
D

p
o

i

r

h
R

Engineering Structures 323 (2025) 119227 

A
0

Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

A real-time structural seismic response prediction framework based on
transfer learning and unsupervised learning
Hongrak Pak ∗, Stephanie German Paal
epartment of Civil and Environmental Engineering, Texas A&M University, College Station, 77843, TX, United States

A R T I C L E I N F O

Keywords:
Transfer learning
Long short-term memory (LSTM)
Structural seismic behavior
Unsupervised learning
SSR net

A B S T R A C T

Conventional data-driven methods for predicting the seismic response of structures often require extensive data
and computational resources. To address these challenges, a novel deep learning framework that can efficiently
and accurately predict the structural seismic responses is proposed. The proposed framework overcomes
the limitations of the conventional data-driven methods, by utilizing transfer learning based on the most
relevant knowledge determined via the unsupervised learning technique. The framework leverages the seismic
information history database to identify the most similar previous earthquake, and subsequently transfers
the corresponding knowledge from the Structural Seismic Response network (SSR net) to predict structural
responses caused by a new earthquake. This innovative method significantly reduces the need for extensive
data collection and provides efficient predictions. Case studies demonstrate the framework’s ability to predict
seismic structural responses without extensive training or data collection. The framework can reliably capture
the complex nonlinear dynamics of structures under seismic loads and offer significant potential for advancing
seismic fragility analyses and reliability assessments. Future research will focus on expanding the framework’s
applicability to various structural types and further refining its prediction capabilities.
1. Introduction

Long-term records from the National Earthquake Information Cen-
ter, since about 1900, reveal that there are on the order of 20,000
earthquakes all over the world in any given year, or approximately 55
er day. Moreover, sixteen significant earthquakes of magnitude seven
r greater are statistically expected. In most catastrophic earthquakes,

many buildings and infrastructure experience structural damage due to
the strong ground motion. Entire cities have been completely destroyed,
and there have been countless casualties as a result of catastrophic
earthquakes, such as the Northridge earthquake in 1994, the Kobe
earthquake in 1995, the Sichuan earthquake in 2008, and many others.
To ensure the seismic stability of structures, of most significant interest
s the deformation of the structural system or displacement of the mass

induced by the ground shaking. [1]. As is well known, much research
has focused on the development of advanced design methods [2–
4], mitigation strategies [5–7], and retrofitting methods [8–10]. The
esearch efforts during the last several decades have seen enormous

resources dedicated to achieving more systematic and effective ways
to ensure the safety of structures under seismic loads. The previous
approaches can be mostly divided into experimental- and numerical-
or analytical-based approaches. Experimental-based approaches have
investigated characteristics of structural dynamic behavior, provided
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valuable evidence to clarify unknown relationships, and proposed state-
of-the-art design philosophies. Because of the direct measurement of
unidentified phenomena, experiments have been treated as the most
reliable and decisive approach in structural engineering (second to real-
world measurements). However, additional experiments are required
to justify this conclusion for any modifications to existing structural
designs or for new loading conditions. Additional experiments are
not always feasible, considering the large scale of infrastructure and
the expensive nature of such tests. Nonlinear dynamic analyses built
upon various theoretical backgrounds are available for a wide range
of structures with thousands of degrees of freedom. Extensive research
based on numerical approaches has been conducted to simulate the
time history of the nonlinear structural behavior and determine the
seismic fragility curves for various types of infrastructure [11–13].
These nonlinear dynamic analysis methods have been extended to ac-
count for stochastic uncertainties of earthquakes and structural systems.
Although such numerical methods have significantly improved the
understanding of the seismic performance of buildings and infrastruc-
ture, there are still a few challenges. Assumptions made in numerical
approaches may have an adverse effect on the results if they are in
fact different from reality. Moreover, thousands of simulations varying
the structural properties and loading conditions should be implemented
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to adopt stochastic uncertainties in seismic hazard analysis. A complex
numerical model typically requires significant computational cost and
time. In the worst case, the stability of nonlinear dynamic solutions
may not be guaranteed due to the intrinsic convergence issue in the
iteration procedure. An alternative way to address such drawbacks of
the existing approaches mentioned earlier is machine learning (ML)-
or deep learning (DL)-based approaches. By virtue of the ground mo-
tion recording systems, these approaches have provided noteworthy
performance for a better understanding and accurate prediction of the
dynamic behavior of structures in earthquake events. Earlier ML studies
have used support vector machines or artificial neural networks (ANNs)
to estimate structural system nonlinear behaviors under quasi-static
or dynamic loading conditions [14–20]. However, using an ANN for
estimating highly complex nonlinear dynamic behavior is often imprac-
tical because it assumes that the previous and current sequences are
independent. Therefore, the temporal dependencies in time-series data
cannot be considered, and the generalized nonlinear dynamic behavior
may not be captured. The convolutional neural network (CNN) and
recurrent neural network (RNN), which are more recent advancements
in ML, may be more useful in this domain.

2. Literature review

Deep neural networks have demonstrated unprecedented perfor-
mance in many engineering problems. In particular, CNNs and RNNs,
variants of neural networks heavily used in image classification or
natural language processing, have been gaining attention in the earth-
quake engineering realm as well. Several studies have utilized a CNN
or RNN to estimate the structural response under dynamic loading
conditions. Table 1 summarizes DL-based approaches to predict the
building damage assessment or the time history of structural responses.
There have been a few studies based on CNNs for predicting the dy-
namic behavior of a structure [21–23] and classifying seismic vibration
versus ambient vibration [24]. These studies have shown that their
proposed CNN-based models can deal with a large volume of signal
data and automatically extract valuable spatial information from those
signal data. As can be expected, many prior studies regarding seismic
responses or damage assessments have focused on RNNs or long short-
term memory (LSTM) models [25–28] since those model architectures
are specifically designed to capture sequential dependencies between
input and output variables. Ahmed et al. [29] used the overlapped
data sequence to train their LSTM model. Some variations of RNN or
LSTM architecture also have been reported in several studies [30–32].
Yu et al. [33] and Zhang et al. [34] embedded physics principles into
DL-based approaches. Notably, Xu and Noh [35] adopted a physics-
informed DL and domain adversarial network to diagnose building
damages induced by earthquakes based on the data from different
buildings.

Previous studies have introduced various types of DL-based archi-
tectures to improve seismic performance evaluation. Most of these
previous studies developed models trained on the structural responses
from numerical models, shake table tests, or field measurements. Al-
though promising results have been reported with complicated models,
additional studies should be further investigated to bridge the following
research gaps.

First, the more complex a DL-based model architecture, the more
training data is required to train a model and avoid overfitting. Gener-
ally, a large amount of data is necessary to train a complex DL-based
model since it intrinsically has thousands of parameters to be trained.
An obvious solution is to collect more data of interest; however, this is
not always feasible considering the size of specimens in a shake table
test or full-scale structures. Secondly, low-fidelity data generated by
numerical models is not helpful for accurately predicting real-world
situations, and high-fidelity data from more detailed numerical mod-
els is difficult to calibrate and computationally expensive. Moreover,
the assumptions or approximations included in the more high-fidelity
2 
numerical models are likely to work as undesirable constraints when
generating data. Thus, the generated data would be bound by those
constraints, which may compromise data quality. Lastly, existing meth-
ods do not explain how to effectively deal with a new earthquake which
is not represented in the utilized dataset. Based on long-term records,
earthquakes have a wide variability of intensity, duration, and general
appearance. Consequently, the existing DL-based approaches may not
be able to provide reliable response prediction for a new earthquake
outside of the established data.

To address the aforementioned issues in the existing DL-based ap-
proaches in structural engineering, this study proposes a novel frame-
work based on LSTM networks that can rapidly and precisely predict
the structural response under unknown seismic loading, by integrating
transfer learning (TL) and unsupervised learning. TL aims to manip-
ulate a model trained on one domain (source domain) to provide
accurate predictions in another related domain (target domain). Thus,
a robust prediction model can be achieved without excessive training
data and computing resources, thanks to the knowledge transferred
from a pre-trained model. While advanced TL methods such as domain
adaptation or knowledge distillation techniques offer sophisticated ca-
pabilities [40,41], this study prioritized methods that would provide
an efficient model with predictive accuracy as well as a straightfor-
ward algorithm for knowledge transfer. Such needs were driven by in-
evitable challenges in complex knowledge transfer methods, especially
in real-time applications where rapid response is critical.

Although TL has shown great potential in the field of structural
engineering [35,42–44], it is still most common in the CNN model
architecture to share spatial features such as VGG-16 or ResNet50, and
a few studies in other engineering applications have adopted TL to
LSTM models [45–47]. This is because pre-trained temporal dependen-
cies will no longer be valid on a new earthquake without an effort to
find the best available relevant domain. When transferring knowledge
from the source domain to the target domain, the performance of TL
approaches depends on how similar the two domains are. Therefore,
choosing an appropriate source domain closer to the target domain
can maximize the performance of TL approaches. However, it can be
challenging to determine the similarity between the domains, since
there is no label information. Recognizing the challenge of determining
this similarity without label information, this study incorporates an
unsupervised learning algorithm to enhance the reliability of the pro-
posed framework. In such cases, unsupervised learning, a class of ML
algorithms that can learn and analyze patterns from unlabeled datasets,
can intelligently provide an appropriate source domain to improve the
performance of TL.

The objectives of this study are summarized as follows, with a focus
on the novel contributions:

1. To propose a deep transfer learning framework: This study in-
troduces a transfer learning framework specifically designed for
predicting structural dynamic responses with minimal ground
motion data. The proposed framework leverages the transferred
knowledge to significantly reduce data requirements and ad-
dresses the common challenge of data scarcity in seismic engi-
neering.

2. To handle ground motion correlations or unseen data: The pro-
posed framework incorporates unsupervised learning approach
to intelligently manage the correlation between recorded ground
motions and new seismic events. This ensures that the most rele-
vant historical data is utilized for making predictions, enhancing
the model’s accuracy and robustness even when dealing with
novel seismic inputs.

3. To provide a practical pre-trained model: We aim to deliver a
practical pre-trained model that can be readily used by engineers
and researchers, similar to how VGG-16 or ResNet50 are utilized
in image processing for spatial feature extraction.
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Table 1
Summary of DL-based approaches for seismic response prediction or assessment.

Reference Task Network
architecture

Response
data source

Number of training ground
motionsa

[21] Peak responses CNN w/ TL Numerical model 1199
[36] Response prediction NARX-RNN Shaking table test 4/5

[25] Response prediction LSTM Numerical model
Field data

50/15/67

[22] Response prediction CNN Numerical model
Shaking table test

255/18

[33] Response prediction Physics-guided
RNN

Numerical model 300/300

[34] Response prediction Physics-guided
CNN

Numerical model
Field data

10/50/15

[37] Regional
damage assessment

CNN Numerical model 10,548

[26] Response prediction 1D-CNN
LSTM

Numerical model 7

[24] Vibration
classification

CNN w/ TL Numerical model
Field data

About 34,000

[30] Response prediction ConvLSTM Field data 30
[35] Building

damage assessment
PhyMDAN Numerical model

Shaking table test
40 and more

[27] Regional
damage assessment

LSTM Numerical model 42,192

[31] Response prediction Attention-based
RNN

Numerical model
Shaking table test

90/60

[28] Response prediction ANN, LSTM Numerical model 1500
[29] Building

damage assessment
Stacked LSTM Numerical model 256

[32] Response prediction Recursive LSTM Numerical model 27/67
[23] Response prediction CNN Numerical model 200
[38] Response prediction CNN Numerical model 1499
[39] Response prediction Autoencoder

w/ CNN
Numerical model
Field data

200

a Multiple numbers indicate that more than one case was reported in the reference.
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These objectives are achieved through the proposed framework con-
sisting of four parts, which will be detailed in the subsequent sections.

his innovative approach not only advances the current state-of-the-art
n seismic response prediction but also offers practical solutions for the
hallenges faced in real-world applications.

. A novel real-time structural seismic response prediction frame-
ork

In a general sense, the seismic response of a structure is affected
y many factors, for example, the spatial information for the earth-
uake epicenter, earthquake intensity, structural characteristics, etc.
hus, most existing approaches for predicting the nonlinear structural
esponse induced by an earthquake require a large dataset to maintain
rediction performance even in an unseen earthquake. The dataset
ypically includes a variety of ground motions, structural responses, and
aterial properties. However, the generalization capability of a trained

model, which is its ability to appropriately handle new data, is not
always ensured. In such situations, a trained model that consumed a
ignificant amount of computational cost and time for training would

be useless.
This study proposes a novel deep learning framework to rapidly and

ccurately predict the seismic response of a structure in only a few
econds (from data processing to prediction). The proposed framework
eeds two different data sequences: the time history of the ground mo-
ion recorded during the earthquakes and the corresponding structural
isplacement record. By adopting transfer learning and unsupervised
earning, only two sequences of the ground motion and correspond-
ng structural displacements are required to train and test the deep

earning model. The proposed framework consists of four parts: the i

3 
eismic information history database, the Structural Seismic Response
etwork (SSR net), the unsupervised nearest neighbor algorithm, and

he knowledge transfer strategy. Fig. 1 shows the schematic procedure
f the four parts in the proposed framework, and a detailed explanation
f each part is thoroughly explained in the following sections.

.1. Part 1: Seismic information history database

The aim of the first part of this framework is to build a seismic infor-
ation database for a specific structure, consisting of several important

alues extracted from a number of ground motions that have been
reviously recorded. First, as can be seen in Fig. 1, important values
re extracted from the previously recorded 𝑛 different ground motions,
here 𝑛 is the number of ground motions that have been recorded at
 seismograph station or the first floor of a structure. The extracted
alues from a previously recorded ground motion are representative
f each earthquake (e.g., focal depth, epicentral distance, peak ground
cceleration (PGA), peak velocity, peak displacement, peak structure
cceleration, spectral acceleration (𝑆𝑎)). The database established with
he extracted values in this part will be used as the input to identify
he most relevant previous earthquake for a new earthquake in Part 3.

.2. Part 2: Structural Seismic Response network (SSR net)

In this part of the proposed framework, a group of LSTM net-
orks, referred to as the Structural Seismic Response Network (SSR
et), is established on the previously recorded ground motions and
isplacements. Instead of training the entire 𝑛 different ground motions
n a single LSTM network, the SSR net is composed of 𝑛 different
STM networks, each of which is trained on a ground motion dur-

ng a specific earthquake and the corresponding displacements. Each
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Fig. 1. The overview of the proposed framework for leveraging knowledge from previous earthquakes.
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STM network is expected to understand how to predict the time
istory of the structural displacement based on a single earthquake
round motion. Therefore, this approach results in much simpler and
ess resource-intensive LSTM networks than the models developed in
revious studies. This is because an individual LSTM network in the
SR net does not need to capture the generalized relationship for
ll available earthquake records. As mentioned earlier, an extensive
ataset and complex model architecture is required to ensure predic-

tion performance in traditional deep learning models. However, the
proposed framework can make more accurate and efficient predictions
with much less data and parameters that need to be trained. Even
though an individual LSTM network in the SSR net is only trained on
a specific ground motion, the ability of this framework to accurately
predict the structural responses caused by arbitrary earthquakes will be
explained in Parts 3 and 4. The 𝑛 different LSTM networks established
in this part provide a stable and reliable foundation for leveraging
common knowledge to predict the structural seismic response caused
by an unseen earthquake. More information on training an individual
etwork will be provided in later sections.

.2.1. Data preprocessing
The dataset fed into the 𝑖th LSTM network in the SSR net contains

he time histories of the ground motion during an 𝑖th previous earth-
uake, 𝐱𝑖 = [𝑥1, 𝑥2,… , 𝑥𝑡]𝖳 ∈ R𝑡×1, and the corresponding displacement
ector, 𝐲𝑖 = [𝑦1, 𝑦2,… , 𝑦𝑡]𝖳 ∈ R𝑡×1, where 𝑡 is the number of time steps.

ote that only one ground motion and the corresponding structural d

4 
isplacement record is needed to train and test an individual LSTM
etwork in the SSR net. Generally, the initial format of the data
cquired from sensors may not be adequate for training and testing
n LSTM network, so a few steps are necessary before training or
esting the model. First, to minimize adverse effects caused by scale
nd to easily learn the problem task, it is common to scale the dataset
efore training or testing a model. The dataset used in this study
s transformed by RobustScaler in the Python library ‘scikit-learn’.
nterestingly, it uses the median and the interquartile range instead of
he mean and standard deviation. In this way, it allows an ML model
o be more powerful against outliers than typical scaling methods.
ubsequently, the time series data was segmented into a number of
ixed length vectors. The original dimension of the input and output
ariables, R𝑡×1, should be converted to the proper format, R𝑡′×𝑤, where

is the length of the input sequence in one sample. The number of
amples fed into an LSTM network, 𝑡′, could vary depending on 𝑤
nd the stride size, 𝑠. Thus, the 𝑘th prediction, 𝑦𝑘, can be made based
n the input vector of [𝑥𝑘−𝑤,… , 𝑥𝑘−2, 𝑥𝑘−1]. Finally, the format of the
nput data should be reshaped to a 3-dimensional array for the LSTM
ayers used in the proposed framework. The data preprocessing in the
roposed framework enables a network to take in input sequences with
 uniform length and to be trained efficiently.

.2.2. Individual LSTM networks in SSR net
An LSTM network proposed by Hochreiter and Schmidhuber [48]

s a specialized type of RNN that handles long-term temporal depen-

encies between the input and output variables particularly well. In
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Fig. 2. Network architecture and data flow inside of an LSTM unit.

a standard RNN architecture, it is assumed that the current output
ariable depends on the prior information based on the sequence of
he input variables. Thus, unlike the ANN architecture, the recurrent
eedback loops allow RNNs to maintain prior temporal information and
nalyze the sequential data. However, a standard RNN often encounters
 problem if the first derivative of the loss function decays exponen-
ially, so-called the vanishing gradient problem. In this situation, the
radient of the loss function gets smaller and smaller as it passes
hrough the deeper layers; consequently, the algorithm cannot update
he weight parameters, and the trained model is essentially useless. By
ntroducing the input and forget gates, however, an LSTM layer can
lleviate the vanishing gradient problem and show better performance
n long-term temporal dependencies. A single LSTM unit has four gates
onsisting of a forget gate, 𝑓𝑡, an input gate, 𝑖𝑡, an output gate, 𝑜𝑡, and
n internal memory cell, 𝐶𝑡. They are designed to control how long
nformation will be stored and how much information will be passed
o the next time step. The network architecture of an LSTM unit and
nternal data flow are depicted in Fig. 2. Based on the information from
he current input, 𝑥𝑡, and the previous hidden state, ℎ𝑡−1, 𝑓𝑡 decides
hich information in 𝐶𝑡−1 should be maintained or discarded, as shown

n Eq. (1). Then, 𝑖𝑡 calculates the appropriate amount of the added
nformation, and then, 𝐶𝑡−1 is updated to 𝐶𝑡, as can be seen in Eqs. (2)
hrough (4). Lastly, the current hidden state, ℎ𝑡, is determined based on
qs. (5) and (6). More details of the fundamental LSTM architecture can
e found in the literature [48].

𝑡 = 𝜎
(

𝑤𝑓 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑓
)

(1)

𝑖𝑡 = 𝜎
(

𝑤𝑖 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑖
)

(2)

𝐶̃𝑡 = t anh (𝑤𝑐 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑐
)

(3)

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡 (4)

𝑜𝑡 = 𝜎
(

𝑤𝑜 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑜
)

(5)

ℎ𝑡 = 𝑜𝑡 ⊙ t anh (𝐶𝑡
)

(6)

here 𝑤𝑓 , 𝑤𝑖, 𝑤𝑐 , and 𝑤𝑜 are the weight parameters, 𝑏𝑓 , 𝑏𝑖, 𝑏𝑐 , and 𝑏𝑜
re the bias, 𝑥𝑡 is the current input, 𝜎 (⋅) denotes the sigmoid function,
nd ⊙ means the element-wise multiplication between two vectors.

As can be seen in Fig. 1, the SSR net consists of 𝑛 different LSTM
etworks trained on 𝑛 different historically recorded earthquakes. Each
odel is randomly initialized and trained on a single earthquake event,

ather than all previous earthquakes. In every LSTM network in the SSR
 g

5 
et, the recorded ground motion is used as the input variable and the
orresponding structural displacement record is defined as the response
ariable. The training and test sets are mutually exclusive from each
ther to avoid data leakage problems and to precisely evaluate the
erformance of each model. The first 50% of the recorded earthquake
round motion is used for training, and the test set is set to be the
emaining 50% of the data. During the training process, the Adam
ptimizer is adopted to find the optimal weight parameters and biases
uch that the loss function is minimized. The mean squared error (MSE)
as chosen as the loss function for model training. This is due to

ts effectiveness in measuring the average squared difference between
he predicted and actual values, which can penalize larger errors to a
reater extent than smaller ones. Since the Adam optimizer is a combi-
ation of the gradient descent with momentum and root mean square
ropagation algorithms, it has been widely used to train deep neural
etwork models. The performance of each individual LSTM network
n the SSR net is monitored to avoid the overfitting problem during
he training procedure and evaluated on the test set after training
he model. Three metrics, MSE, root mean square error (RMSE), and
he coefficient of determination (𝑅2) are employed to estimate the
odel performance and errors. The following equations show their
athematical definitions:

MSE = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (7)

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (8)

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2
(9)

where 𝑛 is the number of samples, 𝑦𝑖 is the true response value, 𝑦𝑖 is the
predicted response value, and 𝑦̄ denotes the mean of the actual response
values.

3.2.3. Model architecture
Each individual LSTM model consists of an input layer, two LSTM

layers, one fully connected layer, and an output layer, which were
elected after conducting a sufficient preliminary test. Since the per-

formance of a model is highly dependent on the hyperparameters,
he best combination of hyperparameters should be investigated prior
o training and testing a model. To effectively find the optimal hy-

perparameters to maximize the performance of each trained model,
the Bayesian optimizer [49] has been implemented. According to the
hyperparameter tuning results, the number of neurons in each layer
and the length of the input sequence, 𝑤, can be determined. The
model architecture determined by the extensive hyperparameter tuning
rocess is consistently maintained for the 𝑛 LSTM networks in the
SR net. The model architecture may appear oversimplified to provide
ccurate predictions on an unseen earthquake. Each individual LSTM
etwork, however, is only expected to learn about a single earthquake
vent. The generalized prediction ability to unknown earthquakes will
e achieved by transferring the acquired knowledge across the individ-
al earthquakes. Thus, such a simple model architecture with a few
ayers is enough, and this will be supported by the results presented in
ection 4.

.3. Part 3: Unsupervised nearest neighbor algorithm

The seismic information history database developed in Part 1 and
he SSR net constructed in Part 2 are based on the 𝑛 previously recorded
arthquake events. The generalized prediction performance, however,
s not yet guaranteed because the individual LSTM network in the
SR net is only trained on a single earthquake ground motion and
he corresponding structural response. To ensure the generalization
apabilities of the proposed framework and to address the potential
ap between the training data and unseen data, the aim of Part 3 is to
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identify the most relevant previous earthquake when a new earthquake
occurs. This process bridges the gap between known and unknown
data by transferring knowledge closely aligned with the unseen data.

y employing the unsupervised nearest neighbor (UNN) algorithm, the
framework intelligently identifies the most relevant past earthquake,
enhancing the robustness and adaptability of the predictive model.
Once the most relevant previous earthquake, 𝑖, is chosen through Part 3,
knowledge acquired from the earthquake 𝑖 will be transferred to predict
the structural displacement caused by the new earthquake. If there
are more overlapped characteristics between the previous earthquake
𝑖 and the new earthquake, the effectiveness of the knowledge transfer
strategy proposed in this study will be maximized. The performance of
he proposed procedure will decrease when the previous earthquake
and the new earthquake are less relevant to one other. Thus, the

previous earthquake, 𝑖, should be appropriately chosen from all 𝑛
reviously recorded earthquakes.

To identify the most relevant earthquake, the seismic information
istory database established in Part 1 is employed here. First, simi-
ar to the procedures introduced in Part 1, several important values
re extracted from the new earthquake that are representative of the
ew earthquake (e.g., focal depth, epicentral distance, peak ground
cceleration (PGA), peak velocity, peak displacement, peak structure
cceleration, spectral acceleration (𝑆𝑎)). Subsequently, an ML model
rained on the seismic information history database is employed to
ecide the most relevant previous earthquake to the new one. In
ther words, the seismic information history database established in
art 1 is used as the training set, and a single instance consisting of
everal important values extracted from the new earthquake is used
s the test set. Because there is no response variable quantifying how
imilar or dissimilar earthquakes are, the UNN algorithm is included
n the proposed framework. Based on the information in the seismic
nformation history database, the UNN algorithm identifies the most
elevant previous earthquake in the high-dimensional Euclidean space.
he UNN algorithm can be mathematically represented as:

𝑛𝑛(𝐱) = argmin
𝑖=1,…,𝑛

‖𝐱 − 𝐱𝑖‖𝑝 (10)

here 𝐱𝑖 is the input vector, 𝐱 is the test instance, and ‖⋅‖𝑝 is the 𝑝-norm
of a vector.

Based on Eq. (10), the Euclidean distance (𝑝 = 2) is computed
etween the new earthquake and every other earthquake in the seismic

information database. The pseudocode provided in Algorithm 1 outlines
the steps for intelligently identifying the most relevant previous earth-
quake. The algorithm appropriately selects the most relevant previous
earthquake 𝑖 based on the similarity between the ground motions, and
the LSTM network trained on the earthquake 𝑖 will be used as a source
LSTM network in Part 4.

Algorithm 1 Part 3: Unsupervised nearest neighbor algorithm
1: Input: Seismic information history database, New earthquake, 𝑝
2: Output: Most relevant earthquake index 𝑖
3: Extract features (e.g., focal depth, epicentral distance, PGA, etc.)
4: Initialize minimum distance as infinity
5: for each earthquake 𝑒𝑖 in Seismic information history database do
6: Extract features from 𝑒𝑖
7: Calculate the 𝑝-norm between features of new earthquake and

𝑒𝑖
8: if calculated norm < minimum distance then
9: Update minimum distance
0: Set 𝑖 = 𝑒𝑖
1: end if
2: end for
3: return the index 𝑖 of the most relevant earthquake
6 
3.4. Part 4: Knowledge transfer strategy

The generalized prediction ability is the most critical component of
a trained LSTM network in earthquake engineering because it should
maintain good performance when a new earthquake occurs. One prob-
lem is that the new earthquake will produce new ground motions and
corresponding structural displacements that have never been experi-
enced before. So far, the individual LSTM network in the SSR net
ensures the ability to predict the structural displacement induced by
a single ground motion. However, due to the intrinsic variability of
tectonic activity and the lack of training data, it is still challenging for
a prediction model to learn everything associated with the earthquake
ground motion and the corresponding structural displacements. Thus,
an individual LSTM network in the SSR net may not work well when a
new earthquake occurs. Such a drawback can be resolved by adopting
the knowledge transfer strategy developed in this work.

The purpose of Part 4 is to maintain or increase the performance
of the proposed framework for an unseen earthquake event. Although
no individual LSTM model in the SSR net will be trained on the
unseen earthquake, the proposed framework is expected to accurately
predict the structural displacement record by transferring knowledge
from the most relevant previous earthquake identified in Part 3. TL
wisely utilizes knowledge gained from one domain or task to improve
prediction on another related domain or task, while traditional ML
is isolated to prediction on a specific domain or task. This approach
ensures that the model can generalize well to new earthquakes by
leveraging similarities between previous and new events, even when
they are not identical. Depending on the characteristics of the do-
mains and tasks, TL can be broadly categorized into four techniques:
instance-based transfer, feature-based transfer, relation-based transfer,
and model-based transfer [50]. In this part of the framework, the model
parameter-based transfer strategy has been utilized when transferring
knowledge gained from the most relevant earthquake. Such a procedure
assumes that a new earthquake and the most relevant earthquake
identified in Part 3 have a great deal in common, or at least to some
extent. Therefore, the underlying relationship between the most rele-
vant previous earthquake and the corresponding displacement record
can be a reliable foundation for predicting the structural displacement
when a new earthquake occurs. The knowledge information in the 𝑖th
LSTM network, which is trained on the most relevant earthquake event,
, is utilized to predict the structural displacements induced by a new
arthquake. It should be denoted that only one previous earthquake

has been used to train the 𝑖th LSTM network. Thanks to the knowledge
transfer strategy in the proposed framework, an LSTM model for a
new earthquake can easily build a generalized prediction from the
LSTM network trained on the most relevant previous earthquake. The
transferred LSTM layers are frozen during the remaining procedures
of the proposed framework since the long-term dependencies of two
earthquakes are assumed to be sufficiently correlated with one another.
On the other hand, a fully connected layer is randomly initialized and
placed after the transferred LSTM layers. This strategy enables the
transferred knowledge to be calibrated to the new data and enhance the
predictive accuracy. To train the randomly initialized fully connected
layer, the proposed framework uses a very short initial section of the
acceleration time history caused by a new earthquake. It should be
noted that achieving robust performance from a separate LSTM model
trained solely on the short initial section of acceleration time history is
impossible. By virtue of those transferred layers, a substantial portion of
the parameters in the network does not need to be trained from scratch.
Therefore, the proposed framework can significantly reduce the model
complexity and the number of training samples needed to obtain an

accurate predictive model.
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4. Case studies

The proposed framework’s robustness was verified through three
case studies using real-world earthquake records. This study has uti-
lized the real-world data provided by the Center for Engineering Strong

otion Data (CESMD) [51]. The CESMD is a cooperative center es-
ablished by the US Geological Survey (USGS) and the California Ge-

ological Survey (CGS) to integrate strong earthquake motions from
everal data sources. The CESMD serves as a comprehensive repository
or strong-motion data, including ground acceleration records, struc-
ural response data, and related seismic information. It offers detailed
ecords from a wide range of seismic monitoring networks, covering
arious structures and infrastructures, such as buildings, bridges, and
ree-field sites. For real-world implementations, an existing six-story
uilding, a highway bridge, and a high-rise building were chosen to
valuate the performance of the proposed framework. The acceleration
ime history recorded at the ground level or on the first floor is fed into
n LSTM network, and the trained LSTM network is expected to pre-
isely estimate the dynamic displacements caused by an unseen ground
otion. It should be noted that implementing the entire procedure from

he beginning to the end takes only a few seconds. This is because the
roposed framework is trained on only the one earthquake event that
s identified as the most relevant earthquake to the new event, and the
ntroduction of the knowledge transfer strategy significantly reduces
he model complexity to predict the seismic displacement caused by
n unseen earthquake. For each case study, the hyperparameter tuning
rocess needs to be carried out, and the resulting hyperparameters are
sed as key parameters in the architecture of the LSTM network. The
ataset, code, and in-depth results associated with this study can be
ccessed through the NHERI DesignSafe-CI portal [52].

.1. Case study 1: Six-story building

An existing six-story building in San Bernadino, California, was
sed to investigate the performance of the proposed framework. This
einforced concrete (RC) structure has a typical rectangular plan shape,
nd the RC wall is the primary lateral force-resisting system. To monitor
he structural seismic response, nine accelerometers are located on
he first, third, and top floors in different directions. A more detailed
escription of the structural configuration, sensor locations, and their
rientations is shown in Fig. 3. This existing RC building has been
xposed to several strong ground motions from 1992 to 2021, and the
easured accelerations with the corresponding structural displacement

ecords are available through the CESMD website. In this case, the
Devore’ earthquake was assumed as the new earthquake (the target
arthquake), and the proposed framework is implemented by following
he procedures introduced in Section 3. The first step of the proposed
ramework is to establish the seismic information history database for
his six-story RC building. It has been exposed to 42 strong ground
otions since 1992. Several important values, which are representative

f an earthquake, are extracted from each ground motion. The statistics
f the seismic information history database for the six-story RC building
re listed in Table 2.

The second step of the proposed framework is to establish the SSR
et introduced in Section 3.2. Each LSTM network in the SSR net is
pecialized for an individual earthquake that has been experienced
efore. Prior to training and testing multiple LSTM models, the hyper-
arameter tuning process was implemented. According to the results
rom the hyperparameter tuning procedure, the most stable and highest
erformance can be found when the length of the input sequence, 𝑤 is
0, the number of units in the first LSTM layer is 200, the number of
nits in the second LSTM layer is 100, and the number of units in a
ully connected layer is 30. More details of the hyperparameter tuning
esults can be accessed through the NSF NHERI DesignSafe-CI portal.
ith those chosen hyperparameters, the SSR net consisting of multiple
STM networks is established. The acceleration time history at the first

7 
able 2
tatistics of the seismic information history database for the six stories RC building.
Parameter Unit Average Standard

deviation
1st
quartile

3rd
quartile

Magnitude 4.714 1.122 4.0 5.4
Focal depth k m 10.81 4.84 7.175 14.75
Epicentral distance k m 62.871 67.509 12.425 91.975
Ground PGA g 0.025 0.026 0.008 0.03
Acceleration peak g 0.02 0.019 0.008 0.027
Velocity peak mm∕s 13.874 18.855 3.25 13.2
Displacement peak mm 3.895 12.47 0.013 2.0
𝑆𝑎 at 0.3 s g 0.041 0.044 0.014 0.058
𝑆𝑎 at 1 s g 0.011 0.016 0.001 0.013
𝑆𝑎 at 3 s g 0.002 0.003 0.0 0.002
Structure PGA g 0.073 0.077 0.021 0.097

Table 3
Prediction results for the source earthquake (Chinohills).

Input Output Entire history Peak values

sensor sensor RMSE
[mm]

𝑅2 MRE
[%]

RMSE
[mm]

Pred/True SMAPE
[%]

1 1 0.036 0.995 7.890 0.015 0.977 2.623
4 0.037 0.995 8.164 0.019 1.010 5.349
6 0.031 0.996 6.174 0.036 1.064 6.141
7 0.031 0.996 6.572 0.023 1.033 4.176
9 0.028 0.997 8.394 0.028 0.975 6.758

2 2 0.022 0.994 8.309 0.013 0.971 2.990
3 3 0.034 0.996 5.974 0.015 0.987 1.490

5 0.033 0.996 6.149 0.009 0.994 1.708
8 0.022 0.999 3.511 0.026 0.972 3.449

Table 4
Prediction results for the target earthquake (Devore).

Input Output Entire history Peak values

sensor sensor RMSE
[mm]

𝑅2 MRE
[%]

RMSE
[mm]

Pred/True SMAPE
[%]

1 1 0.033 0.990 8.664 0.022 0.989 1.688
4 0.035 0.990 8.222 0.017 0.996 0.879
6 0.024 0.996 5.245 0.018 0.996 0.579
7 0.050 0.987 7.587 0.042 0.979 2.160
9 0.052 0.987 7.792 0.067 0.982 3.855

2 2 0.011 0.991 13.234 0.008 0.971 3.559
3 3 0.028 0.994 6.774 0.011 1.021 2.218

5 0.035 0.993 6.690 0.029 0.995 0.802
8 0.096 0.991 6.096 0.140 0.984 2.270

floor, which is assumed to be the ground acceleration, was used as
the input for each LSTM network. Nine LSTM networks are developed
or each earthquake since nine sensors are located throughout the
uilding. Thus, each network is expected to understand the dynamic
elationships and accurately predict the structural displacements mea-
ured from an individual sensor. The first 50% of the time histories

of acceleration and displacements were used as the training set, and
the remaining 50% was used as the test set. In Part 3, the most
relevant earthquake to a new earthquake was selected from the seismic
information history database established in the first step. In this case,
the UNN algorithm introduced in Section 3.3 has confirmed that the
Chinohills’ earthquake (the source earthquake) is the most relevant
and similar earthquake to the Devore earthquake. Thus, in Part 4,
nowledge acquired from the Chinohills earthquake is transferred into
 new LSTM network to predict the seismic response caused by the
evore earthquake. By virtue of the transferred knowledge, the number
f parameters that should be trained can be remarkably reduced from
88,641 to 6,061. Furthermore, notably, only 5% of the acceleration
ime history was used to fine-tune the LSTM network with transferred

knowledge, which would be impossible if a conventional LSTM network
was used. The remaining 95% of the time history sequence was used
to evaluate the performance of the proposed framework.
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Fig. 3. Structural configuration and sensor locations in the six stories building [51].
t

Fig. 4. Comparison of the measured and predicted time history at Sensor 7 during the
source earthquake (Chinohills).
8 
Fig. 5. Comparison of the measured and predicted time history at Sensor 7 during the
arget earthquake (Devore).
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Fig. 6. Structural configuration and sensor locations on the highway bridge [51].
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The RMSE and 𝑅2 values were calculated based on the measured
and predicted time histories of displacement at each sensor. To more
comprehensively evaluate the performance of the proposed framework,
peak values in each vibration cycle were extracted from the entire
measured time history of displacement and compared with those values
precited by the proposed framework. When comparing the measured
and predicted responses and peak values, the median relative error
(MRE) and symmetric mean absolute percent error (SMAPE) are addi-
tionally considered. The performance of the LSTM network designed
for the Chinohills earthquake is summarized in Table 3. Since the
LSTM network designed for the Chinohills earthquake showed accurate
predictive performance, the knowledge from this network will be a
valuable resource to predict the displacements caused by the Devore
earthquake. This hypothesis is well demonstrated based on the results
listed in Table 4, which show the performance of the LSTM network
designed for the Devore earthquake. According to the comparison of
the measured and predicted displacement time histories at Sensor 7,
which is depicted in Figs. 4 and 5, the proposed methodology has
shown outstanding performance. It should be noted that Sensor 7 has
the lowest 𝑅2 value. Interestingly, such a remarkable performance can
be achieved with only 5% of the acceleration history along with the
transferred knowledge from the LSTM network trained on the most
relevant earthquake. Because of the transferred knowledge, the model
complexity can be drastically reduced, and the time history of the
displacement can be predicted in just a few seconds.

4.2. Case study 2: Highway bridge

To extend the proposed approach to another type of structure, a
highway bridge has been utilized as the second case study. This bridge
has two prestressed concrete girders, two steel truss spans, and four
concrete box girders. The total length of the bridge is approximately
500 m, and the bridge spans range from 20 m to 93 m. There have
been 15 sensors installed on the bridge and 3 sensors at a free-field
site since 2001. More details regarding the structural configuration,
sensor locations, and their orientations are depicted in Fig. 6. Table 5
shows the statistics of the seismic information history database for the
highway bridge. The database consists of 33 strong ground motions
measured from 2005 to 2021. In this case, the earthquake named
‘Petrolia’ was assumed to be the new earthquake for the sake of eval-
uating this framework, and the proposed methodology is expected to
provide accurate displacement predictions during the new earthquake
with significantly less complex model.
9 
Table 5
Statistics of the seismic information history database for the highway bridge.

Parameter Unit Average Standard
deviation

1st
quartile

3rd
quartile

Magnitude 5.033 0.887 4.3 5.6
Focal depth k m 17.515 7.899 10.0 24.3
Epicentral distance k m 52.436 40.403 30.7 73.6
Ground PGA g 0.040 0.066 0.013 0.034
Acceleration peak g 0.039 0.066 0.013 0.034
Velocity peak mm∕s 22.933 44.764 5.8 20.2
Displacement peak mm 2.333 4.929 0.021 2.0
𝑆𝑎 at 0.3 s g 0.123 0.225 0.029 0.095
𝑆𝑎 at 1 s g 0.014 0.027 0.003 0.011
𝑆𝑎 at 3 s g 0.001 0.003 0.0 0.001
Structure PGA g 0.105 0.137 0.042 0.107

Based on the hyperparameter tuning results, the optimal combina-
tion of hyperparameters has been found in a given search space. The
length of the input sequence is 10, the number of units in the first
LSTM layer is 200, the number of units in the second LSTM layer is
200, and the number of units in a fully connected layer is 10. Using the
unsupervised learning process outlined in Part 3, the earthquake named
‘Ferndale’ was selected as the most relevant earthquake to the new
earthquake. Thus, knowledge acquired from the Ferndale earthquake is
transferred to the LSTM network designed for the Petrolia earthquake.
Similar to the first case, the number of parameters that should be
trained can be drastically reduced from 488,441 to 4,041. In Case Study
2, the acceleration time histories measured at Sensors 1, 2, and 5, which
were used as ground accelerations in their respective directions, were
used as inputs for each LSTM network. Each network was trained to
understand the dynamic relationships between the input ground motion
and the structural response. Since there is no data measured from
Sensor 3, the data measured from Sensor 5 has been utilized to predict
he seismic response and then is compared with the measured data in
he corresponding directions. The predicted displacements based on the
roposed methodology have been compared with the measured data in
orresponding directions, and the results are summarized in Tables 6
nd 7. Table 6 shows the performance of the LSTM model designed for
he Ferndale earthquake, and Table 7 shows the performance on the
etrolia earthquake. The proposed framework has also demonstrated

outstanding performance on the bridge structure, as evident from the
results presented in Tables 6, 7, Figs. 7, and 8. Sensor 11 exhibits
the biggest difference between the measured and predicted values;

2
however, the 𝑅 value on this sensor is still higher than 0.98.
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Table 6
Prediction results for the source earthquake (Ferndale).

Input Output Entire history Peak values

sensor sensor RMSE
[mm]

𝑅2 MRE
[%]

RMSE
[mm]

Pred/True SMAPE
[%]

1 1 0.044 0.999 2.837 0.050 1.029 2.872
6 0.033 0.999 2.816 0.034 0.999 4.461
9 0.048 0.999 2.666 0.052 0.991 5.435

2 2 0.178 0.996 5.453 0.228 0.950 5.741
4 0.037 0.999 1.737 0.026 1.001 1.669
7 0.046 0.999 2.908 0.048 0.997 5.543
10 0.061 0.999 1.782 0.062 0.998 2.693
11 0.026 0.999 1.532 0.025 0.993 2.178
13 0.074 0.999 4.719 0.078 0.982 5.251
14 0.047 0.999 1.688 0.046 1.008 1.661
16 0.038 0.999 1.394 0.042 0.989 1.205
18 0.114 0.998 4.618 0.134 1.010 7.028

5 5 0.077 0.999 4.009 0.101 0.983 3.921
8 0.110 0.998 5.455 0.135 1.037 6.473
12 0.183 0.995 4.873 0.190 1.042 5.175
15 0.097 0.999 4.881 0.113 1.017 7.793
17 0.089 0.999 4.578 0.101 0.976 3.762

Table 7
Prediction results for the target earthquake (Petrolia).

Input Output Entire history Peak values

sensor sensor RMSE
[mm]

𝑅2 MRE
[%]

RMSE
[mm]

Pred/True SMAPE
[%]

1 1 0.057 0.993 4.388 0.020 1.000 2.142
6 0.075 0.987 6.804 0.022 1.016 2.655
9 0.204 0.995 4.667 0.186 1.035 4.384

2 2 0.140 0.991 3.288 0.138 1.001 1.526
4 0.128 0.991 3.684 0.055 1.006 2.452
7 0.154 0.990 3.672 0.150 1.023 6.368
10 0.142 0.997 4.056 0.092 1.007 3.630
11 0.169 0.983 5.446 0.131 0.986 4.231
13 0.130 0.994 5.108 0.083 0.977 4.637
14 0.140 0.996 4.144 0.100 1.006 2.964
16 0.127 0.992 4.058 0.093 1.003 3.901
18 0.206 0.988 6.445 0.114 0.975 4.417

5 5 0.199 0.992 3.177 0.251 0.999 1.448
8 0.193 0.994 4.645 0.151 1.010 1.931
12 0.259 0.988 4.456 0.238 1.016 2.403
15 0.167 0.997 3.579 0.130 0.999 1.526
17 0.213 0.993 3.192 0.250 1.009 3.516

4.3. Case study 3: High-rise building

The third case study investigates a 12-story high-rise building lo-
ated in Ventura, California, to provide sufficient evidence of the
roposed framework’s generalizability and to demonstrate its effec-
iveness for a high-rise building. This rectangular-plan structure is
upported by RC columns and shear walls, with a foundation of 60-foot
C piles. Fifteen sensors installed across four levels provide detailed
esponse data for various seismic events. This study focuses on pre-
icting the structural displacements during earthquakes, leveraging the
roposed framework to demonstrate its effectiveness on a high-rise
uilding. More details regarding the structural configuration, sensor
ocations, and their orientations are depicted in Fig. 9. Table 8 shows
he statistics of the seismic information history database for this build-
ng. The database consists of 24 ground motions measured from 1978
o 2024. In this case, the earthquake named ‘Ojai’ on November 03,
023 was assumed to be the new earthquake for the sake of evaluating
his framework, and the proposed methodology is expected to provide
ccurate displacement predictions during the new earthquake.

Following the proposed framework introduced in Section 3, the
tructural seismic information history database was established, and
he SSR net was composed of multiple LSTM models for this structure.
he optimal combination of hyperparameters was determined through
 rigorous Bayesian optimization tuning process. Specifically, the input
 T

10 
Fig. 7. Comparison of the measured and predicted time history at Sensor 11 during
he source earthquake (Ferndale).

able 8
tatistics of the seismic information history database for the 12-story building.
Parameter Unit Average Standard

deviation
1st
quartile

3rd
quartile

Magnitude 4.613 1.158 3.775 5.125
Focal depth k m 12.18 5.09 9.425 15.975
Epicentral distance k m 67.025 98.084 19.5 64.55
Ground PGA g 0.026 0.032 0.009 0.03
Acceleration peak g 0.026 0.032 0.009 0.031
Velocity peak mm∕s 1.978 2.498 0.3 1.96
Displacement peak mm 0.842 2.125 0.0 0.23
𝑆𝑎 at 0.3 s g 0.046 0.067 0.011 0.052
𝑆𝑎 at 1 s g 0.013 0.017 0.002 0.014
𝑆𝑎 at 3 s g 0.003 0.006 0.0 0.002
Structure PGA g 0.079 0.097 0.025 0.078

sequence was set to 20, and both the first and second LSTM layers have
150 units, followed by a fully connected layer with 20 units. Based on
he seismic information history database, the UNN algorithm identi-
ied the ‘Ojai’ earthquake on August 20, 2023, as the most relevant
revious earthquake. By leveraging the acquired knowledge from the
ost relevant previous earthquake, the proposed framework can reduce

he model complexity and maintain accurate predictive performance.

he results are summarized in Tables 9 and 10. These tables show
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Fig. 8. Comparison of the measured and predicted time history at Sensor 11 during
he target earthquake (Petrolia).

he predictive performance of the entire displacement time history and
eak values. The performance is measured using RMSE, 𝑅2, MRE, and
MAPE. Table 9 shows the performance of the LSTM model trained on
he source earthquake. The results presented in Table 9 indicate the
STM model designed for the source earthquake can be served as a
olid foundation for transferring knowledge to predict the structural
esponse during the target earthquake. According to Table 10, the pro-
osed framework maintains good performance despite the differences
etween two events. Notably, the model used for the target earthquake
as much less complex since the transferred knowledge from the source

arthquake drastically reduced the number of parameters that needed
o be trained. Figs. 10 and 11 demonstrate that the proposed framework
uccessfully leverages the transferred knowledge from the previous
vent.

. Discussion

.1. Impact of data preprocessing methods

To rigorously assess the impact of data preprocessing techniques,
his study investigates their effects on model performance by measuring
he 𝑅2 and RMSE values from 10 repeated trials. These metrics were
 F

11 
Table 9
Prediction results for the source earthquake (Ojai on Aug 20, 2023).

Input Output Entire history Peak values

sensor sensor RMSE
[mm]

𝑅2 MRE
[%]

RMSE
[mm]

Pred/True SMAPE
[%]

13 3 0.010 0.994 9.146 0.013 0.945 5.878
4 0.011 0.994 15.761 0.010 0.999 7.588
5 0.006 0.997 6.979 0.008 0.973 4.116
7 0.003 0.999 4.254 0.004 1.020 1.978
8 0.003 0.998 6.339 0.005 1.024 3.577
10 0.003 0.997 5.866 0.006 1.060 5.747
11 0.003 0.997 10.127 0.004 1.035 3.663
12 0.002 0.998 7.622 0.003 0.965 3.598
13 0.003 0.993 15.111 0.005 0.946 5.603

14 1 0.001 0.999 3.608 0.002 0.980 2.043
14 0.001 0.996 10.208 0.002 0.971 3.535

15 2 0.011 0.996 6.874 0.015 0.938 6.447
6 0.007 0.994 8.137 0.010 0.926 7.650
9 0.002 0.998 3.876 0.002 1.028 2.775
15 0.001 0.997 8.028 0.003 0.991 3.283

Table 10
Prediction results for the target earthquake (Ojai on Nov 03, 2023).

Input Output Entire history Peak values

sensor sensor RMSE
[mm]

𝑅2 MRE
[%]

RMSE
[mm]

Pred/True SMAPE
[%]

13 3 0.059 0.978 9.960 0.073 0.987 4.044
4 0.052 0.988 8.164 0.069 0.965 3.653
5 0.039 0.984 10.889 0.045 0.971 3.117
7 0.031 0.983 12.067 0.024 1.003 1.326
8 0.030 0.981 9.513 0.049 0.962 4.070
10 0.019 0.979 8.700 0.037 0.956 5.672
11 0.021 0.969 14.179 0.035 0.957 4.561
12 0.008 0.989 7.261 0.016 0.994 1.360
13 0.013 0.972 5.420 0.022 1.022 3.862

14 1 0.003 0.996 4.172 0.008 0.976 3.790
14 0.004 0.988 9.054 0.005 1.006 3.556

15 2 0.047 0.982 10.472 0.054 0.951 5.234
6 0.026 0.979 12.585 0.028 0.983 4.535
9 0.014 0.982 7.265 0.019 0.981 4.079
15 0.011 0.972 6.496 0.026 1.016 3.539

evaluated for Sensor 11 in Case Study 2, and three data preprocessing
methods were considered: Robust scaling, Standard scaling, and Min-

ax scaling. The Robust scaling transforms the original data based on
he interquartile range, and the Standard scaling transforms the data to
ave a mean of 0 and a standard deviation of 1. The Minmax scaling

uses the maximum and minimum values of the original data.
Fig. 12 shows the box plots of 𝑅2 and RMSE values from different

data preprocessing methods in 10 repeated trials. According to Fig. 12,
the Robust scaling shows the highest 𝑅2 and the lowest RMSE values,
while the Standard scaling also demonstrates stable performance. In
contrast, the Minmax scaling has a weaker performance, as can be
seen from the box plots of 𝑅2 and RMSE values. In addition, two-
sample 𝑡-tests were conducted to statistically further validate these
observations. The results are summarized in Table 11. According to 𝑡-
statistics and 𝑝-values from the comparisons, the difference between
the Robust scaling and Standard scaling methods is not statistically
significant. However, the Robust vs. Minmax and the Standard vs.
Minmax show significant differences between the methods. Thus, the
Robust and Standard scaling methods provide better performance than
the Minmax scaling method, and no significant difference was found
between the Robust and Standard methods.

5.2. Impact of distance metrics

A further sensitivity analysis was performed on the methods for
calculating norms or distances in the unsupervised learning algorithm.
our different distance metrics were examined: Euclidean, Manhattan,
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Fig. 9. Structural configuration and sensor locations in the 12-story city hall [51].
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Fig. 10. Comparison of the measured and predicted time history at Sensor 4 during
he source earthquake.
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Fig. 11. Comparison of the measured and predicted time history at Sensor 4 during
he target earthquake.
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Fig. 12. Performance comparison of three different data preprocessing method.

Table 11
Summary of two-sample t-test for data preprocessing methods.

Comparison 𝑅2 𝑝-value RMSE 𝑝-value

Robust vs. Standard 0.44937 0.42098
Robust vs. Minmax 0.00006 0.00002
Standard vs. Minmax 0.00070 0.00037

Minkowski, and Chebyshev distances. Euclidean distance, the most
commonly used metric, calculates the straight line distance between
two samples. Manhattan distance, also known as the 𝐿1-norm or city
block distance, sums the absolute differences between the coordinates
of two samples. Minkowski distance, a generalization of both Euclidean
and Manhattan distances, is calculated as the 𝑝th root of the sum of
the absolute differences. Chebyshev distance calculates the maximum
absolute difference between the coordinates of two samples. The results
of the sensitivity analysis on distance metrics indicated that, despite
the differences in these distance metrics, the UNN algorithm consis-
tently selected the same previous earthquake as the most relevant for
predicting the structural response to a new seismic event. This consis-
tency suggests that the choice of distance metric, while mathematically
substantial, may have a limited impact on the proposed framework,
particularly in the case studies presented in this study.

5.3. Impact of the UNN algorithm

To evaluate the similarity between the source and target earth-
uakes used in the case studies, Principal Component Analysis (PCA)
as employed. This will show the effectiveness of the UNN algorithm in

he proposed framework. PCA is a dimensionality reduction technique
13 
Fig. 13. 3D PCA visualization of earthquakes. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

that can transform a high-dimensional dataset into a lower-dimensional
space while maintaining the original information as much as possible.
Thus, the results of PCA provide a visual insight on the similarity
between the source and target earthquakes. Fig. 13 displays the results
of PCA in three-dimensional space to provide a clear visualization of
the relative positions of the source and target earthquakes compared
to other events. The source earthquake is marked in red, the target
earthquake in blue, and all other earthquakes in light blue. The prox-
imity of the red and blue dots indicates the similarity between the
source and target earthquakes. In all three figures, the source and target
earthquakes are closely clustered, and this shows that the proposed
framework can reliably identify the relevant knowledge.
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6. Conclusions

In developing an accurate prediction model for real-time use in large
civil infrastructures, it is crucial to consider the speed of processing
and computational time. By adopting a knowledge transfer strategy
into the proposed framework, this study can minimize the number
of parameters in the network architecture and greatly increase the
model efficiency. Furthermore, the UNN algorithm has been developed
to wisely discover the most helpful knowledge to avoid performance
deterioration due to the simple model architecture. Because of the
knowledge transferred from the most relevant earthquake event, the
proposed framework can maximize an LSTM network’s ability to gener-
alize the seismic response even for new, previously unseen earthquakes.
In accordance with the results, the following conclusions are drawn:

• The proposed framework provides reliable and efficient predic-
tions for the displacement time history caused by unknown earth-
quakes. It takes only a few seconds to conduct the entire proce-
dure, including training.

• Since the proposed framework leverages knowledge acquired
from the most relevant previous event, it is particularly useful
in scenarios where labeled data for new earthquakes is limited or
unavailable, a challenge not extensively addressed by the existing
literature.

• The proposed methodology is flexible to integrate as many avail-
able earthquake records as possible to wisely select the most help-
ful knowledge for a new earthquake. Therefore, it will provide
enormous practicality without rigorous training of a model from
scratch in each instance. As more earthquake records are included
in the seismic information history database, the performance of
the proposed framework will be enhanced.

• This study has significant potential in seismic fragility or relia-
bility assessments for any type of structure. Without performing
nonlinear time history analyses, engineers will be able to effec-
tively estimate the dynamic response of a structure caused by
ground motions. It is also suited for scenarios where rapid seismic
response predictions are critical, such as in emergency response
and for continuous monitoring of critical infrastructure.

Future research should involve conducting in-depth sensitivity anal-
yses, validating the framework under more severe earthquake condi-
tions, and exploring the use of low-quality data to enhance the frame-
work’s robustness and applicability. Additionally, integrating struc-
tural characteristics into the framework, incorporating zero-shot learn-
ing approaches or using cutting-edge models could further expand its
generalizability across a wider range of structures.
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