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Abstract: By the Aharonov—Casher theorem, the Pauli operator P has no zero eigen-
value when the normalized magnetic flux « satisfies || < 1, but it does have a zero
energy resonance. We prove that in this case a Lieb—Thirring inequality for the y-th
moment of the eigenvalues of P + V is valid under the optimal restrictions y > |«| and
y > 0. Besides the usual semiclassical integral, the right side of our inequality involves
an integral where the zero energy resonance state appears explicitly. Our inequality
improves earlier works that were restricted to moments of order y > 1.

1. Introduction and Main Result

1.1. Background. We are interested in quantitative information on the negative eigen-
values of the operator

P+V  inL*(R? C?),

where P is the Pauli operator,

_ H+ 0 + . 2
P_<0 H_), H* = (—iV + A)> + B. (1.1)
Here A : R — R? is a vector field and the function B : R — R is defined by

B =curl A =014, — 3 A;.
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For simplicity we restrict ourselves to the case where V : R?> — R is scalar, that is,
acts trivially on the C? part of L?(R2, C?). Both B and V are assumed to be sufficiently
regular and to decay in a suitable sense at infinity, as will be made precise later on.

Physically, the operator P + V describes a quantum particle moving in a plane in the
presence of a magnetic field of strength B pointing orthogonal to this plane and in the
presence of an electric field with potential V. The matrix structure of P and the £ B term
in P come from the interaction of the spin of the particle with the magnetic field. This
spin-orbit coupling is neglected when considering the magnetic Schrodinger operator.
This simplifies the model, but has the effect of destroying some of the structure of the
Pauli operator. In particular, zero modes are removed and the bottom of the spectrum
is stabilized. In our study we will not neglect the spin-orbit coupling and we will pay
special attention to effects coming from the low energy part of the operator P.

When B and V are sufficiently regular and sufficiently fast decaying (we will be
more precise later on), the differential expression P +V can be realized as a self-adjoint,
lower bounded operator in the Hilbert space L2(R2, C2) and the negative spectrum of this
operator consists only of eigenvalues with finite multiplicities and with zero as their only
possible accumulation point. Labelling these eigenvalues as E j, where multiplicities are
taken into account, we are interested in bounding sums

Z |E;|” =Tr(P + V)"
j

from above for different choices of the parameter y > 0. These upper bounds shall
involve integrals over R? of powers of V and quantities defined in terms of the magnetic
field B. The prototype of such bounds are the Lieb—Thirring inequalities, which in the
nonmagnetic case state that for any y > 0 there is a universal constant L, such that for

all real V € L|.(R?) one has
Tr(—A + V)’ < L,,/ V() dx. (1.2)
R2

Here a. := max{+a, 0}, so that a = a, — a_. The bound (1.2) goes back to the work
of Lieb and Thirring [35] and has created a huge literature. For further reading on this
topic we refer to the monograph [22], the review [20] and references therein.

One feature about (1.2) that will be relevant for our discussion is that the inequality
gets stronger as y gets smaller. This is formalized by the Aizenman—Lieb argument [3]
(see also [22, Lemma 5.2]), which says that the validity of inequality (1.2) for some
y = yo implies its validity for all y > yy.

Turning our attention back to magnetic fields, itis not difficult to see that (1.2) remains
valid when —A is replaced by (—i V + A)?; see [22, Theorem 4.61], [18] and references
therein. More precisely, for any y > 0 there is a constant iy such that for any real

V € L}.(R?) and any A € L} (R?, R?) the analogue of (1.2) holds with constant L.
Note that the right side in the resulting inequality is independent of A.

The situation is quite a bit more complicated for the Pauli operator, that is, when
the spin-orbit coupling is taken into account. There have been many works addressing
this question and we will review them in some detail later in this introduction. For the
present discussion the following two facts are important. First, there can be no bound
of the form (1.2) with a right side that is independent of A. Second, previous works are
restricted to the range y > 1. Both phenomena are related to the existence of zero modes
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of the Pauli operator. The existence of the latter and their structure is described by the
Aharonov—Casher theorem [2].
What we shall show in the present paper is that if the normalized magnetic flux

1
o= — B(x)dx < o0 (1.3)
27 R2

satisfies
la| < 1, (1.4)

then a Lieb—Thirring inequality holds for P+V whenever y > || and y > 0. Moreover,
we shall show that this restriction on y is optimal.

According to the Aharonov—Casher theorem [2] (see also [8]), assumption (1.4)
implies that the Pauli operator P does not have a zero eigenvalue. Heuristically, this
eliminates the reason for the restriction ¥y > 1 in earlier works. The Pauli operator
P does, however, have a zero energy resonance, that is, there is a function ¥y with
Py = 0 that decays at infinity, but not fast enough to be square integrable. (We recall
that the operator P has a zero resonance for any «.) The decay of this resonance function
Yo will be what dictates the optimal condition y > |«| on the exponent in the Lieb—
Thirring inequality. Our Lieb-Thirring inequality will have two terms on the right side,
the first one being the standard term from (1.2) and the second one involving explicitly
the resonance function .

1.2. Definitions and main result. We now turn to a precise formulation of our result,
beginning with a careful definition of the Pauli operator P. The standard definition of

P assumes that A € L} (R?, R?) and proceeds from the quadratic forms

/ (T4 +i1—lz)1ﬂ+|2dx+'/. (1) — iTl) Y~ > dx
R2 R2

where I1; := —id; + A; and where the form is defined for all (¥*, %) € L2(R2, C?)
for which the distributions (I1; + iI[1>)vy* and (IT; — iTI;)¥~ belong to Lz(Rz). We
will not adapt this definition, although the one we choose is equivalent to this standard
definition in situations with enough regularity. The reason is that our assumptions are
more naturally formulated in terms of the scalar potential / (defined momentarily) rather
than in terms of the vector potential A, on which the standard definition is based.

The approach that we follow was promoted by Erd6s and Vougalter and investigated
in detail in their paper [16]. To motivate it, we assume that there is a real function
he leoc (Rz) such that A| = —dh and A» = 01h. Then a computation shows that

[ i inuPar = [ i +ioey P,
R2 R2
f (M) — M)y [P dx = / e (01 — idp)e"y P dx .
R2 R2
The basic idea is to use the right sides to define the Pauli operator. Note that if such a
function A exists, then Ah = 9;Ar — A1 = B.

We now proceed to the actual definition of P, following [16]. We assume that p is a
signed real regular Borel measure on R? with x({x}) = 0 for all x € R? (which plays
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the role of the magnetic field). Then, by [16, Theorem 2.7 and Corollary 2.3] there is a
real-valued /1 € () p<2 Wl1 ’Cp (R?) such that

O
Ah=p inR?

and 2", e 2h e}

L. (R?). Fixing any such h, the quadratic form

f62h|(31+i32)e_h1//*|2dx+/ e 2101 — idh)ey | dx, (1.5)
R2 R2

defined for all (y*, ¥ ™) € L2 (Rz, C?) for which the integrals are finite, is nonnegative
and closed in L? (Rz, CZ) [16, Theorem 2.5] and therefore generates a selfadjoint, non-
negative operator P in L2(R2, C2). This operator depends on the choice of the function £,
but one can show that for two different choices of functions / corresponding to the same
1 the resulting operators are unitarily equivalent by a gauge transformation [16, Theo-
rem 2.5]. Clearly, for two functions % differing by an additive constant the corresponding
operators coincide. Moreover, if there is an A € leoc (R2, R?) with 9] Ay — hA| = %
(in the sense of distributions), then the operator P is unitarily equivalent to the Pauli
operator defined via the standard approach outlined above [16, Proposition 2.10].

We can now formulate our assumptions on the magnetic field. It is formulated in
terms of the auxiliary function % that appears in the definition of the Pauli operator.

Assumption 1.1. There isan @ € (—1, 1) and an R > 0 such that the two numbers

+h(x)
N e
m* = esssup

_— 1.
WP T kR (1.6

are both finite.

We emphasize that, if @ is absolutely continuous with B = fl—’; IS LI(RZ), then
the validity of Assumption 1.1 implies that the number « is necessarily given by the
expression (1.3). We provide a proof of this claim in Lemma A.1.

The number « plays an important role in what follows. In contrast, the number R
will only play a minor role and is only introduced for dimensional consistency.

A simple case where Assumption 1.1 is satisfied is © = («/ R)H}, B(O.R)’ with
H(,l, B(O.R) denoting surface measure on the circle 9 B(0, R) of radius R centered at the
origin. In this case we can choose & = « In,(]x|/R) and we see that Assumption 1.1 is
satisfied with the given o and R.

We emphasize that, while we can treat p that are not absolutely continuous, our main
interest is in the absolutely continuous case with B = Z—’; elL! (R?). For instance it is
easy to see that if B satisfies

|[B(x)| < CR™2(1+ |x|/R)™"  withsome C > 0and p > 2, (1.7)

then (Assumption 1.1) holds with « given by (1.3) and the given R. The numbers m* are
bounded in terms of C and p. In Lemma A.2 we show that Assumption 1.1 is satisfied
under rather weak integrability assumptions on B.

We are now ready to formulate our main result.
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Theorem 1.2. Let Assumption 1.1 be satisfied. Then for any y > || with y > O there
are constants L1(y, u) and Lo(y, ) such that for every real V € Llloc (R?) one has

Tr(P + V)’ < Ll(y,u)/ V() dx
R2

+La(y, 11) / i e~ 20en ) (h()=ho) 7 (yr+I=lel gy (1.8)
R

Here

B e limg_,gessinfpoe h ifa >0,
07 Jtima_gess supp.e b ifa <0.

The constants L1(y, u) and Lo (y, i) can be chosen such that

Li(y,n) < C(al,y) (mm)>r*h
Lr(y, ) < C(lal, y) R—2lel (m+m—)2(y—|a‘+2) ’

where C(|a|, y) depends only on |a| and y.

Remark 1.3. Some comments on the above theorem are in order.

(a) When o # 0 there are two different terms on the right side. These two terms capture
the correct order in the strong and weak coupling limit where V is replaced by AV
and either . — oo or A — 0. Indeed, the first term on the right side grows like vl
as A — 0o, which is optimal in view of the Weyl asymptotics

1
lim A" Te(P+AVY = —— | v dx. (1.9)
A—00 2r (y +1) Jre

Relation (1.9) follows e.g. from [38, Theorem 1.1, Remark 1.2].
In the weak coupling limit with y = |a| > O the second term on the right side
vanishes linearly as . — 0, which is optimal since according to [25,30] one has

Y

V() ez(sg“"‘)h(")dx> °

(1.10)

49T (el

lim A7 Te(P+ V) = [ ——— %)
A—04 (1 —|a|) Jr2

provided the integral on the right side is nonpositive and £ is chosen in a certain canon-
ical way. We emphasize that this argument also shows that the function e ~2(&" " ijn
our bound captures quantitatively the relevant quantity in the weak coupling limit.

(b) The assumption y > |«| for @ # 0 is optimal. Indeed, by the weak coupling asymp-
totics (1.10), Tr(P + A V)” behaves like M%l, while the second term on the right side
behaves like A!*” 1%l This shows that for 0 < |a| < 1 the assumption y > |a]
is necessary. Similarly, in [25,30] there are weak coupling asymptotics for « = 0,
which show that in this case the assumption y > 0 is necessary.
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(c) Concerning the condition |¢| < 1 in Assumption 1.1 we remark that our bound
cannot hold for |«| > 1. This follows again from weak coupling asymptotics in
[25,30], which state that Tr(P + )LV)Z behaves like AY when |«| > 1. Meanwhile,
the second term on the right side of our bound behaves like A'*7 1%l showing that
the bound can only hold when || < 1. This leaves open the case || = 1 for which
one might expect a bound for y > 1. As discussed in the next subsection, under
somewhat different assumptions on the magnetic field such a bound was indeed
shown in [42], which is why we did not investigate it further.

(d) The function e~ 6gn® =) ¢coincides, up to a phase factor, with the zero energy
resonance function 9 mentioned in Sect. 1.1. Also, since the operator P does not
change if a constant is added to %, the difference i — h( that appears in our bound
is indeed a natural quantity. When / is continuous at the origin, we clearly have
ho = h(0). The particular way of how to define A¢ in the discontinuous case is
dictated mostly by technical convenience. We emphasize that ¢ is finite in view
of Assumption 1.1. The fact that the point O is singled out in the definition of hg
reflects that this point is singled out in (1.6). Clearly, in applications one is free to
choose this singled-out point.

(e) Our bound depends on the ‘magnetic field’ u only via the function 4 and this
dependence is only via the quantities &, R and m* from Assumption 1.1. In particular,
note that

o) o—h)

m'm~ = esssup ——————esssup —————— > |
verz (L+[x|/R)*  cpo (I+|x|/R)™

In the weak field limit where B is replaced by AB and & — 0, the function £ is
replaced by Ak and o by Aa, while R remains unchanged. The product m*m™ is
replaced by (m*m~)*, which tends to 1. Our proof will show that for fixed y > 0,
the constant C(|Ax|, y) remains bounded as A — 0; see Remark 3.2. Thus, our
bound is stable in the limit A — 0 and reproduces the nonmagnetic Lieb—Thirring
inequality (1.2). This property is not shared, for instance, by the bound from [42]
discussed in the next subsection.

(f) We have been somewhat cavalier about our assumptions on V. Here is a more
precise statement: If V e L, (R?) is real and if the right side in the bound in the
theorem is finite, then V_ is infinitesimally form bounded with respect to P and
for the operator P + V, defined via quadratic forms, the stated bound holds. This
follows by standard arguments from our proof. The same statement holds for all
Lieb—Thirring-type inequalities in this paper and will not be repeated each time.

(g) Assume that V is a locally integrable function on R? taking values in the Hermitian
2 x 2-matrices. Then the Lieb—Thirring inequality (1.8) holds for the operator P +V,
provided on the right side we replace V (x)” by Trea(V(x)?) for p € {1 +y, 1+
y — |a|}. This simply follows from the inequality V(x) > —||V(x)_|| (with || - ||
the operator norm on C?), our bound in the scalar case and the bound || V(x)_||P <
Tre2 (V(x)?). For this reason we restrict ourselves to the case of a scalar electric
potential.

(h) Our inequality comes with explicit values for the constants C (|«|, ), but since they
are far from optimal we do not state them explicitly.

1.3. Previous results. Letus review some previous works on Lieb—Thirring inequalities
for Pauli operators and compare them with our new results. Throughout we focus on the
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two-dimensional case and leave out many important advances in the three dimensional
case, starting with Erd6s’s foundational work [13] and reviewed in [6, 14].
Lieb, Solovej and Yngvason [34] showed that when B is constant, then

TP +V)_ < c(/ V(x)%dx+|B|/ V(x),dx).
R2 ]RZ

This was generalized by Erd6s and Solovej [15, Thm. 3.2] (based on the strategy in
[13]), who showed that for any y > 1 there is a constant C,, such that

Te(P + V), < Cy(/ V(x)Z“dx+||B||oo/ V(x)de). (1.11)
]RZ ]RZ

More relevant for us is an earlier work of Sobolev [42], where it was shown under
fairly general conditions on B that for any y > 1 there is a constant C,, such that

(P +V) < C, (f2 V(x)!*! dx+/2b(x) vldx).  (112)
R R

Here b > 0 denotes a “smeared” modification of |B|, see [42, Sec. 2] for details. It
should be noted that b is not uniquely defined. The relevance of a smeared magnetic
field was pointed out in [13]. A Lieb—Thirring inequality similar to (1.12), but with a
different “smeared” modification of B can probably be obtained by adapting the proof of
[41, Theorem 1.2] to the two-dimensional setting. This will again require the assumption
y > 1.

Returning our attention to (1.12), we note that the assumptions on B in [42] are
somewhat implicit. In order to compare the results with ours, we assume that B satisfies
the pointwise decay condition (1.7). Then it is easily verified that an effective magnetic
field b in the sense of [42] can be constructed in such a way that

b(x) < Cg(1+|x)"? VxeR?

see [42, Egs. (2.7)-(2.11)]. Inequality (1.12) then implies that for any y > 1,

Te(P + V) < Cl,y/ V)t dx+cz,y(3)/ A+ xD2Vx) dx.
R2 R2
(1.13)

Let us compare (1.11) and (1.13) with our bound in Theorem 1.2. Importantly, (1.11)
and (1.13) do not have a restriction on the normalized flux « of B. Meanwhile, they are
restricted to values y > 1. When |«| < 1, Holder’s inequality yields that

el 1—la|
/(1+|x|)*2°‘V(x)Z”"“‘dx§(/ (1+|x|)*ZV(x)de) (/ V(x)Z”dx) .
R2 R2 R2

Since e~ < (m™)*(1 + |x|) 2%, we see that our bound in Theorem 1.2 implies (1.13)
for |a| < 1.

In the strong coupling regime, where V is replaced by AV with A — oo, the bounds
(1.11), (1.13) and our bound all reproduce the optimal A¥*! growth.

In the weak coupling regime, where V is replaced by AV with A — 0,, Tr(P +AV)”
vanishes like AY when |«| > 1, so both (1.11) and (1.13) are order-sharp in this case.
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However, Tr(P + AV)” vanishes like A& when 0 < || < 1, and in this regime (1.11)
and (1.13) are no longer order-sharp, while the bound from Theorem 1.2 is.

Concerning the regime of a weak magnetic field, where B is replaced by A B with
A — 0, we see that (1.11) turns into the ordinary Lieb—Thirring inequality (for y > 1),
as does the bound in Theorem 1.2 (for y > 0). Meanwhile, as pointed outin [42, p. 614],
inequalities (1.12) and (1.13) are not applicable in the regime of a weak magnetic field.

These observations indicate that Theorem 1.2 improves over both (1.11) and (1.13)
in the small flux regime || < 1. It displays not only the optimal behavior in the strong
coupling limit, but also in the weak coupling limit. (The optimality in the latter limit
occurs for the critical value y = |«[; see also Remark 1.3(b) above.) Moreover, Theorem
1.2 allows for a smooth passage to inequality (1.2) in the limit of a vanishing magnetic
field. This is made possible by replacing the integrand (1 + |x|)~?V (x)” in (1.13) by
(1 + x|y~ 2lely ()7 =1

It is also interesting to view our results from the point of view of Lieb—Thirring
inequalities in the presence of zero energy resonances (aka virtual levels). Lieb—Thirring
inequalities when a critical Hardy weight is subtracted from the Laplacian were shown in
[10,11,19,24]. In these cases, like in the present one, there is an algebraically decaying
zero energy resonance function. The resulting inequality, however, only has a single
term in contrast to our bound for P when o # 0, which has two terms. This is connected
with the fact that eigenvalues for the Hardy operator are exponentially small in the limit
of a vanishing coupling constant. Hardy—Lieb—Thirring inequalities for fractional Pauli
operators in three dimensions were studied in [6].

Lieb-Thirring inequalities in the presence of a resonance function that is bounded
from above and away from zero were studied in [26]. The resulting inequality has only
a single term. This is relevant in the present case in the simplest case o = 0.

In [12,21] we investigated Lieb—Thirring inequalities in the context of Schrodinger
operators on continuous graphs that are sparse in some sense. The Lieb—Thirring in-
equalities in this case have two terms, reflecting the different behavior in the strong and
the weak coupling limit; for the latter see [29]. Compared with [21] the results in the
present paper are substantially more precise, as we are able to prove the Lieb—Thirring
inequality in the critical case y = |«| > 0, while the corresponding question is left
open in [21]. Nevertheless some techniques from [21] will play a role in our analysis of
subcritical cases; see Sect. 3.

Our result also shows similarities to the logarithmic Lieb—Thirring inequality for the
two-dimensional Schrédinger operator [31], where again two terms appear on the right
side. Our proof in the critical case uses some ideas from [31] (and [10]); see Sect.4. An
important conceptual difference, however, is that in the relevant bound on the lowest
eigenvalue in Proposition 4.5 still two terms appear while there is only one term in the
corresponding bound in [31, Lemma 1]. This leads to substantial technical difficulties
that need to be overcome; see Appendix B for a proof of the fact that both terms are
necessary.

We also mention the recent (non-magnetic) Lieb—Thirring-type inequalities in [4,5],
which, like our bound, involve the solution of a Schrodinger-type equation. The important
difference, however, is that the equation in [4,5] depends on V, whereas in our case the
equation for the zero energy resonance function only depends on P and not on V.
Therefore the bounds are of a rather different nature.

Finally, we mention the works [7,17,25,30,44] that quantify different aspects of the
instability of the bottom of the spectrum of the Pauli operator. Some of the techniques
developed there will be relevant for us here.
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1.4. Strategy of the proof. Since the Pauli operator is block diagonal, Theorem 1.2 is an
immediate consequence of two theorems concerning the individual blocks. These two
operators are defined by the first and the second quadratic form on the right side of (1.5)
and are denoted by H* and H ™, respectively. They are operators acting in the space
L2 (R?) of complex-valued functions. When y is absolutely continuous with sufficiently
regular density B = %, these operators coincide with those given by (1.1).

The block-diagonality of P and the spin-independence of V imply

Tr 2 g2 o2y (P + V) = Tr 2oy (H + V)Y + Tr ooy (H-+ V)7L (1.14)

In what follows we solely discuss the operators H* and H ~, rather than P.

It will turn out that for « # 0 only one of the two operators H* and H ™ is ‘critical’
while the other one is ‘subcritical’. (One could give a mathematical definition of what
we mean by ‘critical’ and ‘subcritical’, but since we do not need anything from the
corresponding theory, we will use these terms only in a colloquial sense and refer to
[37,44] for some background.) In order to discuss the distinction between H* and H—,
we shall assume that

a > 0.

This is no loss of generality, since replacing p by —u can be compensated by replacing
h by —h and then replacing « by —« in (1.6). Of course this is also consistent with the
expression (1.3) for « in the regular case. The product m*m ™ that appears in our bounds
is invariant under this replacement.

With this convention in place, the operator H ~ is ‘critical’, while H* is ‘subcritical’
for « > 0. The following result says that for the subcritical operator a Lieb—Thirring
inequality holds for arbitrarily small y > 0.

Theorem 1.4. Let Assumption 1.1 be satisfied with « > 0. Then for any y > O there is
a constant L(y, i) such that for every real V € Llloc (R2) one has

Tr(H* + V) < L(y, u)/ V() dx.
R2

The constant L(y, |t) can be chosen such that
Ly, ) < Ca, y) (m*m™)>7*D,

where C(«, y) depends only on o and y. The same assertion holds for the operator H™
ifa =0.

Theorem 1.5. Let Assumption 1.1 be satisfied with « > 0. Then for any y > o there
are constants L1(y, u) and La(y, u) such that for every real V € LlloC (R?) one has

Tr(H™ + V)Y < Li(y, u)/ V) M dx + La(y, M)/ e 2h)=ho) v )y g
R2 R2
The constants L1(y, u) and Lo (y, 1) can be chosen such that

Li(y,p) < Cla,y) (m™m™)>0*D
Lo(y, u) < Cla, y) R72* (m*m™)>r—a+2)

where C(a, y) depends only on « and y .
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As we already mentioned, in view of (1.14), Theorem 1.2 is an immediate conse-
quence of Theorems 1.4 and 1.5. Most of the remarks following Theorem 1.2 have
analogues for Theorems 1.4 and 1.5, showing in particular their optimality. We omit the
details.

We will prove Theorems 1.4 and 1.5 only in the case

R=1.

This is no loss of generality, according to the following simple scaling argument. If
satisfies Assumption 1.1 for some R and «, then we can define a measure [t on R2 that
satisfies Assumption 1.1 with the same «, but with R = 1. For absolutely continuous
the corresponding densities B and B are related by é(y) := R%2B(Ry), and this relation
is extended in the natural sense to measures. When passing from p to fi, the function &
is replaced by the function ﬁ(y) := h(RYy), which proves our claim about Assumption
1.1. Denoting by H* the operators corresponding to /i, we see that the operators H*+V
are unitarily equivalent to the operators R™2(H* + V) with \7(y) = R2V(Ry). As a
consequence, Theorems 1.4 and 1.5 for H* + V (with R = 1) imply the corresponding
theorems for the original operator H* + V (with arbitrary R > 0).

2. Passage to Weighted Spaces

In this section we will show that Lieb-Thirring inequalities for H* follow from cor-
responding Lieb-Thirring inequalities for certain operators H* that act in a weighted
L2 space and are defined through a weighted Dirichlet integral. For this argument it is
crucial that ¢ < 1.

2.1. Lower bound on Q*. Let
O*tw1i= [ & @y £ o™ da
R2

denote the quadratic form of the operator H*.
The simple pointwise bound |(dy, £ i8x2)<p|2 <2|Vgl? together with (1.6) (recall
our convention R = 1), shows that

0 [e* ] < 2 (m*)? /R U+ D=V d. @.1)

This holds irrespectively of the value of «, as long as Assumption 1.1 is valid. The
following proposition shows that, under the assumption || < 1, the reverse bound
holds, up to changing the value of the constant. This will be one of the main technical
tools in the proof of our results.

Proposition 2.1. Let Assumption 1.1 be satisfied with « > 0 and R = 1. Then for all
¢ € C/(R),

0*letg] > g (m¥) 72 /R (1 Ix)E2|Vo|* dx, (2.2)

where
B 2—20{—1(1 _ ()[)2
T 2o+ 272011 — )2’

9a (2.3)
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To prove Proposition 2.1 we will need some classical results on doubly weighted
one-dimensional Hardy inequalities. For the proof we refer to [36,43], see also [23] and
references therein.

Lemma 2.2. Let U, W be nonnegative, measurable functions on (0, 0o) and let f be a
locally absolutely continuous function on (0, 00). Then the inequality

/OO W) | f@))>dt < CU, W) /OO U@ |f' o) dr (2.4)
0 0

holds
(a) ifliminf,_ o | f(¢)| = O with

C U, W)=4 up U ! d /& 1 dt). 2.5
( ) AS“>() ( /s (t) t) ( 0 (t) t> ( )
(b) l:flillli]lft_>0 |f(t)| = 0 with

’ s | /\OO . '

We now turn to the proof of the main result of this section. The argument has some
similarities with one used in [17], but our focus is different.

Proof of Proposition 2.1. By the bounds (1.6), we have
0 e gl = (m™)~? /R L+ 1Dy £ i02)gl dx.
For @ = 0, the assertion follows immediately from the fact that
[ 1@ imePdx = [ 19oia

For @ > 0 we introduce polar coordinates x = (r cos 9, r sinf) and expand ¢(r -)
into a Fourier series,

. 1 [ .
0 = 3¢ 0u(), ) = /0 e~ (1, 6) do.

2
mez

A computation (see also [44, Section 10]) shows that

21 2
/O (@ £ i o = Y [of, 0 5 220 @7
meZ
and
o 2 S, 2
fo Voldo =" <|¢>m(r)| + 25 o (1) ) . 2.8)

mez
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Thus, the assertion will follow if we can prove that for each m € Z,

f (1 +r)i2“ (p;n(r) T m¢m(r)‘2rdr
0 r
* +2a / 2 m? 2
zqa/O (142 (161, IP + 25 o (PP ) 7 (2.9)

Integrating by parts we find

o0
/ (1+ )2
0
© +2a /2 m2|(/’m
= [ awnE (g, 0+ "
0 r

When m > 0 the last term on the right side is nonnegative and we arrive at (2.9), even
with constant 1 instead of ¢,. (Note that g, < 1.)

From now on we assume that m < —1. The basic idea is to prove a Hardy inequality
that allows us to absorb the last term on the right side of (2.10) into the left side. We will
apply Lemma 2.2 with

2
o) F m“""(”\ rdr

r

2 2
| |9m|

(1+nr)r

+2am ) rdr.  (2.10)

f(r) — r¥m(ﬂm(7’), U(r) — r:|:2m+l(1 +r)i2a’ W(r) — r:|:2m—l(1 + r):I:Za.

Note that the left side of (2.10) is equal to fooo Ur)| f'(r)|? dr. In order to bound the
constant in Lemma 2.2, we distinguish two cases according to the sign.

Case of the upper sign. In this case we have liminf;_¢|f ()| = 0, so we aim at
applying part (b) of Lemma 2.2. We have

K K S—Zm S—2m—2a
/ U(z)‘%lz:/ Tl e )T dr < —ﬂ(o,ll(s)+2—1(1,oo)(s)
0 0

2|m| (Im] — o)
2.11)
and
00 00 §2m 1
/ W(t)dt:/ I dr < 22 [D s |
s s 2m|  2(jm| — a)
, 2m+2a
1 42— 1 .
©.11(5) 2l =) (1.00) (8)
Hence

K o) 22(1 2201 22a+1
su U@ 'ar / W()dt) < — + < .
0<s15)1(./0 ) \ )= G Aml(ml —a) ~ 4m2(1—a)

where we have used the elementary bound

k—-—a)Y >kK0-a)P O<a<l, keZ.
Similarly,
20 220{

sup (/OSU“)_ld’><fsoo Widr) < Aml—a)? = (1 — o)

l<s<oo
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Altogether we deduce from Lemma 2.2 that

/00(1 +r)%
0

Case of the lower sign. In this case we have liminf,_, | f(#)] = 0, so we aim at
applying part (a) of Lemma 2.2. Note that f YOO U(t)~! dt in the present case coincides

with f YOO W (t) dt in the case of the upper sign and similarly f(; W () dt in the present

case coincides with fOS U (t)~! dt in the case of the upper sign. Therefore we obtain from
the previous bounds

2 1+ 2u
o — _m;om‘ rdr > 272271 (1 —a)? m2/ a+n= rr) |@m|? rdr.
0

2.12)

20+1

o, ([ vertan ([ wom) = g

and

lfffoo</soo U(t)_ldt)(/os W(t)dt) < %.

Altogether we deduce from Lemma 2.2 that

foo(l +r)2
0

Conclusion of the proof. We combine the integration by parts identity (2.10) with the
Hardy inequalities (2.12) and (2.13) and obtain, for any ¢ € [0, 1],

fooa + )2
|2

>(1—z9)/ A+ (g, 12 + —"”’"

/
(pm +

2 ® (1 + —2a
rdr 22_20‘_1(1—a)2m2/0 aery = :2) om|? rdr.

(2.13)

) = 2O g

)rdr

“2a—1 2 2 o 1o loml?
+<(1—z9)2am+192 =1 (| _g)2m / (1 4 p)F2e Eml
0

rdr
(1+r)r
Here in the Hardy inequalities, we estimated r2 > (r(1+ r))_l. We now choose

_ 20 |m|
C 2alm| + 27207 1(1 — a)2m?’

so that the last term vanishes. The constant in front of the first term is equal to

2—20t—l (1 _ a)2m2

1-9 = .
2oim| +2720¢-1(1 — o)2m?

Since this is monotone increasing in |m|, a lower bound is obtained by setting m = —1,
which gives the constant g,. This proves (2.9). O
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Remark 2.3. The assumption @ < 1 in Proposition 2.1 is optimal. Indeed, the inequality

fRz<1+|x|>—2“ |01 — idp)pl dx > c/Rz(1+|x|>—2“ Vol?dx Vg e CA(R?)
(2.14)

fails to hold, for any ¢ > 0, as soon as & > 1. Indeed, by density it would then also hold
for the functions ¢®, R > 0, given by

(R)( 9 in6) re~i? ifr <R,
rcosf,rsinf) = L
4 RTZ e 0 ifR <r.

A short calculation using (2.7) and (2.8), however, shows that

L+ x)72 |0 —id)e® 1> d
lim ST+ x> |01 — i02)p ™ |* dx —o0.
R—>00 Jra(L+x) 72 VB2 dx

which obviously contradicts (2.14).
Meanwhile, inequality (2.2) with the upper sign can be extended to all o such that
1 < a ¢ Z. Since we will not use this bound, we omit its proof.

2.2. Equivalence of quadratic forms. So far we have worked with the operators H*
in the space L?(R2). Now we pass to certain operators H* in the weighted spaces
L2 (RZ, (1 + |x)*2* dx) and show that Lieb-Thirring inequalities for the new operators
imply Lieb-Thirring inequalities for the original operators.

We consider the quadratic form

|+ 1D Ve ds

in the Hilbert space LZ(RZ, (1 + |x])*2® dx). The form domain consists of functions
¢ € H} (R?) NLAR?, (1 + |x|)*> dx) for which the form is finite. It is easy to see
that this form is closed in L? (R?, (1 + |x|)i2°‘ dx). We denote the resulting selfadjoint,
nonnegative operator in L2(R2, (1 + |x)F2 dx) by H=.

From Proposition 2.1 we deduce the following upper bound on the Riesz means that
we are interested in.

Corollary 2.4. Let Assumption 1.1 be satisfied with o« > 0 and R = 1. Then for any
y >0,

£ Y + -1 -\2 4
TrLZ(RZ)dX) (H + V)_ < l]g,/ TrLz(Rz,(lﬂxl)ﬁ” dx) (H — 4y (m+m ) V_)

with the constants qy from Proposition 2.1 and m* from (1.6).

Proof. According to Proposition 2.1 we have for all ¢ € Ccl. (R?)
0t g1+ [ verigiax
R2

= qun®) 2 ([ 04 w0 90R dx = g oo [ (s g ax)
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and
f eﬁ"|w|2dxz(m¥>—2/ (1+ )2 ]2 dx.
R2 R2

We know from [16, Theorem 2.5] that the set ethc Cl (R?) is a form core for the operator
H#.Ttis also easy to see that C/ (R?) is a form core for *. Therefore these inequalities
imply, by the variational principle

N(H* +V +1) < N(H* — g '(m*m™)?V_+¢;'t) forallz > 0.

Here, N(T') denotes the number of negative eigenvalues, counting multiplicities, of a
selfadjoint operator 7'. Using the identity

o0
TrTJ’:y/ N(T +7) 1" ' dr,
0

we obtain the claimed inequality. O

Remark 2.5. If instead of Proposition 2.1 one uses inequality (2.1), one can argue simi-
larly to prove the ‘reverse’ inequality

+ ¥ 4 A=l 2\

Tr L2(R2, (1+]x) %2 dx) ('H + V)_ <2¥ Tr L2(R2.dx) (H — 27 (m™m") V’),

In this sense the problem of proving Lieb—Thirring inequalities for H* +V is equivalent,

up to constants, to proving such inequalities for H* + V. From now on we will deal with
the latter problem.

3. Proof of Theorem 1.4

In this section we prove the first one of our main results, Theorem 1.4. This is substantially
simpler than the second one, Theorem 1.5, since either the operators are subcritical (H™*
with @ > 0), or they are critical, but the endpoint value of y is excluded (H* with
a =0).

3.1. Proof of Theorem 1.4 for « = 0. While the approach in the following subsection
works for ¢ = 0 as well, one can already at this point finish easily the proof in this case
by adapting the argument in [26].

Proof of Theorem 1.4 for « = 0. By the argument at the end of Sect. 1.4 we may assume
R = 1. For « = 0, the operators H* coincide with the Laplacian —A in LZ(RZ).
Therefore, Corollary 2.4, together with the usual Lieb-Thirring inequality in R?, see
(1.2), implies that for any y > 0

Y
T 2z gy (HE 4 V) S Tr g g (=8 = orom V)

< L},(m+m’)2(y+1)/ Vo dx.
RZ

This is the claimed inequality. O
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3.2. Proof of Theorem 1.4 for general . We will use a method of Lieb [32] of proving
Lieb—Thirring inequalities, which is based on a pointwise upper bound on the heat kernel.
Such pointwise bounds have been studied in great generality by Grigor’yan, Saloff-Coste
and others; see [27,28,39,40] and references therein. The usefulness of Grigor’yan—
Saloff-Coste theory in the context of Lieb—Thirring inequalities was observed in [21].

In order to apply the results of Grigor’yan and Saloff-Coste it is convenient to ex-
change the weight (1+|x| )*2¢ with the smooth weight (1+]x |2)=, Strictly speaking, this
replacement is not necessary, as one can verify that the relevant results of Grigor’yan—
Saloff-Coste theory remain valid for our weight that this smooth away from a point
and Lipschitz near that point. However, to shorten the presentation we will make this
replacement at the expense of a further, controlled deterioration of the constant.

We consider the quadratic form

/Rz(l + P Vo dx

in the Hilbert space Lz(Rz, (1 + |x|%)*® dx). This form, with form domain consisting
of functions ¢ € H. (R?) NL*(R?, (1 + |x|*)** dx) for which the form is finite, is
nonnegative and closed. We denote the resulting selfadjoint, nonnegative operator in
L2(RZ, (1 + |x|2)* dx) by K*.

Using the bounds

27 (1+1x) = (T +1xD)? < 1+
and proceeding as in the proof of Corollary 2.4, we find that
Y Y
Tr 2 g2, (rafup2ea) (B + V)T ST 22 qyppyseay (K5 =27 V)T,

+ ¥ + %
Tr 22, (1apyzadn) (K7 + V) S Trage quyseqy (=2 V)

(3.1

In view of these inequalities we will now prove Lieb—Thirring inequalities for the
operator K*. Let

et
prtx,y) =K (x, y)

denote the heat kernel generated by K*. According to [28, Equation (4.10)], for any
0 < a < 1 there is a constant C such that

prtix,x) < Ct 1+ x| +v/DF  Vi>0, VxeR. (3.2)

Let us comment on the bound (3.2). The result in [28] is much more general. It gives
matching upper and lower bounds for p=(z; x, y) for general x, y € R2. Also in the case
of the upper sign the restriction & < 1 is not necessary. When comparing (3.2) with [28,
Equation (4.10)], note that our 2« plays the role of their . We also note that there is a
typographical error in [28, Equation (4.10)], which we have corrected in (3.2). (Indeed,
inserting the formula for uq (B(x, r)) before [28, Equation (4.10)] into [28, Theorem
2.7], we see that « there needs to be replaced by «/2.)

Lieb’s method [32] yields the upper bound

o0
Tr (ICi+V)f < K4y / / Pt x, )t (1 V(x) +a)_dt 1+ x»)* dx,
R2 JO
(3.3)
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valid for any parameter a > 0, with constant

. —1
K.y =T(y+1) <e_a —a f s~le™® ds) . (3.4)
a

The proof of (3.3) given (3.2) is well-known, but for the sake of completeness we provide
some details. Similarly as before, for t > 0let N (K*+V +t) denote the number, counting
multiplicies, of negative eigenvalues of K*+V +1. By the Birman—Schwinger principle,
we have

1 1
NKE+V+1) < NKE=V_+1)=Tr1I(VZ(K* + r)’lV_2 > 1)
1 1
<F)'"TrFIVE(KE+1)"'v2)
for any nondecreasing function F on [0, 0o). Given a nonnegative, convex function f
on [0, oo) with f(0) = 0, we see that
o0
_ d
Fle) i= f e flky) 2
0 y

is a nondecreasing function of ¥ and by Lieb’s trace formula and Jensen’s inequality we
find as in [24]

Te POV + 1)V < /OOO /RZ TPt x, ) V() )+ |x D) dx %.
Inserting this bound into the formula
Tr (K= +V) =y /OOO N(K*+V + )17 dr,
carrying out the 7 integration and choosing f(x) = (x — a)+ we arrive at (3.3).

We now turn to the proof of our first main result.

Proof of Theorem 1.4. Inequality (3.2) implies
C
pH(t;x,x) < 7“(1+|x|)*2°‘ Vi>0, VxeR>. (3.5)
Inserting this into (3.3) we obtain, for any y > 0,

oo
Tr(K* + V)’ < Cqy Ka,y/ / 1727V (1 V(x) +a)_dtdx
R2 JO

Cy K
=2 2ar | y)’tax.
ary(y+1) Jre
Combining this with the bounds from Corollary 2.4 and from (3.1) we obtain (for R = 1,
as we may assume)

_ _ 14
Tr Lz(Rz,dx) (H+ + V)Z < qg TrLZ(Rz’(l_'_lxDza dx) <H+ _ 6],1 1(m+m )2V7>

_ B 14

< qg{/ TrLZ(RZ,(le\z)"‘ dx) (]C+ —q, 1 2¢ (m*m )2V_)7
Cq Ka,)/

a’y(y +1)

which is the claimed Lieb—Thirring inequality for H* + V. The proof for H~ + V when
o = 0issimilar. O

— 6];1 2a(y+1) (m+m7)2(y+1) A‘Qz V(x)ZH dx .
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Remark 3.1. Tt is interesting to note that the inequality in Theorem 1.5 can be obtained
by the same method for y > «. Indeed, inequality (3.2) implies

ptix,x) < Co (7 A+ XD+ V>0, VxeR% (3.6)
Inserting this into (3.3) we obtain, for any y > «,
Cy K
Tr(H- + V) < —229Y [y’ gy

avy(y +1) Jr2
CO[ Ka,y

+
ar~*(y —a)(y —a+1)

Combining this with the bound from Corollary 2.4, we obtain Theorem 1.5 for y > «.
Note that in the second term on the right side, we estimate

(1 + |x|)—205 5 (m+m7)2 e—2(h(x)—h0).

/ (1 + XD V() ax.
RZ

(Indeed, e "™ < m~(1 +|x])~%, so el mo.en < m*(1+¢)%, which according to our
convention means that ¢0 < m*.)

Remark 3.2. We claim that for any fixed y > 0 the limsup of the constants in the Lieb—
Thirring inequalities in Theorems 1.4 and 1.5 remains finite as @« — 0. This follows from
the proofs that we have just given, together with the fact that the constants Cy in (3.5)
and (3.6) remain bounded as ¢ — 0. The latter claim follows from the explicit nature
of the bounds in the Grigor’yan—Saloff-Coste theory. The basic ingredients, namely the
volume doubling property and the Poincaré inequality (see [28, Theorem 2.7]), hold
with constants that remain bounded as o« — 0.

4. Proof of Theorem 1.5

In this section we prove the second of our main results, Theorem 1.5. We will assume
throughout that 0 < o < 1 and will prove this theorem only in the critical case y = «.
This implies the result in the full regime y > «, either by the Aizenman-Lieb argument
[3] or by Remark 3.1. Moreover, according to Corollary 2.4 it suffices to prove the
corresponding inequality for {~ rather than H~.

4.1. Reduction to radial functions. For a function f on R? let

2
P{(x) := (271)*1 f(|x|cosB, |x|sin®)dO
0

and P+ := 1 — P. For any radial weight w on R?, P is the orthogonal projection onto
radial functions in L>(R2, w(x)dx). The operator P commutes with 7{~. Moreover, by
the Schwarz inequality we have

V. <2PV.P+2Ptv pL.
From this, we conclude that
Tr(H + V) < Tr(P(H™ =2V )P) + Tr(PH(H™ =2V )PHY. (4.1)

We will treat the two terms on the right side separately. In this subsection we will treat
the second term. We note that the first term, which will be treated in the remaining
subsections, corresponds essentially to an operator in one dimension.



Lieb-Thirring Inequality... Page 19 of 38 23

Proposition 4.1. For any y > 0,
Tr(PH(H + V)P’ <3 L / V) dx,
R2

where L, is the constant in (1.2).

Proof. We shall show that
Y
T 282 (1) -2ea) P = VIPDL < Tr o (Pl( -3A- V)Pl)i,
where we make explicit the fact that the traces on the two sides are in different Hilbert

spaces. Once we have shown this inequality, we can appeal to the standard Lieb—Thirring
inequality (1.2) to deduce the bound in the proposition.

We consider the unitary operator U : L>(R2, dx) — L2(R2, (1 + |x|)"2*dx), ¢ >
(1 + |x|)*¢. Since U commutes with P and V, it suffices to show that

U*PrHPLU = § P (AP
That is, we need to show that, if Py = 0, then
/ <1+|x|)—2“|V<(1+|x|>“w>|2dxz%/ V| dx.
R2 R2
We compute
T+ D72V + DY) = A+ D72 A+ DOV + a1+ D v
= VY P+ + DY +a+ 1) & VA
Integrating by parts, we obtain
/(1+|x|>—2“|V<<1+|x|>“w)|2dx=f (VY = @V - (@ +1xh "
R2 R2
— (L +[x) )Y ) dx
= /Rzuwfﬂ —a(l+ DT (x| ™ — ey ) dx.

We introduce polar coordinates x = (r cos 8, r sin 6). Since Pl(—agﬂ)l > P, we
have, if Py =0,

/ L+ D72V + DY) P dx = / (U 1D ™20, (1 ey 2+ 1x 2 ) dx
R2 R2
= [ R
R2
Combining the previous two equations we find, for any ¢ € [0, 1],

/(1+|x|>—2°‘|V(<1+|x|>“w>|2dxz ﬁ/ IV dx
R2 R2

+f (1 —0)x|~?
RZ

— D1+ |x)2(Ix| ™" —a)) |y dx.
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We can choose ¢ € [0, 1] (depending on «) such that
A=MxI?=vad+|x)2(x|"' —=a) >0 forall x € R%.
More precisely, we choose

-1

9 = (sup (1 +a(l+r)" 21— ar)))

r>0
The supremum is attained at » = 1/(2« + 1), which leads to
P 4(a+1) - §
Sa+4 T 9

This proves the claimed inequality. O
We note that the inequality o < 1 that we assume throughout this section was only
used at the very end of the previous proof when we bounded ¢ from below. Thus, an

analogue of Proposition 4.1 is valid even for &« > 1, but with a constant that depends on
a.

4.2. Reduction to the lowest eigenvalue. In the previous subsection we have treated the
second term on the right side of (4.1). In this subsection we treat the first term, that is,
we deal with the operator P(H~ + V)P.

We let h~ denote the operator in L2(R,, (1 +r)"2rdr) generated by the quadratic
form

o0
f (1+7) "¢/ (r)|r dr,
0

defined on locally absolutely continuous functions ¢ on R, belonging to L2(R,, (1 +
r)~2%r dr) for which the integral is finite. If for a given function V on R? we let

1 21
u(r) = —/ V(rcos,rsin®)dé, 4.2)
2 0

then the nontrivial part of the operator P(H™ + V)P is equal to h~ +v and, in particular,
_ y - ¥
Tr2®2 (14xp-22dx) (P(H +V)P)" = Tr 2R, (14r)-22r ar) (h+v)". @3

In the remainder of this section we will treat v as a given function on R,, ignoring
that there is an underlying function V on R?.

Our strategy to bound the right side of (4.3) will be to impose a Dirichlet boundary
condition at r = 1. This will result in two operators b, and b, in L2((0, D, 1+

)2 dr) and Lz((l, 00), (1 + r)~2rdr), respectively. These operators act in the
same way as h~, but functions in their form domain vanish at the point » = 1. Since
imposing a Dirichlet boundary condition is a rank one perturbation of the resolvent, it
follows that
_ Y - Y
Tr 2, (tamy-2rary) (07 F0) = T 20,1y (14200 ary (B0 +0)7

- Y
+Tr L2((1,00),(14+r)~2r dr) (hoo + U),

+ (inf spec (h’ + v))f . 4.4)

In the following two propositions we will treat the first two terms on the right side,
respectively. The third term will be treated in the next subsection.
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Proposition 4.2. For any y > 0,

1
- Y 2a(y+1) y+l1
TrLz((O,l),(l+r)*2°‘rdr) (f)o + U), < p%ly L, 271/0 v@)" T rdr,

where L, is the constant in (1.2).

Proof. For functions ¢ in the form domain of b, we bound
1 1
/ (1+7r) 219 ("))r dr + / v 21 +r) " r dr
0 0

] 1
> 2_2a/0 @' (r)r dr _/(; v(r)_le(r)*r dr

and

1 1
/ (1 +7r) %) r dr zz—ZO’f lo(r)|*r dr.
0 0

By a similar argument as in the proof of Corollary 2.4, this implies

_ Y -1 2 4
Tr 20,1y, (1427 ar) (b +v)” <Tr L2((0,1),r dr) (_r rrdy —2 a”*) g

where the operator —r 19,79, —2>*v_ is considered with a Dirichlet boundary condition
at r = 1. This operator coincides with the nontrivial part of P(—A — 2%u(| - [)_)P
acting in L2(B(0, 1), dx) with a Dirichlet boundary condition. Extending the operator to
all of R? and removing the projection P does not decrease the Riesz means and therefore
we have, by the standard Lieb—Thirring inequality (1.2),

T Y9, — 2% ) < CA 2% a-n.)
T2, 1,ran (77 Or7Or v-) =g gy so.nv(l-D-)

522“(7+1>Lyf v(lx)? ! dx
B(0,1)

1
=220+, 27r/ v rdr.
0

Combining this with the previous inequality yields the assertion. O

Proposition 4.3. For any y > 0,

oo
_ y y+1
Tr 21 00y, (14r) 207 ar) (h+v)” < COW/1 v(r)2" rdr.

Proof. Arguing similarly as at the beginning of the previous proof we find that

- % 2a—14q —2a+l 2.\
Tr 121, 00), (14227 dr) (g +v). <Tr L2((1,00),r=20+1 dr) (" OO, -2 U*) )

where the operator —r2¢~19,r=2¢+13, _ 222y _ s considered with a Dirichlet boundary
condition at r = 1. Extending the operator to all of R, we will consider

v
da—1q —2a+ln | =
Tr 2R, ,—2a41 gy (—r B v) ,
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where = —22*y_ on (1, 00) and ¥ = 0 on (0, 1). The operator —ple—ly p2ely
acts with a Dirichlet boundary condition at the origin. More precisely, it is defined as
the closure of the quadratic form fooo r=2* /()| dr defined for ¢ € C Cl (R,). (We

emphasize that R, = (0, 00), so functions in C, g (R,) vanish in a neighborhood of the
origin.)

We consider the unitary operator U : L*(R,, dr) — L*(R,, r=2*1dr), n =3 n.
Letus set o(r) =Un(r) = r“_%n(r) and compute

1 3 2
9/ = | )+ (@ = D3|
=2 O + 2 = Pr?Ren’ () + (@ — )*r* P n(r)?

= P2 ()2 + (@ — %)r2a—2 (ln(r)|2>/ ra— %)2r2"_3|77(r)|2,

leading to
> OO 2 2 2
/O ¢/ (P2 dr = fo (7P + @ = P2 ?) dr

Thus, we have shown that the operator —r2¢~19,r=2¢*+13,in L2(R,, r~22*14r) is uni-
tarily equivalent to the operator —8,2 +(@? — ;{)r‘2 in L? (R, dr). It follows that

Y Y
200—1 —2a+1 ~ 2 2 1y,.—2 ~
TrLz(th—ZaH dr) (—r o,r 0, + v)i =Tr LR, dr) (—Br + (a” — Z)r + U), ,

2 1,.-2

For a lower bound we drop the term o> ~2 and recognize the operator —8,2 —3r

as being unitarily equivalent to the radial part of the Laplace operator in R2. It follows
that

2 2 1v,—2, =\ 2 1.2, =\
Tt gy ary (<07 + @ = Dr2+8) " < Trog, g (<02 = 2r7245)

=Tr 22 g0y P(=A+0( - )P

= TrLz(Rz,dx) (=A+0(- )Y
< Ly/ 5(x))? ™ dx
R2

o0 1
=Ly2n'/ 5 rdr.
0

Here we used the standard Lieb—Thirring inequality (1.2) on R?. Combining the previous
inequalities yields the assertion. O

Remark 4.4. There is an alternative way of finishing the proof without appealing to the
Lieb-Thirring inequality (1.2). Namely, when & > 5 one can drop the term (a?— ;ﬁ)r’2
for a lower bound and for 0 < @ < % one can drop this term at the expense of reducing
the constant 1 in front of —8,2 by Hardy’s inequality. One arrives at having to bound
Tr 2, 4 (b 82+ 1) with 6, := min{1, 4e?}. This is possible in view of bounds by
Egorov and Kondratiev [9, Sec. 8.8].
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A drawback of the proof that we just sketched is that the constant diverges as o« —
0 because of the presence of 6,. This can be remedied by using more refined one-
dimensional inequalities that take the Hardy term into account [11].

In this connection it is interesting to note that for 0 < o < % and y > «, the above
proof also gives the bound

0
- Yo~ & lty—a —2q+1
Tr12((1,00), (14r)-22r dr) (hoo +v)" < Ca,y/l v T

This follows from the fact, proved in [11], that the inequality

1+

Sy a
TrLz(]Rwdr)(_ar2 —r P w) < Ly,a/ wr) " e dr
0

is valid for y = 1%“ when 0 < a < 1. We apply this inequality witha = 1 — 2¢.

4.3. Bound on the lowest eigenvalue. In the previous subsection we have bounded the
first and second term on the right side of (4.4). In this subsection we discuss the third
term, that is, we discuss a lower bound on the lowest eigenvalue for h~ + v. We shall
prove the following bound

Proposition 4.5. For any 0 < « < 1 there is a constant Cy such that

(inf spec (f)_ + v))f < Cqy (/ () dr +/
0 0

o0

v(r)_ (1 +r)~2 rdr) .

It is natural to wonder whether in the bound in the proposition a single term on the
right side suffices. This is not the case, as will be discussed in Appendix B.

Proposition 4.5 is in some sense the main step in the proof of our main result. It is
certainly the most technical step and, indeed, in this subsection we only show how to
reduce the proof to a technical lemma that will be verified in the following section. This
lemma is stated in terms of the operator 7, in L2 (R,, dr) that is defined through the
closure of the quadratic form

> 1! 2 1 00 2
/0 |ﬂ/(r)|2dr—a|77(1)|2—1/0 ) dr+(a2—z)/l O i @s)

defined forn € C Cl (R,). We denote by (7, + ), ), r r’ € R, the integral kernel
of the operator (T, + k2)~!. In the following lemma we bound the difference between
these kernels at o and at 0.

Lemma 4.6. For any o € (0, 1) there is a constant Cy, such that for all k > 0 and all
r,r’" € R, one has

(Tu + k)7 ) = (To+ 6D 7 )| < Cakc ™2V (L+r) ™ (L+1) 7%

Accepting this lemma for the moment, let us prove the main result of this subsection.
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Proof of Proposition 4.5. The proof will consist of two steps. In the first step we will
prove the bound

(inf spec (Ty +v))* < C,, (/w v(r) ! rdr + foo v(ir)_ (1+r)"2r dr> . (4.6)
0 0

and in a second step we will show that this inequality implies that in Proposition 4.5.
Step 1. Let us denote

Gok):= (To+x>)~"  and Tok):= Ty+c>) ' = To+x>)~.  @7)

By the variational principle, for the proof of (4.6) we may assume that v < 0. We denote

1
Ky := (inf spec (T, +v))? .

We may assume that k. > 0, for otherwise (4.6) is trivially true.
From the Birman—Schwinger principle we deduce that

1 1 1 1 1 1

1= 02 Ty +k2)7 02| < |02 Golry) v2 | + |02 Toliy) v2 |, (4.8)

where | - || denotes the operator norm in L2 (R,). We distinguish two cases depending
on the size of the first term on the right side of (4.8).

1 1
Assume first that |[v? Gk )v? || < % Then, by (4.8),

1 1 1

v: Tyl vz | > 3 4.9)

Meanwhile, it follows from Lemma 4.6 that

1 1
v2 Ty(k) v?

o0
< Ca/cfz"‘/ v(r)_(1 +r)72°‘rdr,
HS 0

for all « > 0, where | - ||gs denotes the Hilbert—Schmidt norm in L2 (R,). Estimating the
Hilbert—Schmidt norm from below by the operator norm and setting k = k, we obtain

1 1
v2 Ty lky) v2

o0
< CaK;2“ / v(r)_(1+r) X rdr.
0
Combining this with (4.9), we obtain
o0
K2¥ < 2C, / v(r)_(1+r) > rdr,
0

which implies (4.6).

1 1
V2 Golky)v?

If, on the contrary, > %, then the Birman-Schwinger principle im-

plies that

inf spec (To — ZU,) < —Kf.
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Since Ty is unitarily equivalent to the radial part of the Laplace operator in R?, cf. (4.5),
so we infer that

inf spec ( —A=2v(- |),) < —k2.

*
Combining this with the usual Lieb—Thirring inequality (1.2), we obtain

o
K2 <Tr(—A—2v(-)" <22 Lo,znf v(M) ! dr,
0

which implies (4.6). (Note that instead of the Lieb—Thirring inequality (1.2) the so-
called one-particle Lieb—Thirring inequality, that is, a Sobolev interpolation inequality
[22, Subsection 5.1.2], would suffice.) This completes the proof of (4.6).

Step 2. We now deduce the bound in the proposition from the bound (4.6). This is
achieved by bringing the weight (1 + r)~2%r appearing for the operator b~ into a more
canonical form and then applying a unitary transformation to remove this more canonical
weight. We define

r if O0<r<li
= - 4.1
w(r) {rl_za if 1<r<oo. (4.10)

We denote by h,, the operator in L2 (R,, w(r)dr) associated with the quadratic form
o0
f ¢/ (")* w(r)dr, (4.11)
0
defined on functions ¢ € L2 (R,, w(r)dr) that are locally absolutely continuous on R,
and for which the quadratic form is finite. Using the bounds
272w < (1 +7) 2% < w(r),

we find, similarly as in the proof of Corollary 2.4,

. _ . 2
(mf SPECL2 (R, (L+r)-2erdr) (h+ v))i < (mf SPECL2(®, w(r)dr) (ha _9 av_))

This reduces the proof of the bound in the proposition to the proof of the bound for
hy —2%v_.

The unitary mapping i/ : L2(R,, dr) — L*(R., w(r)dr) givenbyUn(r) := w(r)_%n(r)
satisfies

/ \Un) Fw(r) dr Z/ |n’(r)|2dr—a|n(1)|2—l/ |77("2)| dr
0 0 .

4 Jo
1\ [ In(r)?
2 _—
+<(x 4)/1 2 dr.

Clearly, the form core CC1 (R,) of T, is mapped into the form domain of 4. Conversely,
arguing as in [22, Lemma 2.33] one can show that Ccl, (R,) is a form core of h,, and the
image of it under /! is in the form domain of 7. These facts imply that

U hot = T,.

As a consequence, for any v (in particular, for v = —22"‘1)_)

inf SPECL2(R, uy(r)dr) (hg +v) = inf SPEC 2R, 41 (Ty + ).

This concludes the proof of the proposition. O
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4.4. Proof of Theorem 1.5. We finally put all the ingredients from this section together
and prove our second main result.

Proof of Theorem 1.5. Given a sufficiently regular real function V on R? we define the
function v on R, by (4.2). Combining (4.3), (4.4) and Propositions 4.2, 4.3 and 4.5, we
see that for each 0 < o < 1 there is a constant C,, such that

Tr g2 (14 )y -20ax) (PCHT +VIP)Y
o0 00
< Cqy (/ v(r)£+0‘ rdr +/ v(r)_ (1 +r)72a rdr)
0 0

< Ca (f V(x)£+“dx+/ V(x)_(l+|x|)_2°‘dx).
2 \Jr2 R2

The last inequality comes from Holder’s inequality for the angular integration. Combin-
ing this inequality with (4.1) and Proposition 4.1, we see that for each 0 < o < 1 there
is a constant C/, such that

Tr 2 g2 (1 )y -2eay (7 +V)E < G, (/R V() dx + /RZ V- (1+]x) dx) :

2

Under Assumption 1.1 with R = 1 (and, as everywhere in this section, o« > 0), we can
use the same argument as in Remark 3.1 to replace the weight (1 + |x )~2¢ in the second
term by (m*m~)% e=2"(*)=h0) The claimed inequality in Theorem 1.5 for y = o then
follows from Corollary 2.4. Note that this yields, in particular, the claimed dependence
of the constants on the product m*m~. As we have already mentioned at the beginning
of this section, the claimed inequality for y > o follows either from the inequality for
y = « by the Aizenman—Lieb argument [3] or by Remark 3.1. Finally, the case R # 1
can be reduced to the case R = 1 by scaling as we already observed. O

5. Proof of Lemma 4.6

In this section we will give the proof of Lemma 4.6. We use the notation I'y (k) from
(4.7) for the resolvent difference. Thus, we are looking for a pointwise bound on the
integral kernel of the operator Iy (k).

Our first goal is to find an explicit formula for this integral kernel. Let

Ag (k) =k lo(kK) Kg1 (k) + k11 (k) Ko () — 2l () Ky (),
By () := 1o (k) Igr1 () — icdy (1) Iy (1) + 2o (1) Iy (), (3.1
Dy (k) := kK1 (k) Ky (k) — kK Ko(k) Kgr1 (k) + 2 Ko () Ky (),

and put

Da(K) o Ba(K)
A, () and gy(k) = AL

Jalk) ==

It will turn out that Ay (k) # 0, so fy (k) and g, (k) are well defined.
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Lemma 5.1. One has Ay (k) # 0 for all k > 0. Moreover, forall k > 0, « € (0, 1] and
O0<r<r <oo

Lo (r, 7' k)
Ja () o (er) I (er”) fo<r=<r <1,
=rr' x { Ko (er) Iy (cr) — Ior)Kokr') + ga () Ko (k1) Ko (k1) if 1 <7 <7/, (5.2)
Io(kr) (A;l(x) Ko (kr') — Ko(kr')) fo<r<1<r.

The same formula is valid whenr > r’, provided the variables r and r' are interchanged.

Proof. We begin by deriving a formula for the integral kernel of (7, + «2)~! for a €
[0, 1]. By Sturm-Liouville theory it can be written in terms of two solutions v and v,
of the system

—v’ = zl;r_2v =—«’v  in(0,1),
—v" + (a* — %) r2v=—k%v in(l,00),
v(l-) =v(ly)

V(1) = v (1) +av(ly).

(The jump condition at » = 1 comes from the term a|n(1)|? in the quadratic form (4.5)
of the operator T,.) The solution vy is supposed to lie in the form domain of 7}, near the
origin and the solution v; is supposed to be square-integrable at infinity.

Using standard facts about Bessel’s equation [1, Sec. 9], we find that these two
solutions are given by

_ Ip(kr) if 0<r<1,
vi(r) =1 x Za(/()]a(fcr) + Ea(K)Ka (kr) if 1<r<oo0, 5-3)
and
r(r) = /7 x Dy (1) Ig(kr) + Cy (k) Ko (k1) ¥f O0<r<1, (5.4)
Ky (kr) if 1<r<oo,

with coefficients Za (x), Eo, (x), 60, (x) and Ba (r) that are determined by the continuity
and jump conditions at r = 1. (We will give explicit expressions later in this proof.)
Using the Wronski relation [1, Eq. 9.6.15] for the Bessel functions, viz.

1
WK, (@), (@)} = L@ Kue1(2) + Ko (2) 141 (2) = p (5.5)

we obtain
W{vi, v2} = Ca(k) = Aa(k) .

Let us show that Ag (k) # O for all & > 0. Indeed, if we had Aq (ko) = O for
some kg > 0, then v; would be an eigenfunction of 7, with eigenvalue —K(%, but this
contradicts the fact that 7y, is a nonnegative operator. The latter fact follows from Step
2 in the proof of Proposition 4.5, where we showed that T, is unitarily equivalent to the
manifestly nonnegative operator fg,.
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By Sturm-Liouville theory, it follows from the above facts that for any « > 0, the
integral kernel of (T, +«2)~! is given by
(To +i®)~ 11"

Ko(kr ) Iy (kr) + ﬁ,(K)IO(Kr)Io(Kr’) if0<r<r <1,
rr’ x 3 Ko (kr' ) Iy (kr) + 8o (k) Ko (kr) Ko (kcr’) if 1 <7 <7/,
AV () To(er) Ko (k7' ifo<r<1<r,
(5.6)

where we have denoted

wZ

Dy (k) o (K0)
A ) and SalK) = (K)

As usual, the formula for » > r’ follows by interchanging the variables.
Note also that Ag(k) = Co(x) = 1 and Dy(k) = Bo(k) = 0, so, in particular,

folkc) = Zo(k) = 0.

Thus, recalling the definition (4.7), we see that (5.6) implies the formula in the lemma,
except that the untilded quantities appear there rather than the tilded ones. Thus, to com-
plete the proof we need to show that the former coincide with the latter. To do so, we
replace the derivatives of Bessel functions appearing in the jump condition at» = 1 using
[1, Eq. 9.6.26] in terms of Bessel functions without derivatives. Solving the correspond-
ing system of four linear equations with four unknown, we see that Ay (x), By (k), Dy (k)
are given by the expressions on the right side of (5.1), as claimed. (Note that we have
already shown that Cy (k) = A (), which is confirmed by the solution of the system
of linear equations.) O

AGES

Next, we bound the quantities appearing in Lemma 5.1.

Lemma 5.2. Let o € (0, 1]. The following bounds hold for all k > 0 with an implicit
constant depending possibly on a:

|Aa() ™ = 1] S 72 10,1y (k) + &~ 1100y ()
| oG < k™2 L0,1y (1) + 6~ Le ™K Ty o0y ()
8o ()| < L(0.1) (1) + ik e D1 o0y (i) -

In fact, in the following proof we will establish the asymptotic behavior of the three
quantities in the lemma for k — 0 and x — o0. The above bounds, however, are all
that we need.

For the proof we make use of the following asymptotic facts about Bessel functions:

—Inz+C+0@E2Inz|) if v =0,
| v o1 2_ .
Ky = (2 3T = (3)" %5 TA—v)+0E*Y) %f0<v<l, w5z 0,
727 +0(z]Inz]) ifv=1, 5.7)
(5)7" 1T +0(E2™Y) ifv>1, :

L@ =(3) TerDT+0E)  asz0,
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see [1, (9.6.10) and (9.6.2)], and

/ 4% —1
K,(z) = zlze_z(l+ v8z +(’)(z_2)> as 7 — 00,

[1 42 —1
I,(z) = gzez<1— sz +O(z_2)> as z — 00.

see [1, (9.7.1) and (9.7.2)]. The constant in (5.7) for v = 0 is known, but its value is
irrelevant for our purposes.

In addition, we use the following global properties of Bessel functions: K,, and I,
are positive. Moreover, Iy is decreasing. (In fact, [, is decreasing and K, is increasing
for any v > 0, but we will not need this.)

(5.8)

Proof. Step 1. Asymptotics at the origin. From (5.7) we deduce that, as k — 0,

Ag(k) =27T(1 — o) k% + O(k>7Y),
By (1) = 27T (@) 7 k% + 0>,
Do(k) =27"T (@) k™% + Ok% Ink) .
We note in this computation there is a cancellation at order x ~* for A, (x) and at order

k% Ink for Dy (k).
These asymptotics imply that, as k — 0,

ful) = T 1“121(0[—) m k2% 4 O Ink| + k274,

_ 2 2—2a
galk) = —F(OI)F(I — %) +O(k ).

Step 2. Asymptotics at infinity. From (5.8) we deduce that, as k — oo,
Ag(k) = 1+ 0™,
o
By (k) = % & (1+0™h),
Dy (k) = e e (1+0x™h).
These asymptotics imply that, as k — 00,
falo) = S5 X (140w ),

2K

® ~1
= 1+0O .
8a (k) e € ( (k™)

Step 3. Uniform bounds. The asymptotics in Steps 1 and 2 imply that the claimed
bounds in the lemma hold for all sufficiently small and all sufficiently large «. Since
Ay (k), By(x) and D, (k) are continuous functions of x and since A, (x) does not vanish
according to Lemma 5.1, we obtain the claimed bounds forall« > 0. 0O

After these preparations we are ready to prove the claimed pointwise bound on the
the integral kernel of T'y (k).
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Proof of Lemma 4.6. By selfadjointness, it suffices to prove the bound for r < r’, which
we will assume throughout the proof. We split the integral kernel Ty (r, r'; k) of Ty (k)
as

Co(r, v k) =Nrr (S(r, i)+ R, r's K)) 5.9
with
Sa() Io(cr) Io(rcr”) if0<r<r <1,
S, 1’ k) = { ga(K) Ko (k) Ko (k1) ifl<r<r, (5.10)
Io(kr)(Ag' () Ko (k1) — Ko(kr')) if0<r<1<#',
and
/ _ N /
Rt ) = Ko (cr Iy (kr) — Ip(kr)Ko(er’) if1 <r <r’, (5.11)

0 elsewhere ,

and show that both pieces satisfy the bound claimed in the lemma. This is the content
of the following two respective steps.

To simplify the notation, we shall use the symbol < to indicate the existence of a
constant such that the inequality holds when the right side is multiplied by this constant.
The constant may depend on o € (0, 1], but is independent of 0 < r < r’ < 00 and
k > 0.

Step 1. In this step we show that |S(r, ;)| < k2% (1 +r)"%(1 + ')~ for all
O0<r<r <oo.

We distinguish three cases.

First, let 0 < r <7’ < 1. We claim that

sup k2% fo (k)| I3 (kp) < 00. (5.12)
k>0, p<1

Once we have shown this, we deduce that
IS(r. 15 10| = | fu GO o) Io(er’) S k™2 Sk 2 (L+r) " (L +1)77,

which is the claimed bound.

To prove (5.12), we first assume « < 1. Then, by (5.7), Io(/c,o)2 <lforallp <1
and, by Lemma 5.2, | fy (k)| < « 2% This proves (5.12) for k < 1. Now let x > 1.
Then, by (5.8) and the monotonicity of Iy, In(kp)?> < Ip(k)? < k™1 < (—2atl 2
for all p < 1. Moreover, by Lemma 5.2, | fo, (k)| < k~le™2¢_ This proves (5.12) for
Kk > 1.

Next, let 1 < r < r’. We claim that

sup  (kp)**|ga (k)| K (kp) < 0. (5.13)
k>0, p>1

Once we have shown this, we deduce that
IS, 75 10)| = 180 ()| Ko (k) Ko (k') S (ker) 2 (ker') 24 S 2 (L+1) (1 +1)) 79,

which is the claimed bound.
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To prove (5.13), we first assume ¥ < 1. Then, by Lemma 5.2, |gy (k)| < 1. Mean-
while, it follows from (5.7) and (5.8) that

supz®Ky(z) < oo.
z>0

(We emphasize that @ > 0.) This proves (5.13) for k < 1. Now let x > 1. Then, by
Lemma 5.2, |go (k)| < k~'e?. Moreover, by (5.8), Ko (kp)> < (kp)~'e <P for all
p > 1. Thus,

(k)™ |8 ()| K5 (kp) S (kp)?* e TeP 24P

The function z > 72!

we deduce that

e “isdecreasing on ((2a—1),, 00).Sincekp > 1 > Qa—1),,

(K_p)zolflelezKe*zKp S K_20(72 S 1.

This proves (5.13) for « > 1.
Finally, let < 1 < r’. It follows from (5.7) and (5.8) that

sup max{z®, z*}o(2)| K (2) — Ko(2)| < o0 (5.14)
z>0
and
supmax{z®, z}10(z2) Ko (2) < 00. (5.15)
z>0

We use the monotonicity of Iy, together with (5.14) and (5.15), to bound

IS(r. 7510 = To(kr)| Ay (0) Ko (kr') — Ko(kr')|

Io(er")| Ay () Ko (kr') — Ko(ier')|

Lo(r)| Ko (ker') — Ko(er)| + 11— Ay ()| To(kr") Ko (k')
< min{(kr)™%, (kr') 72}

+min{(r') ™, (r') Yk T L0,y () + & T L1 00y ()] -

IA

A

We claim that the right side is bounded by x =% (r")~®. Since (') ™% < (14/) "¢ (14r) ™
for r < 1 < r/, this implies the claimed bound.

For the first term on the right side, we bound min{(xr")~%, (kr') 72} < (kr')~2 <
Kk ~2%(r")~® as desired. For the second term we distinguish according to the size of «.
For k < 1 we bound

min{(kr) ™%, (cr) " T < k7)Y,
and for ¥ > 1 we bound, using xr’ > 1,
min{(kr) ™%, (cr) " e < o) T < (o) %Y = T2 O

This completes the proof of the bound that we claimed at the beginning of this step.

Step 2. In this step we show that |R(r, r’; k)| < (kr’)™2* forall 1 < r < r’. Since
72 < (1+r)"%(1 + )~ for all such r, 7, we obtain the claimed bound for
R(r, r'; k).
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To prove this claim, we decompose R(r, r’; k) with I < r < r/ further as
R, v k) =Ra(r, ¥ k) — Ro(r, s k)
with
Ra(r, ;1) := Io(kr) (Ko (k') — Ko(kr'))
and
Ro(r,r's k) := Ko (kr') (lo(kr) — Io(kr)).
By (5.14) (together with max{z®, z%} > z2%) and monotonicity of Iy it follows that, if
1 <r <7/, then
[Ra(r. 7' 6)| = Io(kr)| Ko (kr') — Ko(er')| < Io(er')| Ko (kr') — KoGer')| < (r')™2

which is the claimed bound.
To estimate Ry, (r, r’; ) we will distinguish two cases.
If kr > 1, then we use the upper bound (see (5.8))

/

, eZ—Z ,
Ko@) — 1. S —=—5 Vz.2

Ne L > 1, (5.16)

which implies that for 7/ > 1 we have

sup Ko (2)|lo(2) — I, (2| S ()2 < ()™,

1<z<7

which is the claimed bound.
If kr < 1, then we use the bound

sup(z)** Ky (') < oo,

/>0
which follows from (5.7) and (5.8), as well as the bound
sup |Io(z) — Io(2)| < oo, (5.17)
0<z<l

which follows from (5.7). Combining these two inequalities yields the claimed bound.
O

The previous proof relies heavily on the fact that the leading terms in the asymptotic
expansion of K, (z) for z — oo coincide for different v; see (5.8). This is used in
(5.14) and (5.16). This shows that subtracting the integral kernel of (7 + Kz)_l from
(Ty + k)1 leads to certain cancelations in the integral kernel of ', (k) in terms of
K2y (1+r)~*(1 +r")~%. Notice in particular that the bound

(To +6)7 ) S k72N Q) (A +r) 7

cannot hold. Indeed, if this bound held, we could follow the reasoning in the proof of
Proposition 4.5 and prove the inequality

inf spec (h~ +v))* < Oov(r), A+r) " rdr
(o spec i +0))” < |

This, however, would contradict the results of Appendix B.
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Appendix A. On Assumption 1.1

Let us show that the parameter « defined in (1.3) and the parameter o appearing in
Assumption 1.1 coincide when p is absolutely continuous with integrable density B =

dd—’;. This follows from the following more general result.

Lemma A.1. Let ;1 be a signed real Borel measure on R? of finite total variation and
assume that there is an h € W]L’CI (R2) such that Ah = W in the sense of distributions.
Assume that there is an o € R such that both numbers m* in (1.6) are finite. Then

a = Q2n) " u(R?).

Proof. For two parameters p > 0 and o > 1 to be specified later, we introduce the
function y on R” by

1 if x| < p,
x(x):={1-(no) 'In(x|/p) ifp < |x| <op,
0 if |x| > op.

This function is Lipschitz and has compact support. Since i € ng’cl (R?), we can test
the equation Ah = pu against x and obtain

/ x(X)du(x) = —f Vx(x)-Vh(x)dx.
R2 R2

(Strictly speaking, we test the equation against the convolution of x with a CZ° mollifier
and pass to the limit in the mollification parameter.) Since p has finite total variation,
dominated convergence implies that the left side tends to ;(R?) as p — oo for any fixed
o. Since yx is harmonic in {p < |x| < op}, we see that the right side is equal to

—/ VX~Vhdx=—/ VX-Vhdxz—/ 2 (Vhds(x)
R2 p<l|x|<op |x|=0p |x]

+/ 2 (Vy)hds(x)
|

x|=p |.X|

— (Ino) " (po)"! /

|x|=0p

hds(x) —(no) p~! f hds(x).
[x[=p
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Here ds denotes integration with respect to the surface measure. Assumption 1.1 means
that for all x € R2,

—Inm~ <h(x)—aln(l +|x|/R) <Inm".

This implies that for r € {p, op}, we have
—2nrlnm- < / hds(x) —2marIn(l1+r/R) <27mrInm*
|x|=r
and therefore

1+ R
‘—/ Yy - Vhdx — (no)y~2matn PRI — (no)y—127 n(mrmo).
]RZ

1+p/R

Letting first p — oo and then 0 — oo we easily find that

—/ Vx - -Vhdx - 2ma.
R2

This proves the claimed identity (R?) = 27a. O

Next, we show that Assumption 1.1 is satisfied for a large class of absolutely continuous
measures.

Lemma A.2. Let B € LI(RZ, (1 +1In, |x|)dx) such that, for some p > 1,

sup f |B()|P dy < co.
ly—x|<1

xeR2

Then
1
M@ =5 / B(y)In|x — y|dy
T RrR2

belongs to ng’cr(Rz)forr = ZTP[, ifp<2anyr <ooifp=2andr =o00if p > 2.
It solves Ah = B and satisfies Assumption 1.1 with o given by (1.3).

Proof. The facts that & € W, (R?) with

x—y
dy
Ix — yI?

1
Vh(x) = Z/R B(y)

and that Ah = B in the sense of distributions are in [33, Theorem 6.21]. For a given
a € R? we decompose the integral giving V/ into the outside of B(a, 1) and its inside.
The part from the outside is bounded in B(a, %) since B € L! (R?). The part from the
inside defines a function in L” (R?) with r = 22_—pp if p < 2 by the weak Young inequality
[33, Theorem 4.3] and the fact that B € L”(B(a, 1)). This also implies the assertion for
p = 2. The fact that the part from the inside is bounded for p > 2 follows from Holder’s
inequality.

It remains to show that x +— A(x) — a In(1 + |x]) is bounded. We begin by noting that,

: 1 1 _
Wlth ; + 7 = l,
1 1
V4 / !
s(/ |B<y>|"dy) (/ n |z]|” dz>’ .
ly—x|<l lzl<1

’/ B(y)In|x — y|dy
ly—x|<1
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By assumption the right side is bounded with respect to x. Next, we bound

lx — yl
< |B(y)|In dy.
Iyl<dix| |x|
[x—y| 3

For |y| < %|x| we have % < T <3%,%0 the integral on the right side is bounded with
respect to x. We also note that if |x| > 2, then

1
< B dy < ———— B In, |y|dy.
< [ B0 = s [ B0 ay

This, when multiplied by In |x| is bounded for |x| > e, say. Finally, we note that when
lx—y| > Tand|y| > 3|x|,then0 < In [x—y| < In(jx|+|y]) < In(3|y)) =In3+ln, |y|.
Therefore

/ B()Inlx — yldy
ly—x|=1, |y|= x|

To summarize, we have shown that 2 (x) —« In | x| is bounded for | x| > e. Since « In |x|—
o In(1 + |x]|) is bounded for |x| > e as well, we have proved the assertion for |x| > e.
The boundedness for |x| < e proceeds along the same lines and we omit the details.

O

/ 1 B(y)In|x — y|dy — In x| B(y)dy
Iyl<3lx]

1
[yl<7lxl]

/ B(y)dy —2m«
Iyl<3lx]

5/ (In 3 +1n, |yDIBO)| dy.
R2

Appendix B. Failure of a One-Term Bound on inf spec(h™ + v)

In this section we discuss the optimality of the bound in Proposition 4.5. More precisely,
we shall show that for any given 0 < o < 1, neither

(inf spec (h~ +v))* < C, /OO V() dr (B.1)
0

nor
(inf spec (b’ + v))? < Cqy /00 v(r)_ (1+ r)_2°‘ rdr (B.2)
0

can hold with some constant Cy, for all real v € LllOC (R,). We recall that the operator b~
is defined in Sect. 4.2.

This failure of (B.1) and (B.2) is in contrast to what happens in other related situations,
for instance in [31, Lemma 1], where the ‘weak coupling term’ is able to control the
lowest eigenvalue uniformly. In view of this failure it is perhaps less surprising that the
proof of Theorem 1.5 in the case y = « is rather involved.

To show the claimed failure we apply the duality argument of Lieb and Thirring [35]
(see also [22, Proposition 5.3]). This shows that (B.1) and (B.2) are equivalent to the
Sobolev interpolation inequalities

(/00(1 +r)_2a|<p’(r)|2rdr>l+a (/00(1 + r)_2“|(p(r)|2rdr>l+a
0 0

o0 a1 2(1+a) Toa
> S, / A+r) M@ T« rdr (B.3)
0
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and

00 l—a 00 o
(/ (1+r>2“|¢/(r>|2rdr> (f (1+r)2“|¢(r)|2rdr> > S, esssup g,
0 0

+

(B.4)

respectively, with some S, > 0 and for all locally absolutely continuous functions ¢
on R, for which the two integrals on the left sides are finite. We shall show that neither
(B.3) nor (B.4) holds.

To see that (B.3) fails, consider ¢ () = v(er) with a fixed nice function v and a parameter
e K 1. As ¢ — 0, we compute

o0 rdr 00 sds o B
/ ‘¢/(r>|272 = 820{/ |U/(S)|272 ~ 820‘/ |U,(S)|2S1 20 ds,
0 (I +r)=« 0 (e +5)°* 0
rdr (- o0 sds o 0 _
f lo(r )|272=8 21 "’)/ )22~ 20 a)/ () 2512 s
0 +r) (e +5)%® 0

2(l+a) rdr 2w 2(l+a) sds 2(1+a)
) \(p(r | m =¢ A |v(¥)| m — const [v(0)| " @

where the constant on the right side of the final relation is positive. (In fact, it is equal

to [y (1+1)721*) ¢ dt.) Thus, the left side of (B.3) behaves like £2¢°/(+) \while the
right side remains positive (if v(0) 7~ 0). Since o > 0, we arrive at a contradiction.

To see that (B.4) fails, consider ¢(r) = v(Mr) with a fixed nice function v and a
parameter M > 1. As M — oo, we compute

f =4 =/w|v/(s)|2$—> /w|v’<s)|2sds
0 (1+7)2 0 (1+s/M)> 0 '

o , rdr sds N _zfoo 5
fo lo(r)] —(l+r)2°‘_M / lv(s)[? U +s/M)2 M A lv(s)["s ds,

ess sup |(p|2 = ess sup |v|2 .
R, R,

Thus, the left side of (B.4) behaves like M ~2%, while the right side is independent of M.
Since o > 0, we arrive at a contradiction.
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