
Lyapunov Neural Network with Region of Attraction Search

Zili Wang, Sean B. Andersson, and Roberto Tron

Abstract— Deep learning methods have been widely used in
robotic applications, making learning-enabled control design for
complex nonlinear systems a promising direction. Although deep
reinforcement learning methods have demonstrated impressive
empirical performance, they lack the stability guarantees that
are important in safety-critical situations. One way to provide
these guarantees is to learn Lyapunov certificates alongside
control policies. There are three related problems: 1) verify that
a given Lyapunov function candidate satisfies the conditions for
a given controller on a region, 2) find a valid Lyapunov function
and controller on a given region, and 3) find a valid Lyapunov
function and a controller such that the region of attraction is as
large as possible. Previous work has shown that if the dynamics
are piecewise linear, it is possible to solve problems 1) and 2)
by solving a Mixed-Integer Linear Program (MILP). In this
work, we build upon this method by proposing a Lyapunov
neural network that considers monotonicity over half spaces in
different directions. We 1) propose a specific choice of Lyapunov
function architecture that ensures non-negativity and a unique
global minimum by construction, and 2) show that this can
be leveraged to find the controller and Lyapunov certificates
faster and with a larger valid region by maximizing the size of a
square inscribed in a given level set. We apply our method to a
2D inverted pendulum, unicycle path following, a 3-D feedback
system, and a 4-D cart pole system, and demonstrate it can
shorten the training time by half compared to the baseline, as
well as find a larger ROA.

I. INTRODUCTION

When designing controllers for dynamical systems, there
are a variety of properties which are important to ensure,
including stability, safety, and robustness. These properties
can be proven via certificate functions. In this work, we focus
on stability, although the methods we develop can apply to
other properties as well. A powerful technique for certifying
stability of nonlinear systems is through the use of Lyapunov
functions [1]. A system’s equilibrium point is asymptoically
stable in the sense of Lyapunov if, starting from any state
within a region (called the region of attraction (ROA)), the
future states of the system eventually remain close to the
equilibrium. The main challenge is that finding Lyapunov
functions for nonlinear systems is difficult in general and
requires intuition/manual verification.

In this paper, we are interested in automated controller
synthesis with Lyapunov stability guarantees. A simple
method is to linearize the system around the equilibrium
point and then use LQR control, which gives a local stability

Z. Wang is with the Division of Systems Engineering, S.B. Andersson and
R. Tron are with the Division of Systems Engineering and the Department
of Mechanical Engineering, Boston University, Boston, MA 02215, USA.
{zw2445,sanderss,tron}@bu.edu.

This work was supported in part by NSF FRR-2212051 and the Center
for Information and Systems Engineering at Boston University.

guarantee [2]. Alternatively, one can use nonlinear polyno-
mial approximation of the dynamics, and use semidefinite
programming (SDP) to find a Lyapunov function as a sum-
of-square (SOS) polynomial [3], [4]. Recently, with the
development and wide application of deep learning in robotics,
many approaches proposed neural network representations
of more complex Lyapunov functions [5] to synthesize
controllers, from a simple nonlinear representation [6], to
more generalized fully connected neural networks [7], [8].

In order to synthesize a controller with Lyapunov guaran-
tees, one needs to verify whether the Lyapunov conditions are
satisfied for all the states within a region [9]. Given a bounded
input, the two principal techniques used to verify an input-
output relationship of a network are: 1) exact verification
using either Satisfiability Modulo Theories (SMT) [6] (where
quadratic and tanh activation functions are used), or applying
mixed-integer programs (MIP) solvers [7], [10] (where (leaky)
ReLU activation is used), and 2) inexact verification via
convex relaxation [11].

In this paper, we use ReLU neural networks and a MILP
verifier to give exact Lyapunov stability guarantees. Typically,
the MILP is formulated to verify certain properties of ReLU
neural networks such that if the optimal objective value
is zero, certain conditions can be certified; otherwise a
counter-example will be generated and used to reduce the
violation [12]. There are two approaches to train networks to
satisfy certain properties: 1) counter-example guided training
that adds counter-examples to the training set and minimizes a
surrogate loss function of the Lyapunov condition violation on
a training set [6], and 2) bi-level optimization that minimizes
the maximum violation of the Lyapunov conditions via
gradient descent [7]. We use a bi-level optimization training
process similar to [7] due to its observed better performance
in higher dimensional systems.

In safety critical systems, it is particularly desirable to
understand and find the largest ROA. There are several
approaches to maximize the ROA. In counter-example guided
training, a cost term between the L2 norm of the state
and the Lyapunov function can be added to the surrogate
Lyapunov loss function to regulate how quickly the Lyapunov
function value increases with respect to the radius of the
level sets [6], [13]; or the Lyapunov function and the sub-
level set (inner approximation of the ROA) can be searched
simultaneously [14], [15]. However, there is currently no
existing work based on the bi-level optimization training
procedure to find the largest ROA.

Paper contributions. Our paper contains several contribu-
tions on the theoretical side:

• While there are existing methods to construct Lyapunov



neural networks that give positive definiteness [14]–[16],
they are in quadratic form and cannot be verified by
MILPs. Instead, we provide a Lyapunov ReLU network
architecture that is composed of monotonic functions
over half-spaces in different directions. The architecture
is positive definite and has a unique global minimum.

• The above architecture of the Lyapunov neural network
enables a novel approach for finding a controller and its
corresponding Lyapunov function with largest possible
ROA. Since our architecture has nested level sets, we
can enlarge the ROA by enlarging an inscribed cube as
a MILP. The maximization of the ROA is done using
gradient descent, with the gradient from MILP.

Through simulations, we provide the following key results:
• Compared to [7], we shorten the training time by half.

We attribute this to our model structure, which effectively
reduces the search space for the Lyapunov function.

• We demonstrate the strength of our approach in ex-
panding the region of attraction in complex 2D to 4D
systems. Our result shows larger/more predictable ROA
than previous work.

II. PRELIMINARIES

A. Lyapunov’s Direct Method for Stability

We briefly review Lyapunov stability theory [2].
Definition 1 (Control Lyapunov Functions): Consider the

nonlinear system:

xt+1 = f(xt, ut), (1)

where xt is a state in a domain X ⊂ Rnx and ut is the control
in a input space U ⊂ Rnu . Let π(·) : Rnx → Rnu denote
a control policy with ut = π(xt). An exponentially-stable
control-Lyapunov function (CLF) is a function V : Rnx → R
that is continuously-differentiable and satisfies

V (0) = 0, (2a)
V (x) > 0, ∀x ∈ R \ {0}, (2b)

V

(
f
(
x, π(x)

))
−V (x) ≤ −ϵV (x), ∀x ∈ R \ {0}, (2c)

over a subset R ⊂ X .

B. ReLUs, MILP, Verification, and Learning

We review here how to represent a ReLU network and
perform verfication over a MILP.

A Leaky ReLU (Rectified Linear Unit) function has the
form

σ(y) = max(0, cy), (3)

where 0 ≤ c < 1 is a given positive scalar. For a fully-
connected neural network with leaky ReLU activation, the
input/output relationship can be represented as

ϕ(x; θ) = ẑk−1

ẑi = Wizi−1 + bi, i = 1, 2, . . . , k − 1,

zi = σ(ẑi) = max(ẑi, cẑi), i = 1, 2, . . . , k − 1,

z0 = x,

(4)

where k is the number of layers and θ contains all the network
parameters (i.e. all Wi and bi).

The MILP formulation stems from the only nonlinear part
in the network, namely, the ReLU activation function.

Remark 1: If the input to σ(·) is bounded (ẑi,lo ≤ ẑi ≤
ẑi,up), the input/output relationship through ReLU activation
can be encoded as mixed-integer linear constraints

zi ≥ ẑi, zi ≥ cẑi,

zi ≤ cẑi − (c− 1)ẑi,upβ,

zi ≤ ẑi − (c− 1)ẑi,lo(β − 1),

β ∈ {0, 1},

(5)

where the binary variable β is active when ẑi ≥ 0.
The ReLU network (4) can be represented as a MILP by

replacing the activation units with (5). In a multiple-layer
network, the continuous variables in the MILP correspond
to the input and each layer’s output. With a bounded neural
network input, the bound of each ReLU neuron input can
be computed from the bounds of the connected nodes from
the previous layers; these can be obtained by using Interval
Arithmetic [12], solving a Linear Programming [17], or
solving a MILP problem [18]. The relationship between
network input and output is therefore fully captured in mixed-
integer linear constraints. Mixed Integer Programs have been
widely applied in domains including path planning [19],
temporal logical [20], and controller synthesis [7], [21] to
solve different problems.

III. PROBLEM STATEMENT

We consider a discrete-time nonlinear dynamical system
(1) with bounded state space D ⊂ X and control space
U . We assume that the dynamical system is represented by
a piecewise linear function (however, as will be shown in
Sec. VI, in practice, our techniques are also applicable to
ReLU neural network approximation of general systems [22]).
In the following, we consider three problems:

Problem I. Verify the satisfaction of the Lyapunov condi-
tions for a given controller π(·) and Lyapunov function over
a region D.

Problem II. Find an exponentially stable controller π(·)
and Lyapunov function on D.

Problem III. Find a controller π(·) and Lyapunov function
such that the ROA is as large as possible.

We use the Lyapunov conditions (2) to imply the system
stability. However, the Lyapunov conditions themselves do not
directly ensure safety, since the system can deviate arbitrarily
far before eventually settling to the stable equilibrium. The
region of attraction, however, defines a forward invariant
set that is guaranteed to contain all possible trajectories of
the system, and therefore establishes safety. A typical under-
approximation of the ROA can be found by verifying the
Lyapunov conditions on a sub-level set of the Lyapunov
function Rρ = {x|V (x) ≤ ρ} for some value of the
parameter ρ > 0.

In our setting, the dynamic system is represented by a fixed
neural network ϕdyn with leaky ReLU activation functions,

f(x, u) = ϕdyn(x, u)− ϕdyn(xeq, ueq) + xeq, (6)



where xeq, ueq are the state and control at the equilibrium
point. The equation guarantees that at the equilibrium state
and control, the next state remains at the equilibrium point.

The control policy is represented by a feedforward, fully
connected neural network ϕπ with leaky ReLU activation,

π(x) = clamp(ϕπ(x)− ϕπ(xeq) + ueq, umin, umax), (7)

where umin, umax are the lower and upper control limit,
and clamp(·) clamps (element-wise) all the values within the
control limits.

The Lyapunov function is represented by another neural
network φv(x),

V (x) = ϕv(x) + λ|R(x− xeq)|1 (8)

where R is a full rank matrix and λ is a hyperparameter
that balances ϕv(x) and the term containing R. The term
containing R is strictly positive everywhere except at xeq . In
practice, adding this term facilitates learning, but it is not
strictly necessary for our guarantees on V (·).

IV. LYAPUNOV NEURAL NETWORK

In the section, we introduce a Lyapunov Neural Network
that can be built from ReLU units and has a single global
minimum and no other global minima by construction. With
this architecture, some Lyapunov conditions are automatically
satisfied, allowing us to formulate a simpler optimization
problem to verify remaining conditions to synthesize the
controller and Lyapunov function.

A. Monotonic Layers

The Lyapunov Neural Network is built from units that
represent monotonically increasing functions; and layers that
define star convex functions and are guaranteed to have a
unique global minimum.

Definition 2 (Monotone functions): A function m(·) : R
→ R is of class M if it has the following properties:

• m(·) is continuous,
• m(0) = 0,
• m(·) is strictly increasing everywhere.

If the last condition holds only for non-negative arguments,
m(·) is of class M+.

A function m(·) is of class M[p,ε] if it is of class M and:
• it is piecewise linear,
• its derivative has p ∈ N discontinuity points,
• all defined derivatives m′(y) are greater than ε, i.e., ε

is a lower bound on the slope of m.
If the function is of class M+ and the above conditions hold,
then it is of class M[p,ε]

+ . Note that functions of class M
and M+ are of class K [2] when restricted on [0,∞).

Definition 3 (Monotonic unit): A monotonic unit m[p,ε] of
order p is defined as

m(y) = aT ReLU(y1− b), (9)

where a, b ∈ Rp, 1 ∈ Rp is the vector of all ones, and ReLU
is the element-wise Rectifier Linear Unit operator (3).

Proposition 1: A monotonic unit m is of class M[p,ε] if:

1) b ∈ Rp is a vector of biases satisfying [b]i+1 < [b]i
where [·]j is the j-th entry of a vector.

2) a ∈ Rp is a vector of slopes satisfying
(a) [a]1 > 0,
(b) [a]i+1 ≥ −

∑i−1
i′=1 ai′ + ε.

A monotonic unit m is of class M[p,ε]
+ if the additive condition

[b]1 = 0 is satisfied.
Proof: Expanding the inner product in (9), and using

the fact that ReLU(y − bi) = 0 if bi ≥ y, we have

m(y) =
i′∑

i=1

aiy −
i′∑
i

aibi, (10)

where i′ is the largest i such that bi < y, that is, m is
piecewise linear in y. Condition (b) implies

∑i′′+1
i=1 ai ≥ ε for

any i′′; combined with (a) implies the slope in (10) is always
no less than ε, i.e., the function is always monotonically
increasing and hence of class M[p,ε]. If [b]1 = 0, then
m(y) = 0 for all y ≤ 0, and the function is of class M[p,ε]

+ .

Definition 4 (Monotonic Layer): A monotonic layer M :
Rdin → Rdout is defined as a combination of monotonic
units:

[M ]j(x) =

nM∑
i=1

cimi(v
T
i x) (11)

where x ∈ Rnx is the input, vi ∈ Rnx is a direction and
vi ̸= 0, ci > 0, and nM ≥ d+ 1.

Lemma 1: For a given direction vi, the function mi(v
T
i ·) :

Rnx → R is:
1) monotonically increasing in the direction vi,
2) constant along any direction orthogonal to vi.

The proof is omitted to save space. A monotonic layer is
monotonically increasing along radial lines x(t) = vt, where
v ∈ Rnx . An example of a monotonic layer in M[p,ε]

+ is
shown in Fig. 1.

(a) Layer (b) Monotonic units in M[p,ε]
+

Fig. 1: Illustration of Monotonic Layer V (x) = [M ]1 =∑3
i=1 mi(v

T
i x) with vi ∈ {[1; 0], [−1; 1], [−1;−1]}, each

mi(·) is shown in (b).

B. Proposed Lyapunov Network

Definition 5 (Lyapunov Neural Network): An n-layer Lya
-punov Neural Network ϕv : Rnx → R in (8) is defined as
the composition of monotonic layers:

ϕv(x) = (Mn ◦Mn−1 ◦ . . . ◦M1)(x)
Proposition 2: Assuming 0 is in the convex hull of a set of

directions {vMi } for M1, ϕv(x) has the following properties:



• ϕv(x) ≥ 0, V (0) = 0 ⇐⇒ x = 0,
• ϕv(x) is monotonically increasing along radial lines,
• ϕv(x) is radially unbounded, has a unique global

minimum at x = 0, and no other local minima.
Proof: By definition, Mi is a function that is monoton-

ically increasing along radial lines originating from zero.
The composition of multiple such functions inherits this
property. Since the monotonic units are of class M[p,ε] and
0 ∈ co({vMi }) (co(·) denotes the convex hull of a set), ϕv(x)
is increasing everywhere from zero and radially unbounded.
Therefore, it has a unique global minimum at ϕv(0) = 0.

Remark 2: The R term in (8)can be written in the form
(11). Under this representation, the directions {vRi } for the
R term satisfy the condition 0 ∈ co({vRi }). Hence, with the
R term, V (x) can be proved to possess the same properties
as ϕv(x), but without requiring that 0 ∈ co({vMi }).

Corollary 1: ϕv(x) is star convex with respect to the origin
and has nesting, compact, simply connected, star-convex (with
respect to the origin) level sets (i.e., V −1(v1) ⊂ V −1(v2) for
any v1 < v2).

Proof: The function from the origin to any point x is
monotonically increasing, hence every point between 0 and
x is inside any level set containing x. The claims follow.

Remark 3: The bias and slope vectors in the monotonic
units can be converted to ReLU network parameters, in a way
similar to [23]. To satisfy the monotonic unit properties in
Proposition 1, the neural network parameters are thresholded
to be positive/non-negative during training.

C. Verification of Lyapunov Conditions

With the proposed structure on V (x), Lyapunov conditions
(2a) and (2b) are satisfied by construction.

To ensure the stability of a given controller, one needs
to verify the Lyapunov condition (2c) in a given bounded
polytope D around the equilibrium. The verification problem
(Problem I) can be formulated as

max
x∈D

V

(
f
(
x, π(x)

))
−V (x) + ϵV (x). (12)

In our setting, V (x), f(x, π(x)) and V (f(x, π(x))) are
piecewise-affine functions of x; therefore, the problem can
be solved through MILPs as in Sec. II-B. If the optimal value
is zero, the system is certified; otherwise the optimal value is
greater than 0 and the optimal point is an counter-example.

D. Learning Procedure

With the contents in Sec. II, the problem of finding a valid
controller and Lyapunov function (Problem II) becomes the
problem of minimizing the maximum violation of Lyapunov
condition (2c). This can be formulated as the bi-level min-max
optimization:

min
θ

(
max
x∈D

V (f(x, π(x)))− V (x) + ϵV (x)

)
, (13)

where θ contains the trainable controller and Lyapunov
network parameters.

Such a problem can be solved in an iterative procedure
[12] as shown in Algorithm. 1. At each iteration, with fixed

Algorithm 1 Train controller/Lyapunov function through
min-max optimization

1: Given: a candidate control policy π and a candidate
Lyapunov function V .

2: while not converged do
3: Solve MILP maxx∈D V (f(x, π(x)))−V (x)+ϵV (x)
4: if The MILP has maximal objective > 0 then
5: Compute the gradient of the MILP objectives w.r.t

network parameters θ as ∂γ
∂θ .

6: θ = θ − StepSize × ∂γ
∂θ

7: end if
8: end while

network parameters, the inner maximization problem can be
solved using MILP solvers. A general MILP formulation is

γ(θ) =max
s,β

aTθ s+ bθβ

s.t Aθs+Bθβ ≤ cθ,
(14)

where aθ, bθ, Aθ, Bθ, cθ are explicit functions of θ, β are
binary variables, and s (slack variables and x) are all the
continuous variables in the MILP related to (5).

After solving the MILP to optimality, with optimal s∗ and
β∗, the active linear constraints at the solutions are Aact

θ s∗ +
Bact

θ β∗ = cactθ [7]. Assuming an infinitesimal change of θ
does not change the binary variable solution nor the indices
of active constraint, and letting (Aact

θ )† be the pseudo-inverse
of Aact

θ , then the gradient of the MILP optimal objective with
respect to the network parameters, given by

γ(θ) = aTθ (A
act
θ )†(cactθ −Bact

θ β∗) + bTθ β
∗, (15)

can be used to update the network. In the case where the
assumption does not hold, the problem is degenerate, but the
gradient in (15) can still be used to improve the network. For
further discussion, see [7].

The procedure terminates when the inner maximization
objective gives a zero value, yielding a valid controller and
a corresponding Lyapunov function that solves Problem II.

V. REGION OF ATTRACTION EXPANSION

One of the main benefit of our proposed network is that,
by leveraging the special monotonicity structure, we can offer
a method to enlarge the ROA. We first introduce a bi-level
optimization simliar to (13) but where D is a fixed sub-level
set (used to represent the ROA). We then expand the level set
by defining an inscribed square, and maximizing its area. If the
expanded level set satisfies all the Lyapunov conditions, then
it becomes the new ROA. This iterative procedure addressing
Problem III is summarized in Algorithm 2.

A. Training over a Sub-level Set

Instead of finding the maximum violation over a fixed pre-
defined bounded region D as in Sec. IV-C, we are interested
in a compact sub-level set Rr = {x|V (x) ≤ r}, where r is
pre-defined and the region of Rr depends on θ. The problem
is a modified version of Problem II, where the region is given



Algorithm 2 Expand Region of Attraction with Lyapunov

1: Given: a candidate control policy π and a candidate
Lyapunov function V .

2: while Rr ∈ D do
3: Find a valid controller in Rr using modified Algo-

rithm 1 (Sec. V-A)
4: while less than maximum trials do
5: Solve MILP problem (19) to find the inscribed

square (Sec. V-B)
6: Compute the gradient of the l∗(θ) w.r.t. network

parameters using ∂l∗

∂θ
7: Select a moving direction from (25) and imple-

ment gradient descent (Sec. V-C)
8: end while
9: end while

as a level set of the Lyapunov function itself, and a simple
modification of Algorithm. 1 can be used to solve it. The
problem of finding a valid controller and Lyapunov function
over a level set then becomes

min
θ

(
max

x∈Br,V (x)≤r
V (f(x, π(x)))− V (x) + ϵV (x)

)
(16)

One difficulty is that, as stated in Remark 1, in order to
provide the MILP formulation of the problem, one needs to
know the bounded region Br that contains Rr (i.e. Rr ⊂ Br

). To find Br, we make one additional assumption.
Assumption 1: We assume the monotonic direction set

{vi} contains all the axes (with indices set Iaxes).
Proposition 3: Given a network ϕv(x) represented

as a combination of monotonic functions as∑nM

i=1 cia
T
i ReLU(vTi x − bi), the bounded domain Br

containing the sub-level set (i.e. Rr ⊆ Br) can be found as

pi = m−1
i (r),∀i ∈ Iaxes

p = stack{pi}
[Br]j = ||[p]j ||∞, j ≤ nx

(17)

where p ∈ RnM×nx and [Br]j denotes the largest value of
p in jth dimension.

Proof: Without loss of generality, choose axis i = 1,
and define p1 as the point where m1(v

T
1 p1) = r. Since

V (x) =
∑

mi′(x) and mi′(x) ≥ 0 for any i′, p1 is outside
of the sub-level set V −1(r), i.e. V (p1) > r. Furthermore,
m1(v

T
1 x) is constant along hyperplanes normal to v1. Hence,

Fig. 2: Visualization for the proof of proposition 3.

any point on the plane x1 = [p1]1 has value no smaller
than r, and the plane is also outside of V −1(r) (see Fig. 2).
Repeating the same process for all directions i, we have that
the sub-level set is contained by the set surrounded by all
the hyperplanes, i.e., the bounding box that contains Rr.

B. Approximating a Sub-level Set
The problem of finding the inscribed cube can be formu-

lated as a MILP:

min
l

l s.t. V (x) ≤ l||x− xeq||∞, ∀x ∈ Rr. (18)

The l∞ norm term can be formulated as mixed-integer
linear constraints. Letting

g(l) = max
x∈Rr, ||x−xeq||∞≥ε

V (x)− l||x− xeq||∞, (19)

where ε is a small constant, (18) becomes

min
l

l s.t. g(l) ≤ 0 (20)

From nonlinear optimization theory [24], the optimal solution
of (20) is achieved when the constraints are active (i.e.,
g(l∗) = 0); if not, l∗ would be unbounded and we could reach
any arbitrarily low value. Therefore, the optimal objective l∗

can be found by finding the root of (19) using a numerical
method such as bisection search [25].

C. Selecting the ROA Expansion Direction
As illustrated in Fig. 3, the sub-level set Rr can be enlarged

by minimizing l∗ (which is a function of θ). Specifically, the
relationship between l∗ and the neural network parameters
can be obtained after solving (19) to optimality (i.e. g(l) = 0).
By fixing all the binary variables to their optimal solutions,
and keeping only the active linear constraints, (19) becomes

ξ(θ) = cTθ,vsv + dθ,v − l∗θslinf
(21)

where sv and slinf
need to satisfy the equations

Aθ,vsv = bθ,v, Aθ,linf
slinf

= bθ,linf
. (22)

Here, s contains all the continuous variables in the MILP
(including x and other slack variables), and the subscript v
(linf ) indicates the variable is related to V (x) (l∞). From
(21) we have

l∗ =
cθ,vsv + dθ,v

slinf

=
cθ,v(A

−1
θ,vbθ,v) + dθ,v

(Aθ,linf
−1bθ,linf

)
. (23)

Fig. 3: Illustration of level set expansion on 1D Lyapunov
functions: the blue box (identified with l⋆) is the original level
set and the red one (identified with l̂⋆) is after expansion.



We can use gradient descent on l∗ with respect to the
network parameters θ to enlarge the area of the inscribed
square, and hence the area of Rr. However, moving directly
in the direction of the gradient might lead to a new Rr

that severely violates the Lyapunov conditions. Therefore, a
gradient descent direction w should satisfy

∇θγ(θ)w ≥ 0, ∇θl
∗(θ)w ≥ 0. (24)

An optimal selection can be formulated as an LP problem

max
w

∇θl
∗(θ)w + s

s.t. ∇θγ(θ)w ≥ s, ∇θl
∗(θ)w ≥ 0,

||w|| ≤ 1, s ≥ 0.

(25)

VI. SIMULATION

In this section, we demonstrate 1) our proposed monotonic
network by comparing the convergence time with a previous
approach that used simple ReLU networks to represent the
Lyapunov function, 2) our proposed searching method to find
the largest possible ROA, by applying it to four examples:
an inverted pendulum, a unicycle path following system, a
third-order strict-feedback system, and a cart pole system.

The dynamic model used for learning in each case is a
fixed network that was pre-trained on a sufficiently large state
space X to approximate the real dynamical system. Both the
controller and Lyapunov networks were initialized by training
them to approximate the LQR solution. The initial R term in
(8) was composed of slight deviations of the eigenvectors of
the solution to the Riccati equation of the LQR problem while
ensuring the full rank property. All networks were trained
following the approach in [7]. The directions defining the
monotonic units in the Lyapunov Network were fixed as a
combination of the axis vectors and selected eigenvectors of
the solution to the Riccati equation. To verify a large region,
we initially verified a small region and gradually enlarged that
region. This gave more stable convergence of the algorithms
in practice. Note that for running the actual simulations in
the results below, the full dynamic model of each system,
not its network-based approximation, was used.

A. Systems

System I: Stationary Inverted Pendulum. A second-order
nonlinear system with dynamics

θ̈ =
u−mgl sin(θ)− bθ̇

ml2
, (26)

where θ = π is the upward position of the pendulum and θ
is positive in the counter-clockwise direction. The stabilizing
equilibrium state is θ = π, θ̇ = 0. We set the mass term to
m = 1 and the damping coefficient to b = 0.1. The states
are (θ, θ̇) and the state space is

D = {(θ, θ̇)|0 ≤ θ ≤ 2π, |θ̇| ≤ 5}.

The control space is {u||u| ≤ 10}.

System II: Wheeled Vehicle Path Following on a Unit
Circle. A curvature-dependent unicycle system with kinemat-
ics (

ḋe

θ̇e

)
=

(
v sin θe

u− vκ(s) cos θe
1−deκ(s)

.

)
(27)

We set the curvature to κ(s) = 1 (defining a unit circle),
and fix v = 6. The stabilizing equilibrium state is de = 0,
θe = 0, at which the system has no tracking error. The states
are (de, θe) and the state space is

D = {(θe, de)||θe| ≤ 0.8, |de| ≤ 0.8}.

The control space is {u||u| ≤ 10}.
System III: Third-Order Strict Feedback Form. A three-

dimensional system with the form

ẋ1 = e1x2, ẋ2 = e2x3, ẋ3 = e3x
2
1 + e4u, (28)

where the states are (x1, x2, x3) and the state space is

D = {(x1, x2, x3)||x1| ≤ 1.5, |x2| ≤ 1.5, |x3| ≤ 2}.

The control space is {u||u| ≤ 30}.
System IV: Cart Pole. A system with dynamics

(M +m)ẍ−mlθ̈ cos θ +mlθ̇2 sin θ = u,

ml2θ̈ −mgl sin θ = mlẍ cos θ.
(29)

The states are (x, θ, ẋ, θ̇), where θ = 0 is the upward position
of the pole, and θ is positive in the counter-clockwise direction.
The state space is

D = {(x, θ, ẋ, θ̇)||x| ≤ 1, |θ| ≤ π/6, |ẋ| ≤ 1, |θ̇| ≤ 1}.

The control space is {u||u| ≤ 30}. Previous approaches have
found it difficult to find a controller for this system.

B. Comparison with Baseline

We first demonstrate the efficacy and efficiency of our
monotonic network in terms of training convergence time
over a fixed bounded state space D using Algorithm 1. As a
baseline for comparison, we use a simple ReLU network [7]
(which requires verification of all Lyapunov conditions 2a-
2c during training). We apply both approaches to the four
systems described in Sec. VI-A and compare them in terms
of training time. The network structure for the baseline was
selected on a trial-and-error basis for good performance,
and our network structured is chosen accordingly to use
a comparable number of ReLU units (therefore, the same
number of binary variables). We use the same network
structure for the controller in each. The network structure
and the total training time is presented in the first section
of Table. I. These results show a significant improvement in
training time, ranging from a reduction of 24% for the 4-D
cart-pole system, up to 90% for the 2D path following case.

Fig. 4 shows two examples of the resulting Lyapunov
function and controlled trajectories, focusing on the 2D
systems for easy visualization.



TABLE I: Network Structure and Learning Time: numbers in brackets in the baseline network represent the number of
neurons in each layer. Our network has a number of directions (dirs) that define the monotonic functions. Each monotonic
function is a piecewise linear function with a number of pieces (pcs). The unit for training time is in minutes.

Baseline Network Training Time Our Network Training Time ROA Training Time

Inverted Pendulum [8, 8, 6, 1] 97.2 [5 dirs/4 pcs] 24.3 250.0
Path Following [8, 8, 6, 1] 45.1 [6 dirs/4 pcs] 4.8 32.4
Third-Order Strict [8, 8, 6, 1] 21.4 [7 dirs/4 pcs] 10.1 76.9
Cart Pole [8, 7, 5, 1] 74.8 [7 dirs/4 pcs] 57.2 69.3

(a) Pendulum (b) Path Following

Fig. 4: Final Lyapunov function and example controlled
trajectories after applying Algo. 1. (bold red curve) ROA
within the bounded domain. (red dot) Equilibrium point.
(green dots) Randomly selected initial conditions, and the
corresponding system trajectories under the learned controller.

C. ROA Expansion

Algo. 2 combines learning the controller, certifying the
Lyapunov function, and expanding the ROA.Fig. 5 shows
results on System I (the inverted pendulum). Although the
training time is longer than with Algorithm 1 (see the last
column in Table 1), it can yield a significantly larger ROA.
Figs 5-7 show the results for the four example systems.

Fig. 5a shows the initial Lyapunov function, the defined
sub-level set (chosen to yield a relatively small initial region to
allow room for the algorithm to adjust the Lyapunov function
and grow the ROA), and the inscribed square for System I.
Fig. 5b shows the final result, with the level set shown in
bold red. Note that the algorithm allows the ROA to extend
beyond the domain D. To guarantee the ROA, we then find the
maximal level set that lies entirely within D (shown in green).
The performance of the resulting controller is demonstrated
in Fig. 5c-5d, which shows a collection of trajectories from
randomly selected initial points (compare against the results
from Algo. 1 in Fig. 4a) and the corresponding evolution of
the Lyapunov function. Note that some of the selected initial
conditions lay outside the ROA but are stabilized nevertheless.

The results of expansion for Systems II and III (Fig. 6)
both show a significant increase in the final ROA over the
initial one. To avoid overly cluttering the image, the results
for Systems III (Fig. 6b) do not include the maximal level
set inside D. The results for System IV (the cart-pole) are
shown in Figs. 7 and 8. Because this is a 4-D system, we
have chosen to show four 3D slices of the ROAs, presenting
clear improvement after expansion. It is also interesting to
note that the final ROAs appear to be elongated in some

(a) Initial (b) Final

(c) Trajectories (d) Lyapunov

Fig. 5: Illustration of ROA in the inverted pendulum example.
(a) R3.0 before expansion is highlighted in blue. (b) R3.0 after
expansion is in red; the l∞ norm is shown as the inscribed blue
box, and the intersection between l∞ norm and R3.0 is shown
as a red dot. The level set touching the state space bounds is
shown in green (R2.3). (c) Trajectories. (d) Lyapunov values.

dimensions; in future work we intend to consider expansions
using inscribed zonotopes to further improve the result. The
controlled evolution of the system from a randomly selected
set of initial conditions shown in Fig. 8 clearly demonstrate
that the system converges to the equilibrium point.

VII. CONCLUSIONS

In this paper, we proposed a ReLU neural network that
by construction satisfies the non-negativity property of a
Lyapunov function. Our algorithm to learn both controller
and verifying Lyapunov function for nonlinear systems
requires significantly less training time than a baseline. Taking
advantage of the inherent properties of our network structure,
we developed an algorithm that concurrently expands the
region of attraction for the system, ensuring both stability and
safety over as large a domain in the state space as possible.

In this work we used only a single layer in the Lyapunov
neural network, though the proposed structure is more general
and in future work we intend to explore the advantage of
the more general function representation, including adding
additional layers. We also intend to consider modifications to
our expansion algorithm that rely on counter-example guided



(a) Path Following (b) Third Order

Fig. 6: ROA Expansion. (blue) Initial level set. (red) Final
level set. (a) System II, where (green) the maximal level set
fully within the domain is also shown. (b) System III. Level
sets are projected onto the corresponding planes. Dashed
black line indicates the projection is outside of D.

(a) θ̇ = 0 (b) ẋ = 0

(c) x = 0 (d) θ = 0

Fig. 7: ROA Expansion on System IV. Each plot fixes one
of the states to visualize the corresponding 3D slice.

training, similar to [7], instead of the min-max approach we
currently use. Finally, our proposed method does not consider
any uncertainties in the model. In the future, we plan to
analyze the neural network approximations with model errors,
using a robust control Lyapunov function approach [16]. We
also plan to apply our approach in real systems, combining
it with control barrier functions to avoid obstacles.

REFERENCES

[1] W. M. Haddad and V. Chellaboina, Nonlinear dynamical systems and
control: a Lyapunov-based approach. Princeton university press, 2008.

[2] H. K. Khalil, Nonlinear systems; 3rd ed. Prentice-Hall, 2002.
[3] A. A. Ahmadi and A. Majumdar, “Some applications of polynomial

optimization in operations research and real-time decision making,”
Optimization Letters, vol. 10, pp. 709–729, 2016.

[4] A. Majumdar, A. A. Ahmadi, and R. Tedrake, “Control design along
trajectories with sums of squares programming,” IEEE International
Conference on Robotics and Automation, pp. 4054–4061, 2012.

[5] C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates:
A survey of neural lyapunov, barrier, and contraction methods for

Fig. 8: Controlled trajectories on System IV.

robotics and control,” IEEE Transactions on Robotics, vol. 39, pp.
1749–1767, 2022.

[6] Y.-C. Chang, N. Roohi, and S. Gao, “Neural lyapunov control,”
Advances in neural information processing systems, vol. 32, 2019.

[7] H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake, “Lyapunov-
stable neural-network control,” in Proceedings of Robotics: Science
and Systems, Virtual, July 2021.

[8] J. Wu, A. Clark, Y. Kantaros, and Y. Vorobeychik, “Neural lyapunov
control for discrete-time systems,” arXiv preprint arXiv:2305.06547,
2023.

[9] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, M. J. Kochenderfer,
et al., “Algorithms for verifying deep neural networks,” Foundations
and Trends® in Optimization, vol. 4, no. 3-4, pp. 244–404, 2021.

[10] R. R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. K. Mudigonda, “A
unified view of piecewise linear neural network verification,” Advances
in Neural Information Processing Systems, vol. 31, 2018.

[11] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and
robustness analysis of neural networks via quadratic constraints and
semidefinite programming,” IEEE Transactions on Automatic Control,
vol. 67, no. 1, pp. 1–15, 2020.

[12] E. Wong and Z. Kolter, “Provable defenses against adversarial examples
via the convex outer adversarial polytope,” in International Conference
on Machine Learning. PMLR, 2018, pp. 5286–5295.

[13] R. Zhou, T. Quartz, H. De Sterck, and J. Liu, “Neural lyapunov control
of unknown nonlinear systems with stability guarantees,” Advances in
Neural Information Processing Systems, vol. 35, pp. 29 113–29 125,
2022.

[14] S. M. Richards, F. Berkenkamp, and A. Krause, “The lyapunov neural
network: Adaptive stability certification for safe learning of dynamical
systems,” in Conference on Robot Learning, 2018.

[15] S. Wei, P. Krishnamurthy, and F. Khorrami, “Neural lyapunov control
for nonlinear systems with unstructured uncertainties,” 2023 American
Control Conference, pp. 1901–1906, 2023.

[16] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado,
“Learning region of attraction for nonlinear systems,” in IEEE Confer-
ence on Decision and Control, 2021, pp. 6477–6484.

[17] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness of
neural networks with mixed integer programming,” arXiv preprint
arXiv:1711.07356, 2017.

[18] M. Fischetti and J. Jo, “Deep neural networks and mixed integer linear
optimization,” Constraints, vol. 23, no. 3, pp. 296–309, 2018.

[19] D. Ioan, I. Prodan, S. Olaru, F. Stoican, and S.-I. Niculescu, “Mixed-
integer programming in motion planning,” Annual Reviews in Control,
vol. 51, pp. 65–87, 2021.

[20] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in IEEE Conference on Decision and
Control, 2014, pp. 81–87.

[21] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado,
“Learning lyapunov functions for hybrid systems,” in Proceedings of
the 24th International Conference on Hybrid Systems: Computation
and Control, 2021, pp. 1–11.

[22] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer
feedforward networks with a nonpolynomial activation function can
approximate any function,” Neural Networks, vol. 6, no. 6, pp. 861–867,
1993.

[23] Z. Wang, S. B. Andersson, and R. Tron, “Bearing-based formation
control with optimal motion trajectory,” in IEEE American Control
Conference, 2022, pp. 486–493.

[24] D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational
Research Society, vol. 48, no. 3, pp. 334–334, 1997.

[25] R. L. Burden, J. D. Faires, and A. M. Burden, Numerical analysis.
Cengage learning, 2015.


	Introduction
	Preliminaries
	Lyapunov's Direct Method for Stability
	ReLUs, MILP, Verification, and Learning

	Problem Statement
	Lyapunov Neural Network
	Monotonic Layers
	Proposed Lyapunov Network
	Verification of Lyapunov Conditions
	Learning Procedure

	Region of Attraction Expansion
	Training over a Sub-level Set
	Approximating a Sub-level Set
	Selecting the ROA Expansion Direction

	Simulation
	Systems 
	Comparison with Baseline
	ROA Expansion

	Conclusions
	References

