Check for
Updates

FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication
for Heterogeneous Graph Neural Networks

Keren Zhou
kzhou6@gmu.edu
George Mason University
Fairfax, VA, USA

Karthik Ganapathi
Subramanian
kganapa@ncsu.edu
North Carolina State University

Po-Hsun Lin
plin8@ncsu.edu
North Carolina State University
Raleigh, NC, USA

Raleigh, NC, USA

Matthias Fey
matthias.fey@tu-dortmund.de
Kumo.Al
Mountain View, CA, USA

ABSTRACT

This paper introduces FASTEN, a cutting-edge library developed to
address the computational challenges inherent in Heterogeneous
Graph Neural Networks (HGNNS). The key focus of FASTEN is the
optimization of segmented matrix multiplication, a critical opera-
tor where existing GNN frameworks and linear algebra libraries
often fall short. FASTEN offers an array of solutions to these chal-
lenges, including a routing table designed for efficient workload
scheduling, adaptive algorithms tailored for handling segments of
different shapes and segmented dimensions, and a performance
model-guided autotuner to select the best configurations. Further-
more, FASTEN implements interfaces to integrate with widely-used
frameworks like PyG, ensuring straightforward adoption in exist-
ing HGNN models with minimal adjustments. We have performed
comprehensive benchmarks on advanced GPU architectures, in-
cluding NVIDIA H100, A100, and RTX4090, to demonstrate that
FASTEN significantly improves both operator-wise and end-to-end
performance across various datasets and HGNNS.

CCS CONCEPTS

« Computing methodologies — Massively parallel algorithms;
Machine learning; « General and reference — Performance.

KEYWORDS

Graph Neural Networks, GPUs, Matrix Multiplication, Batch Pro-
cessing, Performance Modeling

ACM Reference Format:

Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Matthias Fey,
Binqian Yin, and Jiajia Li. 2024. FASTEN: Fast GPU-accelerated Segmented
Matrix Multiplication for Heterogeneous Graph Neural Networks. In Pro-
ceedings of the 38th ACM International Conference on Supercomputing (ICS
'24), June 04-07, 2024, Kyoto, Japan. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3650200.3656593

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICS °24, June 04-07, 2024, Kyoto, Japan

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0610-3/24/06
https://doi.org/10.1145/3650200.3656593

511

Bingian Yin
byin2@gmu.edu
George Mason University
Fairfax, VA, USA

Jiajia Li
jiajiali@ncsu.edu
North Carolina State University
Raleigh, NC, USA

1 INTRODUCTION

Graph Neural Networks (GNNs) [53] have gained increasing preva-
lence in a wide spectrum of applications [13, 17, 29, 52]. GNNs
typically represent entities as nodes in a graph, connected by edges
that represent a relation. Heterogeneous GNNs (HGNNs) [57] are a
natural extension to GNNs, renowned for their ability to model het-
erogeneous and complex modes of relationships between entities
commonly found in real-world data, including social networks [9],
biological networks [3], molecular graphs [54], source code [1], and
knowledge graphs [33]. For example, in academic networks, rela-
tionships such as “Teacher” entities mentoring “Student” entities,
with both contributing to publications at “Conference” entities, are
modeled.

The growing use of GNNs has catalyzed the development of open
source machine learning frameworks like DGL [47] and PyG [10].
These frameworks are designed to facilitate the development of
advanced models and enhance the efficiency of processing large
datasets. They often integrate hardware vendor-provided libraries,
such as cuBLAS [36], CUTLASS [38], and cuSPARSE [37], to take
advantage of the high bandwidth and parallelism of GPUs for ac-
celeration. However, recent studies [16, 23, 55] suggest that the
computational power of GPUs is not yet fully exploited in GNNZ.
This challenge is more pronounced in HGNN computations, where
complexity and heterogeneity arise from assigning unique weights
to various types of relationships.

Among heterogeneous operations, segmented matrix multiplica-
tion (matmul) is particularly time-intensive during HGNN training
and inference. Segmented matmul involves handling a batch of
input matrices of different sizes (Z;), each paired with a distinct
weight matrix (‘W;) that represents a type in HGNNSs, and comput-
ing I; X ‘W; for each pair. Existing dense linear algebra libraries,
such as cuBLAS [36], do not provide specific routines for scenarios
involving variable input dimensions. Consequently, deep learning
frameworks often launch dense matrix multiplication routines for
each segment on the host and execute them on the GPU in sequence.
This approach, however, incurs high kernel launch overhead and
redundant memory access costs. CUTLASS provides a generalized
grouped matmul method [39], but this method is not optimized
for segmented scenarios where only one dimension varies and all
input matrices are allocated from the same source, causing issues

ICS 24, June 04-07, 2024, Kyoto, Japan

Table 1: The FLOP Utilization (TF32) of CUTLASS grouped
matmul for various datasets on a NVIDIA A100 80GB GPU.

AIFB AM BGS MUTAG
Feature size =32 145% 2.32% 2.26% 1.95%
Feature size = 64 4.68% 7.49% 7.14% 6.22%

such as extra overhead in indexing matrices and workload imbal-
ance across different Cooperative Thread Arrays (CTAs). As shown
in Table 1, the highest FLOPS utilization achieved by CUTLASS’s
grouped matmul kernel falls below 7.49% in tests conducted on
graph datasets.

While a line of research focuses on optimizing HGNN perfor-
mance, few studies have delved into the sophisticated optimiza-
tion of computations in GPU kernels. Most of research has instead
concentrated on high-level scheduling mechanisms [34], GPU ker-
nel fusion [16, 55], and graph Intermediate Representation (IR)
designs [51, 55, 56]. In this paper, we demonstrate that optimal
performance of segmented matmul on GPUs requires very careful
kernel design, with a focus on fully utilizing GPU resources by
exploring factors such as matrix locality, segment shapes, workload
scheduling among CTAs, and various GPU architectural features.

To address these issues, we introduce FASTEN, a comprehensive
library featuring efficient algorithms specifically designed for seg-
mented matmul in HGNNs. FASTEN achieves high performance
across various NVIDIA GPU architectures and makes the following
contributions:

o Itincludes a routing table that efficiently guides the selection
of segments to be processed by each CTA on the GPU.

o It features adaptive algorithms, capable of efficiently han-
dling segments of varying shapes and different segmented
dimensions.

e It incorporates a performance model guided tuning frame-
work, which fine-tunes a wide range of parameters, from
data structures and algorithms to resource usage, at a mod-
erate cost.

o It provides interfaces that adapt data structures and modules
for seamless integration with PyG.

To demonstrate the effectiveness of FASTEN!, we conducted
comparative analyses with a vendor-provided library (i.e., CUT-
LASS [38]), and a compiler-based optimization framework (i.e.,

Graphiler [55]). We evaluated widely used HGNNs, including HGT [20],

RGCN [41], and RGAT [7]. Our experiments, performed on NVIDIA
A100, RTX4090, and GH200 GPUs, have shown up to a 117.54x
speedup, with an average speedup of 13.65X and 4.72X in operator-
wise benchmarks compared to CUTLASS and cuBLAS, respectively.
Furthermore, HGNNs utilizing FASTEN demonstrated an average
of 1.86x and 4.02x end-to-end speedups relative to vanilla PyG
models and those compiled with Graphiler, respectively.

2 BACKGROUND

In our model, we consider a graph G = (V,E, 7), with V as the
set of nodes, E as the edges connecting them, and 7 as the types

10ur code is available at https://github.com/Deep- Learning-Profiling-Tools/fasten

512

Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Matthias Fey, Bingian Yin, and Jiajia Li

associated with nodes and edges. Each node is associated with a
unique feature vector I, € RK, residing in a K-dimensional space.
GNNs adopt the Message Passing [14] mechanism to propagate
information from a source node to its neighbors. This mechanism
divides the computation into three individual phases: message, ag-
gregate, and update. Consider a GNN model with N modules linked
in sequence; the output of the n-th module can be represented as

]—Ur;+1 =update (“99r59“teuj-eneighbors(z}i) (message (Iz',IJ,IZ'}l))) (1)

The message phase applies custom functions to the features of v; and
v; if there is an edge connecting them. Then, we aggregate features
from the neighbors of v; together with a reduction function (e.g.,
sum). Finally, the update function updates the feature vector of v;
and uses it as input for the next module.

HGNN:Ss define custom message functions that apply computa-
tions to nodes based on their relationships with neighbors. For
example, in RGCN [7], a linear transformation is applied to each
neighbor’s feature vector I; € RK and the weight of the rela-
tionship Wy o, € REXQ, where Ty;,0; denotes the type of relation
between v; and v, and Q denotes the number of features of each
node used in the subsequent GNN module. The transformation can
be represented as shown in Equation 2.

message (Igj,)= Igj w7 ()

i Tvi,vj

If we process all nodes in a graph in a batch, we can compute mes-
sages for all relations 7~ as shown in Equation 3, where I! € RITIXK
and W? € RKXQ, Here, message(E) represents the batched compu-
tation of messages for all edges in E, with each edge belonging to a
typer € 7.

message(E) = I""*W™", for r in 7. (3)

Equation 3 illustrates a segmented matmul operation, where a
single dimension (i.e., 7) in the input and weight matrices is
segmented to form segment pairs, with each pair performing
a dense matmul. In addition to the forward phase, it is worth not-
ing that the backward phase of the message function also performs
segmented matmul. Let us denote dI”*! € RI7IXQ as the gradient of
the output of the n-th module. The gradients of the input features
and weights can be represented by Equations 4 and 5, respectively.

art = dI?Jrl (WT")T, fortin 7. 4)

dW! = (IMTd1™!, for rin 7. (5)

Similar to RGCN, other HGNNSs, such as HGT [20] and RGAT [7],
also incorporate segmented matmul computations. HGT and RGAT
both apply segmented matmul for the “query” and “key” matrices.
Additionally, HGT performs segmented matmul to compute the
mutual attention between the features of the source and target
nodes.

Fig. 1 illustrates the ratio of time consumed by segmented mat-
mul computations during training across various HGNNs on differ-
ent NVIDIA GPUs. It shows that segmented matmul is one of the
most time-consuming processes that needs optimization.

FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication for Heterogeneous Graph Neural Networks

100%

s 1 GH200
S 80% 1 A100
= = RTX4090
o
g 60%
£
©
=
> 40%
[0
c
QJ
£ 20%
o
L)
"

0%

RGCN RGAT HGT

Figure 1: Ratio of time spent on segmented matmul-related
computations in training various HGNNs. RGCN and RGAT
were trained using the AM dataset [41], while HGT was
trained using the Freebase dataset [6].

3 EXISTING WORK

We describe several common methods for computing Equation 3
and discuss their shortcomings, which motivates the design of
algorithms in FASTEN.

Loop over matmuls. [44] This approach involves sequentially
launching dense GPU matmul kernels from the host CPU for each
relation type (e.g., I’W?), utilizing vendor-optimized libraries like
cuBLAS for each kernel. The method becomes increasingly costly
with a growing number of relations in 77, due to the kernel launch-
ing overhead. Moreover, on advanced GPU architectures, such as
the NVIDIA H100 with more than a hundred streaming proces-
sors, significant load imbalance issues may arise, particularly for
relations with a small number of nodes or edges.

Batched matmul. [43] An alternative to the loop over matmuls
approach is to use a single batched matmul kernel, which requires
that all input matrices have the same shape. One common strategy
to adapt batched matmul for segmentation involves broadcasting
each weight matrix according to the number of instances in the
input. This changes the number of weight matrices from |7| to
>, |7| for all r € 7, ensuring that each input instance is associated
with a replicated weight matrix from the original. Although this
approach could eliminate the kernel launch overhead using a single
kernel, it significantly increases the memory footprint and the number
of CTAs, leading to redundant memory access and CTA scheduling
overhead.

Grouped matmul. [39] CUTLASS’s grouped matmul ker-
nel facilitates batched matrix multiplications by taking arrays
of input and weight matrices, each potentially from differ-
ent sources and with varied dimensions, and performing a
dense matmul operation between each paired matrix inde-
pendently. As shown in Fig. 2, this approach employs a scheduling
strategy that allocates the computation of one or more tiles, each of
equal size, of the resulting matrix to each CTA. Adapting grouped
matmul for segmented matmul in HGNNSs, however, encounters
several major issues, leading to inefficiencies in memory access,
scheduling, and workload balance. 1) Indirect memory access. In
grouped matmul, input matrices of varying sizes may originate
from different allocations, thus it requires accessing arrays of point-
ers to input, weight, and output matrices, as well as the dimen-
sions and strides of them, before loading matrix data. In contrast,
segmented matmul involves input matrices sourced from a single

513

ICS 24, June 04-07, 2024, Kyoto, Japan

CTAO | CTA1 CTA4 | CTAS | CTAO CTA4 | CTAS
CTA2 | CTA3 CTA1 | CTA2 | CTA3 CTAO | CTAL
CTA2 | CTA3

LDA1,LDB1,LDO1)
Tile Index %)
Strides

Pointers

1zes

(A1,B1,01
(M1,N1,K1)

Figure 2: Grouped matmul’s scheduling when handling three
output matrices. CTA2 is responsible for a tile of O; = A;By,
where A; € RMiXKi apnd B; € RKi*Ni_ In order to load the
matrix data, CTA2 must read its relative tile index within
this group, as well as the strides, pointers, and sizes of the
matrices being processed.

allocation, where each matrix differs from the others in at most
one dimension. 2) Scheduling. The round-robin scheduling mecha-
nism in the grouped matmul of CTAs does not take data locality
into account, particularly when the feature size is small, as further
elaborated in Section 5.2. 3) Workload imbalance. The grouped mat-
mul implementation partitions workload only based on the output
tile sizes, but overlooks the tile sizes of input and weight matrices
assigned to each CTA. As a result, significant workload imbalances
may exist when the accumulation dimension is different among
input matrices, as elaborated in Section 5.3.

These insights motivate our approach to segmented matmul,
which outperforms the aforementioned methods with highly opti-
mized strategies that minimize memory access overhead and en-
hance workload balance.

4 OUR APPROACH

Segmented matmul differs from grouped matmul in its approach
to index matrices. Unlike grouped matmul, which requires a sepa-
rate pointer for each matrix, segmented matmul uses only a single
pointer for each type of matrix—input, weight, and output. This is
because each matrix type is allocated in contiguous memory space
from the same original source, allowing for simplified pointer man-
agement and accesses. Additionally, in segmented matmul, there is
no need to create size arrays for each matrix, as matrices belonging
to the same type have at most one dimension that varies in size;
that dimension with variable sizes is the one to be divided. For
example, in Equation 3, the dimensions K and Q are fixed, and the
workload can be divided along with the 7~ dimension.

The differences between segmented matmul and grouped mat-
mul motivate the design of a Routing Table to assign workloads
among CTAs. Fig. 3 demonstrates how FASTEN’s basic segmented
matmul algorithm operates, with K serving as the accumulation
dimension. We divide the 7~ dimension using a TILE_7~ parameter,
ensuring that each CTA is responsible for computing a [TILE_7,
TILE_Q] tile in the output matrix. The results of this division are
stored in the routing table. Each row in the table contains three en-
tries: the first entry indicates the type of the corresponding weight
matrix (i.e., Wr), while the second and third entries specify the start

ICS 24, June 04-07, 2024, Kyoto, Japan

Q
Routing Table :‘
Type Start End %
cTAO [0 0 10 | | |
ctA2_1 | 10 | w2 |7 | frrie g
CTA’7 1 42 70 —
/ K Weight
{ ILE_
\\ '_\
A L ‘
|
H
=
input Output

Figure 3: Segmented matrix multiplication algorithm and a
routing table, where K is the accumulation dimension, }’ |7]| =
70,and TILE_7 = 32. Distinct types are visually differentiated
by colors: green represents type 0, and red represents type 1.

and end offsets for the 7~ dimension, respectively. Initially, each
CTA retrieves its starting and ending offsets for the 7~ dimension by
accessing the routing table using its CTA ID. These offsets enable
the CTA to calculate the addresses of the input and output matrices.
Similarly, the CTA calculates the addresses of the weight matrix
using the type obtained from the same row in the routing table.
Subsequently, the CTA loops through tiles of the input and weight
matrices along the accumulation dimension. In each iteration, it
performs a dot operation and accumulates the results in an output
tile that is eventually stored back in global memory.

Algorithm 1 further presents the major steps of segmented mat-
mul with Multi-stage Buffering and Tensor Core support.

Algorithm 1 Basic Segmented Matmul Algorithm.

Input: ctalD, routingTable, inputPtr, weightPtr, outputPtr
1 row < GETRow(ctalD)
type, start, end < row[0], row[1], row[2]
inputAddrs «— GETADDRs(inputPtr, routingTable, start, end)
weightAddrs <= GETADDRs(weightPtr, routingTable, type, type + 1)
outputAddrs «— GETADDRs(outputPtr, routingTable, start, end)
outputTile «— ZEros(end - start, TILE_Q)
inputTiles «— ArLocaTi(N, TILE_7, TILE_K)
8 weightTiles < ALLocATE(N, TILE_K, TILE_Q)
9 for i = 0 to Nytages — 2 do
10 L inputTile[i] « AsyNcLoaD(inputAddrs, i)
11 weightTile[i] «— AsyncLoap(weightAddrs, i)
fori=0toK/TILE K-1do
tileldx « i % (K / TILE_K)
AsyncWarr(tileldx)
15 A « Convert(inputTile[tileIdx])
B « ConvEerT(weightTile[tileldx])
outputTile < outputTile + TENSORDOT(A, B)
nextldx < i + Nstages - 1
nextTileldx < nextldx % (K / TILE_K)
inputTile[nextTileldx] «— AsyNcLoaD(inputAddrs, nextldx)
weightTile[nextTileldx] <~ AsyNcLoap(weightAddrs, nextldx)
C « ConverT(outputTile)
23 Store(outputAddrs, C)

[S IS

N o

> Prefetch tiles

> Loop over tiles

> Shared to registers
> Shared to registers

> Registers to registers

Multi-stage Buffering. Using single tiles in shared memory to
store input or weight data may not always be efficient, as it may
not fully overlap the computation with the memory accesses [21].
To overcome this limitation, we have implemented a multi-stage
buffering technique that allows for fetching multiple tiles while
performing computation. As indicated in Line 7 and Line 8, we
allocate stages buffers to create a pipeline that interlaces compute

514

Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Matthias Fey, Bingian Yin, and Jiajia Li

and memory accesses, where stages will be adjusted according to
resource limitation.

Moreover, to optimize register usage, we employ asynchronous
memory load instructions (cp. async [35]) on NVIDIA GPUs, which
directly transfer data from global memory to shared memory, by-
passing both the L1 cache and registers. Additionally, we use a 2D
address swizzling technique [4] to prevent bank conflicts in shared
memory. Before the loop begins, we start Nstages — 1 asynchronous
copy transactions. Then, before the computation in each iteration,
we ensure that only necessary asynchronous transactions are com-
pleted, as shown in line 14. We also carefully mask out-of-bound
memory accesses within the loop to prevent any unintended side
effects.

Tensor Core. FASTEN leverages tensor core instructions to achieve
high compute throughput for TF32 and FP16 precisions. Unlike con-
ventional CUDA cores, utilizing tensor cores requires specific data
layouts [35]. This requirement means that each thread must hold
values at specific coordinates to produce corresponding results.
Therefore, the input operands are converted before applying each
tensor core dot operation, as shown in Line 15 and Line 16. Since
the output of mma and wgmma instructions also has a specific layout,
a conversion of the output tile (Line 23) is necessary before storing
it in global memory.

5 OPTIMIZATIONS

Though the basic segmented matmul algorithm (Algorithm 1) offers
a simple version that simplifies memory access and gains higher
performance (see Fig. 13) compared to grouped matmul, it lacks
efficiency in several scenarios. To address this issue, this section
presents several adaptive algorithms tailored to various shapes
and accumulation dimensions, including dynamic tiling for small
matrices, register blocking for the small accumulation dimension,
and 3D parallelization for the dynamic accumulation dimension.

5.1 Dynamic Tiling

In real datasets, we observed that each relation type might have
a varying number of corresponding edges and show a long-tail
phenomenon [5] that a large portion of the types only have a small
number of edges. Fig. 4 illustrates the distribution of the number of
edges for each type of the AM dataset (details described in Table 3).
It is evident that many relations have fewer than 512 edges. In
such a scenario, if a large tile size (e.g., 512) is employed, many
CTAs end up processing fewer than 512 edges. This leads to a waste
of computational resources, as the CTAs are forced to perform
calculations on zeros that have been padded to these oversized
tiles. This inefficiency highlights the need for a more dynamic
approach [28] to tile size allocation.

To address this problem, we introduce the concepts of virtual tile
and physical tile. The physical tile refers to the maximum amount of
shared memory used by the kernel, which must be a static number
determined before a kernel launch. The virtual tile, on the other
hand, refers to the actual tile size used by a specific block. Rather
than statically choose the tile sizes (Lines 7 and 8 in Algorithm 1),
we dynamically decide them for each CTA . Based on the num-
ber of edges (i.e., end — start), we allocate only a portion of the
original shared memory. Besides, since tensor core instructions

FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication for Heterogeneous Graph Neural Networks

35] 7
30
325
C
20
15 7|

“10

5 hr-! m

LhnL n ma

0 1000 2000 3000 4000
#Edges of each type

Figure 4: The distribution of edge counts per relation type
in the AM dataset, with each histogram bin representing an
edge count interval of 128.

Q Q
L Memory Blocked on registers| [[ILE_
e after the first
Registers iteration
Weight Weight
K K
TILE_K TILE_K
I 1 l =
CTA1 CTAL
CTA2
CTA3
CTAY
input Output input Output
Memory Memory
-> -
Registers Registers

(a) Without register blocking. (b) With register blocking.
Figure 5: An example of register blocking where CTA1 will
process four tiles instead of one and block the weight tile on
registers to reduce memory transactions.

(e.g., mma.m16n16k8, mma.m16n8k8) require specific input operand
shapes, we round up the actual tile size to the nearest multiple of
16 in our code and pad any out-of-bound elements with zeros.

However, dynamic tiling can reduce the efficiency of the in-
struction cache and introduce branch instructions. To mitigate this
overhead, we calculate a Utilization Factor as shown in Equation 6,
which represents the ratio between the actual amount of computa-
tion and the theoretical amount of computation. Utilization factor
is calculated and associated with a routing table prior to segmented
matmul. Dynamic tiling is enabled only when the utilization factor
falls below a predefined threshold (e.g., 0.5).

Yirer 7]

Teer TiE | X TLET

(6)

Utilization Factor =

5.2 Register Blocking

As previously mentioned, the dimensionality of features in HGNNs
typically falls within a modest range, such as 16 to 128. When K is
the accumulation dimension and Tilex = K, each CTA processes
only a single tile of the input and weight matrices. Furthermore,
subsequent tiles of the input matrix, when belonging to the same
type, may share the same weight tile. This access pattern, as shown
in Fig. 5a, can lead to inefficiencies for two reasons. First, redundant

515

ICS 24, June 04-07, 2024, Kyoto, Japan

Segmented Matmul Kernel

: g . .
T 7] !
CTAB | CTAL ‘» cas cTas| @ |cTas) cTao
/77777 I RN VIV 11V A WIryini7ss Lldua, Ll
CTA2! CTA3 cTA6 ! CTA7|* ™ cta10! cTALY
Accumulate Kernel 1)
CTAO' CTA1

CTA2' CTA3

Figure 6: Two 3D parallelization strategies are employed to
accelerate segmented matmul when the accumulation di-
mension varies among input and weight matrices. Option (D
is utilized when determinism is not required. On the other
hand, option (2) is employed when determinism is necessary,
involving the use of intermediate memory.

memory instructions may be issued by multiple CTAs to access
the same weight tile. Second, each CTA processes only a small tile,
which can increase the overhead in CTA scheduling, particularly
when processing a large number of edges.

To mitigate these issues, we adopt a persistent processing method [18],

which tasks a single CTA with the sequential handling of multi-
ple tiles, as shown in Fig. 5. This method incorporates a loop that
allows a CTA to iterate over several input tiles assigned to it. In
each iteration, only the input tiles are loaded using the multistage
buffer approach described in Algorithm 1. In contrast, the weight
tile is loaded into registers just once during the initial iteration and
is subsequently reused for all dot operations. The results are stored
in global memory at the end of each iteration. With this strategy,
we not only reduce the number of memory transactions, but also
decrease the CTA scheduling overhead.

5.3 3D Parallelization

In Equations 3 and 4, we use static accumulation dimensions K
and Q correspondingly, which are known when an HGNN model
is initialized. In comparison, Equation 5 uses a dynamic accumula-
tion dimension, 7, to calculate the gradients of the weight matrix.
This variability poses a challenge, as the standard grouped matmul
scheduling, depicted in Fig. 2, does not account for the fluctuating
computational demands associated with different |z| sizes. However,
as illustrated in Fig. 4, the disparity in the number of edges of each
edge type in real datasets can lead to significant computational
inefficiencies.

To overcome this challenge, we devised a novel 3D parallelization
algorithm that extends parallelization to include the accumulation
dimension in Equation 5. Unlike the standard split-k matmul [36],
which only applies to dense matmul, our approach utilizes the
routing table to record the corresponding start and end offsets for
each CTA, thus balancing workloads among a batch of matmuls of

ICS 24, June 04-07, 2024, Kyoto, Japan

Type Start End Next Type Start End Next Type Start End Next

[) 10 | NULL 0 0 10 0) 10

1 [10 42 — 1] 10 74| NULL 1 [10 74 | NULL
1w [[] & 2 [74 | 78 « = 3 [78 | 206 Nuz
2 [74 78 | NULL : 3 [78 | 206 [NULL . 2 [7 78

3 78 110 — Grouping m 206 210 7= Reordering m ‘ 506 10 —
3 110 | 142 -]

3 [[174 |]

3 [170 | 206 | o

4 [206 [210 [NuLL

Figure 7: An example of using tile grouping and reordering
to reduce the memory consumption and allow for simple
indexing,.

different sizes along the accumulation dimension. FASTEN imple-
ments two versions of the 3D parallelization algorithm: the non-
deterministic and the deterministic versions. The non-deterministic
version launches a single segmented matmul kernel. If multiple
CTAs split a matrix on the accumulation dimension, they collabo-
rate on a single final tile. In this case, we use atomicAdd instructions
to resolve conflicts when storing results in global memory. For ex-
ample, Fig. 6 shows that CTA4 and CTA8 collaborate on a single
final tile. Otherwise, if a single CTA is responsible for the final tile,
such as CTAO in Fig. 6, we use store instead of atomicAdd for
better throughput.

When determinism is paramount, particularly in model training,
FASTEN implements a deterministic version that adopts a dual-
kernel strategy. The first kernel mirrors the computation of the non-
deterministic version but substitutes atomic operations with direct
store instructions. If a single CTA suffices for an output tile, the
result is written directly to the final buffer; otherwise, intermediate
output tiles (e.g., CTA4 and CTAS in Fig. 6) go to an intermediate
buffer. The second kernel launches with fewer CTAs to accumulate
these intermediate results in the final buffer, with one CTA per final
output tile to ensure determinism.

Our 3D parallelization algorithm adeptly handles workload vari-
ations among CTAs due to the dynamic accumulation dimension. In
practice, the deterministic version exhibits performance similar to
that of its non-deterministic counterpart, making it a practical solu-
tion for ensuring computational precision when there is sufficient
GPU memory for the intermediate buffer.

5.4 Tile Grouping and Reordering

Both the register blocking and the 3D parallelization variants re-
quire that each CTA persistently processes multiple tiles. We define
a block as the collection of all tiles processed by a single CTA, with
the maximum being Nyjocks tiles per block. This section outlines
our design that supports this mechanism and improves workload
balance.

A straightforward method to allow each CTA to process multiple
blocks is to replicate the routing table Npjocks times, allowing us to
locate the subsequent tile for each CTA. This technique is similar
to the scheduling policy used in CUTLASS. However, replicating
the routing table not only increases memory usage, but also adds
overhead from accessing additional rows in the routing table. In-
stead, we developed the grouping method to address the problem.
As demonstrated in Fig. 7, we initially group neighboring tiles of
size TILE_7 into a single large tile, adjusting the start and end
addresses accordingly, with a maximum grouping of Npjocks tiles.
It is important to recognize that small tiles, defined as those with

516

Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Matthias Fey, Bingian Yin, and Jiajia Li

a size less than TILE_7, are not combined into large tiles. If we
assign individual CTAs to handle these small tiles, imbalance issues
can arise, particularly when the utilization factor (Equation 6) is
low. Therefore, we extend the routing table with a next field. A
NULL value in the next field indicates a large tile. On the other
hand, we link small tiles, whose cumulative edge count is less than
TILE_7 X Nplocks, into a single small block by setting the proper
indexing in the next field.

To streamline the process of identifying the starting tile of a
block for each CTA, we utilize a straightforward indexing function,
such as dividing the CTA ID by the number of tiles per row. How-
ever, this indexing mechanism is incompatible with a routing table
after grouping, which requires that CTAs handling small blocks be
directed to the start tile in the next field chain. To resolve this issue,
a reordering approach for tiles within the routing table is essential.
We position the larger tiles and the initial small tiles of each block
at the forefront of the routing table. This ensures initial access to
these tiles. Subsequently, we update the next fields in tiles of the
same block to reflect this new arrangement. In addition, small tiles
within the same group are placed close to each other to enhance
memory efficiency.

In summary, the combination of tile grouping and reordering
achieves a balanced assignment of workload through the routing
table and makes it compatible with efficient indexing functions.

6 PERFORMANCE MODEL GUIDED TUNING

In this section, we a performance-model guided approach to opti-
mize segmented matmul performance across various architectures
and matrix shapes. Our proposed models are coarse-grained, pri-
marily aimed at correlating time with tuning knobs such as tile
sizes, rather than precisely estimating running time.

6.1 Performance Modeling

Following previous studies [21, 31] on modeling dense matmul
performance, we model segmented matmul’s parallelism and de-
compose the time spent in each CTA into different phases. Initially,
we use Equation 7 to estimate the total time:

Timegor,] = Nwaves X average(Timewave) (7)

In this model, a “wave” is defined as a group of CTAs running
concurrently on the GPU. We introduce both the inter-wave and
intra-wave performance models.

Inter-wave Modeling. The total number of waves, Nyaves, is cal-
culated as follows:

Nivaves = Npartial_waves + Nfull_waves ®)

Here, Nyaves is the sum of partial and full waves. Partial waves are

characterized by underutilized Streaming Multiprocessors (SMs),

unlike full waves, where SMs are fully utilized. Typically, in seg-

mented matmul scenarios, only the final wave is a partial wave.
We define the ideal number of waves as:

ideal __ Nctas
WAV T Ocecupancycras

Iz| Q K
B Zeer Mg 1 X [mEo 1 X Tmex |

Occupancycras

FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication for Heterogeneous Graph Neural Networks

Here Occupancycras refers to the maximum number of CTAs
that run concurrently on an SM. Consequently, we can define Par-
allel Efficiency as the ratio between the number of ideal waves and
the number of actual waves:

ideal

‘waves
Ef fparallel = Novaves (10)

Intra-wave Modeling. To estimate the time within each wave, we
differentiate between large and small block processing times. CTAs
dealing with large blocks access the routing table once, whereas
CTAs dealing with small blocks do so Npjocks times. The ratio of
large blocks, R, can be determined based on 7, Nyjocks, and TILE_T.
The wave time is then calculated as:

Timewave = R x Time 8 4 (1 - R) x Timedmall (1)

The respective times for large and small blocks are:

large

Timeyaye = Timejpdexing + Nblock X Timeoop (12)
Time\sv?‘%lc} = Nplock X (Timeindexing + Timeloop) (13)

Timeoop is the duration spent in the compute loop, as demonstrated
in Algorithm 1 at Line 12. The detailed Timejndexing is given by:

routing_table
L2

routing_table

+(1 - Hit,

Timeindexing =Nblock X (Hit X Latencyr,

) X Latencypram) (14)

routing_table

We assume an increase in Hit with a reduction in the

size of the routing table. Furthermore, Timejoop is decomposed into
various components:

TimeloOP = Timecomp + Timey,jt + Timesync + Timestore (15)
Timecomp relates to the duration of dot operations:

FLOPSjle X Niters X Occupancyctas
FLOPSg

(16)

Timecomp =

Timeyit represents the waiting period required for the dot operands
to be ready, while Timegyn. represents the time spending on syn-
chronizing threads to avoid shared memory data race.

This waiting period is reduced as Nstages or Occupancycta in-
crease, helping to hide latency.

Timey,it = max(0, Timejgag — Timecomp) (17)

Suppose most of the L1 cache is reserved for shared memory, we
load data either from the L2 cache or DRAM at each iteration with a
bandwidth of BWL 2 and BWprawm, respectively. Then we can define
Timeyyaq as the time spent loading tiles for Njtey iterations.
Sizeyjle X Niters X Occupancycras
Hitlle s BWi 5 + (1 - Hit!le) x BWphram

Timejg,q = (18)
Timestore is triggered once in the 3D parallelization and basic al-
gorithms, but multiple times in the register blocking algorithm.
Timesync is the time spent synchronizing all threads within each
CTA, which varies based on the number of warps per CTA. Based
on the decomposition of Timej,,,, we can define Ef feomp as the
compute time relative to the load time and other durations:

Timecomp

Ef fcomp = (19)

Timejoad + Timesyne + Timeindexing + Timestore

517

ICS 24, June 04-07, 2024, Kyoto, Japan

Algorithms
Input Shapes

Register Blocking 3D Parallelization

Determinism

Dual Kernel Single Kernel

Scheduling

Utilization Factor

Dynamic Tiling
Resources

N_STAGES m TILE_K TILE_Q § TILE.T

Figure 8: The multi-layered autotuning approach to kernel
optimization. Each layer’s decision influences the subsequent
layer to ensure optimal performance based on underlying
hardware resources.

Guided by this performance model, we aim to enhance seg-
mented matmul’s performance by identifying and adjusting knobs
to achieve high compute and parallel efficiency.

6.2 Autotuning

As illustrated in Fig. 8, we categorize the tuning knobs that impact
the performance of segmented matmul into three distinct categories:
Algorithms, Scheduling, and Resources. Given the complexity of these
knobs’ relationship with the performance of segmented matmul, a
one-size-fits-all configuration is unlikely to yield optimal results.
Consequently, FASTEN employs an autotuning approach to identify
the most effective configuration based on the specific characteristics
of input shapes and types.

FASTEN benchmarks the given problem using a set of config-
urations, runs a few iterations, obtains the median running time,
and then selects the best configuration to associate with the corre-
sponding “key”. Subsequently, inputs that trigger the same “key”
will bypass further autotuning. The following paragraphs detail our
approach to key selection, configuration generation, and pruning.

Key Design. In FASTEN, individual routing tables are created for
the computation of the forward, input gradient, and weight gradient.
Metadata information is associated with each table, such as the
ratio of large blocks (R) and the utilization factor (U). The keys are
chosen based on their impact on compute and parallel efficiency.
Although we could naively use the combination of algorithm, {|z|,
for rin 7}, K, and Q as the key, this approach risks excessive reruns
due to minor variations in the number of edges or edge types.

To minimize rerun cost, we have optimized our key selection to
include algorithm, stddev(|z|), average(|z|), K, and Q. Only a large
difference of stddev(|z]) and average(|r|) will trigger the rerun of
the tuning process.

Configuration Generation and Pruning. A straightforward ap-
proach would be to set up several candidate values for each tuning
knob, enumerate all possible configurations, and benchmark each
configuration exhaustively. A simple combination could include
more than 20,000 configurations, leading to excessive tuning time.

ICS 24, June 04-07, 2024, Kyoto, Japan

To address this, we have established the following set of configura-
tion pruning rules:

o Algorithm-based Pruning: The register blocking algorithm is
preferable when the accumulation dimension is small (i.e.,
< 32). The 3D parallelization algorithm is reserved for cases
where the accumulation dimension varies. Otherwise, the
basic algorithm is chosen.

o Efficiency-based Pruning: We evaluate the parallel and com-
pute efficiency of configurations, focusing only on those
with the highest efficiency. We approximated Hi tltge in Equa-
tion 18 based on the maximum tile reuse rate, considering
the input shape and the tile values. Additionally, to account
for Timesync, the configurations are separated into groups
according to their number of threads per CTA, ranked ac-
cording to efficiency.

o Resource Constraint-based Pruning: We estimate the shared
memory required for each configuration and exclude those
that exceed the maximum shared memory capacity. Con-
figurations that trigger excessive register spills during JIT
compilation are also discarded.

o Shape-based Pruning: Configurations with tile dimensions
or tile dimension multiples Nstages are eliminated to avoid
wasteful instruction cycles.

o Rule-based Pruning: The dual kernel approach is reserved
for scenarios requiring determinism, as requested by users.
Dynamic tiling is applied only when the Utilization Factor
is low.

7 IMPLEMENTATION

This section describes the implementation details of how FASTEN
is integrated with GNN frameworks.

7.1 Integration in PyG

In addition to access to raw segmented matmul APIs in FASTEN,
we have integrated FASTEN operators with PyG [10], a state-of-the-
art GNN framework supporting various HGNNSs, to demonstrate
the performance enhancements provided by FASTEN and offer
user-friendly interfaces.

We provide utilities to assist users in converting existing HGNN
modules to those accelerated by FASTEN. FastenModule (module)
is a wrapper for existing HGNN modules, maintaining structural
similarity in module initialization and forward call interfaces as
per PyG standards. The key addition is the TensorSlice(data,
types) data structure as a parameter for the forward function,
which stores the input data and its corresponding types for each seg-
ment. This data structure incorporates a create_routing_table
APland aget_routing_table API, both utilized internally by each
FastenModule.

For creating a routing table, we offer two approaches. In the
default mode, most optimal settings based on our performance
models are used to create the routing table before executing a
segmented matmul. Alternatively, with autotune set to true, we
benchmark configurations, select the most performant one, and link
this configuration with input shapes as keys in the TensorSlice,
facilitating configuration reuse for identical keys.

518

Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Matthias Fey, Bingian Yin, and Jiajia Li

7.2 Adapting Different HGNNs

FASTEN supports various HGNNS, including RGCN [41], RGAT [7],
and HGT [20], all utilizing segmented matmul in their implementa-
tions.

RGCN and RGAT. Both RGCN and RGAT employ segmented
matmul in their message passing layers, segmenting operations
based on the relational edge types. In practice, multiple RGCN or
RGAT modules are stacked with consistent feature sizes, allowing
the routing table to be computed once, stored in TensorSlice, and
reused across modules.

HGT. HGT leverages meta information that contains node and
edge types in heterogeneous graphs to parameterize weight matri-
ces. Segmented matmul is utilized for both node and edge types
related computations. We preprocess the meta information to con-
struct two TensorSlice objects accordingly, one for node-type
data and another for edge-type data, and pass them to the forward
function.

Optimizations. For full graph processing, where node or edge
types remain constant during GNN computation, we sort the data
according to its type, cache the related TensorSlice object, and
reuse this TensorSlice object when the data is loaded again in
iterative training. In scenarios involving subgraph sampling, we sort
the data each time it is sampled and use the related TensorSlice
only for the current iteration. FASTEN also facilitates the fusion
of simple element-wise prologues or epilogues. For instance, when
using bias in the prologue, we load the bias segment based on the
type handled by each CTA into registers, accumulate bias with
each segment’s output, and store the results in global memory to
minimize the overhead of transferring results from global memory
to registers in the bias kernel. Unlike fusion in dense operators,
which reduces the launch of only one kernel, fusion of segmented
operators in the prologue can reduce the launch of up to 77| kernel.

8 EVALUATION

Platforms. We evaluated FASTEN’s performance on three dis-
tinct platforms, as detailed in Table 2, all using the TF32 format
with tensor cores.

Datasets. We used both real and synthesized random datasets.
The properties of the real datasets used are summarized in Table 3.
The AIFB, MUTAG, BGS, and AM datasets [41] only have edge types.
While other datasets, including Freebase [6], DBLP [11], ACM [30],
and IMDB [2], have both edge and node types.

Our experiments are categorized into two types: the first focused
on operator performance across different datasets, and the second
on end-to-end training performance, benchmarked against existing
implementations of popular HGNNs. Experiments were measured
using the Proton profiler [58].

8.1 Operator Performance

In this section, we compare FASTEN’s segmented matmul perfor-
mance against two state-of-the-art variants: CUTLASS [39], which
adopts the grouped matmul algorithm, and cuBLASCitecuBLAS,
which uses the loop over matmuls method that launches multiple
kernels. FASTEN’s A100 and RTX4090 implementations employ mma

FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication for Heterogeneous Graph Neural Networks ICS 24, June 04-07, 2024, Kyoto, Japan

Platform | Memory CPU GPU Specs
GH200 480GB NVIDIA Grace CPU Superchip 96GB GPU Memory, 132 SMs, 989 TF32 TFLOP/s, 4TB/s Bandwidth
A100 SXM 256GB AMD EPYC 7543 80GB GPU Memory, 108 SMs, 156 TF32 TFLOP/s, 2TB/s Bandwidth
RTX4090 512GB AMD Ryzen Threadripper PRO5975WX | 24GB GPU Memory, 128 SMs, 82.6 TF32 TFLOPS, 1TB/s Bandwidth
Table 2: Evaluation Platforms
m Forward B Backward EEE Q=K=32 == Q=K=64 NsE Q=K=128
S
86
g
&4
Q
32
g
“o
AIFB AM BGS MUTAG DBLP Freebase IMDB ACM
(a) GH200
S
26
[
84
=
32
GJ
g
2
° AIFB AM BGS MUTAG DBLP Freebase IMDB ACM
(b) AL00
S
26
[
24
=
32
GJ
g
2
° AIFB AM BGS MUTAG DBLP Freebase IMDB ACM
(c) RTX4090
Figure 9: Operator performance speedups of FASTEN over CUTLASS.
w Forward B Backward EEE Q=K=32 E== Q=K=64 NN Q=K=128
56
g
94
a
: B B=.
3 P e
£ | ey S
AIFB AM BGS MUTAG DBLP Freebase IMDB ACM
(a) GH200
a8
g
o4
8
a2
3
o
g u u h; h h__ .——__
&0
AIFB AM BGS MUTAG DBELP Freebase IMDB ACM
(b) AL00
S
g
g4
©
a
g2
o
g =, u— Bl m h—
&0 e Ee— [I
AIFB AM BGS MUTAG DBLP Freebase IMDB ACM
(c) RTX4090
Figure 10: Operator performance speedups of FASTEN over cuBLAS.
instructions to utilize tensor cores, whereas the GH200 implemen- Memory Access) function unit was not utilized in our GH200 im-
tation employs both mma and wgmma instructions. The TMA (Tensor plementation for memory transfers. Experiments were performed

with CUDA 12.2 [40] and PyG at commit a37af2e.

519

ICS 24, June 04-07, 2024, Kyoto, Japan

Dataset Nodes Edges Types
AIFB 8,285 58,086 90
MUTAG 23,644 148,454 46
BGS 333,845 1,832,398 206
AM 1,666,764 | 11,976,642 266
Freebase 180,098 1,057,688 36 (Edge), 8 (Node)
DBLP 26,128 119,783 3 (Edge), 4 (Node)
ACM 10,042 273,936 | 4 (Edge), 4 (Node)
IMDB 21,420 43,321 3 (Edge), 4 (Node)

Table 3: Real Datasets Properties

Real Datasets. We evaluated the performance of the forward
and backward phases for different feature sizes (k = Q = 32, 64,
128) on the GH200, A100, and RTX 4090 platforms. The forward
phase corresponds to Equation 3, and the backward phase computes
Equations 4 and 5. Fig. 9 and Fig. 10 illustrate the performance on
eight real datasets, all using edge types to segment input samples.

FASTEN consistently outperforms CUTLASS in both phases. In
the forward phase, FASTEN achieved speedups ranging from 1.11x
to 5.21x; in the backward phase, the speedups ranged from 2.07x to
117.54%. FASTEN achieved higher speedups in the forward phase
when the feature size is low because the CUTLASS implementa-
tion did not select appropriate tile sizes and lacked optimizations
such as tile grouping and register blocking, as demonstrated in
our incremental improvement studies. As the number of feature
sizes increases, FASTEN continues to outperform CUTLASS, due
to reduced indexing overhead. In the backward phase, FASTEN
significantly surpasses CUTLASS, primarily due to the benefits of
3D parallelism, which leverages the routing table to balance the
workload along the accumulation dimension.

Comparing with cuBLAS, FASTEN achieved speedups ranging
from 0.69% to 51.01X in the forward phase and from 0.76X to 29.25X
in the backward phase. When the number of types is small, cuBLAS
efficiently handles both phases as it only needs to launch very
few kernels, each of which is highly optimized even when the
accumulation dimension is large. However, as the number of types
increases, as observed in datasets like AIFB, MUTAG, BGS, and AM,
cuBLAS’s performance decreases due to the increased overhead
from launching more kernels and the reduced GPU utilization rate
of each kernel. Overall, FASTEN achieved an average speedup of
5.73% and 3.72X over cuBLAS in forward and backward phases
correspondingly.

Synthetic Datasets. In addition to real datasets, which typically
have unbalanced distributions, we compared the performance of
FASTEN with that of CUTLASS using synthetic datasets. To gen-
erate these datasets, we set the total number of instances at one
million (i.e.,)} ;<7 |7|). Each instance was randomly assigned to one
of the 7 types, using a uniform probability distribution to assess
performance when each type is associated with a similar number
of instances. We evaluated the number of types ranging from 100
to 1900 in steps of 200. We also calculated the upper performance
bound limited by DRAM bandwidth using the Roofline model [49],
which we denote as the theoretical peak performance. Fig. 11 (a)
and 11 (b) show the performance of the three variants using feature
sizes of 32 and 128 in the forward and backward phases.

520

Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Matthias Fey, Bingian Yin, and Jiajia Li

FASTEN CUTLASS —<— Peak
30] T e e e] 125 M
£ 100
S 20
E 75
10 50
500 1000 1500 500 1000 1500
(a) Forward Phase, Feature Size=32 (b) Forward Phase, Feature Size=128
30 R e LV VN
" 100
g 20
-
10 50
0 0
500 1000 1500 500 1000 1500

#Types #Types
(c) Backward Phase, Feature Size=32 (d) Backward Phase, Feature Size=128
Figure 11: Performance comparison between FASTEN and
CUTLASS on randomly generated instances on the GH200
GPU.

[0 Deterministic [0 Non-Deterministic

26
w 80
o
<]
24 70
60
500 1000 1500 500 1000 1500
#Types #Types
(a) Feature Size=32 (b) Feature Size=128
m
E 0.4)
20.2
il il
e | s | 0 e S

AM BGS MUTAG
) Feature Size=32

AIFB AM BGS MUTAG

) Feature Size=128

Figure 12: Performance comparison of FASTEN’s determinis-
tic and non-deterministic backward implementations using
real and synthetic datasets on the GH200 GPU.

We observed that FASTEN is highly optimized, achieving be-
tween 55% and 84% of the peak performance. In comparison, CUT-
LASS achieves only 1%-40% of the peak performance. Interestingly,
smaller feature sizes often reach higher peaks compared to their
larger counterparts.There are two main factors contributing to the
performance degradation observed with larger feature sizes. Firstly,
our detailed analysis of instruction-level profiling results [59] re-
veals significant stalls due to barrier instructions in the code gener-
ated by ptxas. These stalls occur while waiting for WGMMA operations.
By grouping these WGMMA operations and synchronizing them less
frequently, we might reduce these overheads. Additionally, when
the feature size is set to 128, the performance of the forward pass
is noticeably poorer than that of the backward phase. This discrep-
ancy arises from the size of the accumulation dimension (z), which
leads to a tile size that is too large for effective register blocking,
but too small to allow the overlap of compute tasks with load and
store operations.

FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication for Heterogeneous Graph Neural Networks

25 Forward 30{ 1 Backward
020
3 20
®15
[
Q.
v 1.0 10

0.5

—

PyG Basic OPTL OPT2 OPT3 PYG 3D OPTL OPT2
Figure 13: Incremental optimization effects on the forward
and backward phases. OPT1: tile size tuning, OPT2: tile group-

ing & reordering, OPT3: register blocking,.

Deterministic vs. Non-Deterministic Comparisons. Fig. 12 (a) and
(b) illustrate that the deterministic implementations of FASTEN in
the backward phase perform comparably to the non-deterministic
version across various types using randomly generated datasets.
Performance was also assessed on real datasets with feature sizes
of 32 and 128, respectively, as shown in Figs. 12 (c) and (d). Over-
all, the non-deterministic version demonstrates performance sim-
ilar to its deterministic counterpart on real datasets. Notably, for
larger feature sizes, the deterministic version outperforms the non-
deterministic one. This improvement is attributed to the fact that
the deterministic version employs store operations instead of
atomicAdd, resulting in higher throughput. In contrast, for smaller
feature sizes, the second kernel in the dual kernel strategy takes
a relatively larger portion of the total runtime. Thus, the non-
deterministic version outperforms the deterministic version be-
cause there is no additional overhead in accessing the intermediate

buffer.

Incremental Improvement. We also evaluated the incremental
effects of optimizations employed in FASTEN’s segmented matmul
operator, which are divided into multiple stages: initial, tile size
tuning using the autotuner, tile grouping & reordering, and register
blocking. The initial implementation of the forward phase employs
the basic Algorithm 1, while the backward phase utilizes the 3D
parallelization algorithm with a Npj,.xs of one. Fig. 13 illustrates
the performance of both the forward and backward phases using
the AM dataset with a feature size of 32 on the GH200 GPU.

For a fair comparison, we used the same number of threads,
tile sizes, stages, and the same mma modifier as CUTLASS initially
uses. We observe that our initial forward implementation (Basic)
outperforms CUTLASS by 1.61x; FASTEN incurs lower indexing
costs because its routing table stores only a single dimension of
varying sizes. Additionally, our initial backward implementation
(3D) is 5.34x faster than PyG, due to the adoption of 3D paralleliza-
tion for workload balance. By selecting appropriate tile sizes, we
can optimize both forward and backward phases. Tile grouping
achieves a 1.10x speedup in the forward phase, and a 2.42X speedup
in the backward phase. This higher speedup in the backward phase
can be attributed to the larger workload per CTA after grouping,
which also reduces conflicts in atomic operations. Register blocking
results in an additional 1.04X speedup in the forward phase.

521

ICS 24, June 04-07, 2024, Kyoto, Japan

[Deterministic 1 Non-Deterministic

1000

Time (ms)

s | |
RGCN RGAT
RTX 4090

!
RGCN RGAT
Al100

ole=="1 |
RGCN RGAT HGT

GH200

HGT HGT

Figure 14: End-to-end training time (four iterations) of FAS-
TEN comparing with PyG. RGCN and RGAT used the AM
dataset, and HGT used the Freebase dataset.

1 PyG

,‘515’ 1 FASTEN
€ [Graphiler
£E.0
(]
£
[5 1

i Bl .

AIFB AM BGS MUTAG

Figure 15: End-to-end inference time of FASTEN comparing
with Graphiler and PyG.

8.2 End-to-end Performance

In this section, we compare the end-to-end performance of FASTEN
with PyG and Graphiler. RGCN and HGT were evaluated using a
feature size of 32, and GAT was assessed with a feature size of 8.

FASTEN vs. PyG. In the default implementation of PyG’s ex-
amples, HGT and RGCN adopt the CUTLASS grouped matmul
approach for segmented matmul during the forward phase. How-
ever, during the backward phase, they employ the cuBLAS loop
over matmul method. PyG’s RGAT differs by utilizing the batched
matmul method for segmented matmul, leading to a significant
increase in memory footprint. As a result, PyG’s RGAT can only
be operated with a restricted feature size. In contrast, FASTEN’s
RGAT model is capable of supporting feature sizes up to 32, even
on RTX4090. As depicted in Fig. 14, FASTEN outperforms PyG in all
HGNNS s on three platforms, achieving a speedup ranging between
1.37% and 3.53%. Notably, the maximum speedup was observed
on the GH200 platform with the RGAT model. We also made an
interesting observation regarding the feature size: When operat-
ing with smaller feature sizes, PyTorch’s bmm operation defaults
to using ffma instructions instead of tensor cores on the GH200
platform. This contrasts with its behavior on the A100 and RTX4090
platforms, where it uses tensor cores regardless of feature sizes.

FASTEN vs. Graphiler. Graphiler depends on CUDA 11 and thus
has compatibility issues with newer GPU platforms such as the
RTX4090 and GH200. Consequently, our evaluation of Graphiler
was limited to the A100 platform. In experiments, we focused on the
forward phase performance? of Graphiler’s RGCN using a feature
size of 32, comparing it with PyG and FASTEN across four real

2Graphiler only supports compilation of the forward computation graph.

ICS 24, June 04-07, 2024, Kyoto, Japan

datasets. In Fig. 15, our findings revealed that FASTEN achieved a
1.9-9.4% speedup against Graphiler. More notably, Graphiler demon-
strated slower performance compared to PyG in all datasets>. This
outcome stands in stark contrast to the optimization effects claimed
in Graphiler’s original publication. Considering that Graphiler was
developed two years ago, a period during which PyG had not yet
adopted CUTLASS for segmented matmul operations, this perfor-
mance discrepancy highlights a crucial insight: the mere fusion of
operations in computation graphs, without integrating low-level
optimizations, is inadequate to achieve optimal performance for
sophisticated operators.

9 RELATED WORK

This section provides an overview of related work on GNN perfor-
mance optimizations and compares them with FASTEN.

CTA Scheduling. CTA scheduling is essential to maximize ef-
ficiency on GPUs. NVIDIA’s default hardware-based scheduling
engine Gigathread [50] initially follows a round-robin policy and
then updates to dynamic scheduling [27]. Lee et al. [25] designed a
new CTA scheduler that monitors workloads and dynamically de-
termines the number of CTAs assigned to each core. Kim et al. [24]
studied improving CTA scheduling specifically for GEMM and con-
volution algorithms. In addition to the simulator-based approaches
mentioned above, there are software-based solutions. Li et al. [26]
proposed CTA clustering techniques to group CTAs with potential
reuse on the same SM, in order to maximize cache reuse. Similarly,
Ukarande et al. [46] designed software clustering techniques to
improve cache locality for texture accesses in game applications.
Unlike these general approaches, FASTEN’s CTA scheduling is
specifically tailored for segmented matmul operations and uses a
routing table for guidance.

Irregular Batch Matmul. We refer to operations that support var-
ious indexing mechanisms and shapes as irregular batch matmul,
as they are not restricted by the size constraints inherent in stan-
dard batch matmul. CUTLASS [38] has provided general grouped
matmul operators, but these often fall short in real-world scenar-
ios in terms of performance and functionality. Unlike CUTLASS,
MAGMA [32] supports variable dimensions by grouping matrices
with different shapes through the “z” dimension when starting a
kernel. Li et al. [28] further optimized this method for small ma-
trices by grouping matrices according to the tile size used. Block
sparse matmul [15] is similar to the segmented matmul, as only
one dimension can vary, but the result is stored in a global sparse
matrix instead of a batch of dense matrices. MEGABLOCKS [12]
optimizes the block sparse computation in Mixture-of-Experts [42]
modules with a new matrix format.

GNN Performance Optimizations. Previous studies that improve
inefficiencies in homogeneous GNNs [8, 22, 48] cannot be directly
adopted for HGNNs due to their new sparsity in relational di-
mension. Most existing research on HGNNs has instead focused
on high-level optimizations such as scheduling mechanisms [34],
matrix format conversion [45], kernel fusion [16, 55], and IR de-
signs [51, 55, 56]. These approaches either leverage existing kernels

3Graphiler utilizes smaller datasets, which selectively filter out nodes and edges from
the datasets used in FASTEN and PyG evaluations.

522

Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Matthias Fey, Bingian Yin, and Jiajia Li

in cuBLAS or CUTLASS, or use tensor cores, often without detailed
analysis and optimizations. Furthermore, existing compiler-based
approaches [51, 55] are limited to the forward phase. In contrast,
FASTEN investigates low-level inefficiencies and redesigns the seg-
ment matmul operator, demonstrating improved efficiency across
multiple GPU architectures.

10 DISCUSSIONS

Emerging GPU Features. It is noteworthy that, beginning with the
Hopper architecture, NVIDIA has introduced support for CTA clus-
ters and hardware-level data transfer. We will explore this advance-
ment, which could provide more granular control in segmented
matmul as the weight matrix is shared among instances of the
same type. Furthermore, our future work will include performance
optimizations for other segmented operations on GPUs, such as
segmented sort, scan, and attention.

Scalability. To support large graphs, such as OGB datasets [19],
users can apply FASTEN to multiple GPUs by dividing segments of
different types on different GPUs. However, this initial approach
is not optimal due to the overlooking of communication issues,
such as loading redundant weight matrices and aggregating weight
gradients on multiple GPUs. To make FASTEN more efficient, we
plan to develop a centralized scheduling module to address these
issues.

Portability. FASTEN has been modularized into nn, op, and kernel
layers. While the nn layer is integrated with PyG, the op layer or
the kernel layer does not depend on PyG. Therefore, we envision
that it would be straightforward to integrate the op or kernel layer
with other GNN frameworks such as DGL [47].

11 CONCLUSIONS

This paper introduces FASTEN —a high-performance library tai-
lored for segmented matrix multiplication operations. The motiva-
tion behind FASTEN is that there is a lack of algorithms and imple-
mentations on GPUs well suited for batch processing segmented
with irregular and different sizes, which commonly exist in training
heterogeneous graph neural networks. FASTEN encompasses a set
of sophisticated strategies that focuses primarily on reducing in-
dexing costs, effective CTA scheduling, and data reuse across CTAs.
Evaluation results show that FASTEN is significantly faster than
state-of-the-art vendor-provided operator libraries [38], as well as
research tools [55] that optimize compiler passes. Future work on
FASTEN will be extending the methodology on other segmented
operations, utilizing advanced GPU features, and fine-tuning it for
multi-GPU training.

ACKNOWLEDGMENTS

This project was supported by resources provided by the Office
of Research Computing at George Mason University (URL: https:
//orc.gmu.edu) and George Mason University’s Faculty Startup
Fund of the Computer Science Department. This project was also
supported in part by National Science Foundation (Award Numbers
2018631 and 2316201).

FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication for Heterogeneous Graph Neural Networks

REFERENCES

(1]

[2

—

[9

=

[10

[11]

[12

[13]

[14]

[17]

(18]

[19]

[21]

[22]

[23]

[24]

[25]

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2017. Learning
to represent programs with graphs. arXiv preprint arXiv:1711.00740 (2017).
Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang.
2019. Simgnn: A neural network approach to fast graph similarity computation.
In Proceedings of the twelfth ACM international conference on web search and data
mining. 384-392.

Albert-Laszlo Barabasi and Zoltan N Oltvai. 2004. Network biology: under-
standing the cell’s functional organization. Nature reviews genetics 5, 2 (2004),
101-113.

Ganesh Bikshandi and Jay Shah. 2023. A Case Study in CUDA Kernel Fusion:
Implementing FlashAttention-2 on NVIDIA Hopper Architecture using the CUT-
LASS Library. arXiv:2312.11918 [cs.LG]

Alpheus Bingham and Dwayne Spradlin. 2011. The long tail of expertise. Pearson
Education.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013).

Dan Busbridge, Dane Sherburn, Pietro Cavallo, and Nils Y Hammerla. 2019.
Relational graph attention networks. arXiv preprint arXiv:1904.05811 (2019).
Zhaodong Chen, Mingyu Yan, Maohua Zhu, Lei Deng, Guogqi Li, Shuangchen
Li, and Yuan Xie. 2020. fuseGNN: Accelerating graph convolutional neural
network training on GPGPU. In Proceedings of the 39th International Conference
on Computer-Aided Design. 1-9.

David Easley, Jon Kleinberg, et al. 2012. Networks, crowds, and markets. Cam-
bridge Books (2012).

Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. Magnn: Metap-
ath aggregated graph neural network for heterogeneous graph embedding. In
Proceedings of The Web Conference 2020. 2331-2341.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. 2023.
MegaBlocks: Efficient Sparse Training with Mixture-of-Experts. Proceedings
of Machine Learning and Systems 5 (2023).

Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep,
Gertrude Liu, Jeremy BR Hayter, Richard Vickers, Charles Roberts, Jian Tang, et al.
2021. Utilizing graph machine learning within drug discovery and development.
Briefings in bioinformatics 22, 6 (2021), bbab159.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263-1272.

Scott Gray, Alec Radford, and Diederik P. Kingma. 2017. Block-Sparse GPU
Kernels. https://blog.openai.com/block-sparse-gpu-kernels/. Accessed: 1-14-
2024.

Yuntao Gui, Yidi Wu, Han Yang, Tatiana Jin, Boyang Li, Qihui Zhou, James
Cheng, and Fan Yu. 2022. HGL: accelerating heterogeneous GNN training with
holistic representation and optimization. In SC22: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 1-15.
Yixin Guo, Pengcheng Li, Yingwei Luo, Xiaolin Wang, and Zhenlin Wang. 2022.
Exploring gnn based program embedding technologies for binary related tasks.
In Proceedings of the 30th IEEE/ACM International Conference on Program Com-
prehension. 366-377.

Kshitij Gupta, Jeff A Stuart, and John D Owens. 2012. A study of persistent threads
style GPU programming for GPGPU workloads. IEEE.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118-22133.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In Proceedings of the web conference 2020. 2704-2710.

Guyue Huang, Yang Bai, Liu Liu, Yuke Wang, Bei Yu, Yufei Ding, and Yuan Xie.
2023. ALCOP: Automatic Load-Compute Pipelining in Deep Learning Compiler
for AI-GPUs. Proceedings of Machine Learning and Systems 5 (2023).

Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. Ge-spmm:
General-purpose sparse matrix-matrix multiplication on gpus for graph neural
networks. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1-12.

Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng Shen. 2021.
Understanding and bridging the gaps in current GNN performance optimizations.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 119-132.

Hyeonjin Kim and William J. Song. 2023. LAS: Locality-Aware Scheduling for
GEMM-Accelerated Convolutions in GPUs. IEEE Transactions on Parallel and
Distributed Systems 34, 5 (2023), 1479-1494. https://doi.org/10.1109/TPDS.2023.
3247808

Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong Seo, Yeongon
Cho, and Soojung Ryu. 2014. Improving GPGPU resource utilization through

523

[26

[27

™
&

[29

[30

[31

[32

[33

[34

[35

[36

[37

[38

[39

=
=

(41

[42]

[43

[44

S
&

[46

[47

ICS 24, June 04-07, 2024, Kyoto, Japan

alternative thread block scheduling. In 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA). 260-271. https://doi.org/10.
1109/HPCA.2014.6835937

Ang Li, Shuaiwen Leon Song, Weifeng Liu, Xu Liu, Akash Kumar, and Henk
Corporaal. 2017. Locality-Aware CTA Clustering for Modern GPUs. In Pro-
ceedings of the Twenty-Second International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (Xi'an, China) (ASP-
LOS ’17). Association for Computing Machinery, New York, NY, USA, 297-311.
https://doi.org/10.1145/3037697.3037709

Ang Li, Shuaiwen Leon Song, Mark Wijtvliet, Akash Kumar, and Henk Corporaal.
2016. SFU-driven transparent approximation acceleration on GPUs. In Proceedings
of the 2016 International Conference on Supercomputing. 1-14.

Xiuhong Li, Yun Liang, Shengen Yan, Liancheng Jia, and Yinghan Li. 2019. A
Coordinated Tiling and Batching Framework for Efficient GEMM on GPUs. In Pro-
ceedings of the 24th Symposium on Principles and Practice of Parallel Programming
(Washington, District of Columbia) (PPoPP ’19). Association for Computing Ma-
chinery, New York, NY, USA, 229-241. https://doi.org/10.1145/3293883.3295734
Yangyang Li, Yipeng Ji, Shaoning Li, Shulong He, Yinhao Cao, Yifeng Liu,
Hong Liu, Xiong Li, Jun Shi, and Yangchao Yang. 2021. Relevance-Aware
Anomalous Users Detection in Social Network via Graph Neural Network. In
2021 International Joint Conference on Neural Networks (IJCNN). 1-8. https:
//doi.org/10.1109/IJCNN52387.2021.9534136

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming
He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we really
making much progress? revisiting, benchmarking and refining heterogeneous
graph neural networks. In Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining. 1150-1160.

Sangkug Lym, Donghyuk Lee, Mike O’Connor, Niladrish Chatterjee, and Mattan
Erez. 2019. DeLTA: GPU performance model for deep learning applications with
in-depth memory system traffic analysis. In 2019 IEEE international symposium
on performance analysis of systems and software (ISPASS). IEEE, 293-303.

Rajib Nath, Stanimire Tomov, and Jack Dongarra. 2010. An improved magma
gemm for fermi graphics processing units. The International Journal of High
Performance Computing Applications 24, 4 (2010), 511-515.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2015.
A review of relational machine learning for knowledge graphs. Proc. IEEE 104, 1
(2015), 11-33.

Israt Nisa, Minjie Wang, Da Zheng, Qiang Fu, Umit Catalyiirek, and George
Karypis. 2023. Optimizing Irregular Dense Operators of Heterogeneous GNN
Models on GPU. In 2023 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW). 199-206. https://doi.org/10.1109/IPDPSW59300.
2023.00042

NVIDIA. 2023. Parallel Thread Execution ISA. https://docs.nvidia.com/cuda/
parallel-thread-execution/index.html Accessed: 12-25-2023.

NVIDIA Corporation. 2023. cuBLAS: The NVIDIA CUDA Basic Linear Algebra
Subroutines library. https://developer.nvidia.com/cublas. Accessed: 12-16-2023.
NVIDIA Corporation. 2023. cuSPARSE: Basic Linear Algebra for Sparse Matrices
on NVIDIA GPUs. https://developer.nvidia.com/cusparse. Accessed: 12-16-2023.
NVIDIA Corporation. 2023. CUTLASS: CUDA C++ template abstractions for
implementing high-performance matrix-matrix multiplication. https://github.
com/NVIDIA/cutlass. Accessed: 12-16-2023.

NVIDIA Corporation. 2023. CUTLASS Grouped Kernel Schedulers. https://github.
com/NVIDIA/cutlass/blob/main/media/docs/grouped_scheduler.md. Accessed:
12-16-2023.

NVIDIA Corporation. 2024. CUDA Toolkit Documentation. https://developer.
nvidia.com/cuda-toolkit Accessed: 01-06-2024.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web: 15th International Conference, ESWC 2018,
Heraklion, Crete, Greece, June 3—7, 2018, Proceedings 15. Springer, 593-607.
Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).
PyTorch Geometric Team. 2024. PyTorch Geometric (PyG). https:
//github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/
conv/rgen_conv.py Accessed: 04-04-2024.

PyTorch Geometric Team. 2024. PyTorch Geometric (PyG) Lib.
https://github.com/pyg-team/pyg-lib/blob/master/pyg_lib/csrc/ops/autograd/
matmul_kernel.cpp Accessed: 04-04-2024.

Thiviyan Thanapalasingam, Lucas van Berkel, Peter Bloem, and Paul Groth. 2022.
Relational graph convolutional networks: a closer look. Peerj Computer Science 8
(2022), 1073.

Aditya Ukarande, Suryakant Patidar, and Ram Rangan. 2021. Locality-aware cta
scheduling for gaming applications. ACM Transactions on Architecture and Code
Optimization (TACO) 19, 1 (2021), 1-26.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. arXiv preprint

ICS °24, June 04-07, 2024, Kyoto, Japan Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Matthias Fey, Bingian Yin, and Jiajia Li

arXiv:1909.01315 (2019). [54] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Ge-

Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and
Yufei Ding. 2021. GNNAdvisor: An adaptive and efficient runtime system for
GNN acceleration on GPUs. In 15th USENIX symposium on operating systems
design and implementation (OSDI 21). 515-531.

Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (2009), 65-76.

Craig M Wittenbrink, Emmett Kilgariff, and Arjun Prabhu. 2011. Fermi GF100
GPU architecture. IEEE Micro 31, 2 (2011), 50-59.

Kun Wu, Mert Hidayetoglu, Xiang Song, Sitao Huang, Da Zheng, Israt Nisa, and
Wen-mei Hwu. 2023. PIGEON: Optimizing CUDA Code Generator for End-to-
End Training and Inference of Relational Graph Neural Networks. arXiv preprint

niesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet: a
benchmark for molecular machine learning. Chemical science 9, 2 (2018), 513-530.
Zhigiang Xie, Minjie Wang, Zihao Ye, Zheng Zhang, and Rui Fan. 2022. Graphiler:
Optimizing graph neural networks with message passing data flow graph. Pro-
ceedings of Machine Learning and Systems 4 (2022), 515-528.

Zihao Ye, Ruihang Lai, Junru Shao, Tiangi Chen, and Luis Ceze. 2023. SparseTIR:
Composable abstractions for sparse compilation in deep learning. In Proceedings
of the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. 660-678.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI open 1 (2020), 57-81.

arXiv:2301.06284 (2023). [58] Keren Zhou. 2024. Proton: A Profiler for Triton. https://github.com/openai/
Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural triton/tree/main/third_party/proton Accessed: 04-021-2024.
networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1-37. [59] Keren Zhou, Xiaozhu Meng, Ryuichi Sai, and John Mellor-Crummey. 2021. GPA:

[52

[53] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4-24.

524

A GPU performance advisor based on instruction sampling. In 2021 I[EEE/ACM
International Symposium on Code Generation and Optimization (CGO). IEEE, 115—
125.

	Abstract
	1 Introduction
	2 Background
	3 Existing Work
	4 Our Approach
	5 Optimizations
	5.1 Dynamic Tiling
	5.2 Register Blocking
	5.3 3D Parallelization
	5.4 Tile Grouping and Reordering

	6 Performance Model Guided Tuning
	6.1 Performance Modeling
	6.2 Autotuning

	7 Implementation
	7.1 Integration in PyG
	7.2 Adapting Different HGNNs

	8 Evaluation
	8.1 Operator Performance
	8.2 End-to-end Performance

	9 Related Work
	10 Discussions
	11 Conclusions
	Acknowledgments
	References

