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We prove a sharp quantitative version for the stability of the Sobol-
ev inequality with explicit constants. Moreover, the constants have
the correct behavior in the limit of large dimensions, which allows
us to deduce an optimal quantitative stability estimate for the
Gaussian log-Sobolev inequality with an explicit dimension-free
constant. Our proofs rely on several ingredients such as compet-
ing symmetries, a flow based on continuous Steiner symmetrization
that interpolates continuously between a function and its symmet-
ric decreasing rearrangement, and refined estimates on the Sobolev
functional in the neighborhood of the optimal Aubin—Talenti func-
tions.
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1. Introduction and main results

The classical Sobolev inequality on R?, d > 3, states that
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where 2* = 24 is the Sobolev exponent, Sq = 1d(d — 2) |S92/4 is the
sharp Sobolev constant, and |S?| denotes the d-dimensional volume of the
unit sphere in S ¢ R, Here H'(R?) is the closure of C2°(R?) with respect
to the seminorm || f{ 1 (gay == [IV flIE: (rey- 10 addition, equality holds if and

only if f belongs to the (d + 2)-dimensional manifold

M = {ga,b,c : (a,b,C) € (0,+OO) x RY % R}

x—>b

(1) where ga7b7c(x):c§( - ) and g(x)z(%w)¥

In [13] Brezis and Lieb asked the following question:

Do there exist constants k, o > 0 such that
19122 g

dsob(f) =
i b< ) Hin?*(Rd)

— Sg > rdist(f, M)*

where dist(-, M) denotes some ‘natural distance’ from the set of optimizers?

In the modern terminology, dson(f) is usually called the Sobolev deficit. In
this kind of stability questions, one can try to obtain ‘the best possible result’
by finding the strongest possible topology to define the distance and the best
possible constant k and exponent «. A beautiful answer to Brezis and Lieb’s
question has been given by Bianchi and Egnell in [7]: for any d > 3 there is
a dimensional constant ¢; g > 0 such that

(2) JSob(f) > igd,BE gien./f/l ||vf - vg”iz(Rd)

for any f € H'(R?) such that | fllr2*(may = 1. It is worth observing that this

result is optimal both in terms of the distance used (the H' norm) and in
terms of the exponent 2. Its proof is based on two principles:

(i) Local-to-global: it suffices to prove the inequality in a neighborhood of
M;
(ii) Local analysis: (2) holds near M.

As shown in [7], these two steps are achieved as follows:

(i) By Lions’s concentration-compactness theorem, if dgop(f) is small, then
f is close in H! to M.

(ii) Given f close to M, one can assume that g € M is the closest point
to f. Then, if one writes f = g + e with € := ||V f — Vgl 2(re) and
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[Vlli2@ey) = 1, a Taylor expansion gives

2 2*

8sob(7 + €9) > € Qgle] — o €

where Qg[-] is a quadratic form depending on g (see Section 2.4 below
for more details). In addition, spectral analysis shows that Qg[¢] > diﬂ
and this inequality is sharp, proving that

2 2 o

_ >
(3) dsob(g+ep) > d—|—46 o €

In particular, if € is sufficiently small then (2) follows.

Although Bianchi and Egnell’s result gives a very satisfactory answer to
the question raised by Brezis and Lieb, their method gives no information
about the constant ¢y pg. More precisely:

(i) Since the local-to-global argument is based on compactness, there is no
information about the size of 3 pr outside a small Hl—neighborhood
of M.

(ii) Even if we restrict to functions close to M, the bound provided by
Bianchi and Egnell is very unsatisfactory for large dimensions. Indeed,
(3) implies that dson(g+e€ ) 2 L € provided € ~2 < 1 or equivalently
e < d~%*. In other words, for large dimensions, the neighborhood of
M where the Taylor expansion of Bianchi and Egnell provides a lower
bound is super-exponentially small with respect to d.

The goal of this paper is to provide a new proof of the Bianchi-Egnell
estimate that leads to a completely sharp result. More precisely, by a series
of new ideas and techniques, we shall provide:

(i) a quantitative local-to-global principle, based on competing symmetries
and continuous Steiner symmetrization, that allows us to reduce the
global estimate to a local estimate;

(ii) arefined local analysis that provides a bound on the form g0 (g+€ ) >
@ €2 for € < €y, where ¢y and €y are independent of the dimension.

These techniques allow us to prove the following explicit stability constant
estimate.

Theorem 1.1. There is an explicit constant 3 > 0 such that, for all d > 3
and all f € HY(RY),

5
I 1oy = SallF1Eer oy 2 5 inf, V£ = VilEaqua
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To our knowledge, this is the first estimate where one obtains a complete
dimensionally sharp result for the deficit of a Sobolev inequality. If €4 pg
denotes the sharp constant in (2), which we shall assume from now on, then
Theorem 1.1 can be succinctly written

C4BE >

)

LUl ™

where [ is independent of d. To emphasize the robustness of our result we can
prove, as a direct consequence of Theorem 1.1 when d — oo, a new stability
result for the Gaussian log-Sobolev inequality. More precisely, on R with
N > 1, we consider the Gaussian measure

dy(z) = e~ ™ dy .

We abbreviate L2(y) = L2(RY,dy) and denote by H!(v) the space of all
u € L2(y) with distributional gradient in L?(y).

Corollary 1.2. With 8 > 0 as in Theorem 1.1, we have that, for all N € N
and all u € H'(v),

2
/ \Vu\zdv—ﬂ/ u?1n UT d’yZB—W inf / (u—ceb'”)zdy.
RN RN ||UHL2(7) 2 beRW,ceR JrN

As we shall discuss later, also this corollary is optimal, in terms of the
power that we control.

Some references

The question of optimality in the Sobolev inequality has a long history. Ro-
demich [70], Aubin [4] and Talenti [76] (see also [72]) proved that the Sobolev
deficit is nonnegative. Moreover, it was shown by Lieb [63], Gidas, Ni and
Nirenberg [52] and Caffarelli, Gidas and Spruck [20] that the deficit vanishes
if and only if the function f is in the (d + 2)-dimensional manifold M of the
‘Aubin-Talenti functions’ of the form (1). Lions [65] has shown that if the
Sobolev deficit is small for some function f, then f has to be close to the set
M of Sobolev optimizers, as a consequence of the concentration-compactness
method (see also [75] for a textbook presentation). In that case, the close-
ness is measured in the strongest possible sense, namely with respect to the
norm in H'(R?). The Bianchi-Egnell inequality (2) makes the qualitative re-
sult of Lions quantitative. In particular, it shows that the distance to the
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manifold vanishes at least like the square root of the Sobolev deficit. Such
‘stability’” estimates have been established in other contexts as well, e.g., for
the isoperimetric inequality or for classical inequalities in real and harmonic
analysis. In fact, stability has attracted a lot of attention in recent years. We
refer to [46, 45] and references therein for quantitative stability results for
isoperimetric inequalities based on a generalization of the Fraenkel asymme-
try and to [51, 32] for related results for functional inequalities of Sobolev
type; to [33] for a selection principle which provides an alternative proof of
these results; to [29] for stability in the fractional Sobolev inequality; to [47]
for a sharp quantitative stability result corresponding to the embedding of
WP into the critical LI(R%) space (and references therein for earlier papers);
to [37] for stability results based on the duality between Sobolev and Hardy—
Littlewood—Sobolev inequalities and to [24] for the question of the stability
of the lowest eigenvalue of the Schrodinger operator under the constraint of
a given LP norm of the potential based on Gagliardo—Nirenberg inequalities,
by a Keller duality; to [30, 31] for respectively sharpened Hausdorff-Young
and Riesz rearrangement inequalities, with applications in [49, 50]; to [23]
and [73, 67] for an extension of the Bianchi-Egnell method to a Sobolev in-
equality for continuous dimensions (using weights) motivated by Gagliardo—
Nirenberg inequalities, whose stability (under tail restriction) is also obtained
by entropy estimates and regularizing properties of fast diffusion flows in [11],
with constructive estimates; to [48, 14] for related results on the unit sphere
for subcritical interpolation inequalities. In several of these papers the strat-
egy of Bianchi and Egnell or its generalizations play an important role.

An interesting point about (2) and other inequalities obtained by this
method is that nothing seems to be known about the value of the constant
¢aBE except for the fact that it is strictly positive and bounded from above
by

4
4 . < —
(4) dBE S G

as a consequence of the sharpness of the leading order term in (3) (see also
the proof of [7, Lemma 1] or [29, Introduction]). As mentioned before, the
proof of (2) in [7] proceeds by a spectral estimate combined with a compact-
ness argument and hence cannot give any information about ¢;pg. In [61]
Konig shows that the upper bound in (4) is strict and in [62] that the infimum
defining 6, g is attained!. This is reminiscent of the planar isoperimetric in-
equality, where the constant in the quantitative isoperimetric inequality with

n fact, the results of Koénig in [61, 62] provide affirmative answers to questions
that we had asked in a first version of this paper.
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Frankel asymmetry is strictly smaller than the constant in the corresponding
spectral gap inequality and where one can prove the existence of an optimizing
domain; see [8]. For further studies under an additional convexity assumption,
see [21, 2, 34]. Explicit lower estimates are known only for distances to M
measured by weaker norms than in (2) and for functions satisfying additional
constraints, while much more is known for subcritical interpolation inequali-
ties than for Sobolev-type inequalities. We refer to [10, 38, 11] for Euclidean
Gagliardo—Nirenberg—Sobolev inequalities, to [3] for improvements for Gaus-
sian weights, and to [36, 48, 27, 14] for interpolation inequalities on the sphere.
After the completion of this paper, an extension of our method to fractional
Sobolev inequalities has been obtained in [28] with interesting consequences
for Hardy—Littlewood—Sobolev inequalities.

The logarithmic Sobolev inequality on a finite dimensional Euclidean space
(with either Gaussian or Lebesgue measures) can be seen as a large dimen-
stonal limit of the Sobolev inequality, for instance by considering Sobolev’s
inequality on a sphere of radius v/d applied to a function depending only on
N real variables as in [6, p. 4818] and [66]. Also see [78, Remark 4, p. 254] for
some historical comments. The classical versions of the logarithmic Sobolev
inequality are usually attributed to Stam [74], Federbush [43], Gross [54], and
also Weissler [80] for a scale-invariant form. There is a huge literature on log-
arithmic Sobolev inequalities and we refer to [55] for a survey on many early
results. Equality cases in the logarithmic Sobolev inequality have been char-
acterized by Carlen in [22, Theorem 5], even with a remainder term, see [22,
Theorem 6]. Other remainder terms are given in [9, 42, 39, 15, 56] and, using
weaker notions of distances, in [9, 59, 42, 44, 58], while some obstructions to
stability results involving strong notions of distance are given in [60, 41]. Un-
der some restrictions, improved forms of the inequality are known for instance
from [42, 39, 41, 14]. Also see [53] for a connection between deficit estimates
for the logarithmic Sobolev inequality and the Mahler conjecture in convex
geometry, and [58] for a detailed list of earlier related results. However, as far
as we know, the Bianchi-Egnell strategy has so far not been applied to the
logarithmic Sobolev inequality, probably because u + u? In(u?) is not twice
differentiable at the origin. Here we overcome this issue as a consequence of
the optimal d~! decay of C4.BE-

Comments
Stability of functional inequalities is a natural question in the Calculus of

Variations. As soon as the set M of all minimizers of a given functional is
known, the next question is: if for some function f the functional takes a value
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above the minimum, can we control a distance dist(f, M) of f to M in terms
of the value of the functional? This is precisely what we do with the deficit
of the Sobolev inequality dgson. Applications range from the justification of
the use of Taylor expansions and spectral estimates, which is essential in
many areas of physics, to the computation of a posteriori errors in numerical
analysis. Stability in the Sobolev inequality is of particular interest because a
whole range of stability estimates in subcritical inequalities can be deduced by
interpolation. This stability also applies to inequalities based on duality, like
the Hardy-Littlewood—Sobolev inequalities, with applications to mean-field
models and nonlinear equations involving fractional operators. The knowledge
of an explicit stability constant is also an invitation to revisit various problems
of analysis, like blow-up phenomena in which Aubin—Talenti functions play a
key role, or rates of convergence in nonlinear parabolic equations, for instance
fast diffusion equations, in which Barenblatt profiles are nothing more than
Aubin—Talenti functions in a different setting.

An important point when discussing stability of functional inequalities
is the notion of distance that is employed. In the setting of the Sobolev in-
equality, the distance dist(f, g) = [|[Vf — Vyg||2 used by Bianchi and Egnell
is the strongest possible notion of distance. The situation is less clear in
the setting of the log-Sobolev inequality. It is well known that the entropy,
that is, [pn fIn fdy, controls ||f — 1llii(y), if [pn fdy = 1, by the stan-
dard Pinsker—Csiszar-Kullback inequality, and the Wasserstein distance by
the Talagrand inequality (see for instance [5, Notes and references of Chap-
ters 5 and 9]). Here f plays the role of u? in our Corollary 1.2. Stability of
the log-Sobolev inequality in Wasserstein distance is by now classical, with
results that go back to [59, 9], but is weaker than in L2(R%, dy) distance as
in Corollary 1.2. One may wonder whether one can prove stability with re-
spect to the H!(RY, dv)-distance. However, the corresponding bound does
not hold according to [56]; see [15, 57] for recent advances on this issue. In
addition, within the LP(RY dy) spaces, p = 2 is the largest natural expo-
nent for which such a stability estimate can hold; see [60] for a result in this
direction.

Strategy of the proofs and outline

Let us start with the proof of Theorem 1.1, concerning the stability of the
Sobolev inequality. It consists of three main parts. The first and second parts
deal with nonnegative functions, while in the third part we deduce the in-
equality for arbitrary functions from that for nonnegative functions. The
latter argument uses a concavity property of the problem. Potentially this
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argument comes with a loss in the constant, but we show that it does not
destroy the d=! behavior that we need to prove Corollary 1.2.

We now discuss the first and the second parts in more detail. These two
parts correspond to the two ingredients mentioned at the beginning of the
introduction, namely to the local analysis (ii) and the local-to-global principle
(i), respectively. The region where the local analysis applies is where the
quantity infge g HVf—Vg||i2(Rd)/||Ving(Rd) < 0, while the remaining region
will be treated using the local-to-global principle. Here § € (0,1/2) is a free
parameter that will be chosen appropriately at the end. The crucial point is
that d can be chosen independently of the dimension d.

The first part of the proof (see Theorem 2.1 in Section 2.2) is concerned
with a nonnegative function f that is close to the set of optimizers. The basic
strategy is to expand the quantity || f HideV with the main term given by this
quantity when f is replaced by the closest optimizer g. By this choice there
will be no linear term in the expansion, and for the quadratic term one uses a
spectral gap inequality (Section 2.3). A first version of this argument appears
in the proof of Proposition 2.4 in Section 2.4. Such a naive expansion, however,
is not good enough to reproduce the correct d—! behavior of the constant
¢apE- Instead, a refined argument (Sections 2.5 and 2.6) is needed where
we cut the function f/g in various parts of its range and treat the different
parts by ad hoc arguments. Three different ranges of the function are treated
and, while each of these arguments individually is not sufficient, by carefully
combining them we obtain the final result. We mention that the spectral gap
inequality is only used for an L*°-bounded part of the perturbation.

Parenthetically we point out that we actually prove something stronger.
Namely, we assume a decomposition f = g+r with ¢ € M and a perturbation
r satisfying certain orthogonality conditions. These orthogonality conditions
for r are guaranteed when g realizes the infimum infy e [V f — Vg’Hiz(Rd),
but our argument does not make use of this minimality of g.

In the second part of the proof of Theorem 1.1, described in Section 3.1,
we obtain a lower bound on

IV By~ Sall FIe

: v f e H(RY)\ M
et V] — Volage, 0 C

(5)

for nonnegative functions f satisfying infgep||Vf = V|3, (Rd) > 0 HVinQ(Rd);
see Theorem 3.1 for a detailed statement. Bianchi and Egnell [7] handle this
part by a compactness argument and this is the reason why up to now there
did not exist an explicit lower bound on %, gg. Our solution is to replace this
argument by a constructive procedure using an idea taken from a paper by
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Christ [31], in which he establishes a quantitative error term for the Riesz
rearrangement inequality. To implement this strategy in our context we con-
struct, using competing symmetries [25] and continuous rearrangement [16],
a family of functions f.,0 < 7 < oo, such that fy = f, ||f-
7 +— ||V fr|l2 is nonincreasing and infgen |V (fr — g)ll2 = 0 as 7 — oo.
Clearly,

> va”%,Z(Rd) Sd ”fHL2*(Rd _1_ Sd HinZ*(Rd)
- Zi 1971 g
vaTHL2(Rd — 54 HfTHLz*(Rd)
- IV 7o

Starting with infgepq ||V f — Vg||iz(Rd) >0 HVfH%Q(Rd), one would like to run
the flow until at a certain point 79 one has

(6) gien/\f/t IV (fr, — 9)”%2(]1@) =0 ||vao||iZ(Rd) )

so that

vaToH%Q(Rd) Sd HfTOHL2* (R4) .y ”VfTOHiZ(]Rd) - Sd HfTo”%ﬁ*(Rd)
||vf7'o||L2(Rd) inf e IV (fr — Q)H%Q(Rd)

(f) >

This would allow us to apply the first part of the proof to the function f;,
and obtain the desired bound. The details of this argument are more involved
than presented here, mostly because the function 7 — ||V f; || 2y need not
be continuous, so the existence of a 7y as in (6) is not guaranteed.

Continuous rearrangement flows in the setting of Steiner symmetrizations
have been used by Pélya—Szegé [68, Note B], Brock [16, 17] and others. For a
recent application see [26]. In the setting of symmetric decreasing rearrange-
ments of sets they were used by Bucur—Henrot [18] and we will generalize
them to functions. Additional results on this flow, which might be useful in
other contexts as well, are given in Appendix A.

The proof of Corollary 1.2, concerning stability for the log-Sobolev in-
equality, is given in Section 4. The underlying idea is that this inequality on
RY can be obtained by taking an appropriate limit in the Sobolev inequali-
ties in dimension d, in the limiting regime as d — +o00, and that the same
property should also be true for the corresponding stability inequalities. This
large dimensional limit is accompanied by a rescaling argument and it is for
scaling reasons that the Hl(Rd) distance in the stability term for the Sobolev
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inequality gives rise only to a stability estimate in L2(RY,dy) for the loga-
rithmic Sobolev inequality. This L2(R¥, d)-stability is not an artifact of our
method of proof since, as we have already mentioned, the stability for the
log-Sobolev inequality does not hold in H!(R¥ dv) according to [56].

We also note that in [35] we give an alternative, direct proof of the stability
for the log-Sobolev inequality, which runs through rearrangements on Gauss
space, but otherwise the strategy is essentially the same as in the proof of our
Theorem 1.1.

Throughout this paper we deal with real-valued functions. With minor
additional effort our arguments can be extended to the case of complex-valued
functions. In order to make notations lighter, we will write || - ||, = [ - [|La(re)
whenever the space is R? with Lebesgue measure.

2. Local stability for nonnegative functions

Our goal in this section is to prove a quantitative stability inequality for
nonnegative functions close to the manifold of optimizers. In order to simplify
the notation, we write in this section

q=2"=2d/(d-2), 0=q—2=4/(d—-2)

and
(7) A=
2.1. The Sobolev inequality on the sphere

It is well known that the Sobolev inequality on R? has an equivalent formu-
lation on S%, the unit sphere in R4, It will be convenient for us at several
steps of our proof to carry out the arguments in the setting of S®. Let us give
some details.

We denote by w = (wy,ws,...,wqs1) the coordinates in R, Then the
unit sphere S € R can be parametrized in terms of stereographic coordi-
nates by
1—Jz?
1+ |z]2

2(Ej

= =1,....d =
w.] 1+|I’|27 J ) s Wy Wd+1

To a function f on R? we associate a function F on S¢ via

(8) F(w) = <%> N f(x) VreRe.
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Then, since (2/(1 + \:c]Q))d is the Jacobian of the inverse stereographic pro-

jection x — w,
s / F) du(w) = / F@) de,
Sd Rd

where p denotes the uniform probability measure on S?. Moreover, F' € H'(S%)
if and only if f € HY(R?), and in this case

sd\/ (VEP + A[FP) du(w /Wf]Qdm

Therefore, with A given by (7), the sharp Sobolev inequality on R? is equiv-
alent to the following sharp Sobolev inequality on S¢,

2/2*
Lwre s airpyanza( [ 10 a) vEe e,
Sd sd

with equality exactly for the functions

_d=2
2

Gw)=c(a+b-w) 72,

where a > 0, b € R? and ¢ € R are constants with |[b| < a. We denote the
corresponding set of functions by .#. Then the above equivalence shows that

E(f) = IVFIE = SallflI3 B HVFHLZ s T A HFHL2(sd) S "F"iZ*(Sd)
inf.‘]GMva - Vg‘ % lnfGE///{HVF VGHLZ(Sd)'i_A HF_G”%Q(Sd)} .

2.2. A stability result for functions close to the manifold of
optimizers

Theorem 2.1. Let ¢ = 2* =2d/(d—2) and § = q—2 =4/(d — 2). There

are explicit constants eg > 0 and 6 € (0,1/2) such that for all d > 3 and for
all —1 < r € HY(SY) satisfying

) ([ rtean) Y

and

(10) /rdu:O:/wjrd,u, j=1,...,d+1,
Sd Sd
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one has

2/q
/(|Vr|2+A(1+r)2)du—A</ (1+r)qdu>
sd sd
2960/ (|V7“|2+Ar2)du.
Sd

The key feature of this theorem is that the constant 6 ey behaves like
4¢eyd™! for large d. This d~! behavior leads to a corresponding lower bound
on the behavior of %, g, which in view of (4) is optimal.

Remark 2.2. In fact, we show that for every 0 < ¢y < % there is a 6 > 0 such
that the assertion in the theorem holds for all d > 6. The same argument also
gives that for every 0 < ¢y < % thereisa D and a é > 0 such that the assertion
of the theorem holds for all d > D. The explicit expression for 6 > 0 can be
found in the proofs of Theorem 2.1, Proposition 2.18 and in (23) below.

The proof of Theorem 2.1 will take up the rest of this section.
2.3. The spectral gap inequality

Of crucial importance in our analysis, just like in that of Bianchi and Eg-
nell [7], is the following spectral bound. It appears, for instance, in Rey’s
paper [69, Appendix D] slightly before the work of Bianchi and Egnell.

Lemma 2.3. Let d > 3 and assume that r € H'(S?) satisfies (10). Then

2 .2 4 2 2
/Sd(|Vr| dr)du2d+4 Sd(|V7’| +Ar?)dp.

Proof. We recall that the Laplace-Beltrami operator on S? is diagonal in the
basis of spherical harmonics and that its eigenvalue on spherical harmonics
of degree (is £ ({+d —1).

Conditions (10) mean that 7 is orthogonal to spherical harmonics of de-
grees £ < 1. Diagonalizing the Laplace—Beltrami operator, the claimed in-
equality becomes

4

This is elementary to check. O
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4. Warm-up: A bound with suboptimal dimension dependence

In this subsection we prove a preliminary version of Theorem 2.1 where the
constant fey on the right side is replaced by some d-dependent constant,
which decreases much faster than d~' as d increases.

The motivation for proving this preliminary version is threefold. First, it
explains the basic strategy of the proof without the additional difficulty of
tracking the dependence on d. The latter will require some rather elaborate
additional arguments. Second, this more involved proof works nicely when
the exponent ¢ = 2* is < 3, which means d > 6. (It is, however, not difficult
to adjust it to arbitrary d.) Therefore our chosen proof of Theorem 2.1 will
combine the inequality proved in this subsection for d = 3, 4, 5 with the in-
equality proved in the next subsection for d > 6. Third, the simpler argument
in this subsection gives simpler expressions for the relevant constants, which
might be preferable in certain applications in low dimensions where the values
of these constants play a role.

Proposition 2.4. For all § > 0 and for all —1 < r € H'(S?) satisfying (9)
and (10) one has

/Sd (VPP +A(1+7r)?) du— A (/Sd (149 du>2/q
= m(gl/z)/gd (!Vr]Q n Arg) di.

where du is the uniform probability measure, with

m(y):ﬁ—gy if d>6,
(11) m(V)::ﬁ—%(q—l)( 2)V—§I/q_2 if d=4,5,
m):=2-2v-5,"-2,° %1/4 if d=3.

We note that for any d > 3 there is a v4 such that m(v) > 0 for v < vg.
Thus, for 6 < v we obtain a stability inequality.

We begin the proof of Proposition 2.4 with some elementary inequalities.

Lemma 2.5. If ¢ > 2, then, for allt > 0,
2
2 2
(I+t)e <142t

This is well known and we omit its simple proof.
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Lemma 2.6. We have the following bounds.
o If2<q <3, then, forallt > —1,
I+ <1+qt+3qlg—1)t2+1t%.
o If3< q <4, then, for allt > —1,
I+ <14qgt+3q(@— Dt +5a(@—1)(a—2)t + ¢

Similar bounds can also be derived for real ¢ € (4,00). They become
increasingly more complicated each time ¢ passes an integer. The only bound
for ¢ > 4 that we shall need corresponds to the critical exponent ¢ = 6
when d = 3. In that case, we rely on the binomial expansion (1 + #)¢ =
14641562 +20¢3 + 15¢* + 6¢° + 15

Proof. The case ¢ = 2 is trivial. We begin with the case 2 < ¢ < 3 and set
o(t) = (1+t)" =1 —qt—q(g—1)t* — 17 .

For any t > — 1, we compute

dt) =q(1+0 1= (g - -1,

S0 =qle-1 (L+07-1-112).

For — 1 <t < 0 we clearly have (14—25)‘1*2—1—%[2 =(1-]t))*2-1<0. For
t > 0 we have, by a well-known elementary inequality, (1+¢)772 —1— t‘fQ =
(14¢)972—1—972 < 0. To summarize, ¢ is concave on [—1, 00). We conclude
that, for all t > —1,

o(t) < $(0) — ¢'(0) ¢

Since ¢(0) = ¢'(0) = 0, this is the claimed inequality.
We now turn to the case 3 < ¢ < 4 and set this time

o) == (1+1)"=1—qt —5q(g—1)t" = §q(g—1)(¢g—2) ¢ —|t|*.
Again, we compute

F)=q((1L+)"" —1— (g1t —5(@—1) (g2 —[t]"1),
() =a(a—1) (1407 1= (g =2t —[1)').
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Since again ¢(0) = ¢'(0) = 0, the claimed inequality will follow if we can
show concavity of ¢ on [—1,00), that is, 1) < 0 on [—1, c0) where

() = (12— 1= (g—2)t — "2
We compute

V()= (=2 (L+)7° =1 [t]7"1),
V() = (¢=2) (a=3) (L+1)T" =t
We discuss 1) separately on [—1,0] and on (0, c0).

o We begin with the second case. For t > 0 we have, by the same elemen-
tary inequality as before, (1 +#)972 — 1 — 973 < 0. Thus, ¥/ < 0 on
(0, 00). Since ¥(0) = 0, we deduce ¥ < 0 on (0, c0).

o Now let us consider the interval [—1,0]. We see that ¢” > 0 on
(—=1,—1/2) and 9" < 0 on (—1/2,0). Therefore ¢ is increasing on
(—1,—1/2) and decreasing on (—1/2,0). Since ¢'(—1) = ¢’(0) = 0, we
conclude that ¢ > 0 on (—1,0) and therefore ¢ is increasing on (—1,0).
Since 1(0) = 0 we conclude that ¢ < 0 on [—1,0), as claimed.

This completes the proof of the lemma. O
From Lemmas 2.5 and 2.6 we easily obtain the following inequalities.

Proposition 2.7. Let (X,du) be a measure space and u, r € LY(X,du) for
some g > 2 with u > 0 and u+r > 0. Assume also that fX udt rdu = 0.

o If2<q<3, then
_ _ 2
2 < [l + ]2 <<q— O [t [ du> |
X qJ)x
o If3<q <4, then

lut 2 <l + (g — 1) Juf20 /X 2 dy

e (Y- 0G-2) [t 2 [ ).
X X
o Ifqg=06, then

|u+ 7| < ||u||2 + ||u||§_q (5/){ w2 dp + ?/X w33 du
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—|—5/ uq4r4du—|—2/ uq5r5du+%/ rﬁdﬂ>.
X X b's

Proof. For 2 < ¢ < 3 we have, by Lemma 2.6, almost everywhere on X,
(u+r) <uwl4quilr+iqlg—Du?r*+rl.

Integrating this and using the assumed orthogonality condition, we obtain

/ (u+7)tdu < / udp+ 5 q(q— 1)/ U"Q?‘Qdu+/ r du.
X X X b'e
Applying Lemma 2.5, we obtain

</X(u+1")qd,u)§ < (/Xuqd,u>§

q

2—q
+</ quu) a <(q_1)/ u‘I2r2d,u+%/ Tidu).
X X X

This is the claimed inequality for 2 < ¢ < 3. The proof for 3 < ¢ < 4 is similar
and the inequality for ¢ = 6 follows from expanding the polynomial. 0

Proof of Proposition 2.4. Let r be as in Theorem 2.1. Because of the mean-
zero condition we can apply Proposition 2.7 with « = 1 on X = S¢ and dpu
the uniform probability measure. We simplify the resulting term using Holder
and Sobolev, which imply for 2 <t < g,

tle
/Sd r|* du < (/sd |7‘\qdu> <6z A™! /Sd (IVr)> +Ar?) du.

In this way, we obtain

</Sd(1+r)qdu>2/q§1+(q—1)/8dr2du

+n(0/?) A / (IVr|* +Ar?) dpu,
Sd

where
p12 if d>6,

q—1)(q—2)y+§zﬂ*2 if d=4,5,
n(v) =2v+502 4205+ 14 it d=3.

n(v) =

n(v) =

N Wl QN

w
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Using A (¢ — 2) = d, we deduce that

2/q
[P eaanan-al [ asnmi)
r|? — dr? — n(6'/? r|? r? .
> [ (90— dr?) 0@ [ (Vi AR a

Using the spectral gap inequality in Lemma 2.3 and noting that m(v) =

d—%l —n(v), we obtain the claimed inequality. U

Remark 2.8. The estimates of Proposition 2.4 are good enough for proving
Theorem 2.1 for d finite, but fail for proving that the stability constant is of
the order of f¢y in the large d limit, for some positive €y independent of d
and 0 = ¢ — 2 =4/(d — 2). Indeed, if we write that m(v) > 6 ¢, we obtain

4 Ad 4
—2(d+4 (4 )60>—2d+4 d—2)(d+4) —d—2’

14

which means v < (%)7T < V6 for d large enough, for any given 6 > 0.
Theorem 2.1 cannot be deduced from Proposition 2.4 as d — +o0o and this is
why we need better estimates.

2.5. Cutting r into pieces

We turn now to the proof of Theorem 2.1 with the optimal dependence of the
constant on the dimension. Thus, until the end of Section 2.2 we will assume
that r satisfies the assumptions of Theorem 2.1. The following proposition
gives an upper bound on

(I+r)9—1—gqr

for real numbers r in terms of three numbers

(12) ry :=min{r,v}, 7ro:=min{(r—~),M —~} and r3:=(r— M),

where v and M are parameters such that 0 < v < M. Notice that
r=r1+7r9+73.

We will later apply this when r is a function. Our goal is to obtain a bound
in terms of

(13) 0:=q—2 where ¢=2"=—.
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We have in mind to let d — 400 so that § — 0.

Proposition 2.9. Given M € (0,+00) and M € [\/e,+00), there are two
positive constants Cyr and Cy 37 depending respectively only on M and
{M, M} such that, for any v € (0, M], q € [2,3] and r € [~1,00), we have

(14) 1+nr?—1—¢qr< %q(q— 1) (ry + r9)?
+2(ry+72)rs + (14 Co 03 ') 1
+ (%797’% +CM,M9T§) 1]-{'rgM} +CM,M9M2 ]]-{7’>M}

with 11, ro, r3 and 0 given by (12) and (13).
For the proof of Proposition 2.9, we need two elementary lemmas.

Lemma 2.10. If2 < ¢ < 3, then for allr € [—1,00),
A+ <l+qr+3q(g—1)r"+(¢—2)r}.

Proof. The inequality for —1 < r < 0 follows from Lemma 2.6. Let now
r > 0. Then

(1+7)?=1—qr—3q(g—1)r’=q(¢—1) (QQ)/OT/OS/O (14u)?3 dudt ds .

Since ¢ < 3 we have (1 +u)?3 < 1 and therefore

q(q—l)(q—Z)/or/Os/ot(1+u)q3dudtds

T s t
<Q(q_1)(q_2)/o /0 /0 dudtds =455 (g = 2)r" < (g =2)r",

as claimed. n

Lemma 2.11. For all ¢ > 2 and allv> M > Ve we have

< 1+2_1nM

quit =20 (g —2)v? and

salg—1ov?—1< QT(Q—Q)U‘]-
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Proof. Let
vg) = (2 q%ql)qu? and U£2) = (q_Ll)quz _

Then an elementary computation shows that v — gv~! — 20!~ is increasing

on (0, v,(ﬁl)] and decreasing on [vgl), oo). Similarly v + %q (q—Dv2—v74

is increasing on (0, vg)] and decreasing on [vg) , oo). Thus,
q-1 71 VAN Vi (1)
g™ —2v<|(gM —-2M v forall v>M> v,

and

Salg-Do2=1< (Salg- DM =T ") ot VoMol
+

One has u(kl) >12> U£2) and, using Int <t — 1 for all £ > 0, we find

(1)

Inv,”’ < g%, that is, vil)S\/E.

1
q

Thus, the above inequality hold, in particular, for v > M > \/e.
Moreover, using 1 —¢t~! < Int for ¢t > 1 we can bound

M2 W = (q-2) M 2 (I W)

<(q—2)M ' (142 M)

This proves the assertion. O

Proof of Proposition 2.9. We now turn to the proof of (14). Assume first that
r < M. We apply Lemma 2.10 and obtain

(1+T)q—1—qr§%q(q—1)(7’1+T2)2+9(r1+7"2)i.

If r <, then 75 = 0 and (14) follows from (r1)} <~yrf < 24ri Ify <r <
M, we have, since 11 =~y and 3r17ry < %r% + %r%, we have

(r1+r2)i:fyr%+3'yr17“2+3'7’r§+7“gS%’77“%-1—(%’7—!—]\4)7"%.



Sharp stability for Sobolev and log-Sobolev inequalities 379

Since v < M this proves (14) with Cy, 37 > IM.

From here on, let us consider the case r > M. Using r = M + r3 we can
write

(1+7r)0—1—qgr=01+7r)7—(1+7r)*+(1+ M)
~1—qM —(q—2)r3+r3+2Mr3.

We use

(1+M)P?—=1—qM—4q(qg—1) M
—lg-YM 2+ g+ 1) M) <0

as well as — (¢ — 2)r3 <0, to get

(15)
(L+7)" =1—qr<gq(g—)M* +2Mry+r5+ (L+7)" = (L+7)*,

Note that the terms 2Mrg = 2(rq +72) 73 and 5q(q— 1) M? = $q(q —
1) (11 + 72)? are already of the form required in (14). In the following we
bound the remaining terms r3 + (1 +7)? — (1 +r)2. We do this separately in
the cases M <1 < M + M and r > M + M, where M > 0 is an additional
parameter.

If M <r <M+ M, we have

1+ —(1+7)?2< CJ(\/?MG and i —rf < 01(\4_1)9'

Inserting this into (15), we have for M <r < M + M
(I+r)?—1—qr<2Mrs+7ri+ (5q(q—1)+ Cyp370) M?,
provided
. -2 (1) (1)

Coar = M2 (C + D)

This is a bound of the form (14), since r; 4+ ro = M for r > M.
Next, we consider the case r > M + M, that is 73 = r — M > M. By

Lemma 2.10 we have

(L4+7)7=(1+M+r;)?=r](1+1M)*

T3
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<ribgrit A+ M) +iq(q-Dri P QA+ M2 +0r7° (1+ M)?
<l grf I+ M)+ Lq(q— D82 (0 + M2+ 0307 (14 M)
=1 grf T (1+ M)+ 3q(g—1)r§ > (14 M)? + O 6.

In the last inequality, we used ¢ < 3 and r3 > M. This, together with
(1+7)2=01+M+r3)*=ri+2r3(1+M)+(1+ M)?,
gives

Tqlg— 1) M +2Mrs+ri+ (1+7)7— (1+7)?
<2Mrg 4o+ (grf = 205) (14 M)

+(Fala—1)r? = 1) (L4 M2+ O 0+ g (g — 1) M2,
We now assume that M > \/e. Then, by Lemma 2.11,

- 1+2InM
qri 1—27’3§+Tn9r§ and

Thus,

Yalg—D)M*+2Mry+r5+ (L+7)7— (1+7)?

§2Mr3+<1+¥9> 0(2) g0+ 3a(g—1) M2,

where C'y; is a constant satisfying

1+2InM 2+InM s  CyInM —
—— (1+ M)+ —— 1+ M) < ——— forall M > /e.
(M) + T (< > Ve

Combining this with (15) we obtain a bound of the form (14), provided the
constant C'y, 57 satisfies
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This concludes the proof with

a2 W)~ A2
Chyr = M~ max {CMM +c), CMM} . -

Corollary 2.12. Givene >0, M > 0, and vy € (0, M/2), there is a constant
Cy.e.m > 0 with the following property: if 2 < q <3, r € [—1,00), then

(16)
(L4 =1—gr<(3a(a=1)+270)ri + (3q(a— 1)+ Cren6) 73
+27’17’2+2(7“1+T2)T3+<1+€0)r§

with r1, o, 13 and 6 given by (12) and (13).

Proof. Since

qg—1D)rire=2r1ro+ 3+0)0r1re <2ry7r9+401179

§2r1r2+%9r%+%97€

and
Corrar M? Lponry <4Cy 57 (M =) Lpony <4Cy 5773,
we deduce from (14) that

(T+7r)=1—qr<(3q(@—1)+27v0)rf+2rira+2(r +r2)r3
+(3ala=1)+20+5Cy570) 3+ (1+Cy 03 W) .

Given any M > 2+, we choose M such that M > Ve and Cyy M_l InM < e.
Then (16) follows with C, ¢ = % +5C 77 O

We will apply Corollary 2.12 for ¢ close to 2 and the main point is how
the constants depend on ¢. Apart from the ‘natural’ terms %q(q —1)72,
%q (g —1)72, 2ry 79 and 2 (ry + 7r9) 73, all other terms are multiplied by 6,
which is small in our application. Moreover, we have the freedom to choose
and € as small as we please (independent of ¢) and so the prefactors of the
terms r? and 74 are almost the natural ones. The price to be paid is a rather
large constant in front of the error term involving r3. In order to have better
estimates as d — +00, more work is needed.
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2.6. A detailed estimate of the deficit

We assume that — 1 < r € H!(S?) satisfies the orthogonality conditions (10)
as well as the smallness condition (9) with some 0, and we show that, if this
¢ is small enough, given €, € (0, %), we obtain the claimed inequality.

Given two parameters €1, €a > 0 we apply Corollary 2.12 with

(17) = 5 , €=§€2 and C"/,E,M = Cel,ez .

In terms of these parameters, we decompose r = r1 + r9 + r3. We obtain

/ Vrf? dy = / IVl du + / Vral? du + / Vsl du
Sd Sd Sd Sn’,

and, since r has mean zero,

/(1+r)2du:1+/r2du.
54 s¢

Moreover,

/r2d,u=/rfdu—|—/'r§du+/r§du
sd sd sd s4

+2/ rlrgdu—&—Q/ (ri+re)rsdu.
sd sd

According to Corollary 2.12 and using again the fact that r has mean zero,
we have

/d(1+r)qdu§1+(%Q(Q—1)+619)/drfd,u
S S

+(%q(q_1)+Cel,€20)/Sdrgd,u‘i‘Q/SdTlTQdu

+2/ (r1+r2)r3du+(1+629)/ i du.
Sd Sd

Using (1+2)%/7 <1+ %x, we obtain

2/q
(/ (1—|—T)qd,u) §1+(q—1+5619)/rfdu+
Sd sd
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(q—1+§ceme)/ r%du+§/ rirodu
sd sd

+§/ (r1+r2)r3du+§(1+620)/ rm

sd Sd

§1+(q—1+€10)/ r%du+(q_1+cﬁl7€20)/ ngﬂ
sd sd

+2/ rlrzdu—FZ/ (r1+7“2)7“3d,u+§(1+629)/ rddu.
Sd Sd sd

In the last inequality we used % < 1. For the final term, however, it is vital
that we keep %. We thus have, for any 0 < ¢y < 671,

/Sd (IVr> + A(L+7)?) du — A (/S (l—i—r)qdu)Q/q
zeeofgd (IVr|* +Ar?) du
+(1—960)/Sd(|V7”1|2+A7’%)du—A(q—1+619)/Sd7"%du
+(1—960)/Sd(|w2|2+Ar§)du—A(q—1+C€1,€29)/Sdr§du
+1=0a) [ (VP +Ar) di=2AG+a0) [ .
With another parameter oy > 0 we define
L= (1-0¢) /S (IVri]* +Arf) du
—A(q—1+619)/SdrfdM+Aaoe/Sd(r§+r§)dﬂ,
I := (1—060)/Sd (|VT2|2+AT§)d,u—A(q—1+(00+C€1752)9)/Sd7’§du,
Iy :=(1—- 960)/Sd (IVrs]? +Ar3) du
—%A(1+629)/ rgd,u—Aooe/dr%d,u.

Sd S

We recall that A = 1 d(d — 2). For later purposes, we note that A = A (g —
2) = d and
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[1:(1—060)/ \Vrl\zdu—d(l+6o+€1)/ T%dlu'
sd Sd
+d00/ (rg +73) dp,
Sd
[2:(1—960)/ ‘VTQ‘Qd/L—d(l+€O+UO+CG1,62)/ T’%du
sd Sd

To summarize, we have

/Sd (VPP + AL +7)?*) du—A </§d 1 +7”)qd,u>2/q

3
2960/ (’VT’Q—I—A?"Q)d,LL—i-ZIk
§¢ k=1

In the following we will show that 1, Is and I3 are nonnegative, in this order.

2.6.1. Bound on I;. The intuition here is the same as in the proof of the
spectral gap inequality in Lemma 2.3. Namely, the lowest L2-eigenvalue of
de |Vu|? di on functions orthogonal to spherical harmonics of degree less or
equal than 1 is 2 (d + 1), while the term that we are subtracting corresponds
to a component that is multiplied by a number only slightly larger than d.
Therefore, there is space to accommodate the errors coming from ey and e;.
Another source of an error comes from the fact that, while r is orthogonal to
spherical harmonics of degree less or equal than 1, 71 need not be. However, as
we will see, it nearly is. To control the corresponding error from orthogonality
we need the positive terms involving oy.

Proposition 2.13. For any 0 < ¢y < %, there is a constant 7o(v, €y, 0) > 0
depending explicitly on v, €y and & such that for all d > 6 and all r € H*(S%)
such that r > —1 and satisfying (9) and (10) as in Theorem 2.1, with 0 given

by (13),

(18) e1 =73 (1—3e)

and o9 > 7o(7, €0,9), one has
L >0.

Notice that § = ¢—2 < 1 with ¢ = 2d/(d—2) means d > 6. An expression
of 7y is given below in (22).
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Proof. We split the proof in three simple steps.

Step 1. Let 7 be the orthogonal projection of 1 onto the space of spherical
harmonics of degree > 2, that is,

F1 =11 —/ ridp—(d+1)w- / W' ry (W) du(w')
sd sd

as vd + 1w; is L2-normalized with respect to the uniform probability measure
on the sphere for any j =1, 2, ...,d+ 1. Then

11_(1—960)/ |Vf1|2d,u—d(1+€0+61)/ 7 dp
sd Sd
2
+dao/ (r§+r§)du—d(1+eo+61)</ Tldﬂ>
sd Sd

/ wrydu
Sd

> (2(d+1)(1—960)—d(l—i—eo—&-el))/gd??%d,u

—d(d+1)((1+6) e +e1) i

2
+d00/ (rg—i-rg)du—d(l—i-eo—l—el)(/ rld,u>
s¢ s¢

/ wrydy
Sd

In the equality, we used the fact that the w;’s are eigenfunctions of the
Laplace—Beltrami operator with eigenvalue d. In the inequality, we used the
fact that the operator is bounded from below by 2 (d + 1) on the orthogonal
complement of spherical harmonics of degree less or equal than 1.

—d(d+1) (1 +8)eo + 1)

Step 2. With €, given by (18), it is easy to see that for any ¢y < %, using

0 < 1, we have
(19) 2(d+1) (1—960)—d(1+60+61) > %(1—360)+2(1—60) >de; > 0.

Using

2

2
/f%du—/r%du—(/ T1du> —(d+1)
Sd Sd Sd

/ wrydp
Sd
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and 0 < 1, we obtain

2

/wrld,u
Sd
> 61/ r%du—f—ag/ (r3 +73) du

sd sd

2
_(1—|—60)</ rld/j,> —2(d+1)e /wrld,u
sé s¢

Step 3. Let us take care of the rank one terms coming from the orthogonality
conditions. We will show that I; > 0 for an appropriately chosen o( as a

consequence of
2
(20) (1+€o) </ rld,u) +2(d+1)e / wrydp
s s

Sel/ r%du+ao/ (r3 +73) dp.
Sd gd

2

2

Let Y be one of the functions 1 and a-w, a € R4!. Then, since fsd Yrdu=0
by (10),

([rna) = ([ v rom)

1/2
<Y gy n({r2 475> 0N s 4 7122 s -

Since {ry + 173 > 0} C {r; > v}, we have

1 1
lra+ 72> 0) <l =) £ 5 [ b= e

Thus we have
2 V23 1/2
o ([ yrde) <1VEey 0 e ([ 6343 )

. = 1/2
using [z + sy < V23 (fou (13 +13) din) /2 because fra + raaasy <
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2 [su (r3 +73) dp and

s+ 73llpeqge) < Irliaay < I lliags < V3

If Y =1, then clearly [|Y||;4ge) = 1 and (21) gives

2 /25 1/2
</ 1 du) < — [Inllzee </ (r3 +73) d“) :
Sd v Sd

If Y =a-w, then a quick computation gives

Jy cos* 0 sind*19d9| 4 3alt < 3|alt

|Y”i4 sd) — T . = = :
| &) Jy sin®t 6 do (d+3)(d+1) — (d+1)2

From (21) applied with a = [, wr du, we obtain

2 2
d+1
/ wridp| = +2 (/ ledu>
Sd |al Sd

/25 1/2
< \/57 ||7”1||L2(§d) (/Sd (T% + T%) d,u> .

(d+1)

Summing up, we have
2
o Il oo [ (34 an— e ([ radn)
s¢ s4

2
/ wrydu
Sd

> €1 |r1lfzgee) + 00 /d (ry +73) dp
s

—2(d+1)60

/25 1/2
_ (1 + (2\/54- 1) 60) T ||T1||L2(Sd) (/Sd (T% + T’g) d,u>

and the right-hand side is nonnegative under a nonpositive discriminant con-
dition which is satisfied by o¢ > To(7, €9, ) with

(22) 50(7,60,5) = 2—161 (1+(2\/§+1) 60)2%.

This choice establishes (20) and allows us to conclude that I; > 0. O
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Let us define

4 2
(23) 5y = Ly

Cq(1+2vV3+ 1))’

The condition gy > (7, €0, 0) of Proposition 2.13 can be inverted as follows.

Corollary 2.14. For any 0 < ¢ < % and o9 > 0, for all d > 6 and all

r € HY(SY) such that r > —1 and satisfying (9) and (10) as in Theorem 2.1,
with 0, €1, €3 and 61 respectively given by (13), (18), (17) and (23), if

0< g < 4 49 ,

262

then one has Iy > 0.

Remark 2.15. The assumption € < 3 is used in (18) to guarantee that €
takes positive values. A less restrictive condition can be obtained by request-
ing that the left-hand side in (19) is actually 0. We see that if ¢y < 1, then a
similar bound as in (19), namely with 1 (1 —€) on the right-hand side, holds
for all sufficiently large d, depending on €.

2.6.2. Bound on I3. The idea for bounding this term is to use the Sobolev
inequality. The extra coeflicient % < 1 gives us enough room to accommodate
all error terms.

Proposition 2.16. Assume that 6 € (0,1) and 0 < e < 5. With

(24) €2 :=— (1 —3ep)

A~

and oy = %62, for alld > 6, all 6 <1 and all r as in Theorem 2.1, one has
13> 0.

Proof. Taking into account the choice for o(, we have

I3=(1- 960)/ (|V7"3|2 +Ar§) du
Sd

—2A<(1+629)/ rgd,queze/ r%d,u).
7 s 5
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We have ||7'3||iq(sd) < HTSHiq(Sd) because ”TSHLq(sd) < Hr”Lq(sd) < 1 and
73]l 2(sey < [I73]l 10 (say by Holder’s inequality. Thus, we obtain

2/q
Iy > ( —960)/ (IV7rsf? + Ar2) dpo— A2(1+26,6) </ rgdu>
Sd sd
4
q

> (1(]60—462)/ (|IVrsl?+Arf)du >0,
Sd

using § = ¢ — 2 < 1 and Sobolev’s inequality: ||Vr3||i2(gd) + A ||r3||ig(gd) >
2
A [|73]|La(sa): O

Remark 2.17. The restriction ¢y < % can be relaxed to ¢y < % at the
expense of having the inequality valid only in sufficiently high dimensions d,
depending on €. Indeed, ignoring the influence of €5 and og for the moment,
the inequality at the end of the previous proof requires 1 — ¢y > 0 and this
is possible in all sufficiently high dimensions if and only if ¢y < % Since this
inequality is strict, the errors from e and o can then be accommodated as

well.

2.6.3. Bound on I,. At this point in the proof, for given 0 < ¢ < %,
we have fixed the parameters €; and e; and we have found a d3 such that I,
I3 > 0 under the assumption 6 < 3. Here we show that, by further decreasing
¢ if necessary, we can ensure that I3 > 0. The idea to achieve this is to use

that ro satisfies an improved spectral gap inequality.

2

Proposition 2.18. For any 0 < ¢ < L et og = 7 €2 Then there is a

3
5y € (0,1) such that, for all d > 6, all 6 < 6y and all v as in Theorem 2.1,
one has

I, >0.

Proof. We first claim that for any L2-normalized spherical harmonic Y of
degree k € N, we have

k
2

/ erdﬂ‘ <32y
Sd

Indeed, according to [40, Theorem 1], for any such spherical harmonic and
any p € [2,00) we have

(25) E6% Il -

k
2

HYHLP(Sd) <(-1)
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Thus, we can bound

1
’/SHYTZ d#‘ < Y llpsay n({r2 > 01) " [Ir2llpae

< 3% p({rs > 0})

=

172l L2 sey -
Meanwhile,

1 09/2
p({re > 0}) = u({r >1}) < v 171 E 00y < R

This leads to the claimed bound (25).

If 7, ro denotes the projection of ry onto spherical harmonics of degree k,
from (25) to Y = mpra/ [k r2|[1 254y, it follows that

E _ 4 xa
HHk 7”2||L2(Sd) <3zy ng HT?HLQ(Sd) :

Next, for any K € N, if [Igry := Z,KK 7, T2 denotes the projection of ry
onto spherical harmonics of degree less than K, then

) 1/2
1Tk ol ey = (Scre Ime 72l )
< ’y_% S% ||T2||L2(§d) Ek<K3k <3 'Y_% 5% ”T2”L2(Sd) :

From this we conclude that
[ VP dn= [ 90 M) raP d
Sd Sd
Z K(K+d— 1)/ |(1—HK)T2|2du
Sd

= K (K +d = 1) (Ir2l P2 = 1T 2l Poon)

> K (K +d—1) (1 — 343 ﬁ) Ir2lf2ge) -
Consequently,

B2 (1= 0 K (6 +d=1) (1-3715)) ralfon
—d(1+é+00+Ce cr) ”QH%Z(SQ .
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We choose K € N and 5 > 0 such that

1+60+00+C€162 1 ’)/
26 K =1 2 : d 09:=-—=
(26) * 1— o e K
where [z] denotes the integer part of z € R and d3 is given by (24). From
the definition of d9, if 5 < 8y, we have 1 — 35~ ~3 04 > % and conclude that
I5 > 0 because K +d—1>d. O

2.7. Proof of Theorem 2.1

We assume that d > 6 and fix some ¢y € (0,1/3). With the choice
1 2
y=¢€=2€e=7(1-3¢) and 0'02562

according to (17), (18), and (24) on the one hand so that the assumptions
of Corollary 2.14, Proposition 2.16 and Proposition 2.18 are fulfilled, and an
arbitrary choice of

M>2y, M>+\/e and e=r

which determines C, ., = C,,,m according to (17) on the other hand, and
with the condition

g = min {(51, 52}

with 07 and d2 given by (23) and (26), we claim that I, I and I3 are nonneg-
ative, which completes the proof of Theorem 2.1 for ¢ < 3, that is d > 6. The
assertion for d = 3, 4, 5 follows from the result proved in Subsection 2.4. [J

3. From a local to a global stability result

We work with nonnegative functions in Section 3.1 and extend the method
to sign-changing functions in Section 3.2. Our goal is to prove Theorem 1.1:
see Section 3.3.

3.1. Nonnegative functions away from the manifold of optimizers

Here we prove a stability inequality for nonnegative functions that are ‘far’
away from the manifold of optimizers. With £ defined by (5), let us introduce

(27)
I(8) = inf{S(f) 0< e HERH\M, inf V]~ V|3 <5 ||Vfug} .
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Theorem 3.1. Let § € (0,1/2) and assume that 0 < f € HY(R?)\ M satisfies

. . 25 2
glenjlf/1 IVf—=Vgllz = 0[[Vfl3

Then, with .7 (§) defined by (27), we have
E(f) = 67(6).

We will prove this theorem by symmetrization. First, we will use a discrete
symmetrization procedure to get somewhat close to the manifold, then we will
use a further continuous symmetrization procedure to fine tune the distance
to the manifold.

3.1.1. Competing symmetries. The functional £(f) is conformally in-
variant in the sense that if C': R U {oo} — R? U {00} is a conformal map,
the function

fel(z) = |det DO(2)|Y* £(C(x))
satisfies
E(fe)=E(f).

In order to verify this, we recall that any conformal map is a composition of
scalings, translations, rotations and inversions. For scalings, translations and
rotations in R? the claimed invariance is easy to see. The additional map to
consider is the inversion I(x) = ﬁ and a straightforward change of variables
shows that

2

o -

IVl =IVAIE. Il =1

The equality
inf |V (fr —g)||? = inf |[Vf— Vyg|>
glen/vt IV(fr—9)l3 glen/\/l IV f gll>

follows from
inf — )2 = inf - 2 — inf - 2
inf IV (s = 9l = it V(7 — gl = inf, VS — Vg3

since 12 = I and g — g; maps the set M to itself in a one-to-one and onto
fashion.

Another and perhaps easier way to see the conformal invariance is to pull
the problem up to the sphere via the stereographic projection, as discussed
in Section 2.1. On the sphere the inversion I takes the form of the reflection
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(S1,.+y8dy Sda+1) — (81, -, Sd, —Sd+1), which clearly leaves the functional on
the sphere unchanged.

A second ingredient for the construction of the discrete symmetrization
flow is the technique of ‘competing symmetries’, invented in [25]. Consider
any nonnegative function f € H'(RY) and its counterpart F € H!(S?) given
by (8). Set

(UF)(w) = Fw1,wa, ..., w41, —Wdq)
which corresponds to a rotation by 7/2 that maps the ‘north pole’ axis

(0,0,...,1) to (0,...,1,0). Reversing (8) the function on R? that corresponds
to UF' is given by

a—2

@) 0nw-(2n) (e "”'2‘1),

|z — eq|? r—eql? e —eq? |z —eq|?

where eq = (0,...,0,1) € R%. Tt follows that

EUS)=E(f)

The operation U is obviously linear, invertible and an isometry on L% (R%).
We also consider the symmetric decreasing rearrangement

Rf(x) = f*(z).

The most important properties are that f and f* are equimeasurable and
that [[Vf*|l2 < ||[Vf]l2. For elementary properties of rearrangements the
reader may consult [64]. Being equimeasurable, this map is also an isome-
try on L2 (R?). It is when using the decreasing rearrangement that we use
the fact that f is a nonnegative function. For functions that change sign one
conventionally defines their rearrangement as the rearrangement of their ab-
solute value. Passing from a function to its absolute value does not alter the
numerator of £( f) but may decrease the denominator so that other arguments
are needed.
On R4, let
a—2

(29) o) =875 (7 ) -

1+ |z|?

Note that ||g«||2+ = 1 because it is obtained as the stereographic projection of
the constant function on S with 2*-norm equal to 1. The following theorem
was proved in [25].
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Theorem 3.2. Let f € L2 (R?) be a nonnegative function. Consider the
sequence (fn)nen of functions

(30) fo=(RU)"f VneN.

Then
2+ =0

A =

where hy = || fllar g« € M. Moreover, if f € HY(R?), then (||V ful|3)nen is a
nonincreasing sequence.

It does not seem clear whether the functional £(f) decreases or increases
under rearrangement. The next lemma helps to explain this point. Define M,
to be the set of the elements in M with 2*-norm equal to 1.

Lemma 3.3. For any f € H'(R?), we have

dist(£,M)* = inf, IV = Vgll§ = IVFI5 = Si sup (£,6% )",

inf
geM gEM,

Here and in the sequel, (-, ) is the L2(R?) inner product or, more precisely,
the duality pairing between L?"(R?) and LZ")'(R?).

Proof. Let g be any Aubin—Talenti function. The function ¢ is an optimizer
of the Sobolev inequality, i.e., || Vg||3 = Sq||gl|3- = Sq and is a solution of the
Sobolev equation

92*71 .
(31) —Ag = Sd W = Sd 92 -1 .

2*
Hence for any nonnegative constant ¢, if ||g

o« = 1, we find

IV(/ = cg)l3 = IV FI3 — 2¢(V£.Vg) + & Vgl
— |V FIE 2650 (f,97 ) + Sac?

and minimizing with respect to ¢ we find the lower bound ||[Vf||3 —
Sa (f, 92*_1)2, which proves the lemma. 0

In the above proof, notice that the optimal value of ¢ is such that ¢ =
( 1, g2*_1) <N fllper (rey and elementary considerations on M show that ¢ > 0
if f # 0 is nonnegative, so that dist(f, M)? < ||V f||3. With the notation
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of (1) and gap(z) == (a \del/d)_(d_Z)/Qg((x —b)/a), we find that (f, gzjb_l)
converges to 0 as a + a~! + |b| — +00. A sequence (ay, by, c,) such that

lim [[V(f = ¢n Gab) 12 (gay = dist(f, M)?

n—-+oo

is therefore relatively compact in (0,4+00) x R? x R, which proves that
dist(f, M) is attained at some Aubin-Talenti function of the form (1).

We note that, under the decreasing rearrangement, the term ||V f||3 does
not increase whereas the term supge vy, ( 1 LqZ*_l)2 increases. To see this, note
that dist(f, M) is attained at some Aubin—Talenti function which is a strictly
symmetric decreasing function about some point b € R%. Replacing f by its
symmetric decreasing rearrangement about that point increases ( 7 g2*_1)2,
in fact strictly unless f is already symmetric decreasing about the point b.
Thus, while the numerator in £(f) decreases under rearrangements, so does
the denominator and there are no direct conclusions to be drawn from this.
The next lemma summarizes what we have shown.

Lemma 3.4. For the sequence (fn)nen in Theorem 3.2 we have that n

SUP,e M, (fn,gy’l)2 is strictly increasing, n +— infgenm ||V fn — Vg3 s
strictly decreasing and, with hy = || fl|2+ g« as in Theorem 3.2,
. . _ 2 _ 1 2 _ 2
dim i [[Vfn —Vglz = lim [V /all2 = Sallhsl
= lim |Vl = SallfII3 -
n—oo

Proof. From

inf - 2 _ 12— g2l 2
inf V5= Vgll3 = IV £all3 = S swp (farg™ ™)

geEM;y

we see that the first term converges since (||V f,.||3)nen is a nonincreasing se-
quence. For the second term, which is strictly increasing, we have by Holder’s
inequality

2
o

sup (for 0> N < | ull3 = 1If

geEM;,

and since g, as defined in (29) is in M; we have

. . *_ 1\ 2 . . *_1\2
lim inf sup (fn,g2 1) > lim inf (fmgf 1) =||f g
n—oo geMl n—oo

by Theorem 3.2. O
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Lemma 3.5. Assume that 0 < f € HY(R?) \ M satisfies

inf - 2> 5
jnf IVf—Vglz =0V fl3

and let (fn)nen be the sequence defined by (30). Then one of the following
alternatives holds:

(a) for allm =0,1,2... we have

i IV fa = Vgl > 6952l

(b) there is a natural number ny such that

it 1V Fng = V9ll3 2 6|1V fo 2

and
inf |V fuos1 — Valla < 6|V frostlls-
gle/\/l H fo 1 g||2 ” f 0 1”2

Proof. Assume that alternative (a) does not hold. Then there is a largest
value ng > 0 such that infyep ||V fng — V|13 > 6|V fno I3 O

Lemma 3.6. Assume that 0 < f € H'(R?) \ M satisfies

- o> 2
glen/v( IVf—=Vyglz =6Vl

and suppose that in Lemma 3.5 alternative (a) holds for the sequence ( fy)nen
defined by (30). Then

E(f) =4,
Proof. We have

5 IV Sallf
37 IV

2
2%

VAR = Salf
(32) €)= Lo V7 = Vg

L IV 5B - 5alf
-_ 2 )
[V /a2

2
2%

where the second inequality is a consequence of [|[Vf,]|3 < ||V |3 for all

n=0,1,2,...proved in Theorem 3.2. By the assumption that alternative (a)
holds and by Lemma 3.4, we learn that
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. ...

2
ox | -

1/ .. 9
= = (tim VAl = Salf

Since

: 2 2 > : 2
Jim [V folls = Sallfll5- = 0 Tim [V full2

2. =088|If|I3 >0,

> 0S5y lim || fy
n—oo

we can take the limit as n — oo on the right side of (32) and compute the
limit of the quotient as the quotient of the limits. This proves the lemma. [

3.1.2. Continuous rearrangement. Next, we analyze the case where the
alternative (b) in Lemma 3.5 holds. We recall that .#(0) was defined in (27).

Lemma 3.7. For any ¢ € (0, 1], we have #(0) < 1.

Proof. By Lemma 3.3, we have

inf |[Vf—Vg|2=|VFIZ-5 Lg>1?
Jnf VS = Vall; = IV /I d;%ffg )

and it follows from Holder’s inequality that
2
2* .

sup (f,¢° ) < |f
geEM

Thus, the denominator in £(f) that enters the definition of .#(¢) is at least
as large as the numerator, so the quotient is at most 1. O

Our goal in this subsection is to prove the following lower bound on E(f).

Lemma 3.8. Assume that 0 < f € HY(R?) \ M satisfies

" o2 2
nf IVf—=Vgllz =6 [V[I5

for some 6 € (0,1/2) and suppose that in Lemma 3.5 alternative (b) holds
for the sequence (fn)nen of Theorem 3.2 defined by (30). Then, with 7 ()
defined by (27), we have

E(f) =2 0.7(9).
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For the proof of this lemma we introduce a continuous rearrangement
flow that interpolates between a function and its symmetric decreasing rear-
rangement. The basic ingredient for this flow is similar to a flow that Brock
introduced [16, 17] and that interpolates between a function and its Steiner
symmetrization with respect to a given hyperplane. Brock’s construction, in
turn, is based on ideas of Rogers [71] and Brascamp-Lieb-Luttinger [12].
Our flow is obtained by glueing together infinitely many copies of Brock’s
flows with respect to a sequence of judiciously chosen hyperplanes. A similar
construction was performed by Bucur and Henrot [18]; see also [31].

More specifically, for a given hyperplane H, Brock’s flow interpolates be-
tween a given function f and f* the Steiner symmetrized function with
respect to H. The family that interpolates between f and f*# is denoted by

H 7€ 10,00, and we have

fo=1f, fZ=r"
Further, for any 7, f and f are equimeasurable, i.e.,

{z e Re: fH(z) > t} = {z € RY: f(z) > t} vt>o.
Moreover, if f € LP(R?) for some 1 < p < oo, then 7 + fH is continuous in
LP(RY).

By choosing a sequence of hyperplanes we construct another flow 7 +— f;
that has the same properties but interpolates between f and f*, the symmet-
ric decreasing rearrangement. In Appendix A we explain this in more detail

and prove the following properties that are important for our proof, assuming
f € HY(RY). From the L% (R?) continuity of the flow we will deduce that

(33) lim sup (fT,g)2 = sup (fm,g)2 )

TT0 ge My gEM;

Concerning the gradient we prove the monotonicity
IVl <IVinlla, 0<7 <7 <00,
and the right continuity

(34) i [V fnlls = IVfnllz, 0<7 < oo,
T2—Tq

Proof of Lemma 3.8. We begin by motivating and explaining the strategy of
the proof. As before, we bound
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2
P

VAR = SallfIE IV = Sallf
(39 &) = Qp N =V > VI3

2
ek

vano“% — Sq ano
- IV fo I3

We could bound the right side further from below by replacing f,,, by fng+1-
This bound, however, might be too crude for our purposes and we proceed
differently. The move from f,, to f,,+1 consists of two steps, namely first
applying a conformal rotation and second applying symmetric decreasing re-
arrangement. The first step leaves all terms on the right side invariant and we
do carry out this step. The second step leaves the 2*-norm invariant, while
the gradient term does not go up. In fact, the gradient term might go down
too far. Therefore, we replace the application of the rearrangement by a con-
tinuous rearrangement flow. We denote by f,, ng < 7 < ng+1, the continuous
rearrangement starting at f,, := U f,,, where U denotes the conformal rota-
tion (28). The ‘time’ variable 7 has been reparametrized so that at 7 = ng+1
we have arrived at the symmetric decreasing rearrangement of f,,,, that is,

(36) fno+1 = (fno)* = f’ﬂo+1 .
Ideally, we would like to find 79 € [ng,no + 1) such that

glenjf/l HVf’ro - ng% =90 ||Vf7'o||§ .

Then the right side of (35) is equal to

5 [froll3- < IVEn 13 — Sallfr,

[[fro
=5 = 1— 54 =0
Hvﬂlo’ % HVfT0| % 1nfge./\/l HVfT() - Vg!

2
2%
2
2

1-5,

which can be bounded from below by 0 .#(4), since f;, is admissible in the
infimum (27). This would prove the desired bound.

The problem with this argument is that the existence of such a 7y €
[no,no + 1) is in general not clear, since neither of the terms inf e v ||V —
Vgl|3 and ||Vf,||3 needs to be continuous in 7. Nevertheless, we will be able
to adapt the above argument to yield the same conclusion.

We now turn to the details of the argument. Recalling that

inf fo — 2> 0||Vfol2
inf [V — Vgl = 6| V6ol
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we define
Tp := inf {7’ € (ng,mo +1) : inf |Vf, — Vg3 <6 ||VfT||§}
geM

with the convention that inf ) = ng + 1. If 7 < 79 € (ng, np + 1], similarly as
before, the right side of (35) is equal to

[Vaoll3 = Sallfnoll3 o Ifaoll3 o VI3 = Sallfr 13-
2 =1-25q 2 2
INAE [Vn I3 IVE 3

o 5 I9E3 = Su 3

2*

where the last inequality arises from infyer ||VF: — Vg3 > 6 || VF,||3 for any
T € [ng, 79). Taking the limit inferior as 7 — 7, we obtain

||vfnoH% — Sq ||f lim 7'%7'0 HVf H2 Sa ”fTo %

V£ 13 — liminf = infgen [V = Vgl

(37)

Note that the denominator appearing here does not vanish. Indeed, we have

g* :(5Sd||f %* >0 Vrte [no,To)

inf ||V, —Vgl3 > 0V (5 > 0 Sqllf;
geM
and, as a consequence,

lim inf mf |VF, — Vg2 >6Sq4|Ifl3- > 0.
T—71, 9€

The same inequality (37) remains valid if 7p = ny and if we interpret lim__, _
and liminf Ly @8 evaluating at 79 = ng.

At this point we find it convenient to apply Lemma 3.3 and use the
representation

. . 2 _ 2 2% —1)2
glen/aHVfT Vygll5 = IVf:||5 — Sa sup (fT,g ) )

gEM

Using (33), that is, the continuity of 7 +— SUPge M, (fT, 92*_1)2, we see that

lim inf mf |V, — Vg3 = hm |VF.]12 — Sy Sup (fTO’g2*71)2.

T—T, ge geEM
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Thus, the relevant quotient is equal to

lim, . [V 3 = Salfs,

limT%Tof vaTH% - Sd SupgeMl (fToagQ*_l)

2
sk

(39) ;-

Our goal in the remainder of this proof is to show that this quotient is larger
or equal than .#(d). We will use the fact that

*_ 1\ 2
(39) sup (fTO,g2 1) < fr %*7

geEM;y

which follows from Hoélder’s inequality. We also note that equality holds here
if and only if f,, € M.

Let us first handle the case where f;, € M. Then by (3.1.2) and because
of equality in (39), the quotient (38) is equal to 1, which by Lemma 3.7 can
be further bounded from below by .#(9), leading to the claimed bound. This
completes the proof in the case f;, € M and in what follows we assume

fr, M.
As a consequence of this assumption and (39), we have

*_1\ 2
(40) IVFrll2 > Sallfr T

5> Sq sup (fr. g
geEM;y

Next, we observe that for a > /3 the function z +— (x—«)/(z—/3) is monotone
increasing on the interval (5, 00). This, together with the strict inequality
in (40), implies that the quotient (38) can be bounded from below by

lim__, - IVE-N13 — Sa lIf 13-
. *_1\2
hmT—M'O’ vaT”% —Sa SUPge (f‘rmg2 1)

[VEr 3 — Sallfx

B HVfToH% - Sd SUPge M, (fTovg2*_1)2 .

(41)

2
2%

We now claim that

(42) i [V, — Vgl < 66 3.

Once this is proved, we can bound the right side of (41) from below by .#(9).
This inequality is the claimed inequality after taking into account (37).
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To prove (42), we first note that it is verified if 79 = ng + 1. Indeed,
fro+1 = fno+1 by (36) and therefore, by assumption of alternative (b),
infgent [[Vng+1 — Vall3 < 0 [ VEngs1ll3-

Now let 79 < ng + 1. We argue by contradiction and assume that

(43) inf V6, = Vgl > 6 V3.

Because of this strict inequality and the definition of 7y, for any k € N there
are oy, € (70, n0 + 1) with limy_,oo 0% = 79 such that infyen | VF,, — Vg3 <
§ || Vf,, |3, that is,

IVl = Sa sup (Frrg® ) < 6||VE, |3 VEeEN.
gEM,

Letting k¥ — oo and using (33) as well as the right continuity of ||Vf,|3,
see (34), we deduce that

*_1\2
IVl = Sa sup (fry, 0" 1) < 0[IVEL 3.

geEM1

This is the same as infyepn ||V, — V|3 < 8[| VF, |3 and contradicts (43).
This proves (42) and completes the proof of the lemma. O

Remark 3.9. The above argument would be simpler if 7 — ||Vf,||3 were
continuous for an appropriate choice of hyperplanes (see Appendix A) in the
definition of the flow. Since the flow is weakly continuous in H* (R%), continuity
of the norm is equivalent to (strong) continuity of the flow in H!(R?). Thus,
for continuity of the norm for an appropriate choice of hyperplanes, it is
necessary that there is such a choice for which the Steiner symmetrizations
approximate f* in H'(R?). According to a theorem of Burchard [19] this holds
if and only if f is co-area regular, i.e, if and only if the distribution function

his {z €RY: f(z) > h, Vf(x) =0}

has no absolutely continuous component. As shown by Almgren and Lieb [1],
both co-area regular and co-area irregular functions are dense for d > 2.

3.1.3. Proof of Theorem 3.1. It is now easy to prove the main result
of this section, Theorem 3.1. Let € (0,1/2) and assume that 0 < f €
HY(R?) \ M satisfies

inf —Vygl2>94 3.
jnf IVf—Vglz =0V fl3
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By Lemma 3.5 either alternative (a) or (b) holds. In the first case, we apply
Lemmas 3.6 and 3.7, and in the second case, we apply Lemma 3.8. This
completes the proof. O

3.2. From nonnegative functions to arbitrary functions

We recall that €, g denotes the optimal constant in (2). Similarly, we denote
by €] B the optimal constant in (2) when restricted to nonnegative functions
f. Thhs, Cipg > Cape. We do not know whether these two constants coincide
or not. The main result in this section will be to prove the following lower
bound on %, g in terms of CK; BE-

Proposition 3.10. For any d > 3,
%4,BE > min {% ‘KIE?;E, 1— 2*%} .

Proof. To simplify the notation, given a function v € H'(R%), we introduce
the deficit

D(v) := HVUHi2(Rd) —Sq HUHi?*(Rd) = HvHi2*(Rd) sob(v) ,

where dgop, is defined in Section 1 (see for instance (2)). Also, we set oy :=

2 _ 2
2=1-2<1,

h(p) == p® 4+ (1—p)™ —1, and hg:=h(})=2""%—1=27 —1.

Let us consider a function u € Hl(Rd). By homogeneity we can assume
that [[ul[; 2+ gy = 1. Let uy denote the positive and negative parts of u, set

. 2"
m = |ju_ L2* (Rd) >

and assume (without loss of generality) that
(44) m e [0,1/2].

2 2 2 2
Note that [[u4 [[f2r gay = 1—=m and [[Vul{2ge) = [V |[{2@a) + [ VUt |L2ga)-
Hence, we have

(45)  D(u) = | VullZag — Sa = D(uy) +D(u) + Syh(m)
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Since the function p — h(p) is monotone increasing and concave on [0, 1/2],
we have

(46) 2hap < h(p).
Also, if we set &g := 2(1 — 27%), the function f(p) : p) —14+&p

= (1 -
satisfies f(0) = f(1/2) = 0 and f”(p) < 0, so that f(p) > 0 forall p € [0,1/2].
Hence, by (44), we have

(1=-p)*=1-¢&p,
which, by the definition of h(p), yields
h(p) = p™* —&ap.

Combining this bound with (46), this gives

(14525 ) ) = 5.

Therefore, recalling (45) and noticing that D(u_) + Sgm®d = HVU_HiQ(Rd),
we get

2 hy m
2hqg+&q

> D(U+) +

ad

D(u) = D(uy) + D(u-) + Sq

2hg

2
2 hd + é—d ||vu*||L2(Rd) .

By definition, we have
pos 2
D(u4) = g m/a [Vuy — vQHLZ(Rd) :

As a consequence, if gy € M is optimal for u, we obtain

2 hy
D(u) = 6 g Vg — vg+||L2(Rd)+2hd+§d ||Vu—||iQ(Rd)
. o5 2hg 9
2 min {%ﬂiBE m} VU = Vgilliega

2hyg

. 0s 2
+ min {%CEBE, m} VUi ray
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2hg

1
> Zmi pos  <lid
25 min {‘Kd,BE, iyt &

HIVe = 994 g -

Since 2hd—l—§d:2~2% — 242217 =27 we get

_he g (25 —1) —1-9274,

2hg + &4

which concludes the proof. O
3.3. Stability of the Sobolev inequality: Proof of Theorem 1.1

We now combine the results from the previous three sections and deduce in
this way the main result of this paper.

Proof. We recall that the constant &) g was defined in the previous sub-
section and that .#(0) was defined in (27). Then, as a consequence of Theo-
rem 3.1, we have

Cipe > sup 0.7(0).
’ 0<6<1

(Indeed, for any & € (0,1/2), if f satisfies [|[Vf — Vg||3 > ||V f]|?, then
E(f) = 0.7(9), whileif [Vf—Vgll3 < 8[[Vf|*, then E(f) > #(5) = 8 .7(d).)
Thus, it remains to bound .#(¢) for a suitable 6 € (0,1/2).

We let €, 0 € (0,1/2) be as in Theorem 2.1. We will bound .#(§) with

§ =15 €(0,3). Thus, let 0 < f € H'(R?) with

. 2 5 2
jnf IVf=Val3 < 15 IV

The infimum on the left side is attained for the reasons given in Section 3.1.
After a translation, a dilation and multiplication by a constant, we may as-
sume that it is attained at g = (2/(1+|2]?))4=2/2. We now pass to the sphere
using the stereographic projection as in Section 2.1. Let 0 < u € H*(S?) be
the function associated to f. The function 1 is associated to g and we set
r:=wu — 1. The fact that the distance is attained at 1 implies that r satisfies
the orthogonality conditions (10). Moreover, with A given by (7), we have

/Sd (V> +Ar?) du < i (IVul* + Au?) dp

146 oy
5 2 2
=13 <A+/Sd(]VT| +Ar)du),
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SO

/‘OVH2+Ar%du§5A.
Sd

By the Sobolev inequality, this implies

2/q
</ rd du) <9,
Sd

and therefore we are in the situation of Theorem 2.1. We deduce that

2/q
/(W“?*Auz)du—/\(/ uqdu> 2960/ (1Vr[? +Ar?) dpu.
8¢ Sd d

S

Translating this result back to R%, we have shown that

and therefore

pos & de
C4BE = 143 d—2°

where we recall that 0 < ¢y < % is fixed and 0 depends on ¢y, but not on d.
This constant has the claimed d~! behavior.

We turn now to the case of general, not necessarily nonnegative functions.
By Proposition 3.10

. 1 _2
igd,BE > mln{i%cﬁ%SE,l—Q d} .

Using 1 — 274 > (2 In2)/d together with the result for %€ pe We obtain also
in the general case the claimed d—! behavior. As constant in Theorem 2.1 we
get

(47) 5:mm{%§ﬂhﬂ},

which is computable, since § depends in a complicated, yet explicit way on
€0. |

Remark 3.11. The constant given by (47) is a lower estimate of d €y B,
which for large d is of the same order as the strict upper estimate obtained
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from (4). If we apply Proposition 2.4 instead of Theorem 2.1 in the above
argument, we obtain

Cipr > sup 0.7(0) > sup %Sm(glﬂ): sup 5m( 1%6)
0<8<1/2 0<b<1 0<6<1/2

with m given by (11). As explained in Remark 2.8, this lower bound is not
very good for large dimensions. In the above expression, it corresponds to a
right-hand side of the order of 2=%d—(4+2)/2 a5 d — 400, but for d = 3, 4, 5,
6 it gives decent numerical lower bounds on ;5.

4. The large-dimensional limit: Proof of Corollary 1.2

Assume that d > 3 and consider the stability estimate for Sobolev’s inequality

B(d) .
(48) vaHiQ(Rd) —Sq Hf||12J2*(Rd) 2 Tglen/f/l IVf— VQH?J?(Rd) ;
for all 0 < f € HY(R?), where 3(d) = d € py > 0 denotes the optimal stabil-
ity constant for nonnegative functions. Theorem 1.1 (also see Theorem 3.1)
provides us with an explicit lower estimate of 5(d) and shows that

(49) B, = liminf (d) > 0.

d—+00

As noted for instance in [6], to obtain the logarithmic Sobolev inequality
as a limit of the Sobolev inequality when d — 400, an important step is to
perform a rescaling depending on d. In order to do this, let u be a nonnegative
Lipschitz function of compact support in RY and consider the ansatz

(50) f(@) =u(zr,...,zN) fu(x),

where f, is a Sobolev optimizer in dimension d > N. Specifically, we choose

with
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The normalization constant Zg is chosen to render [|f.[|;2« sy = 1. Note

that f.(x) = rull_d/Q g«(x/rq), with g, given by (29), solves the Sobolev equa-
tion (31) with sharp Sobolev constant Sy = d (d — 2) 7> Zj/d and

51 7, = ()2 2) _ (dY2 |gd) = 'd|gd
( ) d (2) T'(d) (87r) ’ ‘ 2d’ ‘
It is also easy to see that
(52) lim Z% .

dstoo & 47

By integration by parts, using the fact that f, is a Sobolev optimizer, we find

53) IV Sl = [ V0 2o [ . Afda
:/ Vul? f2 dv + 452 Z;/ u? 2 dr.
Rd d R

It follows that the left-hand side of the stability inequality (48), written for
f =u f*7 iS

) ) o 2/2*
/ |Vul® £2 do + %Z; / u? 2 dr — @ Zy </ u? f? dx) ,
R4 d R4 d R4

which can be written as
2 2 2\ 2
Z;/ V| (1+Ti2|x|) djig
R4 d

) 2/2*
R R

where dpg = f2 (x)dx is a probability measure.
Let us write z = (y,2) € RY x RN ~ R? for some integer N such that
1 < N < d. With |z]? = |y|* + |2|* and

2
L ol = 14 (P + 1=2) = (1+ & ) (1+ 5w ) -

2
d

we can integrate over the z variable to obtain
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dz
(54) /R” (1+ & w2+ 'Z'2)>d

g " / i T(HEHE) 7

(1+3% !y|2)¥ = IR g (1+ 5 1we) © |

By taking into account the limits

+

_ N+d

(55)  lim (H%Iy‘z) P =™ and
d

d——+o00
K T
d—+oo g Rdi(1_|_|C’2)d_d—>+oo ZdF(d) 2 o

we obtain

(56) lim [ Ju(y)? djg = / 2y
d—+00 R4 RN

where dy(y) == e " lul® dy is a Gaussian probability measure. A similar com-
putation shows that

2
lim / Vuf? (1+ & o) dud_4/ Vul? dy,
d—+oo Jrd e RN

because
1

2—d
lim —/ (1_|_rl2(|y|2_|_|z|2)> dz=4.
Rd—N d

d—+o00 Zd
On the other hand, let € := 1/(d — 2) and write

(d—2) [(/RN u® d7>2/2* —/RNu2d7]

As a consequence, we obtain

2/2*
lim (d—2) [</ u® d’y) —/ u? d’y]
d——+o00 RN RN



410 Jean Dolbeault et al.

Toze 2
2142¢) g ) :2/ 2 (—— .
(o)™ = [ () e

Altogether, we find that

d

de

Lo 2 12)?
L [[, o (4
2/2*
—27T(d—2)<</ u2*d,ud> —/ uzd,ud>]
R R
2 2 u?
_/RN]VU| dry 7T/RNU m(fRNUQdV)d%

Using (52), we have proved
Lemma 4.1. Let f be given by (50) where u is a nonnegative Lipschitz func-

tion of compact support in RY. Then the limit of the left-hand side of the
stability inequality (48) as d — +o0 is

. 2 2
dEToo HVfHL?(]Rd) —Sq HfHL?*(Rd)

2
=e Vul?d —7r/ u2ln<u—)dfy].
[/RN | P RN fRN u? dry

Next we deal with the large d limit of the right side of (48).

Lemma 4.2. Let [ be given by (50) where u is a nonnegative Lipschitz func-
tion of compact support in RN . Then

" .
lim = inf ||Vf-— Cthb(l’)Hiz(Rd)

d—+oo d a>0, beRd
ceR
Te . )
=— inf ‘u(y)—ce”b y‘ dv,
2 ceR,V’eRN Jpn
; R
da—2
here hay(z) = |SU~ %0 (—222) ° i t ltiplicati tant
where hgp(x) == pEE is, up to a multiplicative constant,

any Sobolev optimizer.

Proof. In the main part of this proof, using (-,-) as in Lemma 3.3, we shall
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show that

w ™ s /
(57) lim  sup (f7 h;f) = sup / u(y) e sl g5 =t gy
d—=+00 450, beRd ’ b ERN JRN

Before proving (57), let us show that it implies the assertion of the lemma.
As in Lemma 3.3 we can optimize the right side of (48) over ¢ and find

(58) inf_inf [[Vf — ¢ Vhoplaga

a>0,beR4 ceR

a2 2
= IV oy = Sa s (f02?)

b
a>0, beRd L2(R4)

where h,, satisfies

Similarly, from

/ luly) — ce™¥ V| dy
RN
- / luly) 2 dy + 2 PP~ 2 / u(y) €™ dy
RN RN

we deduce that

sup/ !u(y) — ce”b/‘y|2 dry
RN

ceR
2
:/ lu(y)[> dy — e IVl </ u(y) e”b"ydv>
RN RN
2
= /RN lu(y)[* dy — (/RN u(y) e 3 e 3 vt dy)

and, consequently,
inf / lu(y) — ce”b,'yfd’y
RN

cER, b’ RN
2
_m 2 _m K2
:/ u?dy — sup </ u(y) ez W =3 =Vl dy) :
RN beRN \JRN
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Now as before, using (53), we get

Te

||vf”L2(]Rd) =5 eiﬂy|2|u(y)‘2dy-

Inserting this together with the fact that limg 4 Sa/d = me/2 into (58),
shows that (57) implies the assertion of the lemma.

Thus, from now on we concentrate on proving (57). Clearly, we may as-
sume u # 0. It is easy to see that for every d, there are ag > 0 and by € R?

such that
41 =
sup ( fh5 ) - ( f, had’bd> .
a>0, beRd

To pass to the limit in (57) as d — 400, we have to study the asymptotic
behavior of ay and by.

da+2
e The limit of ay. We will derive a lower and an upper bound on ( fihi )

» "ag,bg
For the lower bound we test the supremum defining this quantity with a = rg
and b = 0, in which case h,, o = f.. Arguing similarly as in (56) and recalling
u Z# 0, we obtain

= i
> i o) = .
o0t (£0dL) 2 i (1E5) = [ udr>o

To derive an upper bound we use the fact that f. and h,, o are symmetric
decreasing functions, which implies that

d+2
0< (£.1E3,) < Iullwuny [ 1.60) hasola =)
< ullpoo@ay [ f+ h(fd%dl”
®) [,
By inserting the expression (51) of Z; and setting ag = aq/r4, we obtain

a—2 d+2

2¢ !fffl2 7 ESRE

" =N 14+ d
/f @0 M ] ( T W ar? )

d+2

-2 Tz
1 ( 2 ) 2 204 d
- S —_ T
S Jra \ 1+ []? g+ [of?

d

CSEY e 2r 7 2a4r % dr
R 1+r2 a? + r? r
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where we scaled x — 742 and introduced radial coordinates. If we now set

ag = e and change variables to r = e, and then rescale according to

t > t/v/d, we find

d—1 -2 2
/ fshy f)d ’S|Sd| | (Cosht)JT (cosh(t — sd))fd% dt

= ST (COShL)_%(COShm)_% dt
IRYZIER S Vi vd

with sq = 04/+/d. By the elementary inequality cosht > 1+t2/2, we find the
following bound for the integral on the right side for large d:

> 2\ —4=2 (t— a) 2 _me? i
/ (1+4) * (1+ o) dtN/ e Te 1 dt=+V2me .
—0o0 —00
. . sé-1 .
Using limg_ o0 Vapsi = V27, we finally conclude by combining the upper
and the lower bound that

d—+o00 d—+o00

27 liminfe & > liminf (f,h"l*?7 ) > / udy > 0.
ad,04d RN

As a consequence, |o4| is bounded and we deduce that

SN

(60) lim 24 = lim ag= lim e’ = lim evi =1.

d—+oo T'g d—+o0 d—+o0 d—+o00

e A uniform bound on by. We begin by noting that
d+2 / /! d+2
f’ adb // y) f«(y, 2) ad,o(y—b,z—b)dﬂdydz
RNXRd N
42
< / o) ([ 52 hagaly =) )y
RN Rd-N

with b = (0/,0") € RN x RN because u is nonnegative, and z — fi(y, 2)
d

and z — hg, 0(y, z)d_irg are symmetric decreasing functions. As a consequence,

we can assume without loss of generality by = (b/;,0) € RN x RN,

Our task is to obtain a bound on |0/;|. As before, we obtain this by deriving
da+2

a lower and upper bound on ( f,hE s ) As lower bound we use again (59).

' ag,bg

For the upper bound we write
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d+2
o (£18i0)
d—2

e a0 )

Ay
da+2

2
<1+ (|y—b 2 + |22 )) * dydz,
where Z, is given by (51). From Holder’s inequality we learn that

d—2

d+2 1 o oy =
(ﬂhad,(b > < —// u(y) <1+ 7 (ly]* + =] )) dy dz
RN xrd—N ) s
- 2d
(1 1 )2) dydz)
<Zdad //RNde N t 22 (Iy >+ 121%) y Z>

Let R > 0 be such that u is supported in the centered ball By of radius
R > 0 and assume that |0);| > R (otherwise |b;| < R and we have the claimed
bound). It follows that |y — b|* > (|b;] — R)? in the support of u. Using the
identity

)\d—N

00 [ (el = [ 0

based on the change of variables z = A\A(, and applying it with A =

aled Va2 r2+(p,|—-R)? and A\ = agrg, we obtain

! // (0) (14 o (1= V4P + 1=P)) " dyd
Zq ozg RN xRd—N wy Y : vz

d—N

1 (t=r?\ ™" Ta__ 2
< 1Bal ey o (1 B0 ) 5 2 [ @I

2-N d—N
daj Ty

< Bal il ) e =R g o (G

using the inequality (1+¢/k)™" < 1/t for all t > 0 with k = (d + N)/2. As
n (56), using (55) and (60), this yields

lim inf
d—+o00

a,(b3,0)

<f >< |Brl [/l ay Jprv wdy

hd 2
m lim supy_, o (|05 — R)*
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Taking the lower bound in (59) into account, we obtain

R| [|U[|1,e0
R LTy
d—o0 WIRN udry

This proves that b/, is uniformly bounded w.r.t. d.

e The large dimensional limit. We are finally in position to prove (57). We
first show that

d+2 . . ,

imsup sup ,he? ) < sup u(y)e 2 Pemt ’ Y.

63 1 hij < **|y| 77‘1‘/71)' d
d—+00 a>0,beRd ’ b eRN JRN

To do so, we consider a sequence of d’s along which the limsup is attained.
Because of the uniform bound on b, we may pass to a subsequence along
which b/, converges to some b, € RY. It then suffices to prove (63) where
the limsup is taken along the chosen subsequence. In the following, we will

always consider this subsequence, without displaying it in our notation.
da+2

It remains to identify a bound on limsup,_, | o (f, h;d Q(b, 0)) . Our starting

point is (61). By Hoélder’s inequality, we obtain

iz aen
2 2
/RdN (1 + % (MQ + ‘Z|2)> (1 + aﬁlrﬁ (ly - bal* + ’Z|2)) dz

d—2
a+2

- </Rd-N (1+ & (v + W))’d dz)‘ 2
" (/RM (1+ o (y — bl + 12%)) ddz>2d

_ (d=2) (d+N) (d+2) (d+N)
=gt (g )T (e ly =)
<[t
.
(d+2) (d—N) _ (d=2) (d+N)
TR (A e I

_ (d+2) (d+N)

(rdg-nl) [ asiac
Rd-N

Here we used the change of variables identity (62), with A = id /24 y)?

T

and A = rg for the first integral in the above right-hand side, and A =
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L Jazr2iy2 and A = agry for the second integral. We learn from (55)

Qadrd

and (60) that

da+2

. — _m 2 T K |2
lim sup (f, h:d,Q(b;,O)) S/RN u(y) e slUl® o= ly=bal® gy

d—+00

w2 m b2
< sup/ u(y)e sl e=3ly=V gy
b eRN JRN

This proves (63).
The converse asymptotic inequality, namely

M ™ s /
(64) liminf sup (f, h(j;f) > sup / u(y)e™? [Wl* o= 5 =1 gy
d=+00 450, beRd ’ v eRN JRN

follows in a similar, but simpler fashion. Indeed, it is easy to see that the

supremum on the right side is attained at some b, € RY, which we can use
d+2

to bound the supremum on the left side from below by < 1 hﬁ, 0)> . Starting

from (61) and using similar arguments as above it is easy to see that

lim (f h‘(iitg = u( )e_%‘y|2 e 2 Wb g
o)) T Y Y

d—+00

T yl2 =T |y—b|?
= sup/ u(y) e 3 WP e=3 =t gy
b'eRN JRN

This proves (64) and consequently also (57). O

Using Lemmata 4.1 and 4.2, with b = 7 b, for nonnegative Lipschitz func-
tions u with compact support, we have proved the following result.

Proposition 4.3. With 3, given by (49), for all nonnegative u € H(7),

w2
/ |Vul* dy — 7r/ W ln | ——— | dy
RN RN ||UHL2(7)

> Bum inf / (u—ceb‘”)zd'y.
2 beRN, ceR JpN

The extension to any nonnegative function u € H*() follows by a simple
density argument, as the constants in Proposition 4.3 depend neither on the
support nor on the bound on |Vu|. A crucial feature of Proposition 4.3 is
that the stability constant 3, 7/2 does not depend on N. It is worth pointing
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out the constant [, in this bound comes from the (unknown) best stability
constant for Sobolev’s inequality for nonnegative functions. Any lower bound
on this stability constant gives a lower bound on the constant ;. In particular,
we have g, > [ with 8 as in Theorem 1.1.

Proof of Corollary 1.2. We have to extend the result of Proposition 4.3 to
the case of sign-changing functions. This part of the proof is a variation of
the argument used in the proof of Proposition 3.10. We shall use the notation

2
D(u) := / |Vul? dy — 7r/ u*In + dy foru € H'(y).
RN RN HUHLZ(w

By homogeneity we can assume ||u(|r2(,) = 1. Replacing u by — u if necessary,
we can also assume that

m = lu sy € 0,3]
Then
D(u) = D(us) +D(u—) +mh(m) with h(p):=—(plnp+(1—p)In(1—p)).
Since the function p — h(p) is monotone increasing and concave on [0, 3],
h(p) > (2In2)p forall pe|0,3].
Thus, with f, denoting the constant in (49),
D(u) > D(u4) + (27 In2)m

Bem . bz |2 2
5 beleI\’l,fceR [us = ce” T2y + 27 In2) [Ju_||f2(y

>

1 . 5*77 . o b-x (|2
>3 mln{ 5 27 ln2} beRllIVl,fceRHu ce” ||z -

This proves the inequality for the general case with
(65) B =1 min{s, 4 In2}

and [, given by (49). O

Up to this point, we have stated the logarithmic Sobolev inequality in its
version with respect to the normalized Gaussian measure. It has an equivalent
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™ |z|?/2

version with respect to the Fuclidean measure. We set u = e v and

obtain from Corollary 1.2 and Proposition 4.3

2
/ |Vol? d:v—w/ v?In :7 dl'—NWHUH%Q(RN)
RN RN ”U”Lz(RN)

671' . T P2 2
>— inf ‘v—ce sl gy
2 beRN, ceR JrN

by a simple integration by parts. Writing v(z) = A¥/2w(\ x) with a parameter
A > 0, we obtain equivalently

2
/\2/ |Vw|2dy—7r/w21n g | dy = N (1+ I A) ]l ey
RN RN ||w||L2(RN)

s
> 5— inf /
2 beRN,ceR Jpn

We bound the right side from below by extending the infimum over all A > 0
and then we optimize the left side with respect to A > 0. In this way we
obtain the following stability version of the Euclidean logarithmic Sobolev
inequality.

2
— T |y—bl2
w—ce 2 W gy

Corollary 4.4. With > 0 given by (65) we have for all N € N and all
w € HYRYN),

2 Vw|*d 2 2
ol gy In Jor oA} 2 e ()
Nre HwHLQ(RN) N Jpn ||w||L2(RN)
. 2
Z% inf / )w—ceiﬁh”*bp‘ dy .
A>0,bERY, c€R JRN

Appendix A. Some properties of continuous rearrangement

In this subsection we discuss several aspects of the continuous rearrangement
and prove some of its properties.

Brock’s continuous Steiner rearrangement is based on the following oper-
ation for functions of one real variable that are finite unions of disjoint charac-
teristic functions Z,ivzl X(—ap,ar)( — br). Replace this function by
Zivzl X(_%ak)(a: - e‘tbk) where ¢ varies from 0 to oo. As t increases, the
intervals start moving closer and as soon as any two intervals touch one stops
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the process and redefines the set of intervals by joining the two that touched.
Then one restarts the process and keeps repeating it until all of them are
joined into one. The movement stops once this interval is centered at the ori-
gin. By the outer regularity of Lebesgue measure the level sets of a measurable
function can be approximated by open sets and, since in one dimension this
is a countable union of open intervals, one can further approximate the level
set by a finite number of open disjoint intervals for which one uses the sliding
argument explained above.

As mentioned before, this procedure can be generalized to higher dimen-
sions by considering Steiner symmetrization with respect to a hyperplane.
One considers any hyperplane H through the origin and then rearranges the
function symmetrically about the hyperplane along each line perpendicular
to H, resulting in a function denoted by f*/. For more information see [64].
In this fashion one obtains a continuous rearrangement f — f 7 € [0, oc],
which was studied in detail by Brock [16, 17]. We shall refer to the statements
in those papers.

To pass from Steiner symmetrization to the symmetric decreasing rear-
rangement we consider a sequence of continuous Steiner symmetrizations and
chain them with a new continous parameter d¢ la Bucur—Henrot. Inspired
by [18, 31], we proceed as follows. Given a function f € LP(RY) for some
1 < p < oo there is a sequence (H,)nen of hyperplanes such that, defining
recursively with fy = f,

foi= 0 n=1,2,...,
we have
fo— f* mLPRY as n— oco.

In fact, it is shown in [79, Theorem 4.3] that this holds for ‘almost every’ (in
an appropriate sense) choice of hyperplanes. It is also of interest that this
sequence can actually be chosen in a universal fashion (that is, independent
of f and p); see [77, Theorem 5.2].

Given f and the sequence (f,,)nen as above, we set for any n =0,1,2, ...

On(7) = emiir —1, 7€ [n,n+1],
and define
(66) fro= (i)

where the right side denotes Brock’s continuous Steiner symmetrization with
respect to the hyperplane H,; with parameter ¢, (7) applied to f,. As 7
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runs from n to n + 1, ¢, (7) runs from 0 to oo and there is no ambiguity at
7 € N since f, = f*%2 by definition. Thus, f, is well defined for 7 € [0, oc].

n
From the properties of Brock’s flow, see, in particular, [17, Lemma 4.1],

we obtain the following properties for our flow.

Proposition A.1. Letd > 1,1 <p < oo and let 0 < f € LP(R?). Then, for
any T € [0,00], the function f, defined by (66) is in LP(RY) and ||f; |, = |||,
Moreover, for any T € [0, 00] and any sequence (T,)nen with limy, oo T, = T,

7}51010 Ifr, — fTHp =0.

The following fact is important for us.

Lemma A.2. Letd >3 and 0 < f € L¥ (RY). The function

T+ sup (fT,uQ**l)2
uEM;

with f. defined by (66) is continuous.

Proof. We use the fact, shown in Proposition A.1, that

9+ = 0.

}i_rg_z ||f'r1 - f7'2

Fix £ > 0. There exists u; € My such that sup,e v, |(Fr,, v ™) <[ (Fr, u] )|+

¢ and hence

21\ | _ 251
uggl!(fmu )| ug&!(fmu )|

< (o) [ 48 = [ (Frovud 7))
< |(frod ™) = (Frsud )| e,

which by Holder’s inequality is bounded above by

Hfﬁ - sz

2* U%*leq +te= ||f7'1 - fTQHQ* +e

*

23_1 . Hence

with ¢ =

lim sup ( sup ‘(fﬁ,u?*l)’ — sup ‘(fTQ,uTl)D <e.
T2 —T1 ueMi ueMi
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There exists ug € M; such that sup,¢, ‘(fTQ,uT_lﬂ < ’(fn,uz*_l)‘ + e
and hence

s () = s () 2 ()] = ()

which is greater or equal to

—[(Frus ™) = (Frpyud )| — e = —[Ifr, — ol — <.
Hence
o 271 . 271 _
it (s, 1671 s [ )] 22
This proves the claimed continuity. O

We now consider the behavior of the gradient under the rearrangement
flow. The following proposition is closely related to [17, Theorems 3.2 and 4.1],
but there inhomogeneous Sobolev spaces are considered, which leads to some
minor changes. For the sake of simplicity we provide the details.

Proposition A.3. Let 0 < f € H(R?). Then f. defined by (66) is in H' (R%)
and T — ||V ||2 is a nonincreasing, right-continuous function.

Proof. By construction, it suffices to prove these properties for Brock’s flow.
Since the latter has the semigroup property (f,); = f,o, for all o, 7 > 0, it
suffices to prove monotonicity and right-continuity at 7 = 0.

We begin with the proof of monotonicity, which we first prove under
the additional assumption that f € L?(R¢). This is shown in [17, Theo-
rem 3.2], but we give an alternative proof. We proceed as in the proof of [64,
Lemma 1.17]. Extending [16, Corollary 2] to the sequence of Steiner sym-
metrizations we find for three nonnegative functions f, g, h that

//RR f-(2) g-(x — y) hr(y) dx dy > //Rdxw f(x)g(x —y)h(y)dedy.

At(

If we choose g(x—1vy) to be the standard heat kernel, i.e., g(x—y) = e2*(x—y),

then g,(z —y) = g(x — y) and hence

//Rdxw fr(w) e (x — y) fr(y) du dy > //Rded f(z) et (@ —y) fy) dady.
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Since ||f;[|2 = || f||2 by the equimeasurability of rearrangement,

1
; (||f7'H§ - (fTaeAt fT)) S

S

(13 = (£.e21))

and letting t — 0 yields the first claim under the additional assumption
f € L3(RY).

For general 0 < f € H'(R?) we apply the above argument to the functions
(f—€)+, € > 0. They belong to L?(R?) since f vanishes at infinity and belongs
to L2 (R?). We obtain

(67) IV ((f =) ], UV =)l < NIV Sz

We claim that f, € H'(R?) and V((f — €)y) — Vi, in L*(RY) as ¢ — 0F.
Once this is shown, the claimed inequality follows from (67) by the weak lower
semicontinuity of the L? norm.

To prove the claimed weak convergence, note that by (67), V((f — e)+)7
is bounded in L2(R9) as ¢ — 07 and therefore has a weak limit point. Let
F € L2(R?) be any such limit point. Since (f —¢); — f in L?" (R9), the non-
expansivity of the rearrangement [16, Lemma 3] implies that (( f— e)+)T —f;
in L2 (R9). Thus, for any ® € C1(R9),

/Rd(v.é)ffdxe/w(v.q)) ((f —0)4). de

:—/ CD-V((f—e)Jr)de—)— o - Fdx
R4 Rd

as € — 0%. This proves that f, is weakly differentiable with Vf, = F. In
particular, f, € H'(R%) (note that f, vanishes at infinity since f does and
since these functions are equimeasurable) and the limit point F' is unique.
This concludes the proof of the first part of the proposition.

Let us now show the right-continuity at 7 = 0. It follows from Proposi-
tion A.1 that f, — f in L2"(R%) as 7 — 0. This implies that Vf, — V[ in
L2(R%) as 7 — 0F. (Indeed, the argument is similar to the one used in the
first part of the proof. The family Vf, is bounded in L2(R%) as 7 — 0% and,
if F denotes any weak limit point in L2(R%), then the convergence in L?"(R%)
and the definition of weak derivatives implies that F' = V f.) By weak lower
semicontinuity, we deduce that

197> < i inf V5.
70t
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This, together with the reverse inequality, which was established in the first
part of the proof, proves the claimed right continuity. O

We note that the proposition remains valid for 0 < f € W» (RY) with
1 < p < d. If p # 2, the monotonicity for the gradient for f € WIP(R?) is
proved in [17, Theorem 3.2]. The remaining arguments above carry over to

p# 2
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