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Ultralight scalar fields can experience runaway “superradiant” amplification near spinning black holes,
resulting in a macroscopic “axion cloud,” which slowly dissipates via continuous monochromatic
gravitational waves. For a particular range of boson masses, Oð10−11–10−10Þ eV, an axion cloud will
radiate in the 10–100 kHz band of the levitated sensor detector (LSD). Using fiducial models of the mass,
spin, and age distributions of stellar-origin black holes, we simulate the present-day Milky Way population
of these hypothetical objects. As a first step toward assessing the LSD’s sensitivity to the resultant ensemble
of gravitational wave signals, we compute the corresponding signal-to-noise ratios which build up over a
nominal integration time of 107 s, assuming the projected sensitivity of the 1 m LSD prototype currently
under construction, as well as for future 10 m and 100 m concepts. For a 100 m cryogenic instrument,
hundreds of resolvable signals could be expected if the boson mass μ is around 3 × 10−11 eV, and this
number diminishes with increasing μ up to ≈5.5 × 10−11 eV. The much larger population of unresolved
sources will produce a confusion foreground which could be detectable by a 10-m instrument if
μ∈ ð3–4.5Þ × 10−11 eV or by a 100-m instrument if μ∈ ð3–6Þ × 10−11 eV.

DOI: 10.1103/PhysRevD.110.123025

I. INTRODUCTION

The era of gravitational-wave (GW) astronomy is in full
swing. During their first three observing runs, the GW
interferometers Advanced LIGO and Advanced Virgo
detected 90 compact binary coalescences involving neutron
stars (NS) and stellar-mass black holes (BH) [1–3]. The
most notable events included the first NS-NS merger
(GW170817) [4], the first highly asymmetric binary
(GW190412) [5], the first merger with an intermediate-
mass BH remnant (GW190521) [6], and the first object in
the mass gap separating the most massive neutron stars
from the lowest-mass BHs (GW190814) [7]. The first half
of the fourth observing run has already seen a new lower-
mass-gap event (GW230529) [8].

Adding to the excitement, evidence for a stochastic
background has been reported in the 15-year dataset from

the North American Nanohertz Observatory for
Gravitational Waves [9]. The most well-motivated scenario
for the origin of this background is the extragalactic
population of inspiralling supermassive BH binaries.
Finally, the launch of the Laser Interferometer Space

Antenna (LISA) in themid-2030swill open up themillihertz
band for exploration. The Galactic population of compact
binaries—and the extragalactic population of supermassive
BH binaries and extreme-mass-ratio-inspirals—are all
highly anticipated LISA sources [10].
These observatories cover multiple windows in the GW

spectrum from the nanohertz up to several hundred Hz. The
push to higher frequencies is now underway, with cosmic
strings, axion clouds, primordial black hole (PBH) binaries,
and early universe stochastic backgrounds as the main
science drivers [11].
One such concept, currently in development at

Northwestern University, is the Levitated Sensor Detector
(LSD). With sensitivity to GWs at tens to hundreds of kHz,*Contact author: JacobSprague2021@u.northwestern.edu
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the LSD employs optically trapped micron-scale disks as
GW sensors. The instrument is a Michelson interferometer
with two perpendicular 1 m Fabry-Pérot arm cavities. In
each arm, a disk is levitated at an antinode of a standing-
wave formed by two counter-propagating beams. The
trapped object behaves like a driven damped harmonic
oscillator, with the corresponding trap frequency being
widely tunable with laser intensity. The periodic changes
in arm length induced by a GW manifest as a periodic
shift in the position of the antinode. If the trap frequency
matches theGWfrequency, the levitated sensor is resonantly
driven [12–14].
As a resonant detector, the LSD is well suited to search

for continuous monochromatic signals. A popular scenario
involves the interaction between spinning black holes and
“ultralight” bosonic fields—i.e. those with masses several
orders of magnitude smaller than an electron volt (eV).
Such fields can extract rotational energy from spinning
BHs via “superradiant amplification” of certain bound-
states [15]. The result is a macroscopic cloud of bosons
all living in the same state—commonly known as a
“gravitational atom” or “axion cloud” [16]. These oscillat-
ing nonaxisymmetric clouds generate continuous mono-
chromatic GWs at a frequency primarily determined by the
boson’s mass. Tens to hundreds of kHz corresponds
to μ ¼ Oð10−11–10−10Þ eV.
This scenario can be realized with physics beyond-the-

Standard-Model (BSM). For example, a large number of
ultralight fields may occur as a result of the compactifi-
cation of extra dimensions [17]. One of these may be the
QCD axion—the pseudoscalar boson proposed to solve the
strong-CP problem [18–20]. The axion is a Goldstone
boson of a spontaneously broken global symmetry which
acquires a small mass through nonperturbative effects. Its
mass, μ, is determined by the energy scale fa associated
with the broken symmetry [17],

μ ≈ 6 × 10−10 eV

�
1016 GeV

fa

�
ð1Þ

where 1016 GeV≡ ΛGUT is the grand unification (GUT)
scale. An axion of mass Oð10−10Þ eV corresponds to fa
being at the GUT scale. However, as we will see in
Sec. VI A, signals in the LSD band are only expected
up to ≈32 kHz, corresponding to a 6.6 × 10−11 eV boson.
At boson masses Oð10−11Þ eV, superradiance occurs

optimally for BH’s with masses between 0.1 and a few solar
masses. Subsolar BHs may exist as PBHs [21], and BHs in
the 1 − 4M⊙ range might be formed dynamically in binary
neutron star mergers [22], accretion-induced collapsing
neutron stars [23], or supernovae with unusually high
fallback [24,25].
The 1 − 4M⊙ range of BH masses is gradually being

populated by microlensing candidates [26] and GW events
such as GW190814 [7] and GW230529 [8]. Since the mass

distribution for these objects is still unknown, we will limit
our attention to stellar-origin BHs with masses between 5
and 20M⊙, typical of BHs in x-ray binary systems.
As a first step toward building the LSD search pipeline,

we simulate the Galactic population of axion clouds with
5 − 20M⊙ BH hosts. The essential data returned by these
simulations are the gravitational-wave frequency and
dimensionless strain amplitude emitted by each cloud.
Together with the LSD’s projected sensitivity curve, we
estimate the number of resolvable signals, i.e. those whose
signal-to-noise ratio (SNR) rises above a given threshold
after a coherent observation time Tcoh ¼ 107 s (a little less
than four months). We adopt the idealization of a “freely
floating” detector orbiting the Milky Way at the same
radius as the Solar System but not situated on a rotating
planet orbiting a star. In doing so, we neglect the amplitude
and frequency modulations induced by the Earth’s sidereal
rotation and by its orbital motion in the Solar System. Our
results establish a baseline from which a more in-depth
analysis, including the aforementioned modulations, can be
undertaken in future work.
In Secs. II and III, we introduce the essential physics of

axion clouds and their GW emission. To simulate the
population of axion clouds, we require a model of the
stellar-origin BH population. The parameters of a black
hole—mass, spin, age, and location in the Milky Way—are
taken to be independent random variables, and we discuss
their distributions in Sec. IV. The procedure for determin-
ing whether a BH of given mass, spin, and age presently
hosts an axion cloud is described in Sec. V. The simulated
cloud populations—and the corresponding ensembles of
GW signals—are discussed in Sec. VI. Section VII pro-
vides a summary of the results, as well as tasks for future
work. Throughout the paper, we adopt the metric signature
ð−;þ;þ;þÞ, and we retain all factors of G, c, and ℏ. We
hope our decision not to set physical constants to unity will
make this work more accessible to those unaccustomed to
the conventions of fundamental physics theory.

II. SUPERRADIANT BOUND-STATES

The creation of macroscopic clouds around spinning
black holes can occur for any massive bosonic field. The
simplest scenario, the one we adopt, is that of an electrically
neutral massive scalar field freely propagating in the Kerr
spacetime; we denote the BH mass and dimensionless spin
byM and χ ≡ Jc=ðGM2Þ, respectively (J is the BH angular
momentum). We also assume no self-interactions to avoid
complications such as the bosenova instability [17]. The
scalar field then obeys the Klein-Gordon equation [15],

½gμν∇μ∇ν −m2��Φðx⃗; tÞ ¼ 0 ð2Þ

where the constant m� has dimensions of inverse length; in
the quantum theory of a scalar field, the physical meaning
of m� is 1=λc, where λc ≡ ℏ=ðmcÞ ¼ ℏc=μ is the reduced
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Compton wavelength of the boson, m is the mass of the
particle, and μ ¼ mc2.
In Boyer-Lindquist coordinates, with the ansatz

Φðx⃗; tÞ ¼ e−iωteimϕSðθÞRðrÞ; ð3Þ
the Klein-Gordon equation separates into two ordinary
differential equations (ODEs) for RðrÞ and SðθÞ. We
seek a bound-state solution which is “ingoing” at the event
horizon—i.e. a solution which goes to zero at infinity and
looks like an ingoing wave at the horizon. The ingoing
boundary condition causes the eigenfrequency ω to be
complex,

ω ¼ ωR þ iωI ð4Þ
with the consequence that bound-states must either grow or
decay

e−iωt ¼ e−iðωRþiωIÞt ¼ e−iωRteωI t

⇒ Φðx⃗; tÞ ¼ eωI t½e−iωRteimϕSðθÞRðrÞ�

For ωI > 0, the field amplitude grows exponentially.
A necessary and sufficient condition for the growth of a
bound-state with azimuthal number m is that the event
horizon’s angular speed ΩH (times m) be faster than the
oscillation of the field [15],

ωR < mΩH: ð5Þ

This requirement is called the “superradiance condition.”
As the field amplitude grows, the BH loses rotational
energy, and ΩH decreases until the inequality becomes
an equality. At that point, the superradiant growth
ceases, and the resultant bound-state slowly dissipates by
emitting GWs.
It is conventional to define a dimensionless “coupling

parameter” α as the ratio of the BH’s gravitational radius rg
to the reduced Compton wavelength λc of the scalar field

α ≔
rg
λc

¼ GM
c2

μ

ℏc
¼ GMμ

ℏc3
: ð6Þ

The “weak-coupling” limit, defined by α ≪ 1, corre-
sponds to the Compton wavelength of the boson being
much larger than the characteristic size rg of the BH. In this
limit, the bound-state energy, given by the real part of ω,
can be written in closed form [27]

ℏωR ¼ μ

�
1 −

α2

2n2
þ
�
2l − 3nþ 1

lþ 1=2
−
1

8

�
α4

n4

þ 2mχα5

n3lðlþ 1=2Þðlþ 1Þ þ � � �
�
: ð7Þ

The small “fine-structure” corrections beyond the lead-
ing 1 depend on the angular momentum of the cloud and

the spin of the BH. The quantity in large square brackets
depends on the BH and boson masses only through their
dimensionless product α. This motivates the introduction of
a dimensionless eigenfrequency ξ ¼ ξR þ iξI

ξR ≡ ℏωR

μ
ξI ≡ ℏωI

μ
: ð8Þ

Oncewe have computed ξ over a sufficiently large region
of the ðα; χÞ parameter space for all bound-states {n; l; m}
of interest, we can freely plug in any BH masses and axion
masses of our choosing. For example, taking M ¼ 107M⊙
and μ ¼ 10−17 eV, we get α ¼ 0.748. The same value is
obtained takingM ¼ 10M⊙ and μ ¼ 10−11 eV. The essen-
tial consequence is that, for a given BH spin χ, the same set
of superradiant bound-states exists for both scenarios.
From a practical point of view, this also means the

superradiance condition

ξR <
mχ

2α½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
�
≡ ξcrit ð9Þ

becomes a tool for rapidly determining, for a given
parameter set {μ;M; χ}, which states are superradiant.
Additionally, far from the BH where relativistic effects

are negligible, the radial equation reduces to (rmeasured in
units of λc) [16]�
−

1

2r2
d
dr

�
r2

d
dr

�
−
α

r
þ lðlþ1Þ

2r2
þ1−ξ2

2

�
RðrÞ¼ 0; ð10Þ

which is the radial Schrödinger equation for a nonrelativ-
istic particle in a Coulomb potential VðrÞ ¼ α=r, hence the
moniker “gravitational atom.” The α2=ð2n2Þ term in Eq. (7)
is precisely the “hydrogen atom” solution to Eq. (10). The
complete small-α solutions to the full Klein-Gordon equa-
tion have been computed order by order using the method
of matched asymptotic expansions [16] (and we have
provided an example of Eq. (11) in Figs. 1 and 2),

ξR ¼ 1 −
α2

2n2
þ
�
2l − 3nþ 1

lþ 1=2
−
1

8

�
α4

n4

þ 2mχα5

n3lðlþ 1=2Þðlþ 1Þ þ � � � ; ð11Þ

ξI ¼ 2
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q �� mχ

2αð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
Þ
− ξR

�
α4lþ5

×
24lþ1ðnþ lÞ!

n2lþ4ðn − l − 1Þ!
�

l!
ð2lÞ!ð2lþ 1Þ

�
2

×
Yl
j¼1

h
j2ð1 − χ2Þ þ

h
mχ − 2αξR

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q �ii
:

ð12Þ
In general, ξ is a function of {n, l, m, α, χ}. For

fixed α and χ, the superradiance rate is largest when
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m ¼ l ¼ n − 1. We consider only such bound states in our
simulations of the Galactic axion cloud population, reduc-
ing the parameter list to {n, χ, α}.
Since our fiducial model of the Galactic BH popula-

tion will assume M ≥ 5M⊙, as well as boson masses
Oð10−11–10−10Þ eV, the corresponding values of α are
always greater than one but still of order unity. In this
“intermediate” regime, there are no closed-form solutions
for ξ. As detailed in the Appendix, we must resort to the
series-solution method for solving the radial Klein-Gordon
equation. The coefficients of the infinite-series ansatz obey
a three-term recurrence relation whose solution is equiv-
alent to the solution of a corresponding nonlinear con-
tinued-fraction equation [15,28].

Denoting the peak mass of the cloud as Mc, the cloud’s
growth timescale is given by [29]

τc ≡ τnlm lnN ¼ τnlm ln

�
Mcc2

μ

�
ð13Þ

with N the number of bosons in the cloud and τnlm the
reciprocal of the superradiance rate,

τnlm ≡ 1

Γnlm
; Γnlm ≡ 2ωI: ð14Þ

τnlm is the e-folding timescale, and we follow the authors
of [29] in taking τc as the time to fully grow the bound-
state. The factor of two in Γnlm occurs because the cloud’s
density is proportional to the 00-component of the stress-
energy, ρ ∝ T0

0 ∝ expð2ωItÞ.
As the cloud grows, the BH gradually loses mass and

angular momentum. The growth timescales are long
enough to permit an adiabatic treatment of the BH’s
evolution [30]. The metric can be thought of as Kerr with
slowly changing M and χ. Denoting the initial BH
parameters as (Mi, χi), the cloud’s mass is

Mc ≡Mi −Mf ð15Þ

and the hole’s final mass and spin (Mf, χf) are given
by [30,31]

Mf ¼ Mi

�
m3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m6 − 16m2ξ2Rα

2
i ðm − ξRαiχiÞ2

p
8ξ2Rα

2
i ðm − ξRαiχiÞ

�
; ð16Þ

χf ¼
�
Mi

Mf

�
2
�
χi −

mMc

ξRαiMi

�
: ð17Þ

Since our simulation of the Galactic axion cloud pop-
ulation requires us to follow the evolution of each BH-
cloud system—of which there could be millions—we save
computation time by relying on these expressions for the
final BH parameters.
The final mass and spin become the new parameters

(Mf → Mi, χf → χi) for determining which bound-state
will grow after the present cloud has dissipated. For our
simulations, the superradiance condition [Eq. (9)] is used to
determine, from the set f1; 2; 3;…g, the smallest value of
m for which superradiance occurs. The final state of the
BH-boson system at the cessation of cloud growth is
determined by Eqs. (15)–(17).

III. GRAVITATIONAL WAVES
FROM AXION CLOUDS

At a particle-physics level, GW production by axion
clouds can be understood in terms of two processes:
annihilation of two bosons to a single graviton (with the
BH absorbing the recoil momentum) and downward
transitions between bound-states [32]. However, just as
superradiance is a purely classical kinematic effect, the GW

FIG. 1. The real part ξR of the n ¼ 5 bound-state, for BH spin
χ ¼ 0.995, plotted up to the associated maximum superradiant
value of the coupling parameter, αmax ¼ 2.06.

FIG. 2. The ξR curve in Fig. 1 corresponds to a BH spin of
χ ¼ 0.995. As mentioned in the main text, there are small spin-
dependent corrections to ξR. Had we plotted several curves in
Fig. 1, each corresponding to a different spin, they would lie so
close together as to be almost indistinguishable. To spread them
out, we plot the fractional deviations between the curve in Fig. 1
and the corresponding curves for a variety of spins. As indicated
on the y-axis, the fractional deviations are negative: For a given α,
lower BH spin implies lower ξR; In turn, this implies a lower GW
frequency via Eq. (27).
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emission can also be understood classically in terms of the
cloud’s time-dependent quadrupole moment. That being
said, the GW signals considered in this work correspond to
the annihilation channel.
Since our simulation of the Galactic axion cloud pop-

ulation requires us to compute the GW amplitude for each
cloud—of which there could be millions—we save com-
putation time by relying on semianalytic formulas for the
amplitudes [31,32]. Following [30], the GW signal seen by
a detector with perpendicular arms takes the general form

hðtÞ ¼ FþðtÞaþ cos½ΦðtÞ� þ F×ðtÞa× sin½ΦðtÞ� ð18Þ

where FþðtÞ and F×ðtÞ are the detector’s angular pattern
functions, and the phase ΦðtÞ encodes the frequency
evolution in the detector frame,

ΦðtÞ¼Φ0þ2π

Z
T

T0

fðT 0ÞdT 0

¼Φ0þ2π

�
f0ðT−T0Þþ

1

2
ḟ0ðT−T0Þ2þ…

�
; ð19Þ

where ḟ is the frequency derivative, quantities with a zero
subscript are their values at a reference time T0, and TðtÞ is
the time at the Solar System barycenter, related to the time
at the detector t by the addition of the Rømer, Shapiro, and
Einstein delays.
The amplitudes aþ=× are expanded in terms of spheroidal

harmonics with spin-weight s ¼ −2,

aþ=⨯ ¼ −
X
l̃≥2l

hðl̃Þ0 ½−2Sl̃;m̃;ω̃ � −2Sl̃;−m̃;−ω̃�; ð20Þ

where ω̃ ¼ 2ωR is the GW angular frequency, the param-
eters (l,m) refer to the scalar bound-state, and (l̃; m̃) refer to
the GW modes, with l̃ ≥ 2l and m̃ ¼ 2m. For each mode,
there is a polarization-independent characteristic amplitude

hðl̃Þ0 [30],

hðl̃Þ0 ¼ c4

G
Mc

Mf

1

2π2Mff2d
Al̃ m̃ðαi; χiÞ; ð21Þ

where f is the GW frequency, d is the source distance, and
the Al̃ m̃ðα; χÞ are dimensionless numerical factors which
measure how much energy is carried by each mode. The
corresponding luminosity in each mode is given by

ĖGWðl̃; m̃; ω̃Þ ¼ c5

4πG

�
c3

GMfω̃

�
2 M2

c

M2
f

A2
l̃ m̃
ðαi; χiÞ: ð22Þ

In principle, the coefficients Al̃ m̃ must be computed
numerically by solving the Teukolsky equation governing

linear perturbations of the Kerr metric. The authors of [31]
express ĖGW in the form

ĖGW ¼ c5

G
M2

c

M2
f

dẼ
dt

ð23Þ

and invoke an analytic solution for dẼ=dt, which is
formally valid for α ≪ l and which remains a good
approximation up to α ∼ l [32]

dẼ
dt

¼ 16lþ1lð2l − 1ÞΓ2ð2l − 1ÞΓ2ðnþ lþ 1Þα4lþ10
f

n4lþ8ðlþ 1ÞΓ4ðlþ 1ÞΓð4lþ 3ÞΓ2ðn − lÞ ð24Þ

where Γ is the gamma function, and αf denotes the value of
α corresponding to the final mass of the BH (i.e. after the
cloud has finished growing),

αf ¼ αi
Mf

Mi
: ð25Þ

Comparing Eqs. (22) and (23), we see that Al̃ m̃ ∝ffiffiffiffiffiffiffiffiffiffiffiffiffi
dẼ=dt

p
, allowing us to express hðl̃Þ0 directly in terms of

dẼ=dt. Restricting ourselves to the dominant mode
m̃ ¼ l̃ ¼ 2l, we obtain a closed-form solution for the
characteristic amplitude, which we use without abandon
to compute the GW amplitudes of the axion clouds
resulting from our simulations (we will drop the superscript
ð2lÞ henceforth),

hð2lÞ0 ðdÞ ¼ GMc

c2d
2

ffiffiffi
π

p
Mi

ξRαiMf

ffiffiffiffiffiffi
dẼ
dt

s
: ð26Þ

The corresponding GW frequency is given by

f ¼ ω̃

2π
¼ 1

2π

2μ

ℏ
ξR ≡ f0ξR

f ¼ f0ξR ð27Þ

where we’ve introduced the zeroth-order frequency
f0 ¼ ω0=2π, ω0 ≡ 2μ=ℏ.

It is often remarked that the GW frequency is propor-
tional to twice the axion mass, f ∝ 2μ. We see that this is,
indeed, true in the small-α limit by noting that ξR → 1 as
α → 0 [Fig. 1, Eq. (11)]. The frequency monotonically
decreases with increasing α, and for axion clouds in the
kHz band, with stellar-mass BH hosts (where α is generi-
cally greater than 1), GW frequencies can be upwards of
10% smaller than the nominal value f0.
Equation (27) gives the frequency as measured in the

rest-frame of the axion cloud. For an observer located
elsewhere in the Milky Way, the measured signal is
Doppler shifted due to the differential rotation of the
Galaxy. We assume all bodies in the Galaxy move in the
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azimuthal direction, v⃗ ¼ vϕϕ̂, and we assume the following
Galactic rotation curve [33] (r, in kpc, is the cylindrical
radial distance from the Galactic center):

vϕðrÞ ðkm=sÞ¼

8>>><
>>>:

265−1875ðr−0.2Þ2 r< 0.2

225þ15.625ðr−1.8Þ2 0.2<r< 1.8

225þ3.75ðr−1.8Þ 1.8<r< 5.8

240 r> 5.8.

ð28Þ

Denoting the source-frame frequency as fs, the non-
relativistic Doppler-shifted frequency we observe is

fobs ¼
�
1 −

vr
c

�
fs; ð29Þ

where vr is the line-of-sight component of the relative
velocity between source and observer. vr is defined to be
positive when the source and observer are moving away
from each other.
When a cloud finishes growing, it emits GWs whose

initial amplitude h0 is given by Eq. (21). As the cloud
dissipates, the amplitude decreases as [29]

hðtÞ ¼ h0
1þ t=τGW

; ð30Þ

where τGW is the time for h to drop to half its initial value.

IV. THE GALACTIC POPULATION OF ISOLATED
STELLAR-ORIGIN BLACK HOLES

With the results of the previous sections in hand, we can
follow the “superradiance history” of any given BH—i.e.
we can determine the sequence of scalar field bound-states,
their growth and dissipation timescales, the BH mass and
spin decrements, and, above all, the GW frequency and
amplitude of each successive cloud. To simulate the entire
Galactic population of axion clouds, we must assign each
BH a mass, spin, age, and location—taken to be indepen-
dent random variables—in accordance with known or
assumed distributions.
Our knowledge of the stellar-origin BH mass distribution

is informed by mass measurements in x-ray binary systems
[34–36], microlensing events [37], and astrometry [38], as
well as through modeling of the complex physics of core-
collapse supernovae [39]. KnownBHs typically havemasses
between 5M⊙ and 20M⊙, and power-lawmodels are favored
when fitting the mass function of low-mass x-ray
binaries [34]. Not coincidentally, the massive stars which
produce BH remnants are also characterized by a power-law
distribution, ψðMÞdM ∝ M−2.35dM, the “Salpeter” func-
tion. We will assume MBH to be Salpeter-distributed on the
interval 5 − 20M⊙.

BH spins have been measured in several x-ray
binaries [40], but none have been measured for isolated
BHs. In the case of binaries, the distribution of spin
magnitudes is more-or-less uniform, so we take the BH
spin to be uniformly distributed, χ ∼U½0; 1�.
The stellar content of the Milky Way can be divided into

three primary regions—the thin disk, the thick disk, and the
central bulge. The age distribution of stellar-origin BHs is
tied to the star formation history in each region. As the
Milky Way’s star formation history is a topic of ongoing
research,we take an agnostic approach by assigning eachBH
an age of 10x yr, with x uniformly distributed on an interval
which varies among the three Galactic regions. For the thin
disk and thick disk, we take x ∼U½3; log10ð8 × 109Þ� and
x ∼ U½3; 10�, respectively [41]. For the bulge,we assign each
BH an age 10x yr, with x ∼U½9; log10ð13 × 109Þ� [42].
We assume black holes are distributed in space according

to the mass profiles of the disks and bulge described in
Ref. [43]. Both disks have the same axisymmetric form,
with the corresponding scale lengths, scale heights, and
surface densities quoted in Table I

ρdiskðr; z;ϕÞ ¼
Σd;0

2zd
e−jzj=zde−r=Rd : ð31Þ

The bulge is also axisymmetric, with the corresponding
parameters also given in Table I

ρb ¼
ρb;0

ð1þ r0
r0
Þα e

−ðr0=rcutÞ2 ð32Þ

TABLE I. Physical parameters for the empirical stellar-mass
distribution of the MilkyWay inferred in Ref. [43]. The values for
those with an asterisk (*) are the means marginalized over all
other parameters in the model. The disk scale heights are the best-
fitting values from Ref. [44], and the stellar bulge model is an
axisymmetric modification of the result from Ref. [45] in which
the assumption of a constant mass-to-light ratio in the bulge was
used to convert photometric data into a mass model.

Disk parameters Value

�Rd;thin (kpc) 3.00
�Rd;thick (kpc) 3.29
�Σd;0;thin (M⊙pc−2) 741
�Σd;0;thick (M⊙pc−2) 238
zd;thin (kpc) 0.3
zd;thick (kpc) 0.9
*Solar radius R⊙ (kpc) 8.29

Bulge parameters Value
*ρb;0 (M⊙pc−3) 95.5
α 1.8
r0 (kpc) 0.075
rcut (kpc) 2.1
q 0.5
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r0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz=qÞ2

q
:

We apportion the BHs among the three Galactic regions
according to the fractions fthin, fthick, and fbulge, defined by
fi ¼ Mi=

P
i Mi, i∈ fthin; thick; bulgeg. The disk masses

are obtained by integrating ρdisk, with the radial integral
cut-off at 25 kpc and the vertical integral cut-off at 3 scale
heights. This gives 3.97 × 1010M⊙ and 1.5 × 1010M⊙ for
the thin and thick disks, respectively. We take the bulge
mass to be 8.9 × 109M⊙, the value quoted in [43]. The
corresponding fi are 62%, 24%, 14%, respectively. We will
assume the Galactic population of NBH BHs to be appor-
tioned likewise: 62% in the thin disk, 24% in the thick disk,
and 14% in the bulge.

V. SIMULATION PROCEDURE

The simulation is a procedure by which, for a given
axion mass and from an initial population of NBH BHs
sprinkled throughout the Milky Way, we determine the
number Nc of extant axion clouds. Each simulation outputs
the physical properties, distances, and the GW frequencies
and amplitudes of the Nc clouds.
At the outset, each BH is assigned a mass, spin, and age.

We will illustrate the procedure with an example and
then summarize the procedure with a flowchart: taking
μ ¼ 4 × 10−11 eV, consider the evolution of a 5M⊙, χ ¼
0.95 BH with an age of 108 yrs. The superradiance
condition, Eq. (9), determines which bound-state grows
first.

ξR ¼ 1.03 ξcrit ¼ 0.24 ðm ¼ 1Þ
ξR ¼ 0.76 ξcrit ¼ 0.48 ðm ¼ 2Þ
ξR ¼ 0.89 ξcrit ¼ 0.73 ðm ¼ 3Þ
ξR ¼ 0.94 ξcrit ¼ 0.97 ðm ¼ 4Þ

ð33Þ

Since ξR > ξcrit for m ¼ 1, 2, 3, the first superradiant
bound-state is n ¼ 5; l ¼ m ¼ 4, and it grows on a time-
scale of τc ¼ 3.4 yrs. The BH’s mass and spin are decreased
to 4.94M⊙ and 0.938, respectively. Once the cloud has
finished growing, it dissipates on a timescale τGW ¼ 0.8 yrs.
The time from the BH’s birth to the cloud’s dissipation is
only τc þ τGW ¼ 4.2 yrs, leaving plenty of time for new
clouds to develop.We denote by tr the time remaining to the
present. In this case, tr ¼ 108 − 4.2 ≈ 108 yrs.
The next bound-state is n ¼ 6 with τc ¼ 3536 yrs. The

BH’s mass and spin are decreased to 4.67M⊙ and 0.84,
respectively. Once the cloud has finished growing, it
dissipates on a timescale τGW ¼ 2445 yrs. At this point,
tr ¼ 9.9994 × 107 yrs—still plenty of time left for further
superradiance.
The next (and final) bound-state is n ¼ 7 with τc ¼

6 × 107 yrs. The BH’s mass and spin are decreased to
4.5M⊙ and 0.74, respectively. Once the cloud has finished

growing, tr ¼ 3.9 × 107 yrs remain. The dissipation time-
scale τGW ¼ 7 × 107 yrs. Since τGW > tr, the n ¼ 7 cloud
is still present today. It has an initial mass Mc ¼ 0.16M⊙,
and it radiates at f ¼ 18.9 kHz. Placing the source at d ¼
1 kpc (for example), the initial strain amplitude h0 ¼ 10−26

[Eq. (26)]. The signal observed today was emitted d=c ¼
3300 yrs ago, so the corresponding amplitude hðtÞ ¼
6.9 × 10−27 [Eq. (30) with t ¼ tr − d=c].
Our simulation of the Galactic cloud population consists

of applying the foregoing procedure to each of the BHs in
the Galaxy. If a given BH only permits a bound-state whose
growth timescale is greater than the age of the universe
(τc > τuni ¼ 1.38 × 1010 yr), the host BH is removed from
the simulation.
Our criterion for whether a given cloud is still present

today is τGW > tr. For each black hole, there are only two
final options: either a cloud has finished growing and is still
present today, or a cloud is growing on a timescale greater
than the age of the universe.
Those BHs with an extant cloud are assigned a location

in the Milky Way [Eqs. (31) and (32)]. Earth is assigned to
an arbitrary—but fixed—point on the circle of radius
8.3 kpc in the Galactic midplane. For a cloud located at
distance d, we check the inequality ctr > d to determine if
there has been enough time for GWs to propagate to Earth
since the cloud formed. Those clouds for which d > ctr are
presently unobservable, and we retain only those clouds
for which ctr > d. We summarize this section with the
following flowchart:

(i) For a given μ, MBH, χ, and BH age, find the lowest
superradiant value of n.

(ii) If τc > τuni, the BH is removed from the simulation.
(iii) Otherwise, the dissipation timescale τGW determines

whether a new cloud will start growing in accordance
with τGW > tr (cloud still present) or τGW < tr (cloud
has dissipated, and a new cloud begins growing).

(iv) Repeat the previous steps until one of two possibil-
ities is obtained: (a) a cloud is growing with τc > the
age of the universe or (b) a cloud is still present and
radiating GWs today.

(v) If the cloud hasn’t dissipated yet, assign it a random
position, and compute the GW strain at Earth’s
location only if the travel-time inequality ctr > d
is true.

VI. GWS FROM THE AXION
CLOUD POPULATION

A. Cloud populations

The total number of stellar-origin black holes has been
estimated to be Oð108Þ from the Milky Way’s supernova
rate of Oð1Þ century−1 [46] and from population-synthesis
estimates [47]. We take NBH ¼ 108, bearing in mind that
the true number could be larger by a factor of a few or even
another order of magnitude [48]. We have simulated the
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axion cloud population for μ ¼ ð3; 3.5; 4; 4.5; 5; 5.5; 6;
6.5Þ × 10−11 eV.

The output of a simulation is a collection of all extant
BH-cloud systems in the Milky Way. Those BHs which
have experienced the growth of a single cloud are described
by a list comprising the BH age, the initial and final values
of the BH mass and spin, the bound-state fn; l; m; ξR; ξIg,
the cloud’s properties—mass Mc, growth timescale τc, and
dissipation timescale τGW—the source distance d, and the
GW frequency and amplitude ðf; hÞ. BHs which have
experienced the growth of multiple bound-states are each
characterized by a set of such lists, one per bound-state. The
GW frequency and amplitude are only computed for the
extant cloud, all previous bound-states having already
dissipated.
For a given axion mass, the number of extant clouds is a

random variable whose mean and standard deviation are
estimated by performing 20 simulations with 5 × 106 BH’s
per simulation, computing the sample mean and sample
standard deviation of Nc over the 20 trials, and then
multiplying them by 20 and

ffiffiffiffiffi
20

p
, respectively.

An ensemble of GW signals from axion clouds is a
scatter plot in the h vs f plane, as in Figs. 3–5. The
distribution of amplitudes and frequencies is not random
but consists of well-defined bands corresponding to the
various occupied bound-states. The lowest bound-state
resulting from our simulations is n ¼ 6, reflecting the
general difficulty for stellar-mass BHs to produce clouds
in the LSD band.

Also reflecting this difficulty is the rapid decline in the
number of cloudsNc with increasing boson mass μ (Fig. 6).
For μ ¼ 3 × 10−11 eV, Nc ¼ ð9.323� 0.007Þ × 105, while
at μ ¼ 6.5 × 10−11 eV, the number has dropped to
130� 10. Nc goes to zero around 6.6 × 10−11 eV, corre-
sponding to a nominal upper limit of ≈32 kHz for signals
expected in the LSD band. Higher-frequency signals could
occur from BHs with MBH < 5M⊙, especially in light of
the recent discoveries of lower-mass-gap objects.
In all cases, the distribution of GW frequencies occurs

below the nominal value f0 ∝ 2μ due to the positive scaling
of gravitational redshift with BH mass. This interpretation

FIG. 3. Population of axion clouds, with μ ¼ 3 × 10−11 eV.
From a population of 108 BHs, the simulation returns Nc ¼
ð9.32� 0.03Þ × 105 extant clouds. Of these, 8.3 × 105 (89%)
satisfy the GW travel-time condition (Sec. V). Since GW
amplitudes and frequencies are, necessarily, only computed for
those clouds satisfying the travel-time condition, it should be
understood that only those clouds are represented in this figure, as
well as in Figs. 4 and 5.

FIG. 4. Population of axion clouds, with μ ¼ 4 × 10−11 eV.
From a population of 108 BHs, the simulation returns Nc ¼
ð1.17� 0.01Þ × 105 extant clouds. Of these, 9.5 × 104 (81%)
satisfy the GW travel-time condition.

FIG. 5. Population of axion clouds, with μ ¼ 6 × 10−11 eV.
From a population of 108 BHs, the simulation returns Nc ¼
900� 200 extant clouds. Of these, 620 (69%) satisfy the GW
travel-time condition. The apparent gap in the n ¼ 9 band at
28 kHz is an artifact due to the small number of clouds.
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is confirmed by a plot of the source-frame GW frequencies
fGW;s and initial BH masses Mi for all extant clouds in a
given simulation (Fig. 7, with μ ¼ 3 × 10−11 eV). For each
scalar bound-state, there is a tight relationship, with more
massive BHs producing lower-frequency clouds.
In the introduction (Sec. I), we noted a potential

connection between the QCD axion and the GUT scale
ΛGUT [Eq. (1)]: an axion of massOð10−10Þ eV corresponds
to fa ≈ ΛGUT. If the solution to the strong-CP problem is
tied to GUT phenomenology, then discovery of an
Oð10−10Þ eV axion would be an exciting, albeit indirect,
form of evidence for grand unification. The number of

clouds in the Milky Way dropping to zero around 6.6 ×
10−11 eV would seem to preclude the possibility of
detecting an Oð10−10Þ eV axion—and, by extent, of
probing GUT-scale physics with the LSD. Lower-mass-
gap BHs could produce clouds at higher μ, thereby reviving
hopes of finding a GUT-scale axion. Another possibility is
that ΛGUT is model dependent, giving rise to a range of
possible values including 1017 GeV, which corresponds to
Oð10−11Þ eV bosons.

B. Resolvable signals

The standard result for coherent detection of a continu-
ous monochromatic signal, hðtÞ ¼ h0 cosðωtÞ, is that the
signal-to-noise ratio ρ grows as the square-root of the
coherent integration time Tcoh [11]

ρ ¼ h0
ffiffiffiffiffiffiffiffiffi
Tcoh

pffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p ð34Þ

where
ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
is the one-sided amplitude spectral density

of the detector noise (the “sensitivity curve”) evaluated at
the GW frequency, and the trapping frequency of the
levitated sensor is constant during the entire observation
time. The LSD is an Earth-bound detector for which the
observed signal, Eq. (18), experiences both amplitude
modulation via the angular dependence of the sensitivity
and phase modulation via the Earth’s daily (diurnal)
rotation and orbital motion. These corrections require
knowledge of both the Earth’s position and the source
position to high accuracy. In an all-sky blind search for
axion clouds, the source position is not known ahead of
time, so a realistic search will require a large number of
templates corresponding to many sky locations. A coherent
search for Oð10Þ kHz GWs over the full observation time
(“fully coherent search”) of four months is not computa-
tionally-feasible because of the need to take fine steps in
parameter space. A “semi-coherent” search, in which the
observation time is divided into several segments, sacrifices
sensitivity for a great reduction in the number of templates
needed to perform a coherent search on each segment [49].
As a means of setting upper limits on the expected

number of resolvable signals, we compute the SNR for the
idealized case of a detector freely orbiting the Milky Way at
the same radius as the Solar System (i.e. not attached to a
planet or star system). There is a positive frequency
derivative due to the gradual dissipation of the cloud
which, however, is estimated to be too small to be
detected [29]. The signal remains perfectly coherent over
the full observation time, and a hypothetical search per-
formed at the Solar System barycenter would simply
involve Fourier-transforming the data and looking for lines
in the power spectrum.
Taking Tcoh ¼ 107 s—and with the projected sensitivity

curves for the current 1 m LSD prototype, as well as for

FIG. 6. Number of extant axion clouds Nc drops rapidly with
increasing boson mass μ, and it extrapolates to zero around
6.6 × 10−11 eV, corresponding to f ≈ 32 kHz. In light of the
lower-mass-gap objects found by LIGO-Virgo, we note that
superradiant instabilities with a Oð10−11Þ eV boson are stronger
for MBH < 5M⊙ than for MBH > 5M⊙. Since the BHs involved
in our simulations are of the latter type, the true number of clouds,
for any boson mass, could be greater than our estimate by a factor
depending on the mass distribution and total number of lower-
mass-gap BHs in the Milky Way.

FIG. 7. The source-frame GW frequencies fGW;s and initial BH
masses Mi for the extant clouds in the 3 × 10−11 eV simulation.
The distribution of frequencies below the nominal value f0 ∝ 2μ
is a result of gravitational redshift.
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future 10 m and 100 m versions [13]—we compute the
corresponding SNRs for all sources in the Galaxy. We
count those with ρ > ρt as resolvable, and we adopt the
threshold ρt ¼ 10 (Fig. 8).
The “loudness” of a signal is determined primarily by the

source distance. The distance, in turn, is a random variable
determined by the randomly assigned position vector
[Eqs. (31) and (32)] of the source. Thus, for a given set
of extant clouds, the number of individually resolved
sources Nres will vary each time we reassign their position
vectors. We estimate the mean and standard deviation of
Nres for a given population of extant clouds by laying them
down in the Galaxy Nreshuffle ¼ 100 times and counting
how many are resolvable in each “reshuffling.” The mean
and standard deviation are then computed as

N̄res ¼
1

Nreshuffle

XNreshuffle

i¼1

Nres;i; ð35Þ

σ̄res ¼
1

Nreshuffle − 1

XNreshuffle

i¼1

ðNres;i − N̄resÞ2: ð36Þ

With a 100 m detector, assuming μ ¼ 3 × 10−11 eV,
N̄res ¼ 600 with σ̄res ¼ 20. In the most pessimistic case
(μ ¼ 5.5 × 10−11 eV), there are only Oð1Þ resolvable
signals, and we have not estimated the associated uncer-
tainty. The 10–26 kHz range is where we expect resolv-
able signals to be present for a 100 m LSD. For a 10 m
instrument, Oð1Þ resolvable signals appear at μ ¼
3 × 10−11 eV, while a 1 m instrument does not have the
required sensitivity to detect individual sources.
In the event a continuous monochromatic signal is

detected by the LSD, we will have to answer the question:
is this signal from an “axion cloud”—a superradiant bound-
state of a scalar (spin-0) field—or from a cloud involving a
spin-1 (“Proca”) field? In general, Proca fields give rise to
stronger GW signals than scalar fields [50]. As a result, we
would expect resolvable signals from Proca clouds to be

found at greater distances than those from scalar clouds.
For the 100 m detector, with μ ¼ 3 × 10−11 eV, the
resolvable signals are depicted in terms of their SNRs
and source distances in Fig. 9. The vast majority are less
than 3 kpc away. Turning this on its head, the detection of a
continuous monochromatic signal with an inferred distance
significantly greater than 3 kpc could be a potential
indicator of a spin-1 field.

C. Unresolved signals

For all boson masses, the majority of GW signals have
amplitudes less than 10−23, with the weakest having
h ¼ Oð10−29Þ. The unresolvable signals incoherently com-
bine to form a Galactic confusion foreground which
manifests as an excess noise in the detector. As before,
we neglect the diurnal and annual modulations of the
background and instead provide a preliminary estimate of
the foreground’s strength compared to the nominal 1 m,
10 m, and 100 m LSD sensitivity curves. In a strain-
frequency plot (e.g. Fig. 3), we bin the cloud amplitudes
[with bin width δf ¼ 10−2fc, where fc is the center
frequency of a given bin, and the factor 10−2 is the full-
width-at-half-maximum (FWHM) of the trapped object’s
response function around fc], and we associate an rms
amplitude, defined as follows, with each bin.
We start by creating a bin centered on the frequency of

the cloud with the smallest GW frequency in a strain-
frequency plot, e.g. Fig. 3. All axion clouds emit mono-
chromatic signals,

hiðtÞ ¼ h0;i cosð2πftþ ϕiÞ; ð37Þ

where the phases ϕi are uniformly distributed between
0 and 2π, and i runs over all clouds in the bin. The squared

FIG. 8. SNR’s ρ of resolvable GW signals from simulated
axion cloud populations, for the 100 m LSD. As a function
of μ, the number of resolvable signals drops to zero beyond
5.5 × 10−11 eV, thereby constraining the expected frequency
range of resolvable sources to f < 26 kHz.

FIG. 9. Scatter plot of the SNR’s ρ and source distances d of
resolvable signals for the 100 m LSD, taking μ ¼ 3 × 10−11 eV.
There appears to be an upper limit d≲ 3 kpc and certainly a hard
upper limit d < 4 kpc, suggesting a way to distinguish between
spin-0 and spin-1 bosonic clouds: Proca clouds are generally
louder GW sources than axion clouds, so a GW signal with
d ≫ 3 kpc could be taken as evidence of a spin-1 field.
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sum of all signals in the bin is time-averaged over a period
Tc ¼ 1=fc, where fc is the frequency at the center of the
bin; the result is a dimensionless time-averaged power
associated with that bin. The square root of the power
represents an effective amplitude heff of the confusion
foreground in the bin,

heff ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Tc

Z
Tc

0

dt
hX

i

hiðtÞ
i
2

s
: ð38Þ

We then create a new bin with center frequency fcjnew
and width δfjnew,

fcjnew ¼ fcjold þ 10−2δfjold; ð39Þ

δfjnew ¼ 10−2fcjnew; ð40Þ

and we compute heff for this bin. The center frequency is
shifted rightwards by a fraction (arbitrarily chosen to be
10−2) of the previous bin width so that adjacent bins
overlap, ensuring some degree of continuity in heff vs f. We
continue until we reach the rightmost end of the cloud
population. Each bin is then characterized by an ordered
pair ðfc; heffÞ (Fig. 10).
A preliminary method for estimating the LSD’s sensi-

tivity to the confusion foreground is to treat each pair
ðfc; heffÞ as if they were the frequency and amplitude of a
hypothetical monochromatic signal whose corresponding
effective SNR ρeff , computed via Eq. (34), is then compared
to a threshold ρt. We continue to require ρt ¼ 10. The
numerator and denominator of Eq. (34) ðheff

ffiffiffiffiffiffiffiffiffi
Tcoh

p
and

FIG. 10. Effective amplitudes heff , as defined in Eq. (38), for
the binned GW amplitudes of a simulated population of axion
clouds with μ ¼ 3 × 10−11 eV. The width of each bin is a factor
10−2 of the central frequency fc, reflecting the FWHM of the
detector response when the trap frequency is fc.

FIG. 11. Confusion-limited foreground of unresolved axion
clouds, as a function of the boson mass μ, taking Tcoh ¼ 107 s.
The 1, 10, and 100 m LSD sensitivity curves are depicted by the
red, blue, and black dashed curves, respectively.

FIG. 12. Corresponding SNR ρeff of the confusion-limited
foreground with respect to the 1 m LSD sensitivity curve. The
dashed line depicts the detection threshold ρt ¼ 10 adopted in
this paper, and the solid line represents a lower threshold of five.
The foreground does not rise above either threshold.

FIG. 13. Corresponding SNR ρeff of the confusion-limited
foreground with respect to the 10 m LSD sensitivity curve.
The dashed line depicts the detection threshold ρt ¼ 10 adopted
in this paper, and the solid line represents a lower threshold of
five. Over an observation time of 107 s, the 10 m instrument has
the required sensitivity to detect the foreground in the range
ð3–4.5Þ × 10−11 eV, although in the ð4–4.5Þ × 10−11 eV range,
only the peak rises above the threshold—and only barely so. If a
lower threshold ρt ¼ 5 were adopted, the range of boson masses
could be extended up to 5 × 10−11 eV.
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
SnðfcÞ

p
; respectivelyÞ are shown separately in Fig. 11,

and their ratio (the SNR) is shown in Figs. 12–14 for the 1,
10, and 10 m instruments, respectively.
We find that a single 1 m LSD does not appear to have

the required sensitivity to detect the foreground for any
value of μ. A 10 m detector could detect the foreground
with ρeff ¼ Oð10Þ if the axion mass μ∈ ð3–4Þ × 10−11 eV,
while in the ð4–4.5Þ × 10−11 eV range, only the peak of the
foreground rises to the threshold—and just barely so
(Fig. 13). A 100 m instrument could detect the foreground
with large ρeff if μ∈ ð3–6Þ × 10−11 eV (Fig. 14). In the
range ð3–3.5Þ × 10−11 eV, the peak value of ρeff is Oð103Þ
and remains Oð102Þ up to 5 × 10−11 eV.

VII. CONCLUSION

We have produced Galactic-scale populations of the
hypothetical GW sources known as “axion clouds” with
the axion mass chosen to correspond to frequencies in the
10–100 kHz band. By computing superradiant bound-states
up to n ¼ 9, we have accounted for nearly all clouds with
growth timescales less than the age of the universe.
The largest number of clouds occurs for the lightest

boson mass capable of producing GWs at the frequencies of
interest. This was to be expected, as superradiance occurs
more readily for small α ∝ μMBH. For a BH of mass
M ≥ 5M⊙, the smallest value of α is obtained with the
smallest allowed boson mass, 3 × 10−11 eV. In this most
optimistic case, the total number of extant clouds is close
to 1 × 106.

The population of axion clouds has been assumed to be
spatially distributed within the Milky Way in the same way
as the stellar disks and central bulge. Statistically, some
may be near enough that the continuous monochromatic
signal can be detected by observing over a long enough
period of time, e.g. 107 s, such that the SNR rises above a
given threshold ρt. We have imposed a stringent threshold

ρt ¼ 10, but we leave it for future work to determine the
most appropriate threshold for our search pipeline. For a
100 m instrument, several hundred resolvable signals are
predicted to occur if μ ≈ 3 × 10−11 eV, but this number
could be upwards of an order of magnitude larger if the
total number of stellar-origin BHs is also larger than we
have assumed (see the comment made at the beginning of
Sec. VI). For a 10 m detector, only Oð1Þ resolvable signals
occur in our simulation at μ ¼ 3 × 10−11 eV.

Meanwhile, the ensemble of unresolved signals produces
a confusion foreground which is estimated to be detectable
with potentially large SNR by a 100 m LSD—assuming
μ∈ ð3–6Þ × 10−11 eV—or by a 10 m instrument at mod-
erate SNR, assuming μ∈ ð3–4.5Þ × 10−11 eV.
Finally, we note the following limitations of this work, as

well as directions for future work. First, since isolated BH’s
have no EM counterpart, we do not know, ahead of time, the
direction to these GW sources. Targeted and directed
searches for axion clouds will, therefore, not be possible
for isolated BHs, and we must resort to blind all-sky
searches. Doppler modulations of the GW frequency can be
accounted for by including the source’s right ascension and
declination as additional parameters in the signal model for
Bayesian parameter estimation. To avoid the number of
demodulation templates becoming prohibitively large—we
do not want the time required for data analysis to be greater
than the four-month observation period—we will resort to
semicoherent techniques for constructing a detection sta-
tistic. A final complication might be that a source has a
transverse proper motion large enough to change its sky
location within the observation time.
In this work, we have used the SNR as a baseline

detection statistic. Since we have not yet developed the full
semicoherent search pipeline, we do not yet know what is
the most appropriate detection statistic for continuous
monochromatic signals. Another outstanding question
pertains to our scan strategy: given that we will take data
at each trapping frequency for 4 months, how finely should
the set of frequencies be discretized? At what frequency
should we begin our searches? Figs. 8 and 11 both indicate
the 14–20 kHz range to be the most optimistic, in terms of
the expected number of resolvable signals and the strength
of the confusion foreground, respectively.
Additionally, our treatment of the confusion foreground

has not accounted for the intrinsic anisotropy of the signal:
the axion clouds will be distributed throughout the disks and
bulge of the Milky Way, so the strength of the foreground
will vary over the sky in a complicated way. Searches for
stochastic signals typically involve an “excess-power”
method, as well as cross-correlation between multiple
detectors. Plans to build a second 1 m instrument at UC
Davis (in addition to the Northwestern detector) are in
development, so while a single 1 m detector might not have
the requisite sensitivity, the prospects for a two- or multi-
detector scheme are an exciting avenue of future study.

FIG. 14. Corresponding SNR ρeff of the confusion-limited
foreground with respect to the 100 m LSD sensitivity curve.
The dashed line depicts the detection threshold ρt ¼ 10 adopted
in this paper, and the solid line represents a lower threshold of
five. In the ð3–6Þ × 10−11 eV range, the foreground is predicted
to be detectable by a 100 m instrument with effective SNRs
upwards of a thousand in the ð3–3.5Þ × 10−11 eV range.
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APPENDIX: SUPERRADIANT BOUND-STATES

The creation of an axion cloud corresponds to an
instability of the Kerr space-time due to the presence of
a massive scalar field. The amplifying mechanism, “super-
radiance,” is the Penrose process in which rotational energy
is extracted by a bosonic wave rather than by a particle. In
the process, the Kerr BH loses mass and angular momen-
tum, subject to the condition that its “irreducible mass”
does not decrease.
In the Penrose scenario, a particle travelling through a

BH’s ergoregion can split in two, one of which falls into the
hole, while the other escapes to infinity. If the orbital
angular momentum of the infalling particle is of opposite
sign to that of the hole, the BH loses rotational energy to the
escaping particle: energy has been extracted from the
ergoregion.
The story for waves runs analogously: an incident wave

with amplitude I splits into a part transmitted into the BH
(with amplitude T ) and a part which escapes (the reflected
wave with amplitude R). If the transmitted wave is
counterrotating, the rotational energy of the BH decreases,
leading to an outgoing wave with R > I .
The novelty of a massive scalar field is that its mass acts

like a mirror: unlike a massless field, a massive field can

become trapped in a bound-orbit, leading to continuous
extraction of rotational energy. The end result of the
runaway amplification is a macroscopic scalar field
bound-state—the “axion cloud.” In an astrophysical con-
text, rather than a wave incoming from infinity, the initial
seed for superradiance can be any arbitrary quantum
fluctuation in the scalar field, even if the field is in its
classical ground state [29,30]. As a result, the growth of an
axion cloud begins immediately after the birth of a BH.
An axion cloud’s binding energy (which determines the

GW frequency) and growth timescale depend on the
dynamics of the scalar field. For the scenario we have
adopted, the field obeys the Klein-Gordon equation on the
Kerr space-time. The Kerr metric describes an axisymmet-
ric, neutral, and rotating black hole

ds2 ¼ −
�
1 −

2GMr
c2ρ2

�
c2dt2 −

4GMarsin2θ
c2ρ2

cdtdϕ

þ ρ2

Δ
dr2 þ ρ2dθ2 þ

�
r2 þ a2 þ 2GMa2rsin2θ

c2ρ2

�
× sin2θdϕ2 ðA1Þ

where M is the BH mass, J is the BH angular momentum,
ρ2 ≡ r2 þ a2 cos2 θ, a≡ J=ðMcÞ is the Kerr parameter, and
Δ≡ r2 − 2rgrþ a2,wherewehave defined thegravitational
radius rg ≡GM=c2. In terms of the dimensionless Kerr
parameter, χ ≡ a=rg ¼ Jc=ðGM2Þ, the inner and outer
horizons—the two roots of Δ ¼ ðr − rþÞðr − r−Þ—are

r� ¼ rg
h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q i
: ðA2Þ

It follows that χ is restricted to the interval

0 < χ < 1: ðA3Þ

The event horizon is located at r ¼ rþ, and the angular
velocity of the horizon is

ΩH ¼ cχ
2rþ

: ðA4Þ

The scalar field obeys the Klein-Gordon equation,

½∇μ∇μ −m2��Φðx⃗; tÞ ¼ 0; ðA5Þ

where∇μ is the covariant derivative with respect to the Kerr
metric, and, as mentioned in the text, m� has the quantum-
mechanical interpretation as the reciprocal of the boson’s
Compton wavelength. In Boyer-Lindquist coordinates, the
Klein-Gordon equation is separable via the ansatz
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Φðx⃗; tÞ ¼ Re½e−iωteimϕSðθÞRðrÞ�: ðA6Þ

Invoking the identity

∇μ∇μΦ ¼ 1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νΦ� ðA7Þ

ffiffiffiffiffiffi
−g

p ¼ ρ2 sin θ

the Klein-Gordon equation separates into two second-order
linear homogeneous ODEs for RðrÞ and SðθÞ

Dθ½S�þ
�
χ2α2ðξ2−1Þcos2θ− m2

sin2θ
þΛ

�
SðθÞ¼ 0; ðA8Þ

Dr½R� þ ½α2ξ2ðr2 þ χ2Þ2 − 4χmαξrþm2χ2

− Δðα2r2 þ χ2α2ξ2 þ ΛÞ�RðrÞ ¼ 0; ðA9Þ

Dθ ≡ 1

sin θ
d
dθ

�
sin θ

d
dθ

�
; Dr ≡ Δ

d
dr

�
Δ

d
dr

�
: ðA10Þ

We have expressed the decoupled equations in terms of
the dimensionless variables (χ, α, and ξ) used in the main
text. The radial coordinate in (A9) is measured in units
of rg.

Bound-state solutions must go to zero at infinity and be
ingoing at the event horizon. The ingoing condition means
that RðrÞ ∝ e−ikr� as r� → −∞, with r� the Kerr tortoise
coordinate which maps the event horizon to −∞,

dr�
dr

¼ r2 þ a2

Δ
: ðA11Þ

This means that plane waves at the event horizon
(r� → −∞) can only move “to the left,” i.e. into the black
hole.
The spectra of both bound-states and BH quasinormal

modes can be found via Leaver’s continued-fraction
method [51,15]. The radial function RðrÞ is represented
by an infinite series,

RðrÞ ¼ ðr − rþÞ−iσðr − r−Þiσþβ−1eqr
X∞
n¼0

an

�
r − rþ
r − r−

�
n
;

ðA12Þ

σ ¼ αð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
Þðξ − ξcritÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2
p ; ðA13Þ

q ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
; ðA14Þ

β ¼ α2ð1 − 2ξ2Þ
q

: ðA15Þ

(The quantity we denote by β is the same as the quantity
denoted by χ in Ref. [15].) With this ansatz, (A9) implies
a three-term recurrence relation for the unknown coeffi-
cients an,

αnanþ1 þ βnan þ γnan−1 ¼ 0; n ¼ 1; 2;…

a1 ¼ − β0
α0
a0;

ðA16Þ

where the coefficients αn, βn, and γn are defined by

αn ¼ n2 þ ðc0 þ 1Þnþ c0
βn ¼ −2n2 þ ðc1 þ 2Þ þ c3
γn ¼ n2 þ ðc2 − 3Þnþ c4

ðA17Þ

and c0, c1, c2, c3, and c4 are given by

c0 ¼ 1 − 2iαξ −
2iðαξ − mχ

2
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2
p ; ðA18Þ

c1 ¼ −4þ 4i
h
αξ − iα

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q �i
þ 4iðαξ − mχ

2
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2
p −

2½α2ξ2 þ α2ð1 − ξ2Þ�
α

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p ; ðA19Þ

c2 ¼ 3−2iαξ−
2½α2ð1−ξ2Þ−α2ξ2�

α
ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p −
2iðαξ−mχ

2
Þffiffiffiffiffiffiffiffiffiffiffiffi

1−χ2
p ; ðA20Þ

c3¼
2iðαξ− iα

ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p
Þ3

α
ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p þχ2α2ð1−ξ2Þ

−Λlm−1þ2

ffiffiffiffiffiffiffiffiffiffiffiffi
1−χ2

q �
αξ− iα

ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p �
2

þ2imχα
ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p
−

�
αξ− iα

ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p �
2

α
ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p
þ2α

ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1−χ2

q

þ 2iffiffiffiffiffiffiffiffiffiffiffiffi
1−χ2

p �
1þðαξ− iα

ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p
Þ2

α
ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p ��
αξ−

mχ

2

�
; ðA21Þ

c4 ¼
�
αξ − iα

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p �
4

α2ð1 − ξ2Þ þ
2iξ

�
αξ − iα

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p �
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p

−
2i
�
αξ − iα

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p �
2ðαξ − mχ

2
Þ

α
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p : ðA22Þ

The series coefficients are related by an infinite con-
tinued fraction [28]
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anþ1

an
¼ −

γnþ1

βnþ1 −
αnþ1γnþ2

βnþ2−…
: ðA23Þ

Continued fractions are commonly written in the slightly
less cumbersome notation

anþ1

an
¼ −

γnþ1

βnþ1−
αnþ1γnþ2

βnþ2−
αnþ2γnþ3

βnþ3−
…: ðA24Þ

Since a1=a0 ¼ −β0=α0, we obtain a condition whose
roots are the desired bound-state frequencies

β0 −
α0γ1
β1−

α1γ2
β2−

α2γ3
β3−

… ¼ 0: ðA25Þ

Strictly speaking, the radial and angular eigenvalues, ξ
and Λ, must be found simultaneously. Leaver’s method can
also be applied to (A8) [52], resulting in a continued-
fraction condition analogous to (A25). We then have two
equations for the two unknowns.
Conveniently, we can reduce the root-finding problem to

merely solving (A25) by using the Mathematica function
SPHEROIDALEIGENVALUE. With the change of variable
z ¼ cos θ—and in terms of the following quantities:

γ2 ≡ χ2α2ð1 − ξ2Þ; ðA26Þ

λ≡ Λ − γ2; ðA27Þ
the angular equation (A8) takes the standard form imple-
mented in Mathematica

ð1− z2Þd
2S
dz2

−2z
dS
dz

þ
�
γ2ð1− z2Þþλ−

m2

1− z2

�
SðzÞ¼ 0:

ðA28Þ
SPHEROIDALEIGENVALUE yields λ, and SPHEROIDALPS

yields SðzÞ. The continued-fraction equation (A25), with
Λ replaced by γ2þ SPHEROIDALEIGENVALUE, can then be
solved for ξ with the Mathematica function FINDROOT.
For our axion cloud simulations, we have needed to

compute ξ for bound-states up to (and including) n ¼ 9. As
an example, we have plotted the real and imaginary parts of
the n ¼ 8 bound-state in Figs. 15–17; Figs. 15 and 16 are
analogous to Figs. 1 and 2.

FIG. 15. Real part ξR of the n ¼ 8 bound-state, for BH spin
χ ¼ 0.995, plotted up to the associated maximum superradiant
value of the coupling parameter, αmax ¼ 3.75.

FIG. 16. Fractional deviations between Fig. 15 and the ξR
curves for various other spins.

FIG. 17. Imaginary part of the n ¼ 8 bound-state eigenfre-
quency.

FIG. 18. Radial profiles jΦðr; t ¼ 0; θ ¼ π=2;ϕ ¼ 0Þj of the
n ¼ 5, l ¼ m ¼ 4 superradiant bound-state for a BH of spin
χ ¼ 0.99 at four consecutive values of α. The peak of the axion
cloud shifts toward the BH with increasing α. This makes sense by
comparison with the hydrogen atom: for the l ¼ n − 1 states of the
hydrogen atom, the most probable radius rmp is inversely propor-
tional to the electromagnetic fine-structure constant αEM:
rmp ¼ n2aB ∝ n2=αEM, where aB is the Bohr radius. While αEM
is actually a constant, the analog for scalar field bound-states inKerr,
α ∝ μM, is different for each BH. As a result, for fixed n, the most
probable radius for the l ¼ n − 1 bound-states decreases with α.
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