scale reaction gave good yield.

were conducted, which support an unusual 6π -electrocyclization mechanism (Fig. 4d). The diene intermediate is an isostere of 1,3,5-trienes that are known to undergo 6π -electrocyclization. However, 6π -electrocyclization of unactivated trienes bearing two terminal substituents suffers from relatively low reactivity^{39,40}. For example, the reaction of triene 11, the CC isostere of the BN-diene intermediate (9), requires a relatively high activation free energy of 34.9 kcal mol⁻¹ (Fig. 4e). By contrast, our calculations indicated that diene 9 undergoes a much more facile 6π -electrocyclization via TS1 to form cyclic

N-borylated iminium **10**, which, upon DBU-mediated elimination of HBr, forms azaborine **3g'**. The 6π -electrocyclization requires a low activation free energy of 20.8 kcal mol⁻¹ with respect to the s-*trans* conformer of **9**, which is consistent with the mild reaction conditions observed for the 1,2-azaborine formation. The reactivity of diene **9** is promoted by the polarization of the B–N bond, compared to rotation of the C=C double bond in 1,3,5-trienes, for example, **11** (Fig. 4e). In **TS1**, the B–N bond is rotated to a more non-planar geometry, as

Fig. 4 | **Preliminary mechanistic studies. a**, The ring-opening intermediate before the addition of DBU is identified. Isolation of the hydrolysed alkyl bromide **4a**' supports the intermediacy of **4a** in the ring-opening stage. **b**, The reaction intermediate in the base-mediated cyclization step is identified. **c**, A control experiment shows the importance of the diene structure in the cyclization stage. ND, not detected. **d**, Proposed mechanism and the energy of the 6π -electrocyclization pathway to form **1,2**-azaborines. Check marks mean identified

intermediates. **e**, Torsion-promoted electrocyclization of intermediate **9**, in comparison with a triene substrate **11**. *d* means the distance between the two atoms. **f**, Transition-state structures of **TS1** and **TS2**. **g**, Unique nodal properties of the π -system of intermediate **9** lead to the small energy difference between the symmetry-allowed (**TS1**) and -forbidden (**TS2**) electrocyclization pathways. DFT calculations were performed at the M06-2X/6-311+G(d,p)/SMD(chlorobenzene)// M06-2X/6-31G(d) level of theory. All energies are with respect to s-trans-**9**.

evidenced by the larger dihedral angle of θ (C1–N–B–Br) (–52.2°). For comparison, the corresponding dihedral angle of θ (C3–C2–C1–Br) (–31.5°) in the 6π -electrocyclization transition state of triene 11 is much smaller. The non-planar geometry of the B–N terminus leads to attractive interactions of the electron-rich dienamine moiety with the vacant B orbital on the borane terminus, and also reduces the steric repulsions between these two termini in the boat-like transition state

(Fig. 4e). Notwithstanding the greater rotation, a smaller torsional energy is required to distort the B–N bond in **9** to the corresponding transition-state geometry compared to the rotation of the terminal C=C bond in **11** ($\Delta E_{\text{torsion}} = 8.8$ and 11.4 kcal mol⁻¹ for **9** and **11**, respectively). As a result, the 6π -electrocyclization of diene **9** requires a much lower activation free energy than the corresponding reaction with triene **11** ($\Delta \Delta G^{\ddagger} = 14.1$ kcal mol⁻¹).

It is also remarkable that the 6π -electrocyclization can occur through either dis- or conrotatory transition states (TS1 and TS2. respectively; Fig. 4f) that have comparable activation free energies. To the best of our knowledge, there has been no known 6π -electrocyclization that allows both dis- and conrotatory pathways. This finding appears to contradict the Woodward-Hoffmann rules, which predict that for 6π -electrocyclizations, the disrotatory transition-state barrier should be substantially lower than the barrier for the conrotatory transition state⁴³. However, alteration of the nodal properties of the highest occupied molecular orbital (HOMO) shown in Fig. 4g and Supplementary Fig. 6 indicate that the high polarization of this system eliminates the differences between allowed and forbidden processes, as discussed recently in detail for model systems⁴⁴. The polarization of the B-N bond changes the nodal properties of the π system in **9**. The diminished orbital coefficient on the terminal boron atom of the HOMO of s-cis-9 essentially reduces the preference for the allowed disrotatory (TS1) versus the forbidden conrotatory (TS2) electrocyclization. In a normal hydrocarbon triene, the orbital overlap between the termini is favourable for the allowed disrotatory process and unfavourable for the forbidden conrotatory process; when one terminal coefficient, that is, the one of boron, is nearly zero, as shown in the current system, there is no preference.

Conclusions

In summary, we have developed a general, modular and straightforward method to access diverse multi-substituted monocyclic 1,2-azaborines from readily available staring materials. Owing to the relatively mild conditions, the reaction exhibits a broad substrate scope and good functional-group compatibility. This method is expected to greatly simplify syntheses of diverse BN-isostere analogues and to be readily adoptable in medicinal chemistry. The mechanistic insights gained here should have broad implications for boron-mediated electrocyclization in the preparation of other boron-containing heterocycles.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41557-023-01343-6.

References

- Subbaiah, M. A. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).
- Campbell, P. G., Marwitz, A. J. V. & Liu, S.-Y. Recent advances in azaborine chemistry. *Angew. Chem. Int. Ed.* 51, 6074–6092 (2012).
- Giustra, Z. X. & Liu, S.-Y. The state of the art in azaborine chemistry: new synthetic methods and applications. *J. Am. Chem.* Soc. 140, 1184–1194 (2018).
- Bhattacharjee, A., Davies, G. H., Saeednia, B., Wisniewski, S. R. & Molander, G. A. Selectivity in the elaboration of bicyclic borazarenes. Adv. Synth. Catal. 363, 2256–2273 (2021).
- Abengózar, A., García-García, P., Fernández-Rodríguez, M. A., Sucunza, D. & Vaquero, J. J. Recent developments in the chemistry of BN-aromatic hydrocarbons. *Adv. Heterocycl. Chem.* 135, 197–259 (2021).
- Liu, Z. & Marder, T. B. B-N versus C-C: how similar are they? Angew. Chem. Int. Ed. 47, 242–244 (2008).
- Zhao, P., Nettleton, D. O., Karki, R. G., Zécri, F. J. & Liu, S.-Y. Medicinal chemistry profiling of monocyclic 1,2-azaborines. ChemMedChem 12, 358–361 (2017).

- Baldock, C. et al. A mechanism of drug action revealed by structural studies of enoyl reductase. Science 274, 2107–2110 (1996).
- Davis, M. C., Franzblau, S. G. & Martin, A. R. Syntheses and evaluation of benzodiazaborine compounds against M. tuberculosis H₃₇R_v in vitro. Bioorg. Med. Chem. Lett. 8, 843–846 (1998).
- Grassberger, M. A., Turnowsky, F. & Hildebrandt, J. Preparation and antibacterial activities of new 1,2,3-diazaborine derivatives and analogs. J. Med. Chem. 27, 947–953 (1984).
- Baker, S. J. et al. Therapeutic potential of boron-containing compounds. Future Med. Chem. 1, 1275–1288 (2009).
- 12. Vlasceanu, A., Jessing, M. & Kilburn, J. P. BN/CC isosterism in borazaronaphthalenes towards phosphodiesterase 10A (PDE10A) inhibitors. *Bioorg. Med. Chem.* **23**, 4453–4461 (2015).
- Marwitz, A. J., Matthews, B. W. & Liu, S.-Y. Boron mimetics: 1,2-dihydro-1,2-azaborines bind inside a nonpolar cavity of T4 lysozyme. *Angew. Chem. Int. Ed.* 48, 6817–6819 (2009).
- Rombouts, F. J., Tovar, F., Austin, N., Tresadern, G. & Trabanco, A. A. Benzazaborinines as novel bioisosteric replacements of naphthalene: propranolol as an example. *J. Med. Chem.* 58, 9287–9295 (2015).
- Lamm, A. N. & Liu, S.-Y. How stable are 1,2-dihydro-1,2-azaborines toward water and oxygen? *Mol. Biosyst.* 5, 1303–1305 (2009).
- Abbey, E. R., Lamm, A. N., Baggett, A. W., Zakharov, L. N. & Liu, S.-Y. Protecting group-free synthesis of 1,2-azaborines: a simple approach to the construction of BN-benzenoids. *J. Am. Chem.* Soc. 135, 12908–12913 (2013).
- Dewar, M. J. S. & Marr, P. A. A derivative of borazarene. *J. Am. Chem.* Soc. 84, 3782 (1962).
- White, D. G. 2-Phenyl-2,1-borazarene and derivatives of 1,2-azaboracycloalkanes. J. Am. Chem. Soc. 85, 3634–3636 (1963).
- Ashe, A. J. & Fang, X. A synthesis of aromatic five-and six-membered B-N heterocycles via ring closing metathesis. *Org. Lett.* 2, 2089–2091 (2000).
- Baggett, A. W., Vasiliu, M., Li, B., Dixon, D. A. & Liu, S. Y. Late-stage functionalization of 1,2-dihydro-1,2-azaborines via regioselective iridium-catalyzed C-H borylation: the development of a new N,N-bidentate ligand scaffold. J. Am. Chem. Soc. 137, 5536–5541 (2015).
- Braunschweig, H., Hörl, C., Mailänder, L., Radacki, K. & Wahler, J. Antiaromaticity to aromaticity: from boroles to 1,2-azaborinines by ring expansion with azides. *Chem. Eur. J.* 20, 9858–9861 (2014).
- Schäfer, M. et al. Regioselective catalytic and stepwise routes to bulky, functional-group-appended, and luminescent 1,2azaborinines. Chem. Eur. J. 22, 8603–8609 (2016).
- Heß, M., Krummenacher, I., Dellermann, T. & Braunschweig, H. Rhodium-mediated stoichiometric synthesis of mono-, biand bis-1,2-azaborinines: 1-rhoda-3,2-azaboroles as reactive precursors. Chem. Eur. J. 27, 9503–9507 (2021).
- 24. Lyu, H., Kevlishvili, I., Yu, X., Liu, P. & Dong, G. Boron insertion into alkyl ether bonds via zinc/nickel tandem catalysis. *Science* **372**, 175–182 (2021).
- Fumagalli, G., Stanton, S. & Bower, J. F. Recent methodologies that exploit C-C single-bond cleavage of strained ring systems by transition metal complexes. *Chem. Rev.* 117, 9404–9432 (2017).
- 26. McConnell, C. R. & Liu, S. Y. Late-stage functionalization of BN-heterocycles. *Chem. Soc. Rev.* **48**, 3436–3453 (2019).
- Pan, J., Kampf, J. W. & Ashe, A. J. Electrophilic aromatic substitution reactions of 1,2-dihydro-1,2-azaborines. Org. Lett. 9, 679–681 (2007).

- Abengózar, A. et al. Synthesis, optical properties and regioselective functionalization of 4a-aza-10a-boraphenanthrene. Org. Lett. 19, 3458–3461 (2017).
- Compton, J. S., Saeednia, B., Kelly, C. B. & Molander, G. A. 3-Boryl-2,1-borazaronaphthalene: umpolung reagents for diversifying naphthalene isosteres. J. Org. Chem. 83, 9484–9491 (2018).
- 30. Guzik, K. et al. Development of the inhibitors that target the PD-1/PD-L1 interaction—a brief look at progress on small molecules, peptides and macrocycles. *Molecules* **24**, 2071 (2019).
- Ying, J. et al. Convenient palladium-catalyzed reductive carbonylÿation of aryl bromides under gas-free conditions. Eur. J. Org. Chem. 2018, 2780–2783 (2018).
- 32. Hougard, J. M., Duchon, S., Zaim, M. & Guillet, P. Bifenthrin: a useful pyrethroid insecticide for treatment of mosquito nets. *J. Med. Entomol.* **39**, 526–533 (2002).
- Liu, Y., Puig de la Bellacasa, R., Li, B., Cuenca, A. B. & Liu, S. Y. The versatile reaction chemistry of an α-boryl diazo compound. *J. Am. Chem.* Soc. 143, 14059–14064 (2021).
- 34. Baggett, A. W. & Liu, S. Y. A boron protecting group strategy for 1,2-azaborines. J. Am. Chem. Soc. 139, 15259–15264 (2017).
- 35. Stevens, R. V. General methods of alkaloid synthesis. Acc. Chem. Res. 10, 193–198 (1977).
- Dewar, M. J. S. & Dietz, R. New heteroaromatic compounds. Part III. 2,1-Borazaro-naphthalene (1,2-dihydro-1-aza-2-boranaphthalene). J. Chem. Soc. 1959, 2728–2730 (1959).
- Davies, G. H., Zhou, Z. Z., Jouffroy, M. & Molander, G. A. Method for accessing nitrogen-containing, B-heteroaryl-substituted 2,1-borazaronaphthalenes. J. Org. Chem. 82, 549–555 (2017).
- Liu, X., Wu, P., Li, J. & Cui, C. Synthesis of 1,2-borazaronaphthalenes from imines by base-promoted borylation of C-H bond. J. Org. Chem. 80, 3737–3744 (2015).

- Beaudry, C. M., Malerich, J. P. & Trauner, D. Biosynthetic and biomimetic electrocyclizations. *Chem. Rev.* 105, 4757–4778 (2005).
- 40. Qin, P. et al. Transition-metal catalysis of triene 6π electrocyclization: the π -complexation strategy realized. *Angew. Chem. Int. Ed.* **59**, 17958–17965 (2020).
- 41. Guo, Q., Liu, L., Fu, Y. & Yu, T. How to promote sluggish electrocyclization of 1,3,5-hexatrienes by captodative substitution. *J. Org. Chem.* **71**, 6157–6164 (2006).
- 42. Epiotis, N. D. The theory of pericyclic reactions. *Angew. Chem. Int. Ed.* **13**, 751–780 (1974).
- 43. Woodward, R. B. & Hoffmann, R. Stereochemistry of electrocyclic reactions. *J. Am. Chem. Soc.* **87**, 395–397 (1965).
- 44. Kukier, G., Turlik, A., Xue, X. & Houk, K. N. Violations. How nature circumvents the Woodward-Hoffmann rules and promotes the forbidden conrotatory 4*n*+2 electron electrocyclization of Prinzbach's vinylogous sesquifulvalene. *J. Am. Chem.* Soc. **143**, 21694–21704 (2021).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2023

Methods

General procedure for monocyclic 1,2-azaborine synthesis from imine

An oven-dried 4-ml vial was charged with imine ${\bf 1}$ (0.2 mmol, 1 equiv.) and ZnBr $_2$ (4.5 mg, 0.02 mmol, 10 mol%) in a nitrogen-filled glovebox. Dry chlorobenzene (1 ml) was then added. After addition of dibromoborane ${\bf 2}$ (0.22 mmol, 1.1 equiv.), the vial was tightly sealed and stirred on a pie-block preheated to 60 °C or 80 °C under nitrogen for 4 h. DBU (90 μ l, 0.6 mmol, 3 equiv.) was then added and the reaction mixture was stirred at the same temperature for 24 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite, washed with ethyl acetate, and concentrated to dryness in vacuo. The crude product was subjected to flash column chromatography to give 1,2-azaborine ${\bf 3}$.

General procedure for monocyclic 1,2-azaborine synthesis from ketone

An oven-dried 10-ml Schlenk flask was charged with ketone (2 mmol, 1 equiv.), amine (2.2 mmol, 1.1 equiv.), triethylamine (0.56 ml, 4 mmol, 2 equiv.) and dry dichloromethane (8 ml). TiCl $_4$ (1 ml, 1 M solution in dichloromethane, 1 mmol, 0.5 equiv.) was then added dropwise under nitrogen at 0 °C over a period of 15 min. After being stirred at 0 °C for 0.5 h, the reaction mixture was warmed to room temperature and stirred for 12 h. Upon completion, the reaction mixture was filtered through a pad of Celite under nitrogen, washed with dry hexane, and concentrated to dryness under vacuum. The crude product was redissolved with dry hexane and filtered through a pad of Celite and concentrated to dryness again. The obtained imine 1 was directly used in the next step without further purification.

An oven-dried 4-ml vial was charged with imine ${\bf 1}$ (0.2 mmol, 1 equiv.) and ${\rm ZnBr_2}$ (4.5 mg, 0.02 mmol, 10 mol%) in a nitrogen-filled glovebox. Dry chlorobenzene (1 ml) was then added. After addition of dibromoborane ${\bf 2}$ (0.22 mmol, 1.1 equiv.), the vial was tightly sealed and stirred on a pie-block preheated to 60 °C or 80 °C under nitrogen for 4 h. DBU (90 µl, 0.6 mmol, 3 equiv.) was then added and the reaction mixture was stirred at the same temperature for 24 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite, washed with ethyl acetate and concentrated to dryness in vacuo. The crude product was subjected to flash column chromatography to give 1,2-azaborine ${\bf 3}$.

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information. Crystallographic data for the structure of **3ay** have been deposited at the Cambridge Crystallographic Data Centre, under deposition no. 2150659. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

Acknowledgements

This project was supported by the University of Chicago, NIGMS (1R21GM144048-01, G.D. and R35GM128779, P.L.) and the National Science Foundation (CHE-1764328, K.N.H.). H.L. acknowledges a Suzuki Postdoctoral Fellowship from the University of Chicago. V. Rawal is thanked for thoughtful discussions. X. Liu is acknowledged for X-ray crystallography. DFT calculations were performed at the Center for Research Computing at the University of Pittsburgh and with supercomputer resources at NSF XSEDE. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author contributions

H.L. and G.D. conceived and designed the experiments. H.L., Z.C. and Y.W. performed experiments. T.H.T., G.A.K., A.T., K.N.H. and P.L. designed and conducted the DFT calculations. H.L., T.H.T., K.N.H., P.L. and G.D. wrote the manuscript. P.L. and G.D. directed the research.

Competing interests

A patent application has been filed (applicant: University of Chicago; name of inventor(s): Guangbin Dong, Hairong Lyu, Zhijie Chen, Yifei Wu; application no., 63/376,889; status of application, pending; specific aspect of manuscript covered in patent application, 'New azaborine structures'). The remaining authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41557-023-01343-6.

Correspondence and requests for materials should be addressed to K. N. Houk, Peng Liu or Guangbin Dong.

Peer review information *Nature Chemistry* thanks Michael Lo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.