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Abstract—Ensuring accurate predictions of inpatient length
of stay (LoS) and mortality rates is essential for enhancing
hospital service efficiency, particularly in light of the constraints
posed by limited healthcare resources. Integrative analysis of
heterogeneous clinic record data from different sources can hold
great promise for improving the prognosis and diagnosis level of
LoS and mortality. Currently, most existing studies solely focus on
single data modality or tend to single-task learning, i.e., training
LoS and mortality tasks separately. This limits the utilization of
available multi-modal data and prevents the sharing of feature
representations that could capture correlations between different
tasks, ultimately hindering the model’s performance. To address
the challenge, this study proposes a novel Multi-Modal Multi-
Task learning model, termed as M3T-LM, to integrate clinic
records to predict inpatients’ LoS and mortality simultaneously.
The M3T-LM framework incorporates multiple data modalities
by constructing sub-models tailored to each modality. Specifically,
a novel attention-embedded one-dimensional (1D) convolutional
neural network (CNN) is designed to handle numerical data. For
clinical notes, they are converted into sequence data, and then
two long short-term memory (LSTM) networks are exploited to
model on textual sequence data. A two-dimensional (2D) CNN
architecture, noted as CRXMDL, is designed to extract high-level
features from chest X-ray (CXR) images. Subsequently, multiple
sub-models are integrated to formulate the M3T-LM to capture
the correlations between patient LoS and modality prediction
tasks. The efficiency of the proposed method is validated on
the MIMIC-IV dataset. The proposed method attained a test
MAE of 5.54 for LoS prediction and a test I} of 0.876 for
mortality prediction. The experimental results demonstrate that
our approach outperforms state-of-the-art (SOTA) methods in
tackling mixed regression and classification tasks.

Index Terms—Multi-task learning, Data-fusion model, Length
of stay prediction, Deep learning.

I. INTRODUCTION

EALTHCARE systems continue to face a significant

challenge of providing timely patient care while optimiz-
ing resource utilization, especially in the wake of the COVID-
19 pandemic [1]. Inpatients’ length of stay (LoS) and mortality
are two crucial metrics that hospitals utilize to assess clinical
quality and optimize resource allocation [2]. Prolonged LoS
escalates the likelihood of encountering adverse events, such
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as poor nutritional levels, hospital-acquired infections, adverse
drug events, and various other complications. Furthermore,
prolonged LoS increases in the odds of inpatient mortality
[3]. This has triggered hospitals to spend intensive efforts on
resource allocation. Real-time demand capacity (RTDC) man-
agement [4] and multidisciplinary discharge rounds (MDRs)
[5] have shown great promise as best practices in addressing
these challenges, but their effectiveness relies on the accurate
prediction of inpatients’ LoS and mortality. With the rising
prevalence of electronic health record (EHR) systems, patients’
clinical records, such as patients’ laboratory test results, vital
signs, demographic information, clinical notes, and other de-
tails, are now accessible. Leveraging this abundant knowledge,
sophisticated data-driven algorithms enable precise predictions
for inpatients’ LoS and mortality.

This research focuses on improving the service efficiency
and management capabilities of hospitals by simultaneously
predicting inpatient LoS and mortality. As mentioned previ-
ously, patients’ LoS and mortality in a hospital are crucial
indicators to assess the quality of care and effective allocation
of healthcare resources. Therefore, predicting inpatient LoS
(number of days) will be a regression prediction, and mortality
will be a binary classification in this study. From the recent
literature, it is evident that machine learning (ML) offers
unprecedented opportunities to improve patient and clinical
outcomes due to the great potential for learning essential fea-
tures and extracting meaningful insights from data [6]. Some
notable works include, but are not limited to, Gaussian Process
Regression for clinical e-health modeling [7], prediction of
Intensive Care Unit (ICU) LoS based on four ML methods
such as Logistic Regression (LR), Support Vector Machine
(SVM), Random forest (RF), and XGBoost [8], a Hierarchical
Attention Network (HAN) for LoS and mortality predictions
[9], ensemble learning for improving predictive performance
[10], U-Net-Based Models for medical image segmentation
[11], CNN for medical image classification [12], etc. However,
the majority of existing ML models in healthcare either rely
exclusively on a single data modality or solely for a single
task [13]. With the increasing availability and accessibility
of multi-modal data, multi-modal deep learning (DL) models
[14], aiming to integrate data of different distributions, sources,
and formats into a unified space where both inter-modality and
cross-modality aspects can be uniformly captured, have been
successful in a wide range of domains, such as autonomous
driving and video classification through combining visual
features from cameras along with data from Light Detec-



tion and Ranging (LiDAR) sensors [15], emotion recognition
through the fusion of audiovisual content with textual users’
comments [16], and process monitoring in manufacturing
using multimodal sensor data [17]. The main challenge of
multi-modal data fusion is that data from different sources
and file formats exhibit heterogeneity and high-dimensionality,
seldom adhering to uniformity, and this is especially the
case with clinical data. The complex nature of clinical data
imposes significant challenges on how to efficiently make
joint representations of heterogeneous modalities in a way that
enables their seamless integration. Consequently, even with
significant importance, the predictions of inpatient LoS and
mortality using multi-modal data have received less attention
in the literature [2].

Another noticeable trend is that most clinical machine
learning systems focus on single clinical prediction tasks.
Nonetheless, in the real-world clinical environment, multi-
ple tasks always demonstrate interdependence. For instance,
while the risk of heart disease and the likelihood of dia-
betes development represent distinct medical conditions, they
share underlying physiological factors such as blood pressure,
cholesterol levels, and family medical history [18]. Multi-
task learning (MTL), a subfield of machine learning, fosters
the interchange of insights among interconnected tasks by
training multiple related tasks simultaneously using a single
model. By sharing information between related tasks, MTL
improves the generalization and performance of the model
by leveraging the shared information of related tasks. Le
et al. [19] proposed a convolutional neural network (CNN)
based multi-task classification and segmentation architecture
for cancer diagnosis in mammography. Yu et al. [20] used a
multi-task recurrent neural network with an attention mech-
anism to predict patient mortality in hospitals. Despite the
achievements in medical predictions using MTL, there has not
been much effort to simultaneously incorporate multi-modal
clinical data and multi-task learning with the aim of enhancing
prediction performance. Tan et al. [21] proposed a multi-
modal and multi-task DL framework called MultiCoFusion to
combine the power of different modalities and tasks for cancer
prognosis prediction. Their experimental results indicate that
the joint learning of multiple tasks can utilize the intrinsic
association between features (i.e., genes), and thus, can further
promote the learning performance. However, they manually
extracted features from histopathological images and mRNA
expression data, and LoS prediction was not their research
topic. Harerimana et al. [9] developed a hierarchical deep
attention model to forecast the LoS and in-hospital mortality
from ICD codes and demographic data. Unfortunately, the LoS
was predicted in a classification manner. In addition, LoS and
mortality tasks were trained separately.

To address the aforementioned challenges, in this study,
we propose a novel Multi-Modal Multi-Task learning model,
termed as M3T-LM, to perform the LoS regression and mor-
tality classification tasks simultaneously. Multiple data modal-
ities, including demographic data, clinical notes, laboratory
test results, and medical images, are integrated to be used in
our scheme. According to different data modalities, the basic
models (sub-models) are constructed using relevant data types.

Concretely, a novel attention-embedded one-dimensional (1D)
CNN is designed to handle numerical data. By converting
the texts to sequence data, two long short-term memory
(LSTM) networks are used to model on clinical notes. A
two-dimensional (2D) CNN architecture, named CRXMDL, is
designed to extract high-level features from chest X-ray (CXR)
images. Subsequently, multiple sub-models are integrated to
form the M3T-LM to capture the correlations between patient
LoS and modality prediction tasks. It is important to note that
predicting inpatients’ LoS and mortality involves a challenging
mixed-task scenario, encompassing both regression and clas-
sification tasks. A novel predictive framework is proposed to
address this challenge. Overall, the key contributions of this
study can be recapitulated as follows:

o A joint classification-regression scheme that implements
mixed-task types using heterogeneous data modalities
is proposed to predict inpatients’ LoS and mortality
simultaneously.

« An enhanced squeeze-and-excitation (SE)-block, where
the 2D pooling layer is replaced by a 1D one and two
non-linear fully-connected layers are substituted by a
1 x 1 convolution layer to address numerical data and
decrease the number of parameters, is incorporated into
the network for adaptive feature calibration.

o CXR images are an integral component of our scheme,
where we have developed an innovative CNN model
referred to as CRXMDL. This model utilizes the In-
ceptionResNet V2 as its backbone network, known for
its powerful feature extraction capabilities. We further
enhance this architecture by embedding three convolution
blocks with 32, 16, and 8 filters of size 3x3, a max
pooling (MAP) layer, a flatten layer, and a fully connected
(FC) layer. These additions are designed to capture and
leverage the most salient features from CXR images,
thereby improving the accuracy and robustness of our
predictions.

o A unified model that incorporates losses from both re-
gression and classification tasks is developed. An adaptive
loss weight assignment solution is proposed to determine
the optimal weights for these tasks automatically, enhanc-
ing the model’s overall performance.

The rest of this paper is structured as follows. Section II
briefly introduces the relevant work and identifies the research
gaps. Section III discusses the proposed methodology in detail.
Section IV presents experiment results as well as comparative
analysis. Finally, Section V concludes the paper and points out
future work.

II. RELATED WORK

First, we conduct a review of the literature that focuses on
the related studies on inpatients’ LoS and mortality prediction.
Then, a review of the multi-modal multi-task learning in
the healthcare field is presented. Subsequently, the current
research gaps are discussed in this section.



A. Length of stay prediction

Accurate prediction of LoS can increase patient satisfac-
tion by reducing unnecessary wait times and saving hospital
costs. The existing ML models for LoS prediction can be
broadly grouped into two categories: classification models
and regression models [22]. In classification models, the aim
is to group the LoS into multiple classes, e.g., short stay,
medium stay, and long stay, based on the number of days
that the patient stays in the hospital. Morton et al. [23]
categorized the LoS of diabetic inpatients into long-term and
short-term stays. Multiple classification models such as SVM,
RF, and LASSO-based multi-task learning were used in their
comparison experiments. Although the SVM and RF achieved
the desired results, they believe that multi-task learning is
promising for LoS prediction. Thompson et al. [24] divided
the LoS of newborns into prolonged LoS or not, and they
used well-known ML algorithms such as LR, Decision Tree
(DT), SVM, REF, and neural networks (NN) to implement the
class prediction. The RF, DT, and NN achieved impressive
performance. Nevertheless, recent studies have pointed out
that the LoS distributions exhibit a significant right-skewed
pattern [9], [25], which indicates that the balance of the
dataset is disrupted, with only a limited number of instances
demonstrating long LoS. Consequently, this imbalance causes
the model to treat classes with long LoS as anomalies, leading
to a decrease in classification accuracy. Therefore, it is more
appropriate to formulate the LoS task as a regression problem.
Modeling LoS prediction as a regression problem has gained
less attention in the literature. Tsai et al. [26] applied a NN
method to predict LoS for cardiology patients. They concluded
that the NN model is robust for predicting prolonged LoS.
However, there is still room for improvement in the accuracy
of their model. Using a cluster-boosted regression method,
Rouzbahman et al. [27] conducted mortality and LoS predic-
tions for ICU inpatients. Their findings indicated enhanced
accuracy in regression predictions for both mortality and LoS.
However, determining an optimal number of clusters remains
challenging and involves a degree of subjectivity. Muhlestein
et al. [10] trained an ML ensemble model to predict inpatient
LoS after brain tumor surgery. Their experimental results
demonstrated the good performance of a ML ensemble model
for LoS prediction. However, the ML ensemble model inte-
grates multiple sub-models and enhances the complexity of
calculation.

B. Inpatient mortality prediction

Accurate prediction of inpatient mortality plays a vital
role in evaluating disease severity, interventions, assessing the
efficacy of novel therapies, and guiding healthcare initiatives.
Over the past few decades, great efforts have been invested
in the prediction of inpatient mortality. Ruzicka et al. [28]
applied XGBoost, to predict patients’ mortality in hospitals,
and compared it with a traditional unregularized LR model. In
their experiments, the XGBoost outperformed the LR but was
not competitive with existing methods. Ganapathy et al. [29]
compared several models, such as LR, Binary Discriminant
Analysis (BDA), Bayesian Linear Regression (BLR), NN, and

RF, for inpatient mortality prediction, and the BLR model
achieved the best precision in their experiments. They con-
cluded that the ML classifiers had the best predictive ability
in comparison to statistical models. Caicedo-Torres et al. [30]
designed a deep learning model called ISeeU2 to predict
mortality inside the ICU. Their proposed model outperformed
the compared baselines, highlighting the valuable insights that
can be extracted from raw nursing notes. Similarly, in another
research, Zeng et al. [31] proposed a recurrent neural network
(RNN)-based DL architecture to predict the mortality for all
admissions in the ICU. Although their proposed approach
outperforms classical machine learning methods such as LR,
RF, and XGBoost, the issue of imbalanced positive and neg-
ative sample distributions remains unaddressed. Using image-
Transformed electrocardiograms (ECG) waveforms, Kondo et
al. [32] conducted short-term mortality prediction for cardiac
care unit patients, and their method successfully reached the
desired prediction accuracy. Nevertheless, it is noteworthy that
the model solely relies on image data, which limits the overall
accuracy of their approach.

C. Multi-Modal Multi-Task learning

Compared to single modality models, multi-modal models
have the capacity of producing more reliable results owing to
their ability to perceive different aspects of the data, leading to
enhanced model accuracy and reliability. Multi-task learning
(MTL), which can solve multiple learning tasks at the same
time, while exploiting commonalities and differences across
tasks, has proven to be more reliable in identifying related
characteristics, less sensitive to data noises, and less overfit-
ting risk [33]. Zhang et al. [34] proposed a 3-dimensional
multi-task DL model based on MLP-Mixer architecture to
simultaneously implement FDG/AV45-PET SUVR and AD
status prediction tasks in Alzheimer’s Disease Diagnosis. Their
experimental results show that MTL can share feature repre-
sentations, which is beneficial for both tasks. Shao et al. [35]
proposed a multi-task multi-modal learning method for joint
prognosis and diagnosis of cancer patients. Two types of data
including histopathological images and genomic data were
used in their scheme to address both prognosis and diagnosis
tasks. They concluded that the MTL captured the correlation
between different tasks and obtained better performance than
single-task learning. Using different data modalities such as
histopathological images and mRNA expression data, Tan
et al. [21] built a multi-modal multi-task learning model
to perform the survival analysis and grade classification for
cancer prognosis diagnosis. They concluded that using multi-
modal data would perform better than using only single-modal
data. In another study, Liu et al. [36] proposed jointly identi-
fying brain diseases and predicting clinical scores using both
magnetic resonance imaging (MRI) and patient demographic
information. Their experimental findings demonstrate that the
MTL outperforms the single-task learning.

Although some joint learning models have been proposed,
certain models incorporate only a single data modality. More-
over, most of them first extract hand-crafted features from
images and pre-process the data separately, and the sepa-
rate process might lack effective coordination, consequently



resulting in suboptimal learning performance. Besides, most
research implemented the same task type but not mixed-
task types. To address abovementioned research gap, in this
paper, we establish a multi-modal multi-task learning model to
simultaneously implement mixed-type regression and classifi-
cation tasks using multiple data modalities. Specifically, we
aim to simultaneously predict inpatients’ length of stay and
mortality as they have proven to be closely related for the
inpatients after ICU admission, and share common feature
representations needed to train regression and classification
models. Heterogeneous medical data modalities, including but
not limited to, static numerical data (demographics, healthcare
examination), unstructured texts (clinical notes, long procedure
texts), and Chest X-ray images, are used by the proposed
multi-modal multi-task model (M3T-LM) to implement the
automatic prediction of inpatients’ LoS and mortality.

III. METHODOLOGY

The proposed M3T-LM method includes the following key
distinctions: (1) To maximize the utilization of available data,
a multi-modal data fusion that fuses diverse data modalities,
including patient demographic information, diagnosis, free
clinical notes, laboratory test results, and medical images,
is implemented in our scheme. (2) A multi-task learning
model with a shared network layer is proposed to capture the
correlations between inpatients’ LoS and modality prediction
tasks, since these two tasks are intrinsically associated with
each other. (3) Mixed-task types are learned in our scheme.
Different from the same task type implemented in most
existing research, the mixed-task types including the regression
and classification tasks are simultaneously performed for the
inpatient LoS and mortality prediction. The proposed approach
leverages the interconnections among the diverse data and
tasks, which potentially improves model efficiency and reduces
overfitting risk through modeling nonlinear within and cross-
modality relationships. Fig. 1 provides the flow diagram of
the proposed procedure. In the following, we first present the
architecture of the M3T-LM, and then the optimization process
is discussed in detail.

A. Architecture of the M3T-LM

Define the input data as D and is composed of diverse
subsets D = {Dj,Da,...,Dps}, where M is the total
number of modalities (As shown in Table II, three different
data modalities including numerical, text, and image data are
used in our scheme). Denote the length of stay for each
subject as y;, « = 1,2,,..., N, labels of C' categories as
2¢ = {2¢}N_|, N is the number of total samples. First, the
sub-models are built based on the different data modalities to
learn abstractions of the data from raw data directly. Specifi-
cally, for the numerical data, a novel attention-embedded 1D
CNN noted Att-1DCNN is developed to extract meaningful
information. Using 32 convolutional kernels with the size of
3, two cascaded 1D convolution layers followed by a 1D
max pooling layer are used to extract favorable features.
Then, a modified squeeze-and-excitation (SE)-block, where
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Fig. 1. The flowchart of the proposed procedure.

the 2D pooling layer is replaced by a 1D one and two non-
linear fully-connected (FC) layers are substituted by a 1 x 1
convolution layer to address 1D numerical data and decrease
the number of parameters, is incorporated into the network
for adaptive feature calibration [37]. Next, following the SE-
block, a spatial attention (SA) mechanism that can help CNN
extract global features via mining the inter-spatial relationship
between features is embedded into the network to infer the
importance of spatial points [38]. By this means, the features
obtained by the attention mechanism and bottom convolution
block are fused to generate the output of the Att-1DCNN,
which comprehensively extracts the useful information of
numerical data for the prediction tasks of the model.

For unstructured texts, the long short-term memory (LSTM)
network is an effective and end-to-end DL method for text
processing. Besides, word embedding is a popular technique
to map words or phrases from vocabulary to a correspond-
ing vector of continuous values. However, directly modeling
sequential notes using word embeddings and DL can be time-
consuming. It may not be practical since the length of different
documents varies. Therefore, the tokenizer is first employed to
implement word segmentation for long texts. Then, a Text2Seq
function [39] is used to transform the text data into the
sequence variables. To capture the dependence along with
sequence variables, two LSTM networks are separately de-
signed to take the output of Text2Seq for d_icd_diagnoses and
d_icd_procedures long titles to infer the sequence-dependent
feature representations. Here, the hyper-parameter of the per-
ceptron number is set to 2 and L2 regularization is employed
for suppressing overfitting risk.

The integration of clinical data and chest X-ray images
showed a favorable impact on the predictive performance in
prognostication tasks, and it also delivered a positive per-
formance for in-hospital mortality prediction and phenotype
classification [12], [14], [40]. Particularly, the effects of CXR
images were illustrated by Hayat et al. [40], who observed
a significant improvement in accuracy when using the CXR
images along with clinical data to build a multi-modal fusion
model. Therefore, we further integrate the CXR images into
our modeling scheme. For the CXR image data, we devise a
convolutional neural network architecture named CXRMDL,
in which the InceptionResnet V2 [41] is used as a backbone
network of the model. Transfer learning is applied in our
modeling scheme. Specifically, the InceptionResnet V2 is
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Fig. 2. The overall architecture of the proposed M3T-LM.
TABLE 1
THE MAJOR PARAMETERS OF THE PROPOSED MODEL.
Layer (module) Input Shape Filter Kernel Output Shape Params Repeat
No. Size
num (InputLayer) (None, 26, 1) - - (None, 26, 1) - 1
convld (ConvlD) (None,26,1) 32 3 (None, 24, 32) 128 1
convld-1 (Conv1D) (None,24,32) (None, 22, 32) 3,104 1
MaxPooling 1D (None,22,32) - - (None,11,32) - 1
GlobalAveragePooling]D (None,11,32) - - (None,32) - 1
convld-2 (Conv1D) (None,32,1) 32 3 (None,32,1) 3 1
convld-3 (Conv1D) (None,1,11,2) (None,1,1,32) 32 3 (None,1,11,1) 3 1
sigmoid-1 (None,1,11,1) (None,1,11,32) - - (None,1,11,1) - 1
ad (InputLayer) (None,23) - - (None,23) 1
ap (InputLayer) (None,18) - - (None,18) - 1
multiply_1 (Multiply) (None,1,11,32) (None,1,11,1) - - (None,1,11,32) - 1
eth (InputLayer) (None,1) - - (None,1) - 1
(None,352)
Flatten (None,1,11,32) (None,27,1) - - (None.27) - 2
embedding (None,1) (None,18) (None,23) - ; (None,1,32) }2212106’96(” 3
cxg (InputLayer) (None,128,128,1) - - [(None,128,128,1)] - 1
LSTM (None,23,32) (None,18,32) (None,2) 280 2
ohe (InputLayer) (None,28) - - (None,28) - 1
flatten (Flatten) (None,1,32) - - (None, 32) - 1
sequential (Sequential) (None,128,128,1) - - (None, 1536) 54,336,160 1
(None,378) (None,28) (None, 32)
Concatenate layer (None. 1536) (None, 2) (None, 1978) 2
Dense (drop=0.1) (None,1978) - - (None, 32) 126,656+2,080 2
. (None,1)
Regression / Class (None,32) - - (None.2) 33433 1
Total - _ B ) 54,503,032 33
layers)
employed with the truncated top layers, which is followed by a global average pooling (GAP) layer, a flatten layer, and a



batch normalization (BN) layer to extract deep-level features
of CXR images.

Subsequently, the multiple basic sub-models including Att-
IDCNN, LSTM, and CXRMDL are integrated to form a novel
Multi-Modal Multi-Task learning model, where two densely-
connected (DC) layers with the neuron numbers of 64 and
32 are embedded into the networks to change the vector
dimensions. Following each DC layer, a dropout layer with
a dropout rate of 0.1 is added to suppress the overfitting
risks. After that, a fully-connected (FC) ReLu layer and a
FC Softmax layer are used in the network for the final
LoS prediction and mortality classification tasks. In brief, the
crucial steps are summarized below.

(1) The raw  dataset is  pre-processed and
augmented to D, which is divided into diverse
subsets D = {Dy,Da,...,Dpr}. Where Dy, =

{(@r1,Yrk,1s 261))s (The,20 Yk,25 28,2) 5 oo (kM5 Yl M5 20,00 T
Z,m indicates the extracted feature data, and (Yk m, 2k,m)
denotes the corresponding target variables (e.g., LoS and
mortality), k,m € {1,2, ..., M}.

(2) Construct the backbone network models H =
{H1,Hos,...., Hy}, which is used for addressing data in
different modalities such as numerical data, text data, and
CXR image data. Each backbone model is fed correspond-
ing data subsets D = {Dj, Da,..., Dps} extracted in the
pre-processed stage, where the data transformation and data
cleaning are implemented.

(3) The outputs of basic models are concatenated and used
as the input to the subsequent (secondary) predictor F'. Here,
the subsequent predictor F' consists of 2 DC layers with 64
and 32 neurons, 2 dropout layers, a FC ReLu layer, and then
a FC Softmax layer is used for the final LoS regression and
mortality classification tasks, respectively. Fig. 2 portrays an
overall architecture of the proposed M3T-LM, and the major
parameters are summarized in Table I.

B. Optimization of the M3T-LM

In the proposed framework, each branch of the joint model
learns a different task, and therefore it is necessary to specify
a loss function for each task. In this research, the inpatient
LoS and mortality predictions are modeled as the regression
and classification tasks, respectively. Thus, the regression and
classification loss functions in the proposed M3T-LM are
separately defined below.

(1) Regression loss function. In general, the mean squared
error (MSE) function is the most-used loss function employed
in deep learning models for addressing regression problems,
while it also has some demerits, such as sensitivity to outliers.
Therefore, to reduce the impact of singularity values, we
introduce a custom regression loss function [42] in the network
for the LoS prediction task. The formula of the regression loss
function is defined by:

N
N 2 5 =), forly: — il <,
Lreg = l]:Vl (D
L5 (8 |yi — 4i| — £62), otherwise.

where y; and ¢; denote the actual and predicted values,
respectively. ¢ is a hyperparameter of the threshold value,
and here it is set to 2 according to the hyperparameter tuning
results.

(2) Classification loss function. The in-hospital mortality
prediction belongs to a classification problem, and the Binary
Cross Entropy (BCE) loss function is exploited in our net-
work to address the in-hospital mortality prediction task. The
formula of BCE loss function is expressed as:

1 N

Letass = =5z Y ¥i - log(p(y;)) + (1 = v2) - log(1 = p(y;))
i=1

(2)

where y; represents the actual class and p(y;) denotes the
predicted probability of that class. As a consequence, the two
different loss functions are established for multi-modal multi-
task learning. However, only the result of one loss function
can be updated in the process of backpropagation, so a joint
loss function must be defined to integrate the two different loss
functions, and the weighted sum method is the most commonly
used scheme. The weighted total loss function is formulated

as:
Ligu = wi'L 3)

where w; denotes the weight for the i-th loss function L;,
and ¢ implies the ¢-th epoch of training. The performance of
the system is highly relied on the defined weights between
each task’s loss, but tuning these weights by hand is a great
challenge and an expensive process. Therefore, we include
the loss weights in the definition of the loss function itself
and develop an adaptive way to update loss weights through
callbacks, which manage the changes internally. The loss
weight update can be defined as:

w§t+1) — wz(t) — )\vwiLgrad )

where A is a constant hyper-parameter, and Lg,.q denotes the
gradient loss, which is introduced especially to depict the loss
caused by loss weight w. The formula of gradient loss Lg,qq
is written by:

Lyraa(t,wf”) =7

¢’ -G x [

L /Ly

RO
Efa sk |:L(t) /L(O):|

PR

In Eq. (5), th) is the value of gradient normalization on the
1-th task in the ¢-th epoch of training, which is calculated by
the L2 norm of the weighted loss gradient. G(*) represents
the mean of gradient normalization for all tasks in the ¢-th
epoch of training. rl(t) denotes the relative training speed of
the i-th task in the ¢-th epoch of training, which is calculated
as the ratio of the training speed of the ¢-th task to the
average training speed of all tasks. Overall, the loss weight
is regarded as an optimization parameter in this solution, and
the Lg.qq of loss weight w is established in each epoch of
update. The initial weights of the regression and classification
loss functions are both set to 0.5, and the gradient update is
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Fig. 3. The distribution of LoS and mortality.

implemented for each epoch of training.

IV. EXPERIMENTS

In this section, we present the empirical performance evalua-
tion of the proposed approach for LoS and mortality prediction
tasks. We first evaluate the accuracy of the proposed M3T-
LM compared to state-of-the-art (SOTA) methods. Next, we
perform the hyperparameter optimization and fine-tuning via
the random search for optimal sets of essential hyperparam-
eters to maximize the prediction performance of the model.
Ultimately, we assess the efficacy of fused data modalities and
newly added modules for the proposed approach via ablation
study.
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A. Dataset Description and Preprocessing

MIMIC, short for the Medical Information Mart for In-
tensive Care, is a large database of clinical records for pa-
tients admitted to the Beth Israel Deaconess Medical Center
(BIDMC). The MIMIC-1V, which consists of comprehensive
clinical information on hospital stays for patients, contains de-
identified records of 50,048 individual patients admitted to the
ICU or emergency department (ED) at the BIDMC in Boston,
MA, USA, between 2008 and 2019. The MIMIC-IV’s most
recent version (v1.0) [43], which was released on June 22,
2022, improves on MIMIC-III [44] to provide public access
to the EHR data based on the BIDMC’s MetaVision clinical
information system. Whilst, MIMIC-CXR-JPG v2.0.0 [45],
which is a large image dataset comprised of 227,827 CXR
images sourced from the BIDMC between 2011 and 2016.

TABLE I
THE CHARACTERISTICS OF THE DATA.

Characteristic Data type

No. of variables

Name of variables

Demographic variables Numerical & Categorical 6

Chart Event variables ~ Numerical & Categorical 9

Laboratory Event vari-

Numerical & Categorical 23
ables

Procedure Event vari- Numerical & Categorical 10

ables
Text Note variables Text
Chest X-ray variables  Image 1

Subject_id, gender, anchor_age, anchor_year, an-
chor_year_group, dod

Hadm_id, stay_id, charttime, storetime, itemid,
value, valuenum valueuom, warning
Labevent_id, hadm_id, specimen_id, itemid,
charttime, storetime, value, valuenum, valueuom,
ref_range_lower,ref_range_upper, flag, priority;
WBC count, neutrophils count, monocytes count,
lymphocytes count, platelets count, hemoglobin,
glucose, chloride, creatinine, BUN

Patient weight, total amount, total amount uom,
isopenbag, continue in next dept, cancel rea-
son, status description, comments_date, original
amount, original rate

AdmitDiagnosis, AdmitProcedure

Chest X-ray image




This dataset is freely available to facilitate and encourage
broad research in the field of medical computer vision.

To efficiently predict the inpatients’ LoS and mortal-
ity, we utilize the MIMIC-IV v1.0 dataset combined with
the MIMIC-CXR-JPG v2.0.0 dataset in this study. All
the data are de-identified, where patient identifiers are re-
moved according to the Health Insurance Portability and
Accountability Act (HIPAA) Safe Harbor provision. The
MIMIC-IV v1.0 database includes a wide range of patient
records, such as patients’ demographic information, labora-
tory test results, procedures and diagnoses, free-text notes
authored by clinicians, medication orders, etc. The tables in
the MIMIC-IV v1.0 dataset mainly contain ADMISSIONS,
DIAGNOSIS_ICD, D_DIAGNOSIS_ICD PATIENTS, ICD-
STAYS, PROCEDURES_ICD, and D_PROCEDURES_ICD.
Among them, the ADMISSIONS table provides records for
each hospitalization including each patient’s admission and
discharge time and the source of the admission. The DI-
AGNOSIS_ICD table gives the diagnosis category informa-
tion. The PATIENTS table provides timing information and
demographics for each patient, and the ICDSTAYS table
provides the ICU data for each hospital admission. The
PROCEDURES_ICD table presents the procedure code for
inpatients and the corresponding procedure names are included
in the D_PROCEDURES_ICD table. Additionally, for the
patients’ chest X-ray images, they are stored in the MIMIC-
CXR-JPG database in JPG format with structured labels.
The characteristics of the data we used are summarized in
Table II. In this research, the LoS is defined as the time
between hospital discharge and admission measured in days.
The mortality is depicted by the field of hospital_expired_flag
in the table ADMISSIONS, where 1 indicates the death and O
indicates survival of patients in hospitals. Data preprocessing,
including data cleaning, data transformation, revision of out-
liers, interpolation of missing data [46], [47] are implemented
for the original tabular data. As a result, a total of 51 variables,
including blood, circulatory, digestive, endocrine, injury, and
nervous, are extracted from the MIMIC-IV v1.0 dataset. For
the CXR image data, only the images with the ViewPosition
of “PA (Posterior-Anterior)” or “AP (Anterior-Posterior)” are
chosen in our experiments since they are photographed from
the front view. As such, 4,144 CXR image samples are used for
the LoS and mortality prediction experiments. Fig. 3 portrays
the distribution of LoS and mortality. From Fig. 3 it can be
visualized that most LoS is under 20 days, and there is a
class-imbalanced problem in the distribution of mortality. The
survival category (class 0) comprises the majority of samples,
while the mortality category (class 1) consists of only a small
number of samples. The distribution is extremely unbalanced.
To cope with this challenge, the Synthetic Minority Oversam-
pling Technique (SMOTE) [48] is utilized to augment the
minority class samples to ensure a balanced distribution of
positive and negative samples in the training set. Using the
SMOTE, new synthetic data are generated to make the number
of samples in the mortality category very close to that in the
survival category.

B. Experiment setup and performance metrics

The experiments are conducted using Python 3.6 deep
learning framework, where the commonly-used libraries in-
cluding Keras, Scikit-learn, TensorFlow, and Matplotlib are
utilized with the aid of a graphics processing unit (GPU). The
hardware environment for operating the Python DL framework
to implement the proposed M3T-LM contains the AMD EPYC
7502P 32-Core Processor, 32 GB memory, and RTX A6000
GPU.

To evaluate the performance of LoS prediction, the standard
measure metrics like the mean absolute error (M AFE), root
mean square error (RM SFE), coefficient of determination (R-
Square or R?), and explained variance (Ey 4g) [6], [8], [14]
are utilized, which are calculated by

LN
MAE = ﬁ;m — i )
(8
&)
Evar =1—var(y —9)/var(y) (10)

where g;, y;, and g indicate the predicted value, actual value,
and mean of actual values, respectively. N is the number
of total samples, and var(-) implies the variance function.
MAE and RMSE reflect the mean of the absolute error
and the square root of the average squared error between the
predicted value and actual value, respectively. R? measures
the proportion of the dependent variable change that can be
interpreted by the independent variable, and the Ey 4 reveals
the explanatory power of models. For both the Fy s and R?,
the ideal value is equal to 1, while greater values are worse
for the M AE and RM SFE indicators. Moreover, widely-used
metrics including Accuracy (Acc), Precision (Pre), Recall
(Rec), and F'1-Score (F'1) [32] are utilized to investigate the
efficiency of mortality prediction, which can be calculated by
the following equations:

Accuracy = TP+ TN (11)
TP+TN+FP+FN

Precision = 7(TP711—PFP) (12)

Recall = % (13)

"

where T'P is true positive, F'P is false positive, T'N is true
negative, and F'N is false negative.

C. Results and Discussion

To demonstrate the robustness of the proposed method,
the mostly-used ML methods, multilayer perceptron (MLP),
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TABLE III

ZBGoost

LOS PREDICTION OF DIFFERENT METHODS.

RF  VGG-style CNN 1D-CNN

(b) R-Square

Training set

Validation set

Test set

No. Methods WAE RMSER?  Byan MAE RMSERZ  Eyan MAE RMSERE  Byap™e

I MLP 533 1028 045 045 463 654 009 012 565 764 058 0.61 0:00:40
2 XGBoost 343 523 085 085 504 640 0.3 027 501 721 062 0.6 0:00:31
3 RF 455 805 066 066 066 7.04 -005 009 628 922 038 043 0:00:31
4 ggg'“yle 752 1516 -0.18 007 510 7.87 -030 009 1062 1541 -071 0.08 0:02:46
5 ID-CNN 676 14.18 -0.03 0.4 428 697 -002 0.16 940 1402 -041 0.12 0:03:04
6 M3T-LM 368 1044 044 044 385 530 041 048 554 7.8 062 063 0:34:22
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TABLE IV
MORTALITY PREDICTION OF DIFFERENT METHODS.

Training set (%)

Validation set (%)

Test set (%)

No. Methods Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Time (s)
1 MLP 91.28 85.74 98.42 91.64 91.44 85.25 99.46 91.81 73.01 33.87 22.82 27.27 0:00:36
2 XGBoost 88.60 83.98 94.56 88.96 88.96 83.72 95.74 89.33 70.84 28.98 21.73 24.84 0:00:37
3 RF 89.11 82.10 99.21 89.85 90.76 84.13 99.64 91.23 70.12 27.77 21.73 24.39 0:00:36
4 ZSS_Style 98.32 98.31 98.26 98.29 95.59 95.51 95.51 95.51 77.83 2272 6.25 9.80 0:01:58
5 1ID-CNN 98.24 98.77 97.62 98.19 9491 96.76 92.75 94.71 78.31 27.27 7.50 11.76 0:03:08
6 M3T-LM 98.91 97.84 100.0098.90 98.72 97.80 99.65 98.71 95.42 91.78 83.75 87.58 0:27:23
TABLE V

COMPARISON WITH STATE-OF-THE-ART METHODS.

. RMSE R? F1 (mor-
ID References Year Description (LoS) LoS)  tality)
1 Vaswani et al. [49] 2017 Transformer 6.18 0.27 0.738
2 g%r]“ty““ya“ et al Hh19 LSTM 661 028 0745
3 Maetal [51] 2020 ConCare - - 0.778
4 Rocheteau et al. [52] 2021 Temporal Pointwise Convolution (TPC) 5.20 0.59 0.784

. Temporal Dilated Separable Convolution with Con-

5 Al-Dailami et al. [2] 2022 text Aware Feature Fusion (TDSC-CAFF) 4.30 0.64 0.821
6  Shu et al. [53] 2023 ML-based scoring models - - 0.613
7  This study 2024 M3T-LM 7.18 0.62 0.876

RF, and extreme gradient boosting (XGBoost), along with
a VGG-style CNN and one-dimensional CNN (1D-CNN)
are selected for comparative analysis. Different from the
proposed approach that fits multi-modal data, the classical
ML methods can only take a single data modality, such
as numerical data. Therefore, these compared methods are
conducted on the tabular data of the MIMIC-IV v1.0 dataset.
To ensure a fair comparison, the core hyperparameters of
the compared models are set to the same as that of the
proposed approach. Specifically, the mini-batch size is set
to 64, with a learning rate of 1 x 1073, 30 training epochs
and the RMSprop [54] optimizer. The dataset is randomly
divided into training, validation, and test sets in a 7:2:1
ratio. We employ the leave-one-out cross-validation approach
for performance evaluation, where 90% of the samples are
used for training and validation, and the remaining 10% for
testing. Fig. 4 illustrates the LoS prediction performance of
the proposed approach on randomly selected samples from
both the validation and test datasets. In Fig. 4, the orange
curve represents the actual values of inpatients’ LoS and
the blue curve denotes the predicted LoS. It can be seen
from Fig. 4 that the predicted values are very close to their
actual values for most samples, indicating the efficacy of the
proposed approach.

Table III presents the overall LoS prediction performance
of different methods. Fig. 5 visualizes the RMSE and Ey sg
comparison of different methods. It can be seen from Table
III that the proposed approach realizes the R? of 0.62 and

0.41, and the RMSE of 7.18 and 5.30 on the test set and
validation set, respectively, which are superior to that of
other comparison methods. The proposed approach achieves
the best results. Notably, although the ensemble learning
algorithms such as XGBoost and RF, perform better than the
proposed M3T-LM in the training set, a significant decline in
validation and test performance is observed for both XGBoost
and RF, which has also been shown in Fig. 5. It is noted
that the proposed M3T-LM takes 34 minutes for 30 epochs
of training, which is also reported in Table III. Due to the
large number of parameters in the proposed deep learning
framework and the concurrent execution of two tasks, the
proposed model requires more time than benchmark methods.
Though the time consumption of the proposed approach is
slightly higher than that of other compared methods, this
aspect remains manageable and can be further improved by
various optimization techniques.

Next, we evaluate the performance of the proposed
approach for the inpatients’ mortality prediction. Fig. 6
depicts the receiver operating characteristic (ROC') curves of
the proposed approach, and the test confusion matrices of
different methods are portrayed in Fig. 7. Table IV presents
the overall mortality prediction performance of different
methods. As depicted in Fig. 6, the proposed approach
exhibits superior operating characteristics, with the ROC
curves of all categories positioned close to the top-left
corner of the figure. This positioning signifies the validity
and effectiveness of the proposed approach for mortality



TABLE VI
LOS PREDICTION RESULTS WITH HYPERPARAMETER OPTIMIZATION.

Mini-batch  [r=0.001 1r=0.002 lr=0.005 Time (s)
size MAE RMSE R? Eyagr MAE RMSE R?> Eyar MAE RMSE R? Eyag

32 423 631 038 040 461 647 035 035 481 697 025 025 0:52:02

64 554 7.8 0.62  0.63 455 630 038 0.39 459 6.88 026 030 0:27:23

128 462 6.87 027 037 472 640 036  0.38 519 737 0.5 0.16 0:14:21

256 441 638 037 0.38 464 7.05 023 0.38 1022 1299 -1.62 0.02 0:08:28

TABLE VII
THE RESULTS OF ABLATION EXPERIMENTS.

. Test accuracy of LoS prediction Accuracy of mortality prediction (%) .
Ablation approach JAE BMSE R®  FEvan  Acc  Pre  Rec  Fl Time (s)
Delete images (CXRMDL)  6.33 10.14 0.39 0.44 89.39 100.00  45.00 62.06 0:04:56
Delete long texts (LSTM) 6.94 10.56 0.36 0.39 60.96 33.05 100.00  49.69 0:24:12
Delete attention module 5.84 9.37 0.37 0.42 92.53 7247 98.75 83.59 0:26:52
This study 5.54 7.18 0.62 0.63 95.42 91.78 83.75 87.58 0:27:23

prediction. In addition, it can be observed from the confusion
matrix of Fig. 7(f) that the M3T-LM has accurately identified
most of the samples. The 67 mortality samples have been
correctly recognized by the proposed approach except for
13 misidentified samples. Likewise, in addition to 6 samples
misclassified into the mortality category, the 329 survival
samples have all been correctly identified by the proposed
approach. As a consequence, the proposed approach achieves
a test Accuracy of 95.42%, and the test Precision, Recall,
and F'1-Score have also realized no less than 91.78%,
83.75%, and 87.58% respectively, as presented in Table IV.

Moreover, we conduct a performance evaluation of the
proposed method in comparison to the findings presented
in the latest literature concerning the prediction of LoS and
mortality as shown in Table V. From Table V it can be
visualized that the proposed approach delivers a comparable
result and outperforms most of the existing methods on the
MIMIC-IV v1.0 datasets. In summary, the outcomes of the
comparative analysis affirm the excellence of the proposed
method in predicting both LoS and mortality.

D. Hyperparameter optimization

In this section, we implement a grid search for optimal
sets of essential hyperparameters including mini-batch size
(bs) and learning rate (Ir) on the prediction of inpatient
LoS. The range of the mini-batch size hyperparameter is set
as (|B]) € {32,64,128,256}, and the learning rate (Ir) €
{0.001,0.002,0.005}. We train our model using hyperparam-
eters from these sets for 30 epochs on the publicly available
MIMIC-IV v1.0 dataset with the same splits, as mentioned in
Section IV C'. We found the best hyperparameter set for the
LoS prediction is a mini-batch size of 64 with Ir = 0.001.
Table VI presents the prediction performance of the proposed
method with different hyperparameter settings.

E. Ablation study

To gain a deeper understanding of the sub-models and
different modalities contributing to a system’s performance,
ablation study on our model is performed.

Table VII summarizes the ablation experiment results. In
the first ablation experiment, we remove the usage of the
CXR image data modality and delete the CXRMDL module
in our model. We notice a major decrease in the test accuracy,
where the M AE and RMSE in LoS prediction rise to 6.33
and 10.14 (increase by 0.79 and 2.96), and the R? and
Evagr drop to 0.39 and 0.44 (decrease by 0.23 and 0.19).
The Accuracy, Recall, and F'1-Score in mortality prediction
drop to 89.39%, 45.00%, and 62.06% (decrease by 6.03%,
38.75%, and 25.52%), respectively. On another front, it is
noted that the time consumption of this ablation model shows a
significant decrease from 27 minutes 23 seconds to 4 minutes
56 seconds (a reduction of over 22 minutes). This ablation
experiment results demonstrate that removing the CXR image
data modality has a great impact on the performance compared
to the multi-modal data aggregation model. Subsequently, we
remove the long text data modality addressed by the LSTM
model in our networks. We notice that a significant drop in
accuracy occurs in this ablation model. The test M AE and
RMSE in LoS prediction rise to 6.94 and 10.56 (increase
by 1.40 and 3.38), and the test R? and Ey 4r drop to 0.36
and 0.39 (decrease by 0.26 and 0.24), respectively. Likewise,
the test Accuracy, Precision, and F'1-Score in mortality
prediction separately drop to 60.96%, 33.05%, and 49.69%
(decrease by 34.46%, 58.73%, and 37.89%). Consequently,
though the efficacy of the ablated models is still better than
that of other compared baselines, it suffers a notable decline
in comparison with the multi-modal data aggregation model
proposed in the study. In the second ablation experiment, we
remove the newly added attention module from the networks
to investigate the performance of the proposed method. We



notice a minor drop in accuracy occurs in this ablation model,
where the test MAE and RMSE of the ablated model
separately rise to 5.84 and 9.37 (increase by 0.30 and 2.19)
in LoS prediction. The test Accuracy, Precision, and F'1-
Score of the proposed method in mortality prediction also
drop to 92.53%, 72.47%, and 83.59% (decrease by 2.89%,
19.31%, and 3.99%), respectively. This ablation experiment
demonstrates that the results of the model adding the attention
mechanism are slightly better than that of the model without
the attention module, and removing the attention module has
a minor negative influence on the model accuracy.

V. CONCLUSION

Estimating the inpatient LoS and mortality accurately is a
challenging daily task in the field of health care. This study
proposes a novel Multi-Modal Multi-Task learning model
called M3T-LM to predict patient outcomes, specifically,
remaining LoS and inpatient mortality. Leveraging mixed
regression and classification tasks, M3T-LM simultaneously
predicts inpatient LoS and mortality from multi-modal data.
Acknowledging the skewed distribution of LoS, the proposed
M3T-LM treats LoS prediction as a regression task, delivering
more informative results by estimating the actual number of
days rather than assigning classes. At the same time, M3T-LM
integrates mortality prediction, recognizing its close associa-
tion with inpatient LoS scenarios. The two tasks share standard
feature representations necessary for the mixed-task model
training. The main advantage of the proposed method is its
capability of utilizing the inherent correlation within multiple
task types to guide the feature selection process, which can
further promote the learning performance. Besides, multiple
data modalities are effectively utilized by the proposed method
in a unified model, which leads to more effective resource
allocation, higher prognostic accuracy, and better informative
clinical decision-making. Impressively, experimental findings
demonstrate that the proposed M3T-LM is superior to other
SOTA baseline methods on both tasks.

While the proposed approach yields satisfactory results, it
has some limitations related to computational complexity. In
the future, we plan to incorporate model pruning algorithms
to simplify the model and enhance its efficiency. Another
interesting direction is that, in response to the escalating
concerns regarding data privacy and security, we plan to incor-
porate privacy-preserving techniques into our model to ensure
the safeguarding of sensitive information while maintaining
effective data fusion without harming the model predictive
performance.
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