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Ultralight scalar fields can experience runaway “superradiant” amplification near spinning black holes,

resulting in a macroscopic “axion cloud,” which slowly dissipates via continuous monochromatic
gravitational waves. For a particular range of boson masses, O(107''-1071%) eV, an axion cloud will
radiate in the 10—100 kHz band of the levitated sensor detector (LSD). Using fiducial models of the mass,
spin, and age distributions of stellar-origin black holes, we simulate the present-day Milky Way population
of these hypothetical objects. As a first step toward assessing the LSD’s sensitivity to the resultant ensemble
of gravitational wave signals, we compute the corresponding signal-to-noise ratios which build up over a

nominal integration time of 107 s, assuming the projected sensitivity of the 1 m LSD prototype currently
under construction, as well as for future 10 m and 100 m concepts. For a 100 m cryogenic instrument,

hundreds of resolvable signals could be expected if the boson mass u is around 3 x 10~!! eV, and this

number diminishes with increasing y up to ~5.5 x 10! eV. The much larger population of unresolved
sources will produce a confusion foreground which could be detectable by a 10-m instrument if
U € (3-4.5) x 107! eV or by a 100-m instrument if y € (3-6) x 107! eV.

DOI: 10.1103/PhysRevD.110.123025

I. INTRODUCTION

The era of gravitational-wave (GW) astronomy is in full
swing. During their first three observing runs, the GW
interferometers Advanced LIGO and Advanced Virgo
detected 90 compact binary coalescences involving neutron
stars (NS) and stellar-mass black holes (BH) [1-3]. The
most notable events included the first NS-NS merger
(GW170817) [4], the first highly asymmetric binary
(GW190412) [5], the first merger with an intermediate-
mass BH remnant (GW190521) [6], and the first object in
the mass gap separating the most massive neutron stars
from the lowest-mass BHs (GW190814) [7]. The first half
of the fourth observing run has already seen a new lower-
mass-gap event (GW230529) [8].

Adding to the excitement, evidence for a stochastic
background has been reported in the 15-year dataset from
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the North American Nanohertz Observatory for
Gravitational Waves [9]. The most well-motivated scenario
for the origin of this background is the extragalactic
population of inspiralling supermassive BH binaries.

Finally, the launch of the Laser Interferometer Space
Antenna (LISA) in the mid-2030s will open up the millihertz
band for exploration. The Galactic population of compact
binaries—and the extragalactic population of supermassive
BH binaries and extreme-mass-ratio-inspirals—are all
highly anticipated LISA sources [10].

These observatories cover multiple windows in the GW
spectrum from the nanohertz up to several hundred Hz. The
push to higher frequencies is now underway, with cosmic
strings, axion clouds, primordial black hole (PBH) binaries,
and early universe stochastic backgrounds as the main
science drivers [11].

One such concept, currently in development at
Northwestern University, is the Levitated Sensor Detector
(LSD). With sensitivity to GWs at tens to hundreds of kHz,
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the LSD employs optically trapped micron-scale disks as
GW sensors. The instrument is a Michelson interferometer
with two perpendicular 1 m Fabry-Pérot arm cavities. In
each arm, a disk is levitated at an antinode of a standing-
wave formed by two counter-propagating beams. The
trapped object behaves like a driven damped harmonic
oscillator, with the corresponding trap frequency being
widely tunable with laser intensity. The periodic changes
in arm length induced by a GW manifest as a periodic
shift in the position of the antinode. If the trap frequency
matches the GW frequency, the levitated sensor is resonantly
driven [12-14].

As a resonant detector, the LSD is well suited to search
for continuous monochromatic signals. A popular scenario
involves the interaction between spinning black holes and
“ultralight” bosonic fields—i.e. those with masses several
orders of magnitude smaller than an electron volt (eV).
Such fields can extract rotational energy from spinning
BHs via “superradiant amplification” of certain bound-
states [15]. The result is a macroscopic cloud of bosons
all living in the same state—commonly known as a
“gravitational atom” or “axion cloud” [16]. These oscillat-
ing nonaxisymmetric clouds generate continuous mono-
chromatic GWs at a frequency primarily determined by the
boson’s mass. Tens to hundreds of kHz corresponds
to u = O(107'1-10719) eV.

This scenario can be realized with physics beyond-the-
Standard-Model (BSM). For example, a large number of
ultralight fields may occur as a result of the compactifi-
cation of extra dimensions [17]. One of these may be the
QCD axion—the pseudoscalar boson proposed to solve the
strong-CP problem [18-20]. The axion is a Goldstone
boson of a spontaneously broken global symmetry which
acquires a small mass through nonperturbative effects. Its
mass, u, is determined by the energy scale f, associated
with the broken symmetry [17],

_ 1
7 (1)
where 10'® GeV = Agyr is the grand unification (GUT)
scale. An axion of mass O(1071?) eV corresponds to f,
being at the GUT scale. However, as we will see in
Sec. VI A, signals in the LSD band are only expected
up to ~32 kHz, corresponding to a 6.6 x 107! eV boson.

At boson masses O(107!'!) eV, superradiance occurs
optimally for BH’s with masses between 0.1 and a few solar
masses. Subsolar BHs may exist as PBHs [21], and BHs in
the 1 — 4M 4 range might be formed dynamically in binary
neutron star mergers [22], accretion-induced collapsing
neutron stars [23], or supernovae with unusually high
fallback [24,25].

The 1 —4M range of BH masses is gradually being
populated by microlensing candidates [26] and GW events
such as GW190814 [7] and GW230529 [8]. Since the mass

u~6x10710 eV(1016 GeV)

distribution for these objects is still unknown, we will limit
our attention to stellar-origin BHs with masses between 5
and 20M, typical of BHs in x-ray binary systems.

As a first step toward building the LSD search pipeline,
we simulate the Galactic population of axion clouds with
5 —20M, BH hosts. The essential data returned by these
simulations are the gravitational-wave frequency and
dimensionless strain amplitude emitted by each cloud.
Together with the LSD’s projected sensitivity curve, we
estimate the number of resolvable signals, i.e. those whose
signal-to-noise ratio (SNR) rises above a given threshold
after a coherent observation time 7', = 107 s (a little less
than four months). We adopt the idealization of a “freely
floating” detector orbiting the Milky Way at the same
radius as the Solar System but not situated on a rotating
planet orbiting a star. In doing so, we neglect the amplitude
and frequency modulations induced by the Earth’s sidereal
rotation and by its orbital motion in the Solar System. Our
results establish a baseline from which a more in-depth
analysis, including the aforementioned modulations, can be
undertaken in future work.

In Secs. II and 111, we introduce the essential physics of
axion clouds and their GW emission. To simulate the
population of axion clouds, we require a model of the
stellar-origin BH population. The parameters of a black
hole—mass, spin, age, and location in the Milky Way—are
taken to be independent random variables, and we discuss
their distributions in Sec. IV. The procedure for determin-
ing whether a BH of given mass, spin, and age presently
hosts an axion cloud is described in Sec. V. The simulated
cloud populations—and the corresponding ensembles of
GW signals—are discussed in Sec. VI. Section VII pro-
vides a summary of the results, as well as tasks for future
work. Throughout the paper, we adopt the metric signature
(=, +,+,+), and we retain all factors of G, ¢, and A. We
hope our decision not to set physical constants to unity will
make this work more accessible to those unaccustomed to
the conventions of fundamental physics theory.

II. SUPERRADIANT BOUND-STATES

The creation of macroscopic clouds around spinning
black holes can occur for any massive bosonic field. The
simplest scenario, the one we adopt, is that of an electrically
neutral massive scalar field freely propagating in the Kerr
spacetime; we denote the BH mass and dimensionless spin
by M and y = Jc/(GM?), respectively (J is the BH angular
momentum). We also assume no self-interactions to avoid
complications such as the bosenova instability [17]. The
scalar field then obeys the Klein-Gordon equation [15],

[V, V, = mi]®(X,1) = 0 (2)

where the constant m, has dimensions of inverse length; in
the quantum theory of a scalar field, the physical meaning
of m, is 1/A,, where 1. = h/(mc) = hc/u is the reduced
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Compton wavelength of the boson, m is the mass of the
particle, and y = mc?.

In Boyer-Lindquist coordinates, with the ansatz
(X, 1) = e e S(O)R(r), (3)

the Klein-Gordon equation separates into two ordinary
differential equations (ODEs) for R(r) and S(0). We
seek a bound-state solution which is “ingoing” at the event
horizon—i.e. a solution which goes to zero at infinity and
looks like an ingoing wave at the horizon. The ingoing
boundary condition causes the eigenfrequency @ to be
complex,

w = Wpg + ia)] (4)

with the consequence that bound-states must either grow or
decay

el — e—i(a)RJriw,)t — e lWrl poy!

= O(X, 1) = e”'[e”rle™PS(Q)R(r)]

For w; > 0, the field amplitude grows exponentially.
A necessary and sufficient condition for the growth of a
bound-state with azimuthal number m is that the event
horizon’s angular speed Qy (times m) be faster than the
oscillation of the field [15],

wp < mQH. (5)

This requirement is called the “superradiance condition.”
As the field amplitude grows, the BH loses rotational
energy, and Qy decreases until the inequality becomes
an equality. At that point, the superradiant growth
ceases, and the resultant bound-state slowly dissipates by
emitting GWs.

It is conventional to define a dimensionless “coupling
parameter” « as the ratio of the BH’s gravitational radius r,
to the reduced Compton wavelength 4. of the scalar field
rg GM yu  GMu

T & e he

(6)

The “weak-coupling” limit, defined by a <« 1, corre-
sponds to the Compton wavelength of the boson being
much larger than the characteristic size r,, of the BH. In this
limit, the bound-state energy, given by the real part of w,
can be written in closed form [27]

[ @ (=3l 1\
PR=H T I+1/2 8)n
2mya®
7
YIS ] ™

The small “fine-structure” corrections beyond the lead-
ing 1 depend on the angular momentum of the cloud and

the spin of the BH. The quantity in large square brackets
depends on the BH and boson masses only through their
dimensionless product a. This motivates the introduction of
a dimensionless eigenfrequency & = &p + i&;
SR = @ & = @ (8)
H H

Once we have computed £ over a sufficiently large region
of the (a, y) parameter space for all bound-states {n, [, m}
of interest, we can freely plug in any BH masses and axion
masses of our choosing. For example, taking M = 10’ M
and u = 107" eV, we get a = 0.748. The same value is
obtained taking M = 10M, and ¢ = 107! eV. The essen-
tial consequence is that, for a given BH spin y, the same set
of superradiant bound-states exists for both scenarios.

From a practical point of view, this also means the
superradiance condition

my
<—L——=f
201 +4/1 — 4% o
becomes a tool for rapidly determining, for a given
parameter set {u, M, ¥}, which states are superradiant.
Additionally, far from the BH where relativistic effects

are negligible, the radial equation reduces to (r measured in
units of 4.) [16]

L d(,d\ a I(+1) 1-&
___ — 1 == R(r)=0 10
{ 2r%dr <r dr) r+ 252 + 2 (r)=0. (10)

which is the radial Schrodinger equation for a nonrelativ-
istic particle in a Coulomb potential V(r) = a/r, hence the
moniker “gravitational atom.” The @?/(2n?) term in Eq. (7)
is precisely the “hydrogen atom” solution to Eq. (10). The
complete small-a solutions to the full Klein-Gordon equa-
tion have been computed order by order using the method
of matched asymptotic expansions [16] (and we have
provided an example of Eq. (11) in Figs. 1 and 2),

&k ©)

fRzl—az {21—3n—|—1 1]054

W TTri2 T8
n 2mya’
I+ 1/2)(1+1)

o=2(1+y1-7) [2(1(1 +m\)(/1 ) §R] “
2441 (5 4 [)! 1 2
A (= 1) ((21)!(21 . 1))

x H[ﬂl — )+ [me = 2a8e(1/1=27)] |

(12)

+en, (11)

In general, £ is a function of {n, [, m, a, y}. For
fixed a@ and y, the superradiance rate is largest when
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FIG. 1. The real part £z of the n = 5 bound-state, for BH spin
x = 0.995, plotted up to the associated maximum superradiant
value of the coupling parameter, @, = 2.06.
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FIG. 2. The & curve in Fig. 1 corresponds to a BH spin of
x = 0.995. As mentioned in the main text, there are small spin-
dependent corrections to £z. Had we plotted several curves in
Fig. 1, each corresponding to a different spin, they would lie so
close together as to be almost indistinguishable. To spread them
out, we plot the fractional deviations between the curve in Fig. 1
and the corresponding curves for a variety of spins. As indicated
on the y-axis, the fractional deviations are negative: For a given a,
lower BH spin implies lower &g; In turn, this implies a lower GW
frequency via Eq. (27).

m =1 = n — 1. We consider only such bound states in our
simulations of the Galactic axion cloud population, reduc-
ing the parameter list to {n, y, a}.

Since our fiducial model of the Galactic BH popula-
tion will assume M >5M, as well as boson masses
O(1071-10719) eV, the corresponding values of a are
always greater than one but still of order unity. In this
“intermediate” regime, there are no closed-form solutions
for £ As detailed in the Appendix, we must resort to the
series-solution method for solving the radial Klein-Gordon
equation. The coefficients of the infinite-series ansatz obey
a three-term recurrence relation whose solution is equiv-
alent to the solution of a corresponding nonlinear con-
tinued-fraction equation [15,28].

Denoting the peak mass of the cloud as M, the cloud’s
growth timescale is given by [29]

M 2
rczrnlmlnNzrnlmln( CC> (13)
u

with N the number of bosons in the cloud and z,;, the
reciprocal of the superradiance rate,

I—‘nlm = 2wl' (14)

T,um 18 the e-folding timescale, and we follow the authors
of [29] in taking 7, as the time to fully grow the bound-
state. The factor of two in I',,;,, occurs because the cloud’s
density is proportional to the 00-component of the stress-
energy, p « T) o exp(2w;t).

As the cloud grows, the BH gradually loses mass and
angular momentum. The growth timescales are long
enough to permit an adiabatic treatment of the BH’s
evolution [30]. The metric can be thought of as Kerr with
slowly changing M and y. Denoting the initial BH
parameters as (M, y;), the cloud’s mass is

and the hole’s final mass and spin (My, y;) are given
by [30,31]

m> —\/m® — 16m*Exa?(m — Egay;)?
8&xa? (m — Egayy;)

mM .
- fRaiMi) (17)

M= Ml{ . (16)

M;\?
Xf= M_f Xi

Since our simulation of the Galactic axion cloud pop-
ulation requires us to follow the evolution of each BH-
cloud system—of which there could be millions—we save
computation time by relying on these expressions for the
final BH parameters.

The final mass and spin become the new parameters
My — M;, s — y;) for determining which bound-state
will grow after the present cloud has dissipated. For our
simulations, the superradiance condition [Eq. (9)] is used to
determine, from the set {1,2,3, ...}, the smallest value of
m for which superradiance occurs. The final state of the
BH-boson system at the cessation of cloud growth is
determined by Egs. (15)-(17).

III. GRAVITATIONAL WAVES
FROM AXION CLOUDS

At a particle-physics level, GW production by axion
clouds can be understood in terms of two processes:
annihilation of two bosons to a single graviton (with the
BH absorbing the recoil momentum) and downward
transitions between bound-states [32]. However, just as
superradiance is a purely classical kinematic effect, the GW
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emission can also be understood classically in terms of the
cloud’s time-dependent quadrupole moment. That being
said, the GW signals considered in this work correspond to
the annihilation channel.

Since our simulation of the Galactic axion cloud pop-
ulation requires us to compute the GW amplitude for each
cloud—of which there could be millions—we save com-
putation time by relying on semianalytic formulas for the
amplitudes [31,32]. Following [30], the GW signal seen by
a detector with perpendicular arms takes the general form

h(t) = F. (t)a, cos|®(1)] + F, (f)a, sin[d(1)]  (18)

where F(7) and F,(t) are the detector’s angular pattern
functions, and the phase ®(¢) encodes the frequency
evolution in the detector frame,

T
D(t) =0+ 27 £(1)HdT’
Ty

=®y+2n [fO(T—TO) +%f0(T—T0)2+... . (19)

where f is the frequency derivative, quantities with a zero
subscript are their values at a reference time T, and 7'(1) is
the time at the Solar System barycenter, related to the time
at the detector ¢ by the addition of the Rgmer, Shapiro, and
Einstein delays.

The amplitudes a_, /, are expanded in terms of spheroidal

harmonics with spin-weight s = -2,
1
Ayjx = _Zhé)Lleﬁl,&) + 7257,—;71,—&;]’ (20)
>21

where @ = 2wy is the GW angular frequency, the param-
eters (1, m) refer to the scalar bound-state, and (I, i) refer to
the GW modes, with [ > 2/ and 7 = 2m. For each mode,
there is a polarization-independent characteristic amplitude

ny 1301,

(7)_C4ML. 1

G M, 2m*Mf*d

Aj(@inxi)s (21)

where f is the GW frequency, d is the source distance, and
the A; . (a,y) are dimensionless numerical factors which
measure how much energy is carried by each mode. The
corresponding luminosity in each mode is given by

5 3 2 2
¢ ( ¢ )MCAZ,hwi,xi). (22)

EGW(L’%’CD):R GM i M—}% 1

In principle, the coefficients 4;; must be computed
numerically by solving the Teukolsky equation governing

linear perturbations of the Kerr metric. The authors of [31]
express Egyw in the form

M2 dE

“GMd @)

Egw

and invoke an analytic solution for dE/dt, which is
formally valid for @ <</ and which remains a good
approximation up to a ~ [ [32]

dE 16" 11(20 = )21 = DE(n + 14 Datf' ™
dr (14 1)1+ 1041+ 3)P (n = 1)

(24)

where I is the gamma function, and a; denotes the value of
a corresponding to the final mass of the BH (i.e. after the
cloud has finished growing),

M

f
=a,—L. 25
af a; Mi ( )

Comparing Eqgs. (22) and (23), we see that A;; «

\/dE/dt, allowing us to express hé” directly in terms of
dE/dt. Restricting ourselves to the dominant mode
i =1=2l, we obtain a closed-form solution for the
characteristic amplitude, which we use without abandon
to compute the GW amplitudes of the axion clouds

resulting from our simulations (we will drop the superscript
(21) henceforth),

_ GM . 2\/zM; |dE

7(d) = = 26
0 ( ) C2d fRal-Mf dt ( )
The corresponding GW frequency is given by
@ 12,
f—g—gz&e = foér
= Jolr (27)
where we’ve introduced the zeroth-order frequency

fo=wo/2r, wy =2u/h.

It is often remarked that the GW frequency is propor-
tional to twice the axion mass, f o 2u. We see that this is,
indeed, true in the small-a limit by noting that £ — 1 as
a — 0 [Fig. 1, Eq. (11)]. The frequency monotonically
decreases with increasing a, and for axion clouds in the
kHz band, with stellar-mass BH hosts (where « is generi-
cally greater than 1), GW frequencies can be upwards of
10% smaller than the nominal value f.

Equation (27) gives the frequency as measured in the
rest-frame of the axion cloud. For an observer located
elsewhere in the Milky Way, the measured signal is
Doppler shifted due to the differential rotation of the
Galaxy. We assume all bodies in the Galaxy move in the
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azimuthal direction, ¥ = v¢q§, and we assume the following
Galactic rotation curve [33] (r, in kpc, is the cylindrical
radial distance from the Galactic center):

265-1875(r—02)> r<0.2
2254 15.625(r—1.8)2 02<r<18
22543.75(r—18)  18<r<58
240 r>5.8.

vy(r) (km/s) =

(28)

Denoting the source-frame frequency as f,, the non-
relativistic Doppler-shifted frequency we observe is

Sobs = (1 _%>fsv (29)

where v, is the line-of-sight component of the relative
velocity between source and observer. v, is defined to be
positive when the source and observer are moving away
from each other.

When a cloud finishes growing, it emits GWs whose
initial amplitude A, is given by Eq. (21). As the cloud
dissipates, the amplitude decreases as [29]

_ N
_1+t/TGW’

h(1) (30)

where 7y is the time for % to drop to half its initial value.

IV. THE GALACTIC POPULATION OF ISOLATED
STELLAR-ORIGIN BLACK HOLES

With the results of the previous sections in hand, we can
follow the “superradiance history” of any given BH—i.e.
we can determine the sequence of scalar field bound-states,
their growth and dissipation timescales, the BH mass and
spin decrements, and, above all, the GW frequency and
amplitude of each successive cloud. To simulate the entire
Galactic population of axion clouds, we must assign each
BH a mass, spin, age, and location—taken to be indepen-
dent random variables—in accordance with known or
assumed distributions.

Our knowledge of the stellar-origin BH mass distribution
is informed by mass measurements in x-ray binary systems
[34-36], microlensing events [37], and astrometry [38], as
well as through modeling of the complex physics of core-
collapse supernovae [39]. Known BHs typically have masses
between SM , and 20M , and power-law models are favored
when fitting the mass function of low-mass x-ray
binaries [34]. Not coincidentally, the massive stars which
produce BH remnants are also characterized by a power-law
distribution, w(M)dM o« M~23>dM, the “Salpeter” func-
tion. We will assume Mgy to be Salpeter-distributed on the
interval 5 — 20M .

BH spins have been measured in several x-ray
binaries [40], but none have been measured for isolated
BHs. In the case of binaries, the distribution of spin
magnitudes is more-or-less uniform, so we take the BH
spin to be uniformly distributed, y ~ U|0, 1].

The stellar content of the Milky Way can be divided into
three primary regions—the thin disk, the thick disk, and the
central bulge. The age distribution of stellar-origin BHs is
tied to the star formation history in each region. As the
Milky Way’s star formation history is a topic of ongoing
research, we take an agnostic approach by assigning each BH
an age of 10" yr, with x uniformly distributed on an interval
which varies among the three Galactic regions. For the thin
disk and thick disk, we take x ~ U[3,log;o(8 x 10”)] and
x ~ U|[3, 10], respectively [41]. For the bulge, we assign each
BH an age 10* yr, with x ~ U[9, log;,(13 x 10%)] [42].

We assume black holes are distributed in space according
to the mass profiles of the disks and bulge described in
Ref. [43]. Both disks have the same axisymmetric form,
with the corresponding scale lengths, scale heights, and
surface densities quoted in Table |

>
paisk(r. 2. ) = % e~12l/zap=r/Ra (31)
<d

The bulge is also axisymmetric, with the corresponding
parameters also given in Table I

pp = 20 (1)’ (32)

(1 + r’)a

ro

TABLE 1. Physical parameters for the empirical stellar-mass
distribution of the Milky Way inferred in Ref. [43]. The values for
those with an asterisk (*) are the means marginalized over all
other parameters in the model. The disk scale heights are the best-
fitting values from Ref. [44], and the stellar bulge model is an
axisymmetric modification of the result from Ref. [45] in which
the assumption of a constant mass-to-light ratio in the bulge was
used to convert photometric data into a mass model.

Disk parameters Value
“Ry hin (kpc) 3.00
"R mick (kpe) 3.29
“Zg.0min (Mopc™?) 741
*Zy0.mick (Mope™) 238
Zamin (KPC) 0.3
Zd.hick (Kpe) 0.9
*Solar radius Ry (kpc) 8.29
Bulge parameters Value
*ppo (Mope™) 95.5
a 1.8
ro (kpc) 0.075
Feur (kpe) 2.1
q 0.5
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We apportion the BHs among the three Galactic regions
according to the fractions fnin, finick> and fiyige, defined by
fi=M;/>; M;, i € {thin, thick, bulge}. The disk masses
are obtained by integrating pgi, With the radial integral
cut-off at 25 kpc and the vertical integral cut-off at 3 scale
heights. This gives 3.97 x 10'°M and 1.5 x 10'°M, for
the thin and thick disks, respectively. We take the bulge
mass to be 8.9 x 10°M, the value quoted in [43]. The
corresponding f; are 62%, 24%, 14%, respectively. We will
assume the Galactic population of Nz BHs to be appor-
tioned likewise: 62% in the thin disk, 24% in the thick disk,
and 14% in the bulge.

V. SIMULATION PROCEDURE

The simulation is a procedure by which, for a given
axion mass and from an initial population of Npy BHs
sprinkled throughout the Milky Way, we determine the
number N, of extant axion clouds. Each simulation outputs
the physical properties, distances, and the GW frequencies
and amplitudes of the N, clouds.

At the outset, each BH is assigned a mass, spin, and age.
We will illustrate the procedure with an example and
then summarize the procedure with a flowchart: taking
u=4x 107" eV, consider the evolution of a 5Mg, y =
0.95 BH with an age of 10% yrs. The superradiance
condition, Eq. (9), determines which bound-state grows
first.

Er=103 £y =024 (m=1)
Er =076 =048 (m=2) )
£ =089 &, =073 (m=3)
£ =094 £, =097 (m=4)

Since &p > &y for m =1, 2, 3, the first superradiant
bound-state is n =5, [ = m = 4, and it grows on a time-
scale of 7, = 3.4 yrs. The BH’s mass and spin are decreased
to 4.94M and 0.938, respectively. Once the cloud has
finished growing, it dissipates on a timescale 7gyw = 0.8 yrs.
The time from the BH’s birth to the cloud’s dissipation is
only 7. + 7gw = 4.2 yrs, leaving plenty of time for new
clouds to develop. We denote by ¢, the time remaining to the
present. In this case, f, = 108 — 4.2 ~ 108 yrs.

The next bound-state is n = 6 with 7, = 3536 yrs. The
BH’s mass and spin are decreased to 4.67M and 0.84,
respectively. Once the cloud has finished growing, it
dissipates on a timescale 7gy = 2445 yrs. At this point,
t, = 9.9994 x 107 yrs—still plenty of time left for further
superradiance.

The next (and final) bound-state is n =7 with 7, =
6 x 107 yrs. The BH’s mass and spin are decreased to
4.5M 4 and 0.74, respectively. Once the cloud has finished

growing, ¢, = 3.9 x 107 yrs remain. The dissipation time-
scale 7gw = 7 x 107 yrs. Since 7gw > t,, the n = 7 cloud
is still present today. It has an initial mass M. = 0.16M 4,
and it radiates at f = 18.9 kHz. Placing the source at d =
1 kpc (for example), the initial strain amplitude h, = 1072
[Eq. (26)]. The signal observed today was emitted d/c =
3300 yrs ago, so the corresponding amplitude Ah(7) =
6.9 x 10727 [Eq. (30) with t =t, — d/c].

Our simulation of the Galactic cloud population consists
of applying the foregoing procedure to each of the BHs in
the Galaxy. If a given BH only permits a bound-state whose
growth timescale is greater than the age of the universe
(T, > Tyy = 1.38 x 10'° yr), the host BH is removed from
the simulation.

Our criterion for whether a given cloud is still present
today is zgw > f,. For each black hole, there are only two
final options: either a cloud has finished growing and is still
present today, or a cloud is growing on a timescale greater
than the age of the universe.

Those BHs with an extant cloud are assigned a location
in the Milky Way [Eqgs. (31) and (32)]. Earth is assigned to
an arbitrary—but fixed—point on the circle of radius
8.3 kpc in the Galactic midplane. For a cloud located at
distance d, we check the inequality ct, > d to determine if
there has been enough time for GWs to propagate to Earth
since the cloud formed. Those clouds for which d > ct, are
presently unobservable, and we retain only those clouds
for which ct, > d. We summarize this section with the
following flowchart:

(i) For a given p, Mgy, ¥, and BH age, find the lowest

superradiant value of n.
@i1) If z. > 7, the BH is removed from the simulation.
(iii) Otherwise, the dissipation timescale gy determines
whether a new cloud will start growing in accordance
with zgw > ¢, (cloud still present) or zgw < 1, (cloud
has dissipated, and a new cloud begins growing).

(iv) Repeat the previous steps until one of two possibil-
ities is obtained: (a) a cloud is growing with 7. > the
age of the universe or (b) a cloud is still present and
radiating GWs today.

(v) If the cloud hasn’t dissipated yet, assign it a random
position, and compute the GW strain at Earth’s
location only if the travel-time inequality ct, > d
is true.

VI. GWS FROM THE AXION
CLOUD POPULATION

A. Cloud populations

The total number of stellar-origin black holes has been
estimated to be O(10%) from the Milky Way’s supernova
rate of O(1) century™! [46] and from population-synthesis
estimates [47]. We take Ngy = 10%, bearing in mind that
the true number could be larger by a factor of a few or even
another order of magnitude [48]. We have simulated the
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axion cloud population for x = (3,3.5,4,4.5,5,5.5,6,
6.5) x 107! eV.

The output of a simulation is a collection of all extant
BH-cloud systems in the Milky Way. Those BHs which
have experienced the growth of a single cloud are described
by a list comprising the BH age, the initial and final values
of the BH mass and spin, the bound-state {n, [, m, g, &;},
the cloud’s properties—mass M ., growth timescale 7., and
dissipation timescale zgw—the source distance d, and the
GW frequency and amplitude (f,4). BHs which have
experienced the growth of multiple bound-states are each
characterized by a set of such lists, one per bound-state. The
GW frequency and amplitude are only computed for the
extant cloud, all previous bound-states having already
dissipated.

For a given axion mass, the number of extant clouds is a
random variable whose mean and standard deviation are
estimated by performing 20 simulations with 5 x 10° BH’s
per simulation, computing the sample mean and sample
standard deviation of N_. over the 20 trials, and then
multiplying them by 20 and /20, respectively.

An ensemble of GW signals from axion clouds is a
scatter plot in the & vs f plane, as in Figs. 3-5. The
distribution of amplitudes and frequencies is not random
but consists of well-defined bands corresponding to the
various occupied bound-states. The lowest bound-state
resulting from our simulations is n = 6, reflecting the
general difficulty for stellar-mass BHs to produce clouds
in the LSD band.

h

1 0—23
107
1 0-25

1072

e o o e
3 3 3 S

© o NO®

1072

1 0—28

10—29
138 138 140 144 142 1a3 P

FIG. 3. Population of axion clouds, with g =3 x 107! eV.
From a population of 108 BHs, the simulation returns N, =
(9.32 £0.03) x 10° extant clouds. Of these, 8.3 x 10° (89%)
satisfy the GW travel-time condition (Sec. V). Since GW
amplitudes and frequencies are, necessarily, only computed for
those clouds satisfying the travel-time condition, it should be
understood that only those clouds are represented in this figure, as
well as in Figs. 4 and 5.

1 0—23 L

10-24.

1 0—25 L

1 0—26 L

3 3 3 3
© 0o N

1 0—27 L

1 0-28 L

184 185 186 187 188 189 ()

FIG. 4. Population of axion clouds, with g =4 x 107! eV.
From a population of 108 BHs, the simulation returns N, =
(1.17 £0.01) x 10° extant clouds. Of these, 9.5 x 10* (81%)
satisfy the GW travel-time condition.

Also reflecting this difficulty is the rapid decline in the
number of clouds N, with increasing boson mass y (Fig. 6).
Foru =3 x 107! eV, N, = (9.323 £ 0.007) x 10°, while
at 4 =65x10""" eV, the number has dropped to
130 £ 10. N, goes to zero around 6.6 x 107! eV, corre-
sponding to a nominal upper limit of ~32 kHz for signals
expected in the LSD band. Higher-frequency signals could
occur from BHs with Mgy < 5SM, especially in light of
the recent discoveries of lower-mass-gap objects.

In all cases, the distribution of GW frequencies occurs
below the nominal value f; « 2u due to the positive scaling
of gravitational redshift with BH mass. This interpretation

1x107%
5x 10726}

1x107%
5x107%

3 S
© o

1x107%
5x107%

‘ - f (kHz)
276 277 278 279 280 281

FIG. 5. Population of axion clouds, with g =6 x 107! eV.
From a population of 10® BHs, the simulation returns N, =
900 £ 200 extant clouds. Of these, 620 (69%) satisty the GW
travel-time condition. The apparent gap in the n =9 band at
28 kHz is an artifact due to the small number of clouds.
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FIG. 6. Number of extant axion clouds N, drops rapidly with
increasing boson mass yu, and it extrapolates to zero around
6.6 x 107! eV, corresponding to f ~ 32 kHz. In light of the
lower-mass-gap objects found by LIGO-Virgo, we note that
superradiant instabilities with a O(10~!!) eV boson are stronger
for Mgy < 5M than for Mgy > 5SM,. Since the BHs involved
in our simulations are of the latter type, the true number of clouds,
for any boson mass, could be greater than our estimate by a factor
depending on the mass distribution and total number of lower-
mass-gap BHs in the Milky Way.

is confirmed by a plot of the source-frame GW frequencies
fow, and initial BH masses M; for all extant clouds in a
given simulation (Fig. 7, with u = 3 x 107! eV). For each
scalar bound-state, there is a tight relationship, with more
massive BHs producing lower-frequency clouds.

In the introduction (Sec. I), we noted a potential
connection between the QCD axion and the GUT scale
Agur [Eq. (1)]: an axion of mass O(107!) eV corresponds
to f, =~ Agyr- If the solution to the strong-CP problem is
tied to GUT phenomenology, then discovery of an
O(10719) eV axion would be an exciting, albeit indirect,
form of evidence for grand unification. The number of

fow,s (kHz)
14.3
14.2

14.1

,,
~
#
ERERERE]
wonowon
© o~ o

14.0 \ \ ' \

13.9 N\
13.8

T I S S S TR TR PLA )

FIG. 7. The source-frame GW frequencies fgw ¢ and initial BH
masses M, for the extant clouds in the 3 x 10~'! eV simulation.
The distribution of frequencies below the nominal value f o« 2u
is a result of gravitational redshift.

clouds in the Milky Way dropping to zero around 6.6 x
107" eV would seem to preclude the possibility of
detecting an O(107'9) eV axion—and, by extent, of
probing GUT-scale physics with the LSD. Lower-mass-
gap BHs could produce clouds at higher y, thereby reviving
hopes of finding a GUT-scale axion. Another possibility is
that Agyr is model dependent, giving rise to a range of
possible values including 10'7 GeV, which corresponds to
O(107!") eV bosons.

B. Resolvable signals

The standard result for coherent detection of a continu-
ous monochromatic signal, h(t) = hycos(wt), is that the
signal-to-noise ratio p grows as the square-root of the
coherent integration time 7', [11]

ho/T
p= 0 coh (34)

Sa(f)

where /S, (f) is the one-sided amplitude spectral density
of the detector noise (the “sensitivity curve”) evaluated at
the GW frequency, and the trapping frequency of the
levitated sensor is constant during the entire observation
time. The LSD is an Earth-bound detector for which the
observed signal, Eq. (18), experiences both amplitude
modulation via the angular dependence of the sensitivity
and phase modulation via the Earth’s daily (diurnal)
rotation and orbital motion. These corrections require
knowledge of both the Earth’s position and the source
position to high accuracy. In an all-sky blind search for
axion clouds, the source position is not known ahead of
time, so a realistic search will require a large number of
templates corresponding to many sky locations. A coherent
search for O(10) kHz GWs over the full observation time
(“fully coherent search”) of four months is not computa-
tionally-feasible because of the need to take fine steps in
parameter space. A “semi-coherent” search, in which the
observation time is divided into several segments, sacrifices
sensitivity for a great reduction in the number of templates
needed to perform a coherent search on each segment [49].

As a means of setting upper limits on the expected
number of resolvable signals, we compute the SNR for the
idealized case of a detector freely orbiting the Milky Way at
the same radius as the Solar System (i.e. not attached to a
planet or star system). There is a positive frequency
derivative due to the gradual dissipation of the cloud
which, however, is estimated to be too small to be
detected [29]. The signal remains perfectly coherent over
the full observation time, and a hypothetical search per-
formed at the Solar System barycenter would simply
involve Fourier-transforming the data and looking for lines
in the power spectrum.

Taking T, = 107 s—and with the projected sensitivity
curves for the current 1 m LSD prototype, as well as for
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FIG. 8. SNR’s p of resolvable GW signals from simulated
axion cloud populations, for the 100 m LSD. As a function
of u, the number of resolvable signals drops to zero beyond
5.5x 107! eV, thereby constraining the expected frequency
range of resolvable sources to f < 26 kHz.

future 10 m and 100 m versions [13]—we compute the
corresponding SNRs for all sources in the Galaxy. We
count those with p > p, as resolvable, and we adopt the
threshold p, = 10 (Fig. 8).

The “loudness” of a signal is determined primarily by the
source distance. The distance, in turn, is a random variable
determined by the randomly assigned position vector
[Egs. (31) and (32)] of the source. Thus, for a given set
of extant clouds, the number of individually resolved
sources N, will vary each time we reassign their position
vectors. We estimate the mean and standard deviation of
N, for a given population of extant clouds by laying them
down in the Galaxy N .. = 100 times and counting
how many are resolvable in each “reshuffling.” The mean
and standard deviation are then computed as

1 N, reshuffle

Nres = Nres.iv (35)

Neshuffle i—1

1 Nreshufite

(Nres,i - Nres)z' (36)

Ores =
N, reshuffle — 1 i—1

With a 100 m detector, assuming u = 3 x 107! eV,
Nyes = 600 with 6, = 20. In the most pessimistic case
(u=5.5x10"" eV), there are only O(1) resolvable
signals, and we have not estimated the associated uncer-
tainty. The 10-26 kHz range is where we expect resolv-
able signals to be present for a 100 m LSD. For a 10 m
instrument, (1) resolvable signals appear at u =
3 x 107" eV, while a 1 m instrument does not have the
required sensitivity to detect individual sources.

In the event a continuous monochromatic signal is
detected by the LSD, we will have to answer the question:
is this signal from an “axion cloud”—a superradiant bound-
state of a scalar (spin-0) field—or from a cloud involving a
spin-1 (“Proca”) field? In general, Proca fields give rise to
stronger GW signals than scalar fields [50]. As a result, we
would expect resolvable signals from Proca clouds to be

100+ - .+

50+

10

"~ d (kpo)

FIG. 9. Scatter plot of the SNR’s p and source distances d of
resolvable signals for the 100 m LSD, taking 4 = 3 x 107! eV.
There appears to be an upper limit d < 3 kpc and certainly a hard
upper limit d < 4 kpc, suggesting a way to distinguish between
spin-0 and spin-1 bosonic clouds: Proca clouds are generally
louder GW sources than axion clouds, so a GW signal with
d > 3 kpc could be taken as evidence of a spin-1 field.

found at greater distances than those from scalar clouds.
For the 100 m detector, with u =3 x 107!l eV, the
resolvable signals are depicted in terms of their SNRs
and source distances in Fig. 9. The vast majority are less
than 3 kpc away. Turning this on its head, the detection of a
continuous monochromatic signal with an inferred distance
significantly greater than 3 kpc could be a potential
indicator of a spin-1 field.

C. Unresolved signals

For all boson masses, the majority of GW signals have
amplitudes less than 10723, with the weakest having
h = O(1072°). The unresolvable signals incoherently com-
bine to form a Galactic confusion foreground which
manifests as an excess noise in the detector. As before,
we neglect the diurnal and annual modulations of the
background and instead provide a preliminary estimate of
the foreground’s strength compared to the nominal 1 m,
10 m, and 100 m LSD sensitivity curves. In a strain-
frequency plot (e.g. Fig. 3), we bin the cloud amplitudes
[with bin width §f = 1072f,, where f. is the center
frequency of a given bin, and the factor 1072 is the full-
width-at-half-maximum (FWHM) of the trapped object’s
response function around f.], and we associate an rms
amplitude, defined as follows, with each bin.

We start by creating a bin centered on the frequency of
the cloud with the smallest GW frequency in a strain-
frequency plot, e.g. Fig. 3. All axion clouds emit mono-
chromatic signals,

hi(t) = hy;cos(2xft + ¢;), (37)

where the phases ¢; are uniformly distributed between
0 and 27, and i runs over all clouds in the bin. The squared
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sum of all signals in the bin is time-averaged over a period
T.=1/f., where f. is the frequency at the center of the
bin; the result is a dimensionless time-averaged power
associated with that bin. The square root of the power
represents an effective amplitude Ay of the confusion
foreground in the bin,

hege = \/Tl [) 8 dt[zi:hi(t)r. (38)

We then create a new bin with center frequency f.|,ew
and width &f],cy-

felew = feloia + 10726 1a- (39)

8 lnew = 1072 clnews (40)

and we compute /. for this bin. The center frequency is
shifted rightwards by a fraction (arbitrarily chosen to be
1072) of the previous bin width so that adjacent bins
overlap, ensuring some degree of continuity in A vs f. We
continue until we reach the rightmost end of the cloud
population. Each bin is then characterized by an ordered
pair (.fw heff) (Flg 10)

A preliminary method for estimating the LSD’s sensi-
tivity to the confusion foreground is to treat each pair
(fe» hegr) as if they were the frequency and amplitude of a
hypothetical monochromatic signal whose corresponding
effective SNR p.¢r, computed via Eq. (34), is then compared
to a threshold p,. We continue to require p, = 10. The
numerator and denominator of Eq. (34) (hegry/Teon and

heff

1x102 S0 RA
5x107% :

1x1072 &
>

5x10725! .

1x10%, . "
5)(10_26 -

13.8 139 140 141 142 143 f(kHz)
FIG. 10. Effective amplitudes /., as defined in Eq. (38), for
the binned GW amplitudes of a simulated population of axion
clouds with s = 3 x 107!! eV. The width of each bin is a factor
1072 of the central frequency f,, reflecting the FWHM of the
detector response when the trap frequency is f,.

heﬂ VTcoh (HZ_”Z)

107"°
= <
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S — 4x10" eV
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FIG. 11. Confusion-limited foreground of unresolved axion

clouds, as a function of the boson mass y, taking T, = 107 s.
The 1, 10, and 100 m LSD sensitivity curves are depicted by the
red, blue, and black dashed curves, respectively.
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FIG. 12. Corresponding SNR p. of the confusion-limited
foreground with respect to the 1 m LSD sensitivity curve. The
dashed line depicts the detection threshold p, = 10 adopted in
this paper, and the solid line represents a lower threshold of five.
The foreground does not rise above either threshold.

Peff
i —3x107" ev
O-p-q--g-9----------- 3.5«107" ev
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[ ‘ — 4.5x107"" eV
0.100: r‘ — 5x107" eV
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FIG. 13. Corresponding SNR p. of the confusion-limited

foreground with respect to the 10 m LSD sensitivity curve.
The dashed line depicts the detection threshold p; = 10 adopted
in this paper, and the solid line represents a lower threshold of
five. Over an observation time of 107 s, the 10 m instrument has
the required sensitivity to detect the foreground in the range
(3-4.5) x 107! eV, although in the (4—4.5) x 107! eV range,
only the peak rises above the threshold—and only barely so. If a
lower threshold p, = 5 were adopted, the range of boson masses
could be extended up to 5 x 107! eV.
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FIG. 14. Corresponding SNR p.; of the confusion-limited
foreground with respect to the 100 m LSD sensitivity curve.
The dashed line depicts the detection threshold p, = 10 adopted
in this paper, and the solid line represents a lower threshold of
five. In the (3-6) x 107! eV range, the foreground is predicted
to be detectable by a 100 m instrument with effective SNRs
upwards of a thousand in the (3-3.5) x 10~ eV range.

S, (f.), respectively) are shown separately in Fig. 11,
and their ratio (the SNR) is shown in Figs. 12—14 for the 1,
10, and 10 m instruments, respectively.

We find that a single 1 m LSD does not appear to have
the required sensitivity to detect the foreground for any
value of p. A 10 m detector could detect the foreground
with pegr = O(10) if the axion mass u € (3—4) x 107! eV,
while in the (4—4.5) x 107! eV range, only the peak of the
foreground rises to the threshold—and just barely so
(Fig. 13). A 100 m instrument could detect the foreground
with large peg if u€(3-6) x 10711 eV (Fig. 14). In the
range (3-3.5) x 107! eV, the peak value of p g is O(10%)
and remains O(10%) up to 5 x 107! eV.

VII. CONCLUSION

We have produced Galactic-scale populations of the
hypothetical GW sources known as “axion clouds” with
the axion mass chosen to correspond to frequencies in the
10-100 kHz band. By computing superradiant bound-states
up to n = 9, we have accounted for nearly all clouds with
growth timescales less than the age of the universe.

The largest number of clouds occurs for the lightest
boson mass capable of producing GWs at the frequencies of
interest. This was to be expected, as superradiance occurs
more readily for small a o uMpy. For a BH of mass
M > 5Mg, the smallest value of « is obtained with the
smallest allowed boson mass, 3 x 107! ¢V. In this most
optimistic case, the total number of extant clouds is close
to 1 x 106.

The population of axion clouds has been assumed to be
spatially distributed within the Milky Way in the same way
as the stellar disks and central bulge. Statistically, some
may be near enough that the continuous monochromatic
signal can be detected by observing over a long enough
period of time, e.g. 107 s, such that the SNR rises above a
given threshold p,. We have imposed a stringent threshold

p. = 10, but we leave it for future work to determine the
most appropriate threshold for our search pipeline. For a
100 m instrument, several hundred resolvable signals are
predicted to occur if y=3 x 107" eV, but this number
could be upwards of an order of magnitude larger if the
total number of stellar-origin BHs is also larger than we
have assumed (see the comment made at the beginning of
Sec. VI). For a 10 m detector, only O(1) resolvable signals
occur in our simulation at 4 = 3 x 107! eV.

Meanwhile, the ensemble of unresolved signals produces
a confusion foreground which is estimated to be detectable
with potentially large SNR by a 100 m LSD—assuming
u € (3-6) x 107! eV—or by a 10 m instrument at mod-
erate SNR, assuming u € (3-4.5) x 107! eV.

Finally, we note the following limitations of this work, as
well as directions for future work. First, since isolated BH’s
have no EM counterpart, we do not know, ahead of time, the
direction to these GW sources. Targeted and directed
searches for axion clouds will, therefore, not be possible
for isolated BHs, and we must resort to blind all-sky
searches. Doppler modulations of the GW frequency can be
accounted for by including the source’s right ascension and
declination as additional parameters in the signal model for
Bayesian parameter estimation. To avoid the number of
demodulation templates becoming prohibitively large—we
do not want the time required for data analysis to be greater
than the four-month observation period—we will resort to
semicoherent techniques for constructing a detection sta-
tistic. A final complication might be that a source has a
transverse proper motion large enough to change its sky
location within the observation time.

In this work, we have used the SNR as a baseline
detection statistic. Since we have not yet developed the full
semicoherent search pipeline, we do not yet know what is
the most appropriate detection statistic for continuous
monochromatic signals. Another outstanding question
pertains to our scan strategy: given that we will take data
at each trapping frequency for 4 months, how finely should
the set of frequencies be discretized? At what frequency
should we begin our searches? Figs. 8 and 11 both indicate
the 14-20 kHz range to be the most optimistic, in terms of
the expected number of resolvable signals and the strength
of the confusion foreground, respectively.

Additionally, our treatment of the confusion foreground
has not accounted for the intrinsic anisotropy of the signal:
the axion clouds will be distributed throughout the disks and
bulge of the Milky Way, so the strength of the foreground
will vary over the sky in a complicated way. Searches for
stochastic signals typically involve an “excess-power”
method, as well as cross-correlation between multiple
detectors. Plans to build a second 1 m instrument at UC
Davis (in addition to the Northwestern detector) are in
development, so while a single 1 m detector might not have
the requisite sensitivity, the prospects for a two- or multi-
detector scheme are an exciting avenue of future study.
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APPENDIX: SUPERRADIANT BOUND-STATES

The creation of an axion cloud corresponds to an
instability of the Kerr space-time due to the presence of
a massive scalar field. The amplifying mechanism, “super-
radiance,” is the Penrose process in which rotational energy
is extracted by a bosonic wave rather than by a particle. In
the process, the Kerr BH loses mass and angular momen-
tum, subject to the condition that its “irreducible mass”
does not decrease.

In the Penrose scenario, a particle travelling through a
BH’s ergoregion can split in two, one of which falls into the
hole, while the other escapes to infinity. If the orbital
angular momentum of the infalling particle is of opposite
sign to that of the hole, the BH loses rotational energy to the
escaping particle: energy has been extracted from the
ergoregion.

The story for waves runs analogously: an incident wave
with amplitude Z splits into a part transmitted into the BH
(with amplitude 7°) and a part which escapes (the reflected
wave with amplitude R). If the transmitted wave is
counterrotating, the rotational energy of the BH decreases,
leading to an outgoing wave with R > 7.

The novelty of a massive scalar field is that its mass acts
like a mirror: unlike a massless field, a massive field can

become trapped in a bound-orbit, leading to continuous
extraction of rotational energy. The end result of the
runaway amplification is a macroscopic scalar field
bound-state—the “axion cloud.” In an astrophysical con-
text, rather than a wave incoming from infinity, the initial
seed for superradiance can be any arbitrary quantum
fluctuation in the scalar field, even if the field is in its
classical ground state [29,30]. As a result, the growth of an
axion cloud begins immediately after the birth of a BH.

An axion cloud’s binding energy (which determines the
GW frequency) and growth timescale depend on the
dynamics of the scalar field. For the scenario we have
adopted, the field obeys the Klein-Gordon equation on the
Kerr space-time. The Kerr metric describes an axisymmet-
ric, neutral, and rotating black hole

zdtz TCdtdq&

2GM r} 4GMarsin?6
c _

2 2GMa’rsin’6
+5dr + a0 + {rz R

x sin?0d¢? (A1)
where M is the BH mass, J is the BH angular momentum,
p? =r>+ a*cos’ 0, a = J/(Mc) is the Kerr parameter, and
A=r>— 2ryr + a?, where we have defined the gravitational
radius r, = GM/ c?. In terms of the dimensionless Kerr
parameter, y = a/r, = Jc/(GM?), the inner and outer

horizons—the two roots of A = (r —r)(r — r_)—are

ri:rg[ljz\/l—)(z}. (A2)
It follows that y is restricted to the interval
0<y<l. (A3)

The event horizon is located at r = r, and the angular
velocity of the horizon is

X

Qy = .
" 2r,

(A4)

The scalar field obeys the Klein-Gordon equation,

[V, V¥ —mI]®(X,1) =0, (AS)
where V, is the covariant derivative with respect to the Kerr
metric, and, as mentioned in the text, m, has the quantum-
mechanical interpretation as the reciprocal of the boson’s
Compton wavelength. In Boyer-Lindquist coordinates, the
Klein-Gordon equation is separable via the ansatz
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®(X, 1) = Rele ™™ S(Q)R(r)]. (A6)
Invoking the identity
1
VY= o ly=a00] (A7)

\/—g = p’sin@

the Klein-Gordon equation separates into two second-order
linear homogeneous ODEs for R(r) and S(0)

m2

Dy[S] + [){2052(5 —1)cos’0 — —I—A] S@) =0, (A8)

sin’0
D,[R] + [ (r? + 1*)* = 4ymaér + m*y?
— A(@Pr? + ra?E + N)]R(r) = 0, (A9)
df d
= 0 D,=AL (AL (A0
o sinede[m da] ’ dr[ dr] (A10)

We have expressed the decoupled equations in terms of
the dimensionless variables (y, a, and &) used in the main
text. The radial coordinate in (A9) is measured in units
of ry.

Bound-state solutions must go to zero at infinity and be
ingoing at the event horizon. The ingoing condition means
that R(r) e~ as r, — —oo, with r, the Kerr tortoise
coordinate which maps the event horizon to —oo

dr*_r2+a2
dr A

(Al1)

This means that plane waves at the event horizon
(r, = —o0) can only move “to the left,” i.e. into the black
hole.

The spectra of both bound-states and BH quasinormal
modes can be found via Leaver’s continued-fraction
method [51,15]. The radial function R(r) is represented
by an infinite series,

R(r) = (r—ry )7 (r—r_)ioth-lear i a <r - r+)"7

e r—r_
(A12)
:a(l + _;(2)(5_501'11)’ (A13)
1—4°
g=a\1-¢, (A14)
2(1-22)
p= . : (A15)

(The quantity we denote by f is the same as the quantity
denoted by y in Ref. [15].) With this ansatz, (A9) implies
a three-term recurrence relation for the unknown coeffi-
cients a,,

Ayt +ppay +vpa,-1 =0, n=12 ..
— _bhy, (A16)
ap = —g, %

where the coefficients a,,, f,, and y,, are defined by

ay =n*+(co+ n+co

Pn = =2n" + (c1 +2) + 3 (A7)
Yo =n>+(c=3)n+cy
and ¢y, ¢, ¢,, ¢3, and ¢4 are given by
. 2i(ad =)
Co = 1- 210{5 —ﬁ, (A18)
¢ =—4+4i[a5—im/1—§2(1+ ,/1_;(2)]
4l(a§_ﬂ> [a2§2 +(l2(1 _52)] (A19)
V11— ay/1-& ’
201 _£2\ _ 22 e my
6y 23— 2iqe AU =) 8] 2iaET)

2

ay/1-8

_2i(ag—iay/1-&)’
ay/1-&

“ Ay —142 1—;(2((15—1'(1\/@)2

(ag—iaﬂ)z
ay/1-&

l—y

+r2a*(1-8%)

+2imyar/1—E -

+2a@\/F—2
el e g o

(@—mﬂ)“ 2i§(a§—
20-8)
Zi(a.f - ia\/T_——f?)z(a(f -
a/1-81-7

The series coefficients are related by an infinite con-
tinued fraction [28]

[

(A22)
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A1 Vnt1
- Apy1¥ni2
ap ﬁnJrl -5 =

nt27

(A23)

Continued fractions are commonly written in the slightly
less cumbersome notation

(2PN _ _ Vn+1 an+lyn+2 Ay 12Yn+3 <A24)
ay ﬂn-H_ ﬁn+2_ ﬁn+3_
Since a,/ay = —fy/®y, we obtain a condition whose
roots are the desired bound-state frequencies
oY1 X172 X2Y3
Po——————"—=...=0. (A25)
b= b= P3—

Strictly speaking, the radial and angular eigenvalues, &
and A, must be found simultaneously. Leaver’s method can
also be applied to (AS8) [52], resulting in a continued-
fraction condition analogous to (A25). We then have two
equations for the two unknowns.

Conveniently, we can reduce the root-finding problem to
merely solving (A25) by using the Mathematica function
SPHEROIDALEIGENVALUE. With the change of variable
z = cos#—and in terms of the following quantities:

P =rd(1-8),

(A26)
ér
1.00-

0.95

0.90

1.0 1.5 2.0 25 3.0 3.5

FIG. 15. Real part & of the n = 8 bound-state, for BH spin
x = 0.995, plotted up to the associated maximum superradiant
value of the coupling parameter, o, = 3.75.
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FIG. 16. Fractional deviations between Fig. 15 and the &g
curves for various other spins.

A=A-y? (A27)
the angular equation (AS8) takes the standard form imple-
mented in Mathematica

d*s das m>

1-22)——-2z—+ |r*(1-22) +A-
( Z)dzz zdz+r( )+

2 S(z)=0.

(A28)

SPHEROIDALEIGENVALUE yields 4, and SPHEROIDALPS
yields S(z). The continued-fraction equation (A25), with
A replaced by y?>+ SPHEROIDALEIGENVALUE, can then be
solved for & with the Mathematica function FINDROOT.

For our axion cloud simulations, we have needed to
compute ¢ for bound-states up to (and including) n = 9. As
an example, we have plotted the real and imaginary parts of
the n = 8 bound-state in Figs. 15-17; Figs. 15 and 16 are
analogous to Figs. 1 and 2.

&
10—14 L
—x=05 —x=09
10710 Xx=055 — x=095
—x=06 — x=099
1024 — x=0.65
’ —x=07
0 —x=075
—x=08
10l / X =085
05 10 15 20 25 30 35%
FIG. 17. Imaginary part of the n =8 bound-state eigenfre-
quency.
]
20000+
15000+
10000
5000~
10 20 30 40 50 60
FIG. 18. Radial profiles |®(r;t =0,0 =z/2,¢ =0)| of the

n =135, | =m =4 superradiant bound-state for a BH of spin
x = 0.99 at four consecutive values of a. The peak of the axion
cloud shifts toward the BH with increasing a. This makes sense by
comparison with the hydrogen atom: for the / = n — 1 states of the
hydrogen atom, the most probable radius 7y, is inversely propor-
tional to the -electromagnetic fine-structure constant agy:
Fmp = N*ag & n? /agy, where ag is the Bohr radius. While apy
isactually a constant, the analog for scalar field bound-states in Kerr,
a « uM, is different for each BH. As a result, for fixed n, the most
probable radius for the / = n — 1 bound-states decreases with a.
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