
FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication
for Heterogeneous Graph Neural Networks

Keren Zhou
kzhou6@gmu.edu

George Mason University
Fairfax, VA, USA

Karthik Ganapathi
Subramanian

kganapa@ncsu.edu
North Carolina State University

Raleigh, NC, USA

Po-Hsun Lin
plin8@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Matthias Fey
matthias.fey@tu-dortmund.de

Kumo.AI
Mountain View, CA, USA

Binqian Yin
byin2@gmu.edu

George Mason University
Fairfax, VA, USA

Jiajia Li
jiajia.li@ncsu.edu

North Carolina State University
Raleigh, NC, USA

ABSTRACT

This paper introduces FASTEN, a cutting-edge library developed to

address the computational challenges inherent in Heterogeneous

Graph Neural Networks (HGNNs). The key focus of FASTEN is the

optimization of segmented matrix multiplication, a critical opera-

tor where existing GNN frameworks and linear algebra libraries

often fall short. FASTEN o�ers an array of solutions to these chal-

lenges, including a routing table designed for e�cient workload

scheduling, adaptive algorithms tailored for handling segments of

di�erent shapes and segmented dimensions, and a performance

model-guided autotuner to select the best con�gurations. Further-

more, FASTEN implements interfaces to integrate with widely-used

frameworks like PyG, ensuring straightforward adoption in exist-

ing HGNN models with minimal adjustments. We have performed

comprehensive benchmarks on advanced GPU architectures, in-

cluding NVIDIA H100, A100, and RTX4090, to demonstrate that

FASTEN signi�cantly improves both operator-wise and end-to-end

performance across various datasets and HGNNs.

CCS CONCEPTS

•Computingmethodologies→Massively parallel algorithms;

Machine learning; • General and reference→ Performance.

KEYWORDS

Graph Neural Networks, GPUs, Matrix Multiplication, Batch Pro-

cessing, Performance Modeling

ACM Reference Format:

Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Matthias Fey,

Binqian Yin, and Jiajia Li. 2024. FASTEN: Fast GPU-accelerated Segmented

Matrix Multiplication for Heterogeneous Graph Neural Networks. In Pro-

ceedings of the 38th ACM International Conference on Supercomputing (ICS

’24), June 04–07, 2024, Kyoto, Japan. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3650200.3656593

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICS ’24, June 04–07, 2024, Kyoto, Japan

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0610-3/24/06
https://doi.org/10.1145/3650200.3656593

1 INTRODUCTION

Graph Neural Networks (GNNs) [53] have gained increasing preva-

lence in a wide spectrum of applications [13, 17, 29, 52]. GNNs

typically represent entities as nodes in a graph, connected by edges

that represent a relation. Heterogeneous GNNs (HGNNs) [57] are a

natural extension to GNNs, renowned for their ability to model het-

erogeneous and complex modes of relationships between entities

commonly found in real-world data, including social networks [9],

biological networks [3], molecular graphs [54], source code [1], and

knowledge graphs [33]. For example, in academic networks, rela-

tionships such as “Teacher” entities mentoring “Student” entities,

with both contributing to publications at “Conference” entities, are

modeled.

The growing use of GNNs has catalyzed the development of open

source machine learning frameworks like DGL [47] and PyG [10].

These frameworks are designed to facilitate the development of

advanced models and enhance the e�ciency of processing large

datasets. They often integrate hardware vendor-provided libraries,

such as cuBLAS [36], CUTLASS [38], and cuSPARSE [37], to take

advantage of the high bandwidth and parallelism of GPUs for ac-

celeration. However, recent studies [16, 23, 55] suggest that the

computational power of GPUs is not yet fully exploited in GNNs.

This challenge is more pronounced in HGNN computations, where

complexity and heterogeneity arise from assigning unique weights

to various types of relationships.

Among heterogeneous operations, segmented matrix multiplica-

tion (matmul) is particularly time-intensive during HGNN training

and inference. Segmented matmul involves handling a batch of

input matrices of di�erent sizes (I8), each paired with a distinct

weight matrix (W8) that represents a type in HGNNs, and comput-

ing I8 ×W8 for each pair. Existing dense linear algebra libraries,

such as cuBLAS [36], do not provide speci�c routines for scenarios

involving variable input dimensions. Consequently, deep learning

frameworks often launch dense matrix multiplication routines for

each segment on the host and execute them on the GPU in sequence.

This approach, however, incurs high kernel launch overhead and

redundant memory access costs. CUTLASS provides a generalized

grouped matmul method [39], but this method is not optimized

for segmented scenarios where only one dimension varies and all

input matrices are allocated from the same source, causing issues

511

ICS ’24, June 04–07, 2024, Kyoto, Japan Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Ma�hias Fey, Binqian Yin, and Jiajia Li

Table 1: The FLOP Utilization (TF32) of CUTLASS grouped

matmul for various datasets on a NVIDIA A100 80GB GPU.

AIFB AM BGS MUTAG

Feature size = 32 1.45% 2.32% 2.26% 1.95%

Feature size = 64 4.68% 7.49% 7.14% 6.22%

such as extra overhead in indexing matrices and workload imbal-

ance across di�erent Cooperative Thread Arrays (CTAs). As shown

in Table 1, the highest FLOPS utilization achieved by CUTLASS’s

grouped matmul kernel falls below 7.49% in tests conducted on

graph datasets.

While a line of research focuses on optimizing HGNN perfor-

mance, few studies have delved into the sophisticated optimiza-

tion of computations in GPU kernels. Most of research has instead

concentrated on high-level scheduling mechanisms [34], GPU ker-

nel fusion [16, 55], and graph Intermediate Representation (IR)

designs [51, 55, 56]. In this paper, we demonstrate that optimal

performance of segmented matmul on GPUs requires very careful

kernel design, with a focus on fully utilizing GPU resources by

exploring factors such as matrix locality, segment shapes, workload

scheduling among CTAs, and various GPU architectural features.

To address these issues, we introduce FASTEN, a comprehensive

library featuring e�cient algorithms speci�cally designed for seg-

mented matmul in HGNNs. FASTEN achieves high performance

across various NVIDIA GPU architectures and makes the following

contributions:

• It includes a routing table that e�ciently guides the selection

of segments to be processed by each CTA on the GPU.

• It features adaptive algorithms, capable of e�ciently han-

dling segments of varying shapes and di�erent segmented

dimensions.

• It incorporates a performance model guided tuning frame-

work, which �ne-tunes a wide range of parameters, from

data structures and algorithms to resource usage, at a mod-

erate cost.

• It provides interfaces that adapt data structures and modules

for seamless integration with PyG.

To demonstrate the e�ectiveness of FASTEN1, we conducted

comparative analyses with a vendor-provided library (i.e., CUT-

LASS [38]), and a compiler-based optimization framework (i.e.,

Graphiler [55]).We evaluatedwidely usedHGNNs, includingHGT [20],

RGCN [41], and RGAT [7]. Our experiments, performed on NVIDIA

A100, RTX4090, and GH200 GPUs, have shown up to a 117.54×

speedup, with an average speedup of 13.65× and 4.72× in operator-

wise benchmarks compared to CUTLASS and cuBLAS, respectively.

Furthermore, HGNNs utilizing FASTEN demonstrated an average

of 1.86× and 4.02× end-to-end speedups relative to vanilla PyG

models and those compiled with Graphiler, respectively.

2 BACKGROUND

In our model, we consider a graph � = (+ , �,T), with + as the

set of nodes, � as the edges connecting them, and T as the types

1Our code is available at https://github.com/Deep-Learning-Pro�ling-Tools/fasten

associated with nodes and edges. Each node is associated with a

unique feature vector �Eğ ∈ R
 , residing in a -dimensional space.

GNNs adopt the Message Passing [14] mechanism to propagate

information from a source node to its neighbors. This mechanism

divides the computation into three individual phases: message, ag-

gregate, and update. Consider a GNN model with # modules linked

in sequence; the output of the =-th module can be represented as

IĤ+1Ĭğ
= D?30C4

(

066A460C4
ĬĠ ∈neighbors(Ĭğ)

(

<4BB064
(

�ĤĬĠ , �
Ĥ
Ĭğ

)))

(1)

Themessage phase applies custom functions to the features of E8 and

E 9 if there is an edge connecting them. Then, we aggregate features

from the neighbors of E8 together with a reduction function (e.g.,

sum). Finally, the update function updates the feature vector of E8
and uses it as input for the next module.

HGNNs de�ne custom message functions that apply computa-

tions to nodes based on their relationships with neighbors. For

example, in RGCN [7], a linear transformation is applied to each

neighbor’s feature vector �EĠ ∈ R
 and the weight of the rela-

tionship,gĬğ ,ĬĠ ∈ R
 ×& , where gEğ ,EĠ denotes the type of relation

between E8 and E 9 , and & denotes the number of features of each

node used in the subsequent GNN module. The transformation can

be represented as shown in Equation 2.

<4BB064 (�=EĠ , �
=
Eğ) = �

=
EĠW

=
gĬğ ,ĬĠ

(2)

If we process all nodes in a graph in a batch, we can compute mes-

sages for all relations T as shown in Equation 3, where �=g ∈ R
|g |×

andW=
g ∈ R

 ×& . Here,<4BB064 (�) represents the batched compu-

tation of messages for all edges in �, with each edge belonging to a

type g ∈ T .

<4BB064 (�) = �=−1g W
=
g , for g in T . (3)

Equation 3 illustrates a segmented matmul operation, where a

single dimension (i.e., T) in the input and weight matrices is

segmented to form segment pairs, with each pair performing

a dense matmul. In addition to the forward phase, it is worth not-

ing that the backward phase of the message function also performs

segmented matmul. Let us denote 3I=+1g ∈ R |g |×& as the gradient of

the output of the =-th module. The gradients of the input features

and weights can be represented by Equations 4 and 5, respectively.

3�=g = 3I=+1g (, =
g)

T, for g in T . (4)

3, =
g = (�=g)

T3I=+1g , for g in T . (5)

Similar to RGCN, other HGNNs, such as HGT [20] and RGAT [7],

also incorporate segmented matmul computations. HGT and RGAT

both apply segmented matmul for the “query” and “key” matrices.

Additionally, HGT performs segmented matmul to compute the

mutual attention between the features of the source and target

nodes.

Fig. 1 illustrates the ratio of time consumed by segmented mat-

mul computations during training across various HGNNs on di�er-

ent NVIDIA GPUs. It shows that segmented matmul is one of the

most time-consuming processes that needs optimization.

512

FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication for Heterogeneous Graph Neural Networks ICS ’24, June 04–07, 2024, Kyoto, Japan

RGCN RGAT HGT0%

20%

40%

60%

80%

100%

Se
gm

en
te

d
M

at
m

ul
 R

at
io

 (%
) GH200

A100
RTX4090

Figure 1: Ratio of time spent on segmented matmul-related

computations in training various HGNNs. RGCN and RGAT

were trained using the AM dataset [41], while HGT was

trained using the Freebase dataset [6].

3 EXISTING WORK

We describe several common methods for computing Equation 3

and discuss their shortcomings, which motivates the design of

algorithms in FASTEN.

Loop over matmuls. [44] This approach involves sequentially

launching dense GPU matmul kernels from the host CPU for each

relation type (e.g., I=gW
=
g), utilizing vendor-optimized libraries like

cuBLAS for each kernel. The method becomes increasingly costly

with a growing number of relations in T , due to the kernel launch-

ing overhead. Moreover, on advanced GPU architectures, such as

the NVIDIA H100 with more than a hundred streaming proces-

sors, signi�cant load imbalance issues may arise, particularly for

relations with a small number of nodes or edges.

Batched matmul. [43] An alternative to the loop over matmuls

approach is to use a single batched matmul kernel, which requires

that all input matrices have the same shape. One common strategy

to adapt batched matmul for segmentation involves broadcasting

each weight matrix according to the number of instances in the

input. This changes the number of weight matrices from |T | to
∑

|g | for all g ∈ T , ensuring that each input instance is associated

with a replicated weight matrix from the original. Although this

approach could eliminate the kernel launch overhead using a single

kernel, it signi�cantly increases the memory footprint and the number

of CTAs, leading to redundant memory access and CTA scheduling

overhead.

Grouped matmul. [39] CUTLASS’s grouped matmul ker-

nel facilitates batched matrix multiplications by taking arrays

of input and weight matrices, each potentially from di�er-

ent sources and with varied dimensions, and performing a

dense matmul operation between each paired matrix inde-

pendently. As shown in Fig. 2, this approach employs a scheduling

strategy that allocates the computation of one or more tiles, each of

equal size, of the resulting matrix to each CTA. Adapting grouped

matmul for segmented matmul in HGNNs, however, encounters

several major issues, leading to ine�ciencies in memory access,

scheduling, and workload balance. 1) Indirect memory access. In

grouped matmul, input matrices of varying sizes may originate

from di�erent allocations, thus it requires accessing arrays of point-

ers to input, weight, and output matrices, as well as the dimen-

sions and strides of them, before loading matrix data. In contrast,

segmented matmul involves input matrices sourced from a single

CTA0 CTA1

CTA2 CTA3

O0 O1

CTA4 CTA5

CTA1 CTA2

CTA0

CTA3

O2

CTA4 CTA5

CTA0 CTA1

CTA2 CTA3

Strides

Pointers

Tile Index

Sizes

(A1,B1,O1)

(M1,N1,K1)

(LDA1,LDB1,LDO1)

(5)

Figure 2: Grouped matmul’s scheduling when handling three

output matrices. CTA2 is responsible for a tile of $1 = �1�1,

where �1 ∈ R
"1× 1 and �1 ∈ R

 1×#1 . In order to load the

matrix data, CTA2 must read its relative tile index within

this group, as well as the strides, pointers, and sizes of the

matrices being processed.

allocation, where each matrix di�ers from the others in at most

one dimension. 2) Scheduling. The round-robin scheduling mecha-

nism in the grouped matmul of CTAs does not take data locality

into account, particularly when the feature size is small, as further

elaborated in Section 5.2. 3) Workload imbalance. The grouped mat-

mul implementation partitions workload only based on the output

tile sizes, but overlooks the tile sizes of input and weight matrices

assigned to each CTA. As a result, signi�cant workload imbalances

may exist when the accumulation dimension is di�erent among

input matrices, as elaborated in Section 5.3.

These insights motivate our approach to segmented matmul,

which outperforms the aforementioned methods with highly opti-

mized strategies that minimize memory access overhead and en-

hance workload balance.

4 OUR APPROACH

Segmented matmul di�ers from grouped matmul in its approach

to index matrices. Unlike grouped matmul, which requires a sepa-

rate pointer for each matrix, segmented matmul uses only a single

pointer for each type of matrix—input, weight, and output. This is

because each matrix type is allocated in contiguous memory space

from the same original source, allowing for simpli�ed pointer man-

agement and accesses. Additionally, in segmented matmul, there is

no need to create size arrays for each matrix, as matrices belonging

to the same type have at most one dimension that varies in size;

that dimension with variable sizes is the one to be divided. For

example, in Equation 3, the dimensions and & are �xed, and the

workload can be divided along with the T dimension.

The di�erences between segmented matmul and grouped mat-

mul motivate the design of a Routing Table to assign workloads

among CTAs. Fig. 3 demonstrates how FASTEN’s basic segmented

matmul algorithm operates, with serving as the accumulation

dimension. We divide the T dimension using a TILE_T parameter,

ensuring that each CTA is responsible for computing a [TILE_T ,

TILE_&] tile in the output matrix. The results of this division are

stored in the routing table. Each row in the table contains three en-

tries: the �rst entry indicates the type of the corresponding weight

matrix (i.e.,Wg), while the second and third entries specify the start

513

ICS ’24, June 04–07, 2024, Kyoto, Japan Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Ma�hias Fey, Binqian Yin, and Jiajia Li

Type Start End
0 0 10
1 10 42
1 42 70

K

Q

input

Weight

Output

TILE_K

CTA0
CTA2
CTA4

TILE_Q

TI
LE
_T

Routing Table

Figure 3: Segmented matrix multiplication algorithm and a

routing table, where is the accumulation dimension,
∑

|g | =

70, and TILE_T = 32. Distinct types are visually di�erentiated

by colors: green represents type 0, and red represents type 1.

and end o�sets for the T dimension, respectively. Initially, each

CTA retrieves its starting and ending o�sets for the T dimension by

accessing the routing table using its CTA ID. These o�sets enable

the CTA to calculate the addresses of the input and output matrices.

Similarly, the CTA calculates the addresses of the weight matrix

using the type obtained from the same row in the routing table.

Subsequently, the CTA loops through tiles of the input and weight

matrices along the accumulation dimension. In each iteration, it

performs a dot operation and accumulates the results in an output

tile that is eventually stored back in global memory.

Algorithm 1 further presents the major steps of segmented mat-

mul with Multi-stage Bu�ering and Tensor Core support.

Algorithm 1 Basic Segmented Matmul Algorithm.

Input: ctaID, routingTable, inputPtr, weightPtr, outputPtr
1 row← GetRow(ctaID)
2 type, start, end← row[0], row[1], row[2]
3 inputAddrs← GetAddrs(inputPtr, routingTable, start, end)
4 weightAddrs← GetAddrs(weightPtr, routingTable, type, type + 1)
5 outputAddrs← GetAddrs(outputPtr, routingTable, start, end)
6 outputTile← Zeros(end - start, TILE_Q)
7 inputTiles← Allocate(N, TILE_T , TILE_K)
8 weightTiles← Allocate(N, TILE_K, TILE_Q)
9 for 8 = 0 to #stages − 2 do ² Prefetch tiles

10 inputTile[i]← AsyncLoad(inputAddrs, 8)
11 weightTile[i]← AsyncLoad(weightAddrs, 8)
12 for 8 = 0 to K / TILE_K - 1 do ² Loop over tiles
13 tileIdx← 8 % (K / TILE_K)
14 AsyncWait(tileIdx)
15 A← Convert(inputTile[tileIdx]) ² Shared to registers
16 B← Convert(weightTile[tileIdx]) ² Shared to registers
17 outputTile← outputTile + TensorDot(A, B)
18 nextIdx← 8 + #stages - 1
19 nextTileIdx← nextIdx % (K / TILE_K)
20 inputTile[nextTileIdx]← AsyncLoad(inputAddrs, nextIdx)
21 weightTile[nextTileIdx]← AsyncLoad(weightAddrs, nextIdx)
22 C← Convert(outputTile) ² Registers to registers
23 Store(outputAddrs, C)

Multi-stage Bu�ering. Using single tiles in shared memory to

store input or weight data may not always be e�cient, as it may

not fully overlap the computation with the memory accesses [21].

To overcome this limitation, we have implemented a multi-stage

bu�ering technique that allows for fetching multiple tiles while

performing computation. As indicated in Line 7 and Line 8, we

allocate BC064B bu�ers to create a pipeline that interlaces compute

and memory accesses, where BC064B will be adjusted according to

resource limitation.

Moreover, to optimize register usage, we employ asynchronous

memory load instructions (cp.async [35]) on NVIDIAGPUs, which

directly transfer data from global memory to shared memory, by-

passing both the L1 cache and registers. Additionally, we use a 2D

address swizzling technique [4] to prevent bank con�icts in shared

memory. Before the loop begins, we start #stages − 1 asynchronous

copy transactions. Then, before the computation in each iteration,

we ensure that only necessary asynchronous transactions are com-

pleted, as shown in line 14. We also carefully mask out-of-bound

memory accesses within the loop to prevent any unintended side

e�ects.

Tensor Core. FASTEN leverages tensor core instructions to achieve

high compute throughput for TF32 and FP16 precisions. Unlike con-

ventional CUDA cores, utilizing tensor cores requires speci�c data

layouts [35]. This requirement means that each thread must hold

values at speci�c coordinates to produce corresponding results.

Therefore, the input operands are converted before applying each

tensor core dot operation, as shown in Line 15 and Line 16. Since

the output of mma and wgmma instructions also has a speci�c layout,

a conversion of the output tile (Line 23) is necessary before storing

it in global memory.

5 OPTIMIZATIONS

Though the basic segmented matmul algorithm (Algorithm 1) o�ers

a simple version that simpli�es memory access and gains higher

performance (see Fig. 13) compared to grouped matmul, it lacks

e�ciency in several scenarios. To address this issue, this section

presents several adaptive algorithms tailored to various shapes

and accumulation dimensions, including dynamic tiling for small

matrices, register blocking for the small accumulation dimension,

and 3D parallelization for the dynamic accumulation dimension.

5.1 Dynamic Tiling

In real datasets, we observed that each relation type might have

a varying number of corresponding edges and show a long-tail

phenomenon [5] that a large portion of the types only have a small

number of edges. Fig. 4 illustrates the distribution of the number of

edges for each type of the AM dataset (details described in Table 3).

It is evident that many relations have fewer than 512 edges. In

such a scenario, if a large tile size (e.g., 512) is employed, many

CTAs end up processing fewer than 512 edges. This leads to a waste

of computational resources, as the CTAs are forced to perform

calculations on zeros that have been padded to these oversized

tiles. This ine�ciency highlights the need for a more dynamic

approach [28] to tile size allocation.

To address this problem, we introduce the concepts of virtual tile

and physical tile. The physical tile refers to the maximum amount of

shared memory used by the kernel, which must be a static number

determined before a kernel launch. The virtual tile, on the other

hand, refers to the actual tile size used by a speci�c block. Rather

than statically choose the tile sizes (Lines 7 and 8 in Algorithm 1),

we dynamically decide them for each CTA . Based on the num-

ber of edges (i.e., 4=3 − BC0AC), we allocate only a portion of the

original shared memory. Besides, since tensor core instructions

514

FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication for Heterogeneous Graph Neural Networks ICS ’24, June 04–07, 2024, Kyoto, Japan

0 1000 2000 3000 4000
#Edges of each type

0
5

10
15
20
25
30
35

Fr
eq

ue
nc

y

Figure 4: The distribution of edge counts per relation type

in the AM dataset, with each histogram bin representing an

edge count interval of 128.

Output

K

input

TILE_K

Memory
��

Registers

CTA1

CTA2

CTA3

CTA4

Q

Weight

Memory
��

Registers

TILE_Q

(a) Without register blocking.

Output

K

input

TILE_K

Memory
��

Registers

CTA1

Q

Weight

Blocked on registers
after the first

iteration

TILE_Q

(b) With register blocking.

Figure 5: An example of register blocking where CTA1 will

process four tiles instead of one and block the weight tile on

registers to reduce memory transactions.

(e.g., mma.m16n16k8, mma.m16n8k8) require speci�c input operand

shapes, we round up the actual tile size to the nearest multiple of

16 in our code and pad any out-of-bound elements with zeros.

However, dynamic tiling can reduce the e�ciency of the in-

struction cache and introduce branch instructions. To mitigate this

overhead, we calculate a Utilization Factor as shown in Equation 6,

which represents the ratio between the actual amount of computa-

tion and the theoretical amount of computation. Utilization factor

is calculated and associated with a routing table prior to segmented

matmul. Dynamic tiling is enabled only when the utilization factor

falls below a prede�ned threshold (e.g., 0.5).

Utilization Factor =

∑

ă ∈T |g |
∑

ă ∈T +
|ă |

TILE_T , × TILE_T
(6)

5.2 Register Blocking

As previously mentioned, the dimensionality of features in HGNNs

typically falls within a modest range, such as 16 to 128. When is

the accumulation dimension and)8;4 = , each CTA processes

only a single tile of the input and weight matrices. Furthermore,

subsequent tiles of the input matrix, when belonging to the same

type, may share the same weight tile. This access pattern, as shown

in Fig. 5a, can lead to ine�ciencies for two reasons. First, redundant

r0 r1

CTA1

CTA2 CTA3

CTA5

CTA6 CTA7

CTA9

CTA10 CTA11AtomicAdd

CTA0 CTA1

CTA2 CTA3

Segmented Matmul Kernel

Accumulate Kernel

CTA8CTA4CTA0 1

2

Figure 6: Two 3D parallelization strategies are employed to

accelerate segmented matmul when the accumulation di-

mension varies among input and weight matrices. Option 1©

is utilized when determinism is not required. On the other

hand, option 2© is employed when determinism is necessary,

involving the use of intermediate memory.

memory instructions may be issued by multiple CTAs to access

the same weight tile. Second, each CTA processes only a small tile,

which can increase the overhead in CTA scheduling, particularly

when processing a large number of edges.

Tomitigate these issues, we adopt a persistent processingmethod [18],

which tasks a single CTA with the sequential handling of multi-

ple tiles, as shown in Fig. 5. This method incorporates a loop that

allows a CTA to iterate over several input tiles assigned to it. In

each iteration, only the input tiles are loaded using the multistage

bu�er approach described in Algorithm 1. In contrast, the weight

tile is loaded into registers just once during the initial iteration and

is subsequently reused for all dot operations. The results are stored

in global memory at the end of each iteration. With this strategy,

we not only reduce the number of memory transactions, but also

decrease the CTA scheduling overhead.

5.3 3D Parallelization

In Equations 3 and 4, we use static accumulation dimensions

and & correspondingly, which are known when an HGNN model

is initialized. In comparison, Equation 5 uses a dynamic accumula-

tion dimension, g , to calculate the gradients of the weight matrix.

This variability poses a challenge, as the standard grouped matmul

scheduling, depicted in Fig. 2, does not account for the �uctuating

computational demands associated with di�erent |g | sizes. However,

as illustrated in Fig. 4, the disparity in the number of edges of each

edge type in real datasets can lead to signi�cant computational

ine�ciencies.

To overcome this challenge, we devised a novel 3D parallelization

algorithm that extends parallelization to include the accumulation

dimension in Equation 5. Unlike the standard split-k matmul [36],

which only applies to dense matmul, our approach utilizes the

routing table to record the corresponding start and end o�sets for

each CTA, thus balancing workloads among a batch of matmuls of

515

ICS ’24, June 04–07, 2024, Kyoto, Japan Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Ma�hias Fey, Binqian Yin, and Jiajia Li

Type Start End
0 0 10
1 10 42
1 42 74
2 74 78
3 78 110
3 110 142
3 142 174
3 174 206
4 206 210

Next
NULL

NULL

NULL

Type Start End
0 0 10
1 10 74
2 74 78
3 78 206
4 206 210

Next

NULL

NULL

Type Start End
0 0 10
1 10 74
3 78 206
2 74 78
4 206 210

Next

NULL
NULL

Grouping Reordering

Figure 7: An example of using tile grouping and reordering

to reduce the memory consumption and allow for simple

indexing.

di�erent sizes along the accumulation dimension. FASTEN imple-

ments two versions of the 3D parallelization algorithm: the non-

deterministic and the deterministic versions. The non-deterministic

version launches a single segmented matmul kernel. If multiple

CTAs split a matrix on the accumulation dimension, they collabo-

rate on a single �nal tile. In this case, we use atomicAdd instructions

to resolve con�icts when storing results in global memory. For ex-

ample, Fig. 6 shows that CTA4 and CTA8 collaborate on a single

�nal tile. Otherwise, if a single CTA is responsible for the �nal tile,

such as CTA0 in Fig. 6, we use store instead of atomicAdd for

better throughput.

When determinism is paramount, particularly in model training,

FASTEN implements a deterministic version that adopts a dual-

kernel strategy. The �rst kernel mirrors the computation of the non-

deterministic version but substitutes atomic operations with direct

store instructions. If a single CTA su�ces for an output tile, the

result is written directly to the �nal bu�er; otherwise, intermediate

output tiles (e.g., CTA4 and CTA8 in Fig. 6) go to an intermediate

bu�er. The second kernel launches with fewer CTAs to accumulate

these intermediate results in the �nal bu�er, with one CTA per �nal

output tile to ensure determinism.

Our 3D parallelization algorithm adeptly handles workload vari-

ations among CTAs due to the dynamic accumulation dimension. In

practice, the deterministic version exhibits performance similar to

that of its non-deterministic counterpart, making it a practical solu-

tion for ensuring computational precision when there is su�cient

GPU memory for the intermediate bu�er.

5.4 Tile Grouping and Reordering

Both the register blocking and the 3D parallelization variants re-

quire that each CTA persistently processes multiple tiles. We de�ne

a block as the collection of all tiles processed by a single CTA, with

the maximum being #blocks tiles per block. This section outlines

our design that supports this mechanism and improves workload

balance.

A straightforward method to allow each CTA to process multiple

blocks is to replicate the routing table #blocks times, allowing us to

locate the subsequent tile for each CTA. This technique is similar

to the scheduling policy used in CUTLASS. However, replicating

the routing table not only increases memory usage, but also adds

overhead from accessing additional rows in the routing table. In-

stead, we developed the grouping method to address the problem.

As demonstrated in Fig. 7, we initially group neighboring tiles of

size TILE_T into a single large tile, adjusting the start and end

addresses accordingly, with a maximum grouping of #blocks tiles.

It is important to recognize that small tiles, de�ned as those with

a size less than TILE_T , are not combined into large tiles. If we

assign individual CTAs to handle these small tiles, imbalance issues

can arise, particularly when the utilization factor (Equation 6) is

low. Therefore, we extend the routing table with a next �eld. A

NULL value in the next �eld indicates a large tile. On the other

hand, we link small tiles, whose cumulative edge count is less than

TILE_T × #blocks, into a single small block by setting the proper

indexing in the next �eld.

To streamline the process of identifying the starting tile of a

block for each CTA, we utilize a straightforward indexing function,

such as dividing the CTA ID by the number of tiles per row. How-

ever, this indexing mechanism is incompatible with a routing table

after grouping, which requires that CTAs handling small blocks be

directed to the start tile in the next �eld chain. To resolve this issue,

a reordering approach for tiles within the routing table is essential.

We position the larger tiles and the initial small tiles of each block

at the forefront of the routing table. This ensures initial access to

these tiles. Subsequently, we update the next �elds in tiles of the

same block to re�ect this new arrangement. In addition, small tiles

within the same group are placed close to each other to enhance

memory e�ciency.

In summary, the combination of tile grouping and reordering

achieves a balanced assignment of workload through the routing

table and makes it compatible with e�cient indexing functions.

6 PERFORMANCE MODEL GUIDED TUNING

In this section, we a performance-model guided approach to opti-

mize segmented matmul performance across various architectures

and matrix shapes. Our proposed models are coarse-grained, pri-

marily aimed at correlating time with tuning knobs such as tile

sizes, rather than precisely estimating running time.

6.1 Performance Modeling

Following previous studies [21, 31] on modeling dense matmul

performance, we model segmented matmul’s parallelism and de-

compose the time spent in each CTA into di�erent phases. Initially,

we use Equation 7 to estimate the total time:

)8<4total = #waves × 0E4A064 ()8<4wave) (7)

In this model, a “wave” is de�ned as a group of CTAs running

concurrently on the GPU. We introduce both the inter-wave and

intra-wave performance models.

Inter-wave Modeling. The total number of waves, #waves, is cal-

culated as follows:

#waves = #partial_waves + #full_waves (8)

Here, #waves is the sum of partial and full waves. Partial waves are

characterized by underutilized Streaming Multiprocessors (SMs),

unlike full waves, where SMs are fully utilized. Typically, in seg-

mented matmul scenarios, only the �nal wave is a partial wave.

We de�ne the ideal number of waves as:

ideal
waves =

#CTAs

$22D?0=2~CTAs

=

∑

ă ∈T +
|ă |

TILE_T×Ċblocks
, × +

č

TILE_č , × +
ć

TILE_ć ,

$22D?0=2~CTAs
(9)

516

FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication for Heterogeneous Graph Neural Networks ICS ’24, June 04–07, 2024, Kyoto, Japan

Here $22D?0=2~CTAs refers to the maximum number of CTAs

that run concurrently on an SM. Consequently, we can de�ne Par-

allel E�ciency as the ratio between the number of ideal waves and

the number of actual waves:

�5 5parallel =
ideal
waves

#waves
(10)

Intra-wave Modeling. To estimate the time within each wave, we

di�erentiate between large and small block processing times. CTAs

dealing with large blocks access the routing table once, whereas

CTAs dealing with small blocks do so #blocks times. The ratio of

large blocks, R, can be determined based on g , #blocks, and) �!�_T .

The wave time is then calculated as:

)8<4wave = R ×)8<4
large
wave + (1 − R) ×)8<4

small
wave (11)

The respective times for large and small blocks are:

)8<4
large
wave =)8<4indexing + #block ×)8<4loop (12)

)8<4small
wave = #block × ()8<4indexing +)8<4loop) (13)

)8<4loop is the duration spent in the compute loop, as demonstrated

in Algorithm 1 at Line 12. The detailed)8<4indexing is given by:

)8<4indexing =#block ×
(

�8C
routing_table
L2

× !0C4=2~L2

+ (1 − �8C
routing_table
L2

) × !0C4=2~DRAM
)

(14)

We assume an increase in �8C
routing_table
L2

with a reduction in the

size of the routing table. Furthermore,)8<4loop is decomposed into

various components:

)8<4loop =)8<4comp +)8<4wait +)8<4sync +)8<4store (15)

)8<4comp relates to the duration of dot operations:

)8<4comp =

�!$%(tile × #iters ×$22D?0=2~CTAs

�!$%(SM
(16)

)8<4wait represents thewaiting period required for the dot operands

to be ready, while)8<4sync represents the time spending on syn-

chronizing threads to avoid shared memory data race.

This waiting period is reduced as #stages or $22D?0=2~CTA in-

crease, helping to hide latency.

)8<4wait = max(0,) 8<4load −)8<4comp) (17)

Suppose most of the L1 cache is reserved for shared memory, we

load data either from the L2 cache or DRAM at each iteration with a

bandwidth of �,L2 and �,DRAM, respectively. Then we can de�ne

)8<4load as the time spent loading tiles for #iters iterations.

)8<4load =

(8I4tile × #iters ×$22D?0=2~CTAs

�8C tile
L2
× �,L2 + (1 − �8C

tile
L2
) × �,DRAM

(18)

)8<4store is triggered once in the 3D parallelization and basic al-

gorithms, but multiple times in the register blocking algorithm.

)8<4sync is the time spent synchronizing all threads within each

CTA, which varies based on the number of warps per CTA. Based

on the decomposition of)8<4;>>? , we can de�ne �5 5comp as the

compute time relative to the load time and other durations:

�5 5comp =

)8<4comp

)8<4load +)8<4sync +)8<4indexing +)8<4store
(19)

Register Blocking Basic 3D Parallelization

Dynamic Tiling

Input Shapes

BLOCK_SIZE

Utilization Factor

Scheduling

Algorithms

N_STAGES N_WARPS

Resources

TILE_K TILE_Q TILE_T

Dual Kernel

Determinism

Single Kernel

Figure 8: The multi-layered autotuning approach to kernel

optimization. Each layer’s decision in�uences the subsequent

layer to ensure optimal performance based on underlying

hardware resources.

Guided by this performance model, we aim to enhance seg-

mented matmul’s performance by identifying and adjusting knobs

to achieve high compute and parallel e�ciency.

6.2 Autotuning

As illustrated in Fig. 8, we categorize the tuning knobs that impact

the performance of segmentedmatmul into three distinct categories:

Algorithms, Scheduling, and Resources. Given the complexity of these

knobs’ relationship with the performance of segmented matmul, a

one-size-�ts-all con�guration is unlikely to yield optimal results.

Consequently, FASTEN employs an autotuning approach to identify

the most e�ective con�guration based on the speci�c characteristics

of input shapes and types.

FASTEN benchmarks the given problem using a set of con�g-

urations, runs a few iterations, obtains the median running time,

and then selects the best con�guration to associate with the corre-

sponding “key”. Subsequently, inputs that trigger the same “key”

will bypass further autotuning. The following paragraphs detail our

approach to key selection, con�guration generation, and pruning.

Key Design. In FASTEN, individual routing tables are created for

the computation of the forward, input gradient, andweight gradient.

Metadata information is associated with each table, such as the

ratio of large blocks (R) and the utilization factor (U). The keys are

chosen based on their impact on compute and parallel e�ciency.

Although we could naively use the combination of 0;6>A8Cℎ<, {|g |,

for g in T }, , and& as the key, this approach risks excessive reruns

due to minor variations in the number of edges or edge types.

To minimize rerun cost, we have optimized our key selection to

include 0;6>A8Cℎ<, BC334E (|g |), 0E4A064 (|g |), , and& . Only a large

di�erence of BC334E (|g |) and 0E4A064 (|g |) will trigger the rerun of

the tuning process.

Con�guration Generation and Pruning. A straightforward ap-

proach would be to set up several candidate values for each tuning

knob, enumerate all possible con�gurations, and benchmark each

con�guration exhaustively. A simple combination could include

more than 20,000 con�gurations, leading to excessive tuning time.

517

ICS ’24, June 04–07, 2024, Kyoto, Japan Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Ma�hias Fey, Binqian Yin, and Jiajia Li

To address this, we have established the following set of con�gura-

tion pruning rules:

• Algorithm-based Pruning: The register blocking algorithm is

preferable when the accumulation dimension is small (i.e.,

f 32). The 3D parallelization algorithm is reserved for cases

where the accumulation dimension varies. Otherwise, the

basic algorithm is chosen.

• E�ciency-based Pruning: We evaluate the parallel and com-

pute e�ciency of con�gurations, focusing only on those

with the highest e�ciency. We approximated�8C tile
L2

in Equa-

tion 18 based on the maximum tile reuse rate, considering

the input shape and the tile values. Additionally, to account

for)8<4sync, the con�gurations are separated into groups

according to their number of threads per CTA, ranked ac-

cording to e�ciency.

• Resource Constraint-based Pruning: We estimate the shared

memory required for each con�guration and exclude those

that exceed the maximum shared memory capacity. Con-

�gurations that trigger excessive register spills during JIT

compilation are also discarded.

• Shape-based Pruning: Con�gurations with tile dimensions

or tile dimension multiples #stages are eliminated to avoid

wasteful instruction cycles.

• Rule-based Pruning: The dual kernel approach is reserved

for scenarios requiring determinism, as requested by users.

Dynamic tiling is applied only when the Utilization Factor

is low.

7 IMPLEMENTATION

This section describes the implementation details of how FASTEN

is integrated with GNN frameworks.

7.1 Integration in PyG

In addition to access to raw segmented matmul APIs in FASTEN,

we have integrated FASTEN operators with PyG [10], a state-of-the-

art GNN framework supporting various HGNNs, to demonstrate

the performance enhancements provided by FASTEN and o�er

user-friendly interfaces.

We provide utilities to assist users in converting existing HGNN

modules to those accelerated by FASTEN. FastenModule(module)

is a wrapper for existing HGNN modules, maintaining structural

similarity in module initialization and forward call interfaces as

per PyG standards. The key addition is the TensorSlice(data,

types) data structure as a parameter for the forward function,

which stores the input data and its corresponding types for each seg-

ment. This data structure incorporates a create_routing_table

API and a get_routing_tableAPI, both utilized internally by each

FastenModule.

For creating a routing table, we o�er two approaches. In the

default mode, most optimal settings based on our performance

models are used to create the routing table before executing a

segmented matmul. Alternatively, with autotune set to true, we

benchmark con�gurations, select the most performant one, and link

this con�guration with input shapes as keys in the TensorSlice,

facilitating con�guration reuse for identical keys.

7.2 Adapting Di�erent HGNNs

FASTEN supports various HGNNs, including RGCN [41], RGAT [7],

and HGT [20], all utilizing segmented matmul in their implementa-

tions.

RGCN and RGAT. Both RGCN and RGAT employ segmented

matmul in their message passing layers, segmenting operations

based on the relational edge types. In practice, multiple RGCN or

RGAT modules are stacked with consistent feature sizes, allowing

the routing table to be computed once, stored in TensorSlice, and

reused across modules.

HGT. HGT leverages meta information that contains node and

edge types in heterogeneous graphs to parameterize weight matri-

ces. Segmented matmul is utilized for both node and edge types

related computations. We preprocess the meta information to con-

struct two TensorSlice objects accordingly, one for node-type

data and another for edge-type data, and pass them to the forward

function.

Optimizations. For full graph processing, where node or edge

types remain constant during GNN computation, we sort the data

according to its type, cache the related TensorSlice object, and

reuse this TensorSlice object when the data is loaded again in

iterative training. In scenarios involving subgraph sampling, we sort

the data each time it is sampled and use the related TensorSlice

only for the current iteration. FASTEN also facilitates the fusion

of simple element-wise prologues or epilogues. For instance, when

using bias in the prologue, we load the bias segment based on the

type handled by each CTA into registers, accumulate bias with

each segment’s output, and store the results in global memory to

minimize the overhead of transferring results from global memory

to registers in the bias kernel. Unlike fusion in dense operators,

which reduces the launch of only one kernel, fusion of segmented

operators in the prologue can reduce the launch of up to |T | kernel.

8 EVALUATION

Platforms. We evaluated FASTEN’s performance on three dis-

tinct platforms, as detailed in Table 2, all using the TF32 format

with tensor cores.

Datasets. We used both real and synthesized random datasets.

The properties of the real datasets used are summarized in Table 3.

The AIFB,MUTAG, BGS, and AMdatasets [41] only have edge types.

While other datasets, including Freebase [6], DBLP [11], ACM [30],

and IMDB [2], have both edge and node types.

Our experiments are categorized into two types: the �rst focused

on operator performance across di�erent datasets, and the second

on end-to-end training performance, benchmarked against existing

implementations of popular HGNNs. Experiments were measured

using the Proton pro�ler [58].

8.1 Operator Performance

In this section, we compare FASTEN’s segmented matmul perfor-

mance against two state-of-the-art variants: CUTLASS [39], which

adopts the grouped matmul algorithm, and cuBLASc̃itecuBLAS,

which uses the loop over matmuls method that launches multiple

kernels. FASTEN’s A100 and RTX4090 implementations employ mma

518

FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication for Heterogeneous Graph Neural Networks ICS ’24, June 04–07, 2024, Kyoto, Japan

Platform Memory CPU GPU Specs

GH200 480GB NVIDIA Grace CPU Superchip 96GB GPU Memory, 132 SMs, 989 TF32 TFLOP/s, 4TB/s Bandwidth
A100 SXM 256GB AMD EPYC 7543 80GB GPU Memory, 108 SMs, 156 TF32 TFLOP/s, 2TB/s Bandwidth
RTX4090 512GB AMD Ryzen Threadripper PRO5975WX 24GB GPU Memory, 128 SMs, 82.6 TF32 TFLOPS, 1TB/s Bandwidth

Table 2: Evaluation Platforms

AIFB AM BGS MUTAG DBLP Freebase IMDB ACM0

2

4

6

Sp
ee

du
p

(B
as

e-
lo

g2
)

(a) GH200

Forward Backward Q=K=32 Q=K=64 Q=K=128

AIFB AM BGS MUTAG DBLP Freebase IMDB ACM0

2

4

6

Sp
ee

du
p

(B
as

e-
lo

g2
)

(b) A100

AIFB AM BGS MUTAG DBLP Freebase IMDB ACM0

2

4

6

Sp
ee

du
p

(B
as

e-
lo

g2
)

(c) RTX4090

Figure 9: Operator performance speedups of FASTEN over CUTLASS.

AIFB AM BGS MUTAG DBLP Freebase IMDB ACM
0

2

4

6

Sp
ee

du
p

(B
as

e-
lo

g2
)

(a) GH200

Forward Backward Q=K=32 Q=K=64 Q=K=128

AIFB AM BGS MUTAG DBLP Freebase IMDB ACM
0

2

4

Sp
ee

du
p

(B
as

e-
lo

g2
)

(b) A100

AIFB AM BGS MUTAG DBLP Freebase IMDB ACM
0

2

4

Sp
ee

du
p

(B
as

e-
lo

g2
)

(c) RTX4090

Figure 10: Operator performance speedups of FASTEN over cuBLAS.

instructions to utilize tensor cores, whereas the GH200 implemen-

tation employs both mma and wgmma instructions. The TMA (Tensor

Memory Access) function unit was not utilized in our GH200 im-

plementation for memory transfers. Experiments were performed

with CUDA 12.2 [40] and PyG at commit a37af2e.

519

ICS ’24, June 04–07, 2024, Kyoto, Japan Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Ma�hias Fey, Binqian Yin, and Jiajia Li

Dataset Nodes Edges Types

AIFB 8,285 58,086 90
MUTAG 23,644 148,454 46
BGS 333,845 1,832,398 206
AM 1,666,764 11,976,642 266

Freebase 180,098 1,057,688 36 (Edge), 8 (Node)
DBLP 26,128 119,783 3 (Edge), 4 (Node)
ACM 10,942 273,936 4 (Edge), 4 (Node)
IMDB 21,420 43,321 3 (Edge), 4 (Node)

Table 3: Real Datasets Properties

Real Datasets. We evaluated the performance of the forward

and backward phases for di�erent feature sizes (: = & = 32, 64,

128) on the GH200, A100, and RTX 4090 platforms. The forward

phase corresponds to Equation 3, and the backward phase computes

Equations 4 and 5. Fig. 9 and Fig. 10 illustrate the performance on

eight real datasets, all using edge types to segment input samples.

FASTEN consistently outperforms CUTLASS in both phases. In

the forward phase, FASTEN achieved speedups ranging from 1.11×

to 5.21×; in the backward phase, the speedups ranged from 2.07× to

117.54×. FASTEN achieved higher speedups in the forward phase

when the feature size is low because the CUTLASS implementa-

tion did not select appropriate tile sizes and lacked optimizations

such as tile grouping and register blocking, as demonstrated in

our incremental improvement studies. As the number of feature

sizes increases, FASTEN continues to outperform CUTLASS, due

to reduced indexing overhead. In the backward phase, FASTEN

signi�cantly surpasses CUTLASS, primarily due to the bene�ts of

3D parallelism, which leverages the routing table to balance the

workload along the accumulation dimension.

Comparing with cuBLAS, FASTEN achieved speedups ranging

from 0.69× to 51.01× in the forward phase and from 0.76× to 29.25×

in the backward phase. When the number of types is small, cuBLAS

e�ciently handles both phases as it only needs to launch very

few kernels, each of which is highly optimized even when the

accumulation dimension is large. However, as the number of types

increases, as observed in datasets like AIFB, MUTAG, BGS, and AM,

cuBLAS’s performance decreases due to the increased overhead

from launching more kernels and the reduced GPU utilization rate

of each kernel. Overall, FASTEN achieved an average speedup of

5.73× and 3.72× over cuBLAS in forward and backward phases

correspondingly.

Synthetic Datasets. In addition to real datasets, which typically

have unbalanced distributions, we compared the performance of

FASTEN with that of CUTLASS using synthetic datasets. To gen-

erate these datasets, we set the total number of instances at one

million (i.e.,
∑
ă∈T |g |). Each instance was randomly assigned to one

of the T types, using a uniform probability distribution to assess

performance when each type is associated with a similar number

of instances. We evaluated the number of types ranging from 100

to 1900 in steps of 200. We also calculated the upper performance

bound limited by DRAM bandwidth using the Roo�ine model [49],

which we denote as the theoretical peak performance. Fig. 11 (a)

and 11 (b) show the performance of the three variants using feature

sizes of 32 and 128 in the forward and backward phases.

500 1000 1500

10

20

30

TF
LO

P/
s

500 1000 1500
50

75

100

125

500 1000 1500
#Types

0

10

20

30

TF
LO

P/
s

500 1000 1500
#Types

0

50

100

(c) Backward Phase, Feature Size=32 (d) Backward Phase, Feature Size=128

(a) Forward Phase, Feature Size=32 (b) Forward Phase, Feature Size=128

FASTEN CUTLASS Peak

Figure 11: Performance comparison between FASTEN and

CUTLASS on randomly generated instances on the GH200

GPU.

500 1000 1500
#Types

24

26
TF

LO
P/

s

500 1000 1500
#Types

60

70

80

AIFB AM BGS MUTAG0.0

0.2

0.4

Ti
m

e
(m

s)

AIFB AM BGS MUTAG0

2

(a) Feature Size=32 (b) Feature Size=128

(c) Feature Size=32 (d) Feature Size=128

Deterministic Non-Deterministic

Figure 12: Performance comparison of FASTEN’s determinis-

tic and non-deterministic backward implementations using

real and synthetic datasets on the GH200 GPU.

We observed that FASTEN is highly optimized, achieving be-

tween 55% and 84% of the peak performance. In comparison, CUT-

LASS achieves only 1%-40% of the peak performance. Interestingly,

smaller feature sizes often reach higher peaks compared to their

larger counterparts.There are two main factors contributing to the

performance degradation observed with larger feature sizes. Firstly,

our detailed analysis of instruction-level pro�ling results [59] re-

veals signi�cant stalls due to barrier instructions in the code gener-

ated by ptxas. These stalls occur while waiting for WGMMA operations.

By grouping these WGMMA operations and synchronizing them less

frequently, we might reduce these overheads. Additionally, when

the feature size is set to 128, the performance of the forward pass

is noticeably poorer than that of the backward phase. This discrep-

ancy arises from the size of the accumulation dimension (g), which

leads to a tile size that is too large for e�ective register blocking,

but too small to allow the overlap of compute tasks with load and

store operations.

520

FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication for Heterogeneous Graph Neural Networks ICS ’24, June 04–07, 2024, Kyoto, Japan

PyG Basic OPT1 OPT2 OPT30.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

Forward

PyG 3D OPT1 OPT20

10

20

30 Backward

Figure 13: Incremental optimization e�ects on the forward

and backward phases. OPT1: tile size tuning, OPT2: tile group-

ing & reordering, OPT3: register blocking.

Deterministic vs. Non-Deterministic Comparisons. Fig. 12 (a) and

(b) illustrate that the deterministic implementations of FASTEN in

the backward phase perform comparably to the non-deterministic

version across various types using randomly generated datasets.

Performance was also assessed on real datasets with feature sizes

of 32 and 128, respectively, as shown in Figs. 12 (c) and (d). Over-

all, the non-deterministic version demonstrates performance sim-

ilar to its deterministic counterpart on real datasets. Notably, for

larger feature sizes, the deterministic version outperforms the non-

deterministic one. This improvement is attributed to the fact that

the deterministic version employs store operations instead of

atomicAdd, resulting in higher throughput. In contrast, for smaller

feature sizes, the second kernel in the dual kernel strategy takes

a relatively larger portion of the total runtime. Thus, the non-

deterministic version outperforms the deterministic version be-

cause there is no additional overhead in accessing the intermediate

bu�er.

Incremental Improvement. We also evaluated the incremental

e�ects of optimizations employed in FASTEN’s segmented matmul

operator, which are divided into multiple stages: initial, tile size

tuning using the autotuner, tile grouping & reordering, and register

blocking. The initial implementation of the forward phase employs

the basic Algorithm 1, while the backward phase utilizes the 3D

parallelization algorithm with a #ĘĢĥęġĩ of one. Fig. 13 illustrates

the performance of both the forward and backward phases using

the AM dataset with a feature size of 32 on the GH200 GPU.

For a fair comparison, we used the same number of threads,

tile sizes, stages, and the same mma modi�er as CUTLASS initially

uses. We observe that our initial forward implementation (Basic)

outperforms CUTLASS by 1.61×; FASTEN incurs lower indexing

costs because its routing table stores only a single dimension of

varying sizes. Additionally, our initial backward implementation

(3D) is 5.34× faster than PyG, due to the adoption of 3D paralleliza-

tion for workload balance. By selecting appropriate tile sizes, we

can optimize both forward and backward phases. Tile grouping

achieves a 1.10× speedup in the forward phase, and a 2.42× speedup

in the backward phase. This higher speedup in the backward phase

can be attributed to the larger workload per CTA after grouping,

which also reduces con�icts in atomic operations. Register blocking

results in an additional 1.04× speedup in the forward phase.

RGCN RGAT HGT
GH200

0

200

400

600

800

1000

Ti
m

e
(m

s)

RGCN RGAT HGT
A100

RGCN RGAT HGT
RTX 4090

Deterministic Non-Deterministic

Figure 14: End-to-end training time (four iterations) of FAS-

TEN comparing with PyG. RGCN and RGAT used the AM

dataset, and HGT used the Freebase dataset.

AIFB AM BGS MUTAG0

5

10

15

Ti
m

e
(m

s)

PyG
FASTEN
Graphiler

Figure 15: End-to-end inference time of FASTEN comparing

with Graphiler and PyG.

8.2 End-to-end Performance

In this section, we compare the end-to-end performance of FASTEN

with PyG and Graphiler. RGCN and HGT were evaluated using a

feature size of 32, and GAT was assessed with a feature size of 8.

FASTEN vs. PyG. In the default implementation of PyG’s ex-

amples, HGT and RGCN adopt the CUTLASS grouped matmul

approach for segmented matmul during the forward phase. How-

ever, during the backward phase, they employ the cuBLAS loop

over matmul method. PyG’s RGAT di�ers by utilizing the batched

matmul method for segmented matmul, leading to a signi�cant

increase in memory footprint. As a result, PyG’s RGAT can only

be operated with a restricted feature size. In contrast, FASTEN’s

RGAT model is capable of supporting feature sizes up to 32, even

on RTX4090. As depicted in Fig. 14, FASTEN outperforms PyG in all

HGNNs on three platforms, achieving a speedup ranging between

1.37× and 3.53×. Notably, the maximum speedup was observed

on the GH200 platform with the RGAT model. We also made an

interesting observation regarding the feature size: When operat-

ing with smaller feature sizes, PyTorch’s bmm operation defaults

to using ffma instructions instead of tensor cores on the GH200

platform. This contrasts with its behavior on the A100 and RTX4090

platforms, where it uses tensor cores regardless of feature sizes.

FASTEN vs. Graphiler. Graphiler depends on CUDA 11 and thus

has compatibility issues with newer GPU platforms such as the

RTX4090 and GH200. Consequently, our evaluation of Graphiler

was limited to the A100 platform. In experiments, we focused on the

forward phase performance2 of Graphiler’s RGCN using a feature

size of 32, comparing it with PyG and FASTEN across four real

2Graphiler only supports compilation of the forward computation graph.

521

ICS ’24, June 04–07, 2024, Kyoto, Japan Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Ma�hias Fey, Binqian Yin, and Jiajia Li

datasets. In Fig. 15, our �ndings revealed that FASTEN achieved a

1.9-9.4× speedup against Graphiler. More notably, Graphiler demon-

strated slower performance compared to PyG in all datasets3. This

outcome stands in stark contrast to the optimization e�ects claimed

in Graphiler’s original publication. Considering that Graphiler was

developed two years ago, a period during which PyG had not yet

adopted CUTLASS for segmented matmul operations, this perfor-

mance discrepancy highlights a crucial insight: the mere fusion of

operations in computation graphs, without integrating low-level

optimizations, is inadequate to achieve optimal performance for

sophisticated operators.

9 RELATED WORK

This section provides an overview of related work on GNN perfor-

mance optimizations and compares them with FASTEN.

CTA Scheduling. CTA scheduling is essential to maximize ef-

�ciency on GPUs. NVIDIA’s default hardware-based scheduling

engine Gigathread [50] initially follows a round-robin policy and

then updates to dynamic scheduling [27]. Lee et al. [25] designed a

new CTA scheduler that monitors workloads and dynamically de-

termines the number of CTAs assigned to each core. Kim et al. [24]

studied improving CTA scheduling speci�cally for GEMM and con-

volution algorithms. In addition to the simulator-based approaches

mentioned above, there are software-based solutions. Li et al. [26]

proposed CTA clustering techniques to group CTAs with potential

reuse on the same SM, in order to maximize cache reuse. Similarly,

Ukarande et al. [46] designed software clustering techniques to

improve cache locality for texture accesses in game applications.

Unlike these general approaches, FASTEN’s CTA scheduling is

speci�cally tailored for segmented matmul operations and uses a

routing table for guidance.

Irregular Batch Matmul. We refer to operations that support var-

ious indexing mechanisms and shapes as irregular batch matmul,

as they are not restricted by the size constraints inherent in stan-

dard batch matmul. CUTLASS [38] has provided general grouped

matmul operators, but these often fall short in real-world scenar-

ios in terms of performance and functionality. Unlike CUTLASS,

MAGMA [32] supports variable dimensions by grouping matrices

with di�erent shapes through the “z” dimension when starting a

kernel. Li et al. [28] further optimized this method for small ma-

trices by grouping matrices according to the tile size used. Block

sparse matmul [15] is similar to the segmented matmul, as only

one dimension can vary, but the result is stored in a global sparse

matrix instead of a batch of dense matrices. MEGABLOCKS [12]

optimizes the block sparse computation in Mixture-of-Experts [42]

modules with a new matrix format.

GNN Performance Optimizations. Previous studies that improve

ine�ciencies in homogeneous GNNs [8, 22, 48] cannot be directly

adopted for HGNNs due to their new sparsity in relational di-

mension. Most existing research on HGNNs has instead focused

on high-level optimizations such as scheduling mechanisms [34],

matrix format conversion [45], kernel fusion [16, 55], and IR de-

signs [51, 55, 56]. These approaches either leverage existing kernels

3Graphiler utilizes smaller datasets, which selectively �lter out nodes and edges from
the datasets used in FASTEN and PyG evaluations.

in cuBLAS or CUTLASS, or use tensor cores, often without detailed

analysis and optimizations. Furthermore, existing compiler-based

approaches [51, 55] are limited to the forward phase. In contrast,

FASTEN investigates low-level ine�ciencies and redesigns the seg-

ment matmul operator, demonstrating improved e�ciency across

multiple GPU architectures.

10 DISCUSSIONS

Emerging GPU Features. It is noteworthy that, beginningwith the

Hopper architecture, NVIDIA has introduced support for CTA clus-

ters and hardware-level data transfer. We will explore this advance-

ment, which could provide more granular control in segmented

matmul as the weight matrix is shared among instances of the

same type. Furthermore, our future work will include performance

optimizations for other segmented operations on GPUs, such as

segmented sort, scan, and attention.

Scalability. To support large graphs, such as OGB datasets [19],

users can apply FASTEN to multiple GPUs by dividing segments of

di�erent types on di�erent GPUs. However, this initial approach

is not optimal due to the overlooking of communication issues,

such as loading redundant weight matrices and aggregating weight

gradients on multiple GPUs. To make FASTEN more e�cient, we

plan to develop a centralized scheduling module to address these

issues.

Portability. FASTEN has been modularized into nn, op, and kernel

layers. While the nn layer is integrated with PyG, the op layer or

the kernel layer does not depend on PyG. Therefore, we envision

that it would be straightforward to integrate the op or kernel layer

with other GNN frameworks such as DGL [47].

11 CONCLUSIONS

This paper introduces FASTEN —a high-performance library tai-

lored for segmented matrix multiplication operations. The motiva-

tion behind FASTEN is that there is a lack of algorithms and imple-

mentations on GPUs well suited for batch processing segmented

with irregular and di�erent sizes, which commonly exist in training

heterogeneous graph neural networks. FASTEN encompasses a set

of sophisticated strategies that focuses primarily on reducing in-

dexing costs, e�ective CTA scheduling, and data reuse across CTAs.

Evaluation results show that FASTEN is signi�cantly faster than

state-of-the-art vendor-provided operator libraries [38], as well as

research tools [55] that optimize compiler passes. Future work on

FASTEN will be extending the methodology on other segmented

operations, utilizing advanced GPU features, and �ne-tuning it for

multi-GPU training.

ACKNOWLEDGMENTS

This project was supported by resources provided by the O�ce

of Research Computing at George Mason University (URL: https:

//orc.gmu.edu) and George Mason University’s Faculty Startup

Fund of the Computer Science Department. This project was also

supported in part by National Science Foundation (Award Numbers

2018631 and 2316201).

522

FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication for Heterogeneous Graph Neural Networks ICS ’24, June 04–07, 2024, Kyoto, Japan

REFERENCES
[1] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2017. Learning

to represent programs with graphs. arXiv preprint arXiv:1711.00740 (2017).
[2] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang.

2019. Simgnn: A neural network approach to fast graph similarity computation.
In Proceedings of the twelfth ACM international conference on web search and data
mining. 384–392.

[3] Albert-Laszlo Barabasi and Zoltan N Oltvai. 2004. Network biology: under-
standing the cell’s functional organization. Nature reviews genetics 5, 2 (2004),
101–113.

[4] Ganesh Bikshandi and Jay Shah. 2023. A Case Study in CUDA Kernel Fusion:
Implementing FlashAttention-2 on NVIDIA Hopper Architecture using the CUT-
LASS Library. arXiv:2312.11918 [cs.LG]

[5] Alpheus Bingham and Dwayne Spradlin. 2011. The long tail of expertise. Pearson
Education.

[6] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013).

[7] Dan Busbridge, Dane Sherburn, Pietro Cavallo, and Nils Y Hammerla. 2019.
Relational graph attention networks. arXiv preprint arXiv:1904.05811 (2019).

[8] Zhaodong Chen, Mingyu Yan, Maohua Zhu, Lei Deng, Guoqi Li, Shuangchen
Li, and Yuan Xie. 2020. fuseGNN: Accelerating graph convolutional neural
network training on GPGPU. In Proceedings of the 39th International Conference
on Computer-Aided Design. 1–9.

[9] David Easley, Jon Kleinberg, et al. 2012. Networks, crowds, and markets. Cam-
bridge Books (2012).

[10] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

[11] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. Magnn: Metap-
ath aggregated graph neural network for heterogeneous graph embedding. In
Proceedings of The Web Conference 2020. 2331–2341.

[12] Trevor Gale, Deepak Narayanan, Cli� Young, and Matei Zaharia. 2023.
MegaBlocks: E�cient Sparse Training with Mixture-of-Experts. Proceedings
of Machine Learning and Systems 5 (2023).

[13] Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep,
Gertrude Liu, Jeremy BRHayter, Richard Vickers, Charles Roberts, Jian Tang, et al.
2021. Utilizing graph machine learning within drug discovery and development.
Brie�ngs in bioinformatics 22, 6 (2021), bbab159.

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263–1272.

[15] Scott Gray, Alec Radford, and Diederik P. Kingma. 2017. Block-Sparse GPU
Kernels. https://blog.openai.com/block-sparse-gpu-kernels/. Accessed: 1-14-
2024.

[16] Yuntao Gui, Yidi Wu, Han Yang, Tatiana Jin, Boyang Li, Qihui Zhou, James
Cheng, and Fan Yu. 2022. HGL: accelerating heterogeneous GNN training with
holistic representation and optimization. In SC22: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 1–15.

[17] Yixin Guo, Pengcheng Li, Yingwei Luo, Xiaolin Wang, and Zhenlin Wang. 2022.
Exploring gnn based program embedding technologies for binary related tasks.
In Proceedings of the 30th IEEE/ACM International Conference on Program Com-
prehension. 366–377.

[18] Kshitij Gupta, Je� A Stuart, and John D Owens. 2012. A study of persistent threads
style GPU programming for GPGPU workloads. IEEE.

[19] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[20] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In Proceedings of the web conference 2020. 2704–2710.

[21] Guyue Huang, Yang Bai, Liu Liu, Yuke Wang, Bei Yu, Yufei Ding, and Yuan Xie.
2023. ALCOP: Automatic Load-Compute Pipelining in Deep Learning Compiler
for AI-GPUs. Proceedings of Machine Learning and Systems 5 (2023).

[22] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. Ge-spmm:
General-purpose sparse matrix-matrix multiplication on gpus for graph neural
networks. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–12.

[23] Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng Shen. 2021.
Understanding and bridging the gaps in current GNN performance optimizations.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 119–132.

[24] Hyeonjin Kim and William J. Song. 2023. LAS: Locality-Aware Scheduling for
GEMM-Accelerated Convolutions in GPUs. IEEE Transactions on Parallel and
Distributed Systems 34, 5 (2023), 1479–1494. https://doi.org/10.1109/TPDS.2023.
3247808

[25] Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong Seo, Yeongon
Cho, and Soojung Ryu. 2014. Improving GPGPU resource utilization through

alternative thread block scheduling. In 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA). 260–271. https://doi.org/10.
1109/HPCA.2014.6835937

[26] Ang Li, Shuaiwen Leon Song, Weifeng Liu, Xu Liu, Akash Kumar, and Henk
Corporaal. 2017. Locality-Aware CTA Clustering for Modern GPUs. In Pro-
ceedings of the Twenty-Second International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (Xi’an, China) (ASP-
LOS ’17). Association for Computing Machinery, New York, NY, USA, 297–311.
https://doi.org/10.1145/3037697.3037709

[27] Ang Li, Shuaiwen Leon Song, Mark Wijtvliet, Akash Kumar, and Henk Corporaal.
2016. SFU-driven transparent approximation acceleration onGPUs. In Proceedings
of the 2016 International Conference on Supercomputing. 1–14.

[28] Xiuhong Li, Yun Liang, Shengen Yan, Liancheng Jia, and Yinghan Li. 2019. A
Coordinated Tiling and Batching Framework for E�cient GEMM onGPUs. In Pro-
ceedings of the 24th Symposium on Principles and Practice of Parallel Programming
(Washington, District of Columbia) (PPoPP ’19). Association for Computing Ma-
chinery, New York, NY, USA, 229–241. https://doi.org/10.1145/3293883.3295734

[29] Yangyang Li, Yipeng Ji, Shaoning Li, Shulong He, Yinhao Cao, Yifeng Liu,
Hong Liu, Xiong Li, Jun Shi, and Yangchao Yang. 2021. Relevance-Aware
Anomalous Users Detection in Social Network via Graph Neural Network. In
2021 International Joint Conference on Neural Networks (IJCNN). 1–8. https:
//doi.org/10.1109/IJCNN52387.2021.9534136

[30] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming
He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we really
making much progress? revisiting, benchmarking and re�ning heterogeneous
graph neural networks. In Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining. 1150–1160.

[31] Sangkug Lym, Donghyuk Lee, Mike O’Connor, Niladrish Chatterjee, and Mattan
Erez. 2019. DeLTA: GPU performance model for deep learning applications with
in-depth memory system tra�c analysis. In 2019 IEEE international symposium
on performance analysis of systems and software (ISPASS). IEEE, 293–303.

[32] Rajib Nath, Stanimire Tomov, and Jack Dongarra. 2010. An improved magma
gemm for fermi graphics processing units. The International Journal of High
Performance Computing Applications 24, 4 (2010), 511–515.

[33] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2015.
A review of relational machine learning for knowledge graphs. Proc. IEEE 104, 1
(2015), 11–33.

[34] Israt Nisa, Minjie Wang, Da Zheng, Qiang Fu, Umit Çatalyürek, and George
Karypis. 2023. Optimizing Irregular Dense Operators of Heterogeneous GNN
Models on GPU. In 2023 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW). 199–206. https://doi.org/10.1109/IPDPSW59300.
2023.00042

[35] NVIDIA. 2023. Parallel Thread Execution ISA. https://docs.nvidia.com/cuda/
parallel-thread-execution/index.html Accessed: 12-25-2023.

[36] NVIDIA Corporation. 2023. cuBLAS: The NVIDIA CUDA Basic Linear Algebra
Subroutines library. https://developer.nvidia.com/cublas. Accessed: 12-16-2023.

[37] NVIDIA Corporation. 2023. cuSPARSE: Basic Linear Algebra for Sparse Matrices
on NVIDIA GPUs. https://developer.nvidia.com/cusparse. Accessed: 12-16-2023.

[38] NVIDIA Corporation. 2023. CUTLASS: CUDA C++ template abstractions for
implementing high-performance matrix-matrix multiplication. https://github.
com/NVIDIA/cutlass. Accessed: 12-16-2023.

[39] NVIDIA Corporation. 2023. CUTLASS Grouped Kernel Schedulers. https://github.
com/NVIDIA/cutlass/blob/main/media/docs/grouped_scheduler.md. Accessed:
12-16-2023.

[40] NVIDIA Corporation. 2024. CUDA Toolkit Documentation. https://developer.
nvidia.com/cuda-toolkit Accessed: 01-06-2024.

[41] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web: 15th International Conference, ESWC 2018,
Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15. Springer, 593–607.

[42] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geo�rey Hinton, and Je� Dean. 2017. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).

[43] PyTorch Geometric Team. 2024. PyTorch Geometric (PyG). https:
//github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/
conv/rgcn_conv.py Accessed: 04-04-2024.

[44] PyTorch Geometric Team. 2024. PyTorch Geometric (PyG) Lib.
https://github.com/pyg-team/pyg-lib/blob/master/pyg_lib/csrc/ops/autograd/
matmul_kernel.cpp Accessed: 04-04-2024.

[45] Thiviyan Thanapalasingam, Lucas van Berkel, Peter Bloem, and Paul Groth. 2022.
Relational graph convolutional networks: a closer look. PeerJ Computer Science 8
(2022), e1073.

[46] Aditya Ukarande, Suryakant Patidar, and Ram Rangan. 2021. Locality-aware cta
scheduling for gaming applications. ACM Transactions on Architecture and Code
Optimization (TACO) 19, 1 (2021), 1–26.

[47] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. arXiv preprint

523

ICS ’24, June 04–07, 2024, Kyoto, Japan Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Ma�hias Fey, Binqian Yin, and Jiajia Li

arXiv:1909.01315 (2019).
[48] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and

Yufei Ding. 2021. GNNAdvisor: An adaptive and e�cient runtime system for
GNN acceleration on GPUs. In 15th USENIX symposium on operating systems
design and implementation (OSDI 21). 515–531.

[49] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roo�ine: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (2009), 65–76.

[50] Craig M Wittenbrink, Emmett Kilgari�, and Arjun Prabhu. 2011. Fermi GF100
GPU architecture. IEEE Micro 31, 2 (2011), 50–59.

[51] Kun Wu, Mert Hidayetoğlu, Xiang Song, Sitao Huang, Da Zheng, Israt Nisa, and
Wen-mei Hwu. 2023. PIGEON: Optimizing CUDA Code Generator for End-to-
End Training and Inference of Relational Graph Neural Networks. arXiv preprint
arXiv:2301.06284 (2023).

[52] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural
networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.

[53] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[54] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Ge-
niesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet: a
benchmark for molecular machine learning. Chemical science 9, 2 (2018), 513–530.

[55] Zhiqiang Xie, Minjie Wang, Zihao Ye, Zheng Zhang, and Rui Fan. 2022. Graphiler:
Optimizing graph neural networks with message passing data �ow graph. Pro-
ceedings of Machine Learning and Systems 4 (2022), 515–528.

[56] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. 2023. SparseTIR:
Composable abstractions for sparse compilation in deep learning. In Proceedings
of the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. 660–678.

[57] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI open 1 (2020), 57–81.

[58] Keren Zhou. 2024. Proton: A Pro�ler for Triton. https://github.com/openai/
triton/tree/main/third_party/proton Accessed: 04-021-2024.

[59] Keren Zhou, Xiaozhu Meng, Ryuichi Sai, and John Mellor-Crummey. 2021. GPA:
A GPU performance advisor based on instruction sampling. In 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). IEEE, 115–
125.

524

	Abstract
	1 Introduction
	2 Background
	3 Existing Work
	4 Our Approach
	5 Optimizations
	5.1 Dynamic Tiling
	5.2 Register Blocking
	5.3 3D Parallelization
	5.4 Tile Grouping and Reordering

	6 Performance Model Guided Tuning
	6.1 Performance Modeling
	6.2 Autotuning

	7 Implementation
	7.1 Integration in PyG
	7.2 Adapting Different HGNNs

	8 Evaluation
	8.1 Operator Performance
	8.2 End-to-end Performance

	9 Related Work
	10 Discussions
	11 Conclusions
	Acknowledgments
	References

