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Abstract. Culturally responsive computing (CRC) curricula engage learn-
ers in reflections on power and identity as they build technologies. Open-
design tasks, with learner-chosen goals and multiple pathways to achiev-
ing them, are common in CRC and could be enhanced using adaptive
technologies. Current adaptive technologies function best in well-defined
learning trajectories. However, it is unclear how to design these technolo-
gies to respond to individual learners’ ideas in open-design settings. In
this paper, we prototype a learning system that uses multimodal sensing,
log data, and reflective dialogues to build explanatory learner models in
open-design settings. We deploy our system in a 2-week summer camp
with middle school girls and evaluate the system’s effectiveness to under-
stand learner goals and activities. We show the importance of multiple
modalities in making inferences about learner goals and activities.

Keywords: Multimodal Sensing · Open-ended Learning Systems · Cul-
turally Relevant Computing · Goal Modeling.

1 Introduction

Open-ended learning environments (OELEs) offer a technology-enhanced learn-
ing context and scaffolding to aid students in exploring and developing solutions
to real-world, complex problems [1]. We define open-design environments as a
type of OELE where the inherent nature of the students’ task makes the learning
goals ambiguous and ill-defined, giving learners significant freedom to determine
their goals and activities. For instance, in our study learners were tasked with
“building a robot protege.” Some focused on its physical design, while others
programmed its functionality. Even when learners had similar goals, activities
varied: some added sensors before programming the robot, while others used a
mix-and-match method. This flexibility in the goals and activities enables learn-
ers to incorporate their experiences into technology design, making these envi-
ronments ideal for Culturally Responsive Computing (CRC) [6] contexts, which
engage learners in reflections on their design choices and how these choices relate
to their identities and experiences. This reflection helps learners understand the
significance of their goals, application of their learning to broader aspects of life,
and consider issues of power and identity. However, the system must comprehend



2 P. Sharma et al.

learner goals and activities to prompt such reflections in open-design contexts
and aid in effectively guiding learners through the learning process.

Intelligent learning technologies are powerful in learner support in well-defined
trajectories (e.g. problem-solving domains) or open-ended environments with
multiple pathways for constrained end goals (e.g. learning mechanical physics
by interacting with real-world simulations [4]). Previous research has used text,
audio, video, and log data employing methods like computational linguistics [7]
and computer vision [5] to analyze learner engagement and concept development.
However, these analytical techniques are best suited for well-defined domains
and, on their own, cannot predict the diverse learner pathways in open-design
domains. To support learning in these domains, educational systems should en-
able learners to define their learning outcomes, facilitate inquiry learning towards
achieving those outcomes [3], and actively employ scaffolding [2] to guide learn-
ers. Per our understanding, there is a lack of systems that can realize these
open-design contexts, and there is not enough information about what kinds of
sensing modalities are important to build models of learner goals and activities.

In this paper, we present the design of a multimodal sensing system and
apply it to robotics education, with the end goal of building systems to realize
open-design learning. We evaluate the utility of our system to build inferences
about learner goals and activities and present the significance of each modality in
making these inferences, answering 2 research questions: RQ1: How do we elicit
learner goals and activities in an open-design environment? and RQ2: What can
we infer about the relationship between learner goals and activities?

2 System and Study Design

Our system enables learners to design the aesthetics, add physical sensors, pro-
gram different functionalities, and have video or dialogue interactions with their
robot. This multimodal design is driven by 3 interfaces of our system: the Fron-
tend, the Backend, and the Hummingbird robot. The Frontend is the main in-
teraction interface for a learner and captures their block programming and video
recording activities. The Backend executes code requests from the Frontend, logs
every user action, and manages the dialogue system. The dialogue system trig-
gers 3 different interaction scenarios with the learners serving goal-identification
(robot asking learners about their goals), reflection (robot discussing design
choices with learners), and rapport building (robot interacting socially with
learners). The Hummingbird1 robot, an off-the-shelf robotics kit comprising a
micro bit, LEDs, TriLEDs, servo motors, sound, and distance sensors, along with
a custom ESP8266 Arduino board based “Sensor detection circuit” detects when
a sensor/actuator is added or removed. Additionally, we equipped the robot with
a camera to capture video inputs and a speaker for spoken responses.

We evaluate our system within the context of a two-week-long summer camp
with 14 upper-elementary to middle-school (4th to 7th grades) girls, recruited

1 https://www.birdbraintechnologies.com/products/hummingbird-bit-robotics-kit/

https://www.birdbraintechnologies.com/products/hummingbird-bit-robotics-kit/
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through our community partner. The community partner organization runs out-
of-school programming for learners from a historically African American neigh-
borhood in a mid-sized US city. The learners ranged from 8−12 years old (aver-
age = 10.36, SD = 1.2) with 12 identifying as Black and 2 with no answer. 65%
had prior experience with computer science and robotics through “tech clubs”
and participation in prior robotics camps. 3 learners participated in a similarly
themed camp we ran last year. The camp was distributed over 7 days, across 2
weeks, with 3 hours each day, including two 15 minute breaks.

The broader camp included: Culturally Responsive Computing, AI Fairness,
Futuring Day, and Robot Co-Creation. For this paper, we dive into the Robot
Co-Creation sessions, where our system was deployed. The learners were asked
to: “Create a robot protege to be presented on a robot runway”. The
learners completed their robots in 4 one-hour sessions: aesthetic design, brain-
storming and coding, sensor addition, and a final session to complete the design.
Our study underwent ethical evaluation by our IRB, and we obtained parental
consent and learner assent before starting. Moreover, learners’ verbal assent was
re-taken every time they were audio or video recorded during our sessions.

3 Results

We gathered 4 types of data: sensor, logs, dialogues, and video interaction data.
Given our study’s small sample size, we address our research questions with a
descriptive analysis of the learners’ actions in the different data modalities.

3.1 How do we elicit learner goals and activities in an open-design
environment?

Learner Goals. We gathered learner goals via goal-eliciting dialogues, learner-
initiated video recordings, and facilitator-initiated interactions. 8 out of 14 learn-
ers specified their goals with the robot (e.g. “Spin around”), with only 3 learners
expressing goals related to the aesthetic design of their robot (e.g. “Add braids
to my robot”) using the dialogue and video modalities. 13 learners did express
design goals during their interactions with the facilitators but did not explicitly
state those goals during interactions with the system. The first author followed
an inductive coding approach by going through all the identified goals and cat-
egorizing them based on the robot actions they indicate. After this step, we
identified 5 categories representing all the learner goals: Movement (e.g. “move
forward”), Light Up (e.g. “turn on LED lights”), Speech (e.g. “say it’s nice to
meet you”), Physical Features (e.g. “add a tail”), and other actions (e.g. “perform
8 ∗ 5”), with the Movement being the most common goal category across learn-
ers (8 learners had a movement goal). Learners often specified combinations of
goals with most of the goals being atomic, which can be performed with a fixed
number of system actions, (e.g. “Light Red LED”). Some learners also expressed
abstract goals (e.g. making their robot “dance”), which could have different in-
terpretations across different learners. Figure 1 shows all the goal categories.
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Learner Activities. 7 learners interacted with the sensors (Mean = 2.85, SD =
1.06) with the rotation motor being the most used (Mean = 1.42, SD = 0.53),
positively correlating with the high number of movement goals present among
the learners. 12 learners interacted with the blocks (Mean = 4, SD = 2.41).
While movement goals were the most reported, the speech block (to make the
robot speak) was the most used (Mean = 0.91, SD = 0.51). On average, the
longest dialogues between the robot and the learners had 7.5 words (SD = 5.9)
except for 3 learners with a maximum dialogue length of 22 words. The dialogues
captured learners’ intent and were the main interaction source with the robot
for a learner. Some learners talked about their daily activities with their robots
(e.g. “play with my friends and a sleepover”), while others expressed their design
goals (e.g. “turn on your LED lights from your eyes”). 10 learners used the video
modality to describe their goals and activities with the robot (Mean = 5.6, SD
= 4.14). Video interactions also happened during facilitator interviews, with
learners using the video interface to respond. Our system did not automatically
capture aesthetic design activities (actions to complete design goals).

Only 6 learners interacted with all the modalities, with dialogue (12) and
blocks (12) being the most common. All the learners who added code blocks
(12) had dialogues with the robot. All the learners who added sensors (7) also
added code blocks and had dialogues with the robot. One of the learners just
added code blocks and did dialogues with the robot but did not add any sensors.

3.2 What can we infer about the relationship between learner goals
and activities?

Figure 1 shows an aggregated goal tree visualizing the connection between differ-
ent sensed modalities and learner goals built using data collected by our system.
A solid edge (Edge 1 in Fig. 1) positively reinforces the system’s understanding
of the learner goal and the sensed modality it is associated with. A dashed edge
from a sensor/block node to a goal node (Edge 3 in Fig. 1) reflects the scenar-
ios where learner goals are known by the system, however, there are no code
blocks/sensors used by the learner to realize those goals. For example, 3 learners
who depicted “Movement” goals did not add rotation servos to realize those goals.
Another visible scenario is the absence of goals detected by the system but the
additional presence of sensors/code blocks indicating the change in learner goals
as they continue with their design (Edge 2 in Fig. 1). For example, 2 learners
added “Light LED” and “Light Tri-LED” coding blocks but didn’t express the
“Light Up” goals in any of the modalities. The tree also shows no node linked
to the “physical features” goal category, corresponding to aesthetic design goals.
Our system could build this perception automatically during the learning inter-
actions based on the continuous sensing of learner goals and activities. It could
then take action based on what is sensed – for example, triggering reflective dia-
logues when goals and activities are well-understood, help-giving dialogues when
there is a discrepancy between activities and goals, or goal-elicitation dialogues
when the system believes it does not fully understand learner goals.
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Fig. 1. Aggregated Goal Tree for 8 learners. The solid edge is the presence of both nodes
together for a learner. The dashed edge from a goal node to a sensor/block node is
when a sensor/block is present but the goal is not. The dashed edge from a sensor/block
node to a goal node is when a goal is present but the corresponding sensor/block is
not. The weight on an edge is the number of learners this pattern happened for and
the weight of a goal node is the learners that had goals under this category.

4 Discussion & Conclusion

We prototype a multimodal robotics learning system for open-design environ-
ments to capture learner goals and activities. We test our system in a 2 week-
long summer camp and collect learner goal and interaction data within different
modalities. We then show the relationships between the sensed goals and actions.

Despite using video and dialogues, our system only captured goals for 8 learn-
ers. Since the videos were only learner-initiated, contrary to the previous works
where the continuous recording of learner activities is done, we expected fewer
goal-eliciting interactions through them. We had hoped that the dialogue inter-
actions would be the main source for gathering learner goals. However, very few
learners specified their goals in the dialogues. Moreover, our system typically
conducted goal-eliciting dialogues with learners at the start of sessions, when
they might not have planned their robot’s aesthetic design and therefore did not
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report such goals. Hence, we recommend future systems initiate context-based
dialogues to elicit evolving goals throughout the open-design learning process.
Although the aesthetic design was a significant aspect of the learner activities,
it was not explicitly captured by any modality in our system. We anticipated
that learner-initiated video interactions would capture these design activities.
However, learners seldom showed their robots to the camera despite repeated
reminders from the facilitators. This presents the need to build new data collec-
tion methods that do not violate learner privacy by continuously video recording
them, as done in previous studies, and can still efficiently capture the designs.

This paper presents a system for multimodal data collection in open-design
robotics learning indicating the importance of various learner interaction modal-
ities for further exploration and application to different learning contexts. We
acknowledge our small sample size but argue that it is important to do this kind
of work on locally run community programs, rather than solely using large-scale
online data, exploring how these methods can be applied to hyper-specific con-
texts that may be relatively unique. By contributing in this direction, we aim
to enhance the AI-based learning environments that could support co-creation
experiences in open-design learning using multimodal data analytics.
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