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ABSTRACT: We report an experimental and computational investigation of the
likely mechanism of a cascade reaction. The reaction involves an intramolecular
Diels—Alder reaction, followed by a C—C bond cleavage, to afford a complex
bridged bicyclic product. As multiple reaction pathways could be envisioned for
the latter step, the mechanism of the C—C bond cleavage step was investigated.
Two reasonable reaction pathways were evaluated. Both computations and
experiments indicate that the C—C bond cleavage step proceeds by a retro-
carbonyl-ene pathway rather than a retro-aldol pathway. This report underscores
the synergy between computational and experimental studies and establishes the

mechanism of an interesting complexity-generating transformation.

C yclic strained intermediates that bear a functional group
with a preferred linear geometry have been of great
interest to the synthetic community for several decades. Such
compounds, such as benzyne (1), indolyne 2, and strained
cyclic allene 3 (Figure 1A), have seen use in a variety of
applications. This includes, but is not limited to, use of strained
intermediates toward the synthesis of important molecules
such as bioactive compounds,'~” natural products,”~'® DNA-
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Figure 1. A) Prior studies of strained intermediates. B) Reactivity of
1,2,3-cyclohexatrienes. C) Elaboration of triene 6 to adduct 8.
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materials.”’ A related class of strained intermediates comprises
1,2,3-cyclohexatrienes (4, Figure 1B). Such intermediates and
their substituted derivatives are far less studied,”*~>° but have
been employed in a variety of trapping experiments. Trapping
reactions of 4 lead to functionalized dienes $ that are poised to
undergo further manipulation.

The present study pertains to the sequence summarized in
Figure 1C, involving the trapping of silyl-substituted 1,2,3-
cyclic triene 6 and further manipulations of its corresponding
product.”® To further explore the use of cumulated trienes as
building blocks for complex scaffold synthesis, we accessed
adduct 7 from intermediate 6 using a facile three-step sequence
later detailed in Figure 2. Upon thermolysis of 7, a Diels—Alder
cycloaddition occurred with a subsequent rearrangement of the
carbon skeleton to deliver macrocycle 8. We describe our
computational and experimental studies to interrogate the
reaction mechanism for the formation of macrocycle 8.

As shown in Figure 2, triene precursor 9 and enamine 10 are
treated with fluoride-based conditions to presumably form
cumulated triene 6, which, in turn, undergoes nucleophilic
trapping by enamine 10. Subsequent acid-promoted hydrolysis
yielded adduct 11. Of note, the trapping reaction occurs
regioselectively, which we have previously attributed to the
presence of the bulky silyl group.”> Subsequent addition of allyl
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carbonyl-ene reaction or retro-aldol reaction.

Grignard provided 7 via a diastereoselective 1,2-addition. In
the key transformation we study herein, heating of 7 in
hexadecane at 220 °C is presumed to facilitate Diels—Alder
cycloaddition to give intermediate 12. However, 12 was not
observed or isolated; instead, macrocycle 8 was observed.
Product 8 was thought to arise via an isomerization and C—C
bond cleavage pathway, but the details of the mechanism were
unknown. Two plausible pathways were deemed most viable: a
retro-carbonyl-ene reaction and a retro-aldol reaction.
Importantly, these two competing pathways have been the
subject of both experimental and computational study for
several years.”°"*’ Furthermore, a better understanding of
these mechanisms can inform our predictive ability and the
application of such reactions’>’" in the future construction of
complex molecules, such as natural products. In this Letter, we
have combined DFT calculations and experimental studies to
establish the likely mechanistic pathway for the formation of
macrocycle 8.

Figure 3 depicts the two different reaction pathways (retro-
aldol and retro-carbonyl-ene reactions) that can be differ-
entiated by tracking two key hydrogen atoms (i.e., H, and Hy)
in the conversion of Diels—Alder cycloadduct 12 to macro-
cycle 8. In the retro-aldol pathway, proton transfer would allow
for C—C bond cleavage (see transition structure 12a°%) and
afford enol 13. Subsequent protonation of the extended enol
on C13 could occur without appreciable stereoselectivity,
leading to formation of both 8a and 8b.*’ Alternatively, the
concerted retro-carbonyl-ene mechanism would proceed
through a completely stereoselective proton transfer through
transition structure 12b to give only 8b. Given this rationale,
we envisioned that deuterium labeling the positions at either
H, or Hy in structure 12 could also allow us to assess which
mechanism is likely operative.

Prior to performing the deuterium labeling experiments, the
two potential mechanistic pathways were evaluated computa-
tionally using DFT (Figure 4). Calculations were performed
using @B97X-D/def2-TZVPP/SMD (n-hexadecane)//@wB97X-
D/def2-SVP/IEEPCM(n-hexadecane), as this functional has
performed well previously in modeling the transition structures
of other pericyclic reactions.”** The first barrier for
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Figure 3. Details of plausible mechanistic pathways.

intramolecular Diels—Alder cycloaddition of 7 to give
cycloadduct 12 was calculated to be the highest barrier of
the cascade reaction at 28.7 kcal/mol (see TS1). The Diels—
Alder cycloaddition is thought to proceed through a concerted
asynchronous mechanism, which is demonstrated by the
different lengths of the forming C—C bonds shown in the
computed structure of TS1. The barriers for the retro-aldol
and retro-carbonyl-ene mechanisms were also evaluated. The
retro-carbonyl-ene pathway to give 8 was calculated to proceed
with an activation barrier of 22.5 kcal/mol (TS2). Despite
attempts to find a transition state structure for the retro-aldol
pathway, a transition state could not be found, even under
conditions using a more polar solvent (i.e, DMSO). Thus, a
base catalyst is likely required for such a transformation.
Inclusion of methylamine as a base gave a transition state for
the retro-aldol mechanism that is predicted to be higher in
energy than the retro-carbonyl-ene pathway (see Supporting
Information for more details). Therefore, these computations
predict that the retro-carbonyl-ene pathway is preferred over
the retro-aldol alternative reaction pathway.

With computational results in hand, we pursued deuterium-
labeling experiments, as alluded to earlier. Although initial
efforts aimed at labeling H, (see 12, Figure 3) were
unsuccessful,*® the alternative strategy of labeling Hy” proved
fruitful (Figure S). Silyl-substituted triene precursor 9 and
labeled enamine 10-d (93% deuterium incorporation) were
carried through the synthetic sequence to furnish 7-d (79%
deuterium incorporation).”” The first step, as previously shown
in Figure 2, involves trapping of the 1,2,3-triene intermediate.
Transition structure 14-d suggests a plausible mechanism by
which deuterium incorporation occurs in the triene trapping
experiment. In the key mechanistic experiment, 7-d was heated
at 220 °C in hexadecane to provide the product 8-d. "H NMR
analysis indicated that proton transfer occurred to give
exclusive C13 deuteration at the pseudoaxial position (79%
deuterium incorporation). This result is consistent with
transition structure 12b (see Figure 3) and the retro-
carbonyl-ene mechanism, rather than the retro-aldol pathway.

https://doi.org/10.1021/acs.orglett.4c01037
Org. Lett. 2024, 26, 3602—3606


https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.4c01037/suppl_file/ol4c01037_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.4c01037/suppl_file/ol4c01037_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.4c01037?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.4c01037?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.4c01037?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.4c01037?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.4c01037?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.4c01037?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.4c01037?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.4c01037?fig=fig3&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://doi.org/10.1021/acs.orglett.4c01037?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

pubs.acs.org/OrglLett

Organic Letters
AG
(kcal/mol) Retro-Aldol +
/O-- -(.)Et
Hy
Et;Si " o

Et;Si

SiEt;

Reaction coordinate

Diels-Alder Cycloaddition (TS1)
2.09 A

Retro-Carbonyl-Ene (TS2)

Figure 4. Computational study of reaction pathways predicts the
retro-carbonyl-ene pathway is favorable. Energies were calculated
using ®B97X-D/def2-TZVPP/SMD (n-hexadecane)//wB97X-D/
def2-SVP/IEFPCM(n-hexadecane) and are given in kcal/mol.
Computed transition states TS1 and TS2 are shown.

<j 93% D HO \J/
oTf O NDBn G
EtO = 3 steps
SiMe; — 0
SiEts o p < 79% D
SiEt3
9 10-d 7-d
hexadecane
220°C
D incorporation via: (41% yield)

M Retro-carbonyl-ene

Retro-aldol —
H{T0%D
p<79%D

8-d

Et;Si

Figure 5. Synthesis of 8-d and results of Diels—Alder/rearrangement
cascade indicating a retro-carbonyl-ene pathway.

As such, this result is consistent with computational results
described earlier.
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We studied the transformation of 7 to 8 through both
computational and empirical methods. Calculations predicted
that a retro-carbonyl-ene reaction pathway was operative, and
this hypothesis was confirmed experimentally through a
deuterium labeling study. This report underscores the synergy
between computational and experimental studies and estab-
lishes the mechanism of this interesting complexity-generating
transformation. We hope these studies may enable the further
use of the retro-carbonyl-ene reaction in total synthesis and
encourage the further use of computations and experiments, in
tandem, to interrogate mechanistic pathways.
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