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ABSTRACT. This paper is a follow-up to the authors’ recent work on barcode
entropy. We study the growth of the barcode of the Floer complex for the
iterates of a compactly supported Hamiltonian diffeomorphism. In partic-
ular, we introduce sequential barcode entropy which has properties similar
to barcode entropy, bounds it from above and is more sensitive to the bar-
code growth. In the same vein, we explore another variant of barcode entropy
based on the total persistence growth and revisit the relation between the
growth of periodic orbits and topological entropy. We also study the behav-
ior of the spectral norm, aka the y-norm, under iterations. We show that the
y-norm of the iterates is separated from zero when the map has sufficiently
many hyperbolic periodic points and, as a consequence, it is separated from
zero C*°-generically in dimension two. We also touch upon properties of the
barcode entropy of pseudo-rotations and, more generally, y-almost periodic
maps.

1. INTRODUCTION

The main theme of the paper is the growth of the Floer complex for the iter-
ates of a compactly supported Hamiltonian diffeomorphism. In particular, we
focus on the exponential growth rate of the barcode of the Floer complex and
the behavior of the spectral norm.

There is a wide range of interpretations of the question of the growth of the
Floer complex for the iterates ¢* and there seems to be no obvious way to make
the question precise fitting all or most of the aspects of the problem. When
trying to articulate this question, it is useful to keep two facts in mind.

First of all, in most cases the “effective” diameter of the action spectrum
S ((pk) grows at most polynomially with the order of iteration. For instance,
as a simple consequence of the isoperimetric inequality, the diameter

diam . (") := max.# (¢*) - min.# (¢*)
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of this set for contractible orbits grows at most linearly in k when the underlying
symplectic manifold M is a surface of genus g = 2 and it grows at most quadrati-
cally when M = T?%; cf. [37]. In fact, we are not aware of any example where the
diameter has been shown to grow faster than linearly. When M is not aspherical
or non-contractible periodic orbits are included, the notion of the diameter is
more involved and more ambiguous, but even then the effective diameter grows
polynomially in most cases; see [11, Rmk. 3.4]. Similarly, the index spectrum
defined as in, e.g., [21] can be shown to grow at most polynomially in many
situations.

On the other hand, the number of k-periodic points of ¢ can grow arbitrarily
fast, e.g., superexponentially. Moreover, in dimension two this behavior is in
some sense common, i.e., occurs for a dense subset of an open set of Hamilton-
ian diffeomorphisms in the analytic topology; see [2] and references therein.

With this in mind, one useful way to measure the growth of the Floer complex
of ¥ is by counting the number of bars be((pk) of length greater than € > 0 in
its barcode. The limit 7i(¢) as € \, 0 of the exponential growth rate of be(¢*) is
called the barcode entropy and closely related to the topological entropy h,,, ()
of ¢; [11]. In particular, 7i(¢) < h,(¢) and hence be((pk) grows at most exponen-
tially in k, and %(¢) = h,,(¢) in dimension two.

Replacing the fixed threshold € by € > 0 which depends on k gives rise to a
somewhat different way to measure the size of the Floer complex, which we ex-
plore in this paper. The exponential growth rate of b, (¢*), where e;. \ 0 subex-
ponentially, is encoded by the sequential barcode entropy fi(p) = Ii(g) of . We
show that sequential barcode entropy has properties similar to barcode entropy.
For instance, we still have that fi(¢p) < h,,(¢), and hence bek(qu) grows at most
exponentially when €y is subexponential, and again ﬁ((p) = i(¢p) = hy, () in di-
mension two. (Hypothetically, it is possible that 7i(¢) = i(¢) in all dimensions.
However, neither ﬁ((p) nor h(¢) is equal to h,,(¢) in general when dim M = 6;
see [9].)

A different perspective on the barcode growth and a variant of barcode en-
tropy is explored in Section 3.3. There we introduce and prove some basic
properties of a version of entropy based on the growth of the total persistence
of the barcode of ¢*. In that section, we also revisit the problem of relating the
growth of periodic orbits and topological entropy. Namely, while in general be-
yond dimension two these two invariants are known not to be connected (see,
e.g., [2, 27]) even for Hamiltonian diffeomorphisms, we show that the exponen-
tial growth rate of periodic orbits does give a lower bound for the topological
entropy, albeit with a correction term coming from the decay of the shortest
bar.

The spectral norm, a.k.a. the y-norm, y(¢) < diam.¥(¢) is roughly speaking
the difference between the homological maximum and the homological mini-
mum of the action functional (see, e.g., [15, 34, 35, 39, 48]), giving another and
more robust way to measure the “diameter” of .#(¢). (We will recall the defi-
nition of the y-norm in Section 2.3.) Upper bounds on the y-norm have been
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extensively studied — see the references above and also, e.g., [30, 41, 42]. Here
we are interested in lower bounds on the sequence y(<pk) and more specifically
in the question if this sequence can get arbitrarily close to zero. The connection
with the barcode growth comes from the fact that y(¢) gives an upper bound
on the boundary depth, i.e., the length of the largest finite bar, Smax(¢); see
[44, 45] and [30]. From this perspective, very little seems to be known about
the behavior of the sequence y((pk) outside the case of pseudo-rotations; see
[22, 26]. Here, refining [11, Prop. 6.5], we show that the sequence y(p¥) is
bounded away from zero when ¢ has sufficiently many hyperbolic periodic
points. This is the case, for instance, when h,,,(¢) > 0 and dim M = 2; or when ¢
is a strongly non-degenerate Hamiltonian diffeomorphism of a positive genus
surface. In particular, in dimension two, this sequence is bounded away from
zero C*°-generically; cf. [31].

Finally, we also look at another extreme and examine y-approximate iden-
tities, the maps whose iterates approximate the identity arbitrarily well with
respect to the y-norm, and y-almost periodic maps, i.e., the maps such that
y((pk) becomes arbitrarily small with positive frequency; see [23]. The main,
and to date the only, source of such maps are Hamiltonian pseudo-rotations; cf.
[22, 26]. In particular, we show that for a y-almost periodic map ¢ the sequence
be(¢*) is bounded for all € > 0 and hence %(¢) = 0. This is a step toward the
proof of the conjecture that h,(¢) = 0 for Hamiltonian pseudo-rotations.

This paper is formally independent from [11], but conceptually it is a follow-
up to that work and perhaps should be better read with that work in mind.

2. DEFINITIONS AND RESULTS

2.1. Floer homology and barcode entropy. Throughout the paper we use con-
ventions and notation from [11]. Referring the reader to [11, Sect. 3] and refer-
ences therein for a much more detailed discussion, here we only touch upon
several key points.

2.1.1. Floer homology and barcodes. In this paper all Lagrangian submanifolds
L c M are assumed to be closed and monotone with minimal Chern number
at least 2. Hamiltonian diffeomorphisms ¢ are always required to have com-
pact support, and when M is not compact we assume that it is sufficiently well-
behaved at infinity (e.g., convex, or wide in the sense of [25, Defn. 3.1]) so that
the filtered Floer complex and homology for the pair (L, ¢(L)) or the map ¢ itself
can be defined; cf. [11, Rmk. 2.8].

For the sake of simplicity Floer complexes and homology and also the or-
dinary homology are taken over the ground field F = F,. When L and L' are
Hamiltonian isotopic and intersect transversely, we denote by CF(L, L') the Floer
complex of the pair (L, L'). This complex is generated by the intersections LN L'
over the universal Novikov field A. This is the field of formal sums

WA

j=0
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where f; € F and a; € R and the sequence a; (with f; # 0) is either finite or
aj — oo.

Due to our choice of the Novikov field, the complex CF(L, L) is not graded.
However, fixing a Hamiltonian isotopy from L to L’ and “cappings” of intersec-
tions, we obtain a filtration on CF(L, L) by the Hamiltonian action. The differ-
ential on the complex is defined in the standard way. Note that the complex
breaks down into a direct sum of subcomplexes over homotopy classes of paths
from L to L'. Then, to define the action filtration on CF(L, L), we also need to
pick a reference path in every homotopy class.

The barcode (L, L) of the Floer complex CF(L, L), in the most refined form,
is a collection of finite or semi-infinite intervals defined, in general, up to some
shift ambiguity. For our purposes, it is convenient to forgo the location of the
intervals and treat %(L, L') as a collection (i.e., a multiset) of positive numbers
including oco. A construction of barcodes suitable for our purposes is introduced
and worked out in detail in [47] and also discussed in [11]. Below we briefly go
over it.

Set € = CF(L, L)) and fix a filtration «f : € — RU{—oo} via Hamiltonian action
where </ (0) is set to —oo. A finite set of vectors ¢; € € is called orthogonal if for
any collection A; € A we have &/ (3. 1;¢;) = max.«/(A;¢;). A A-basis {a;, n;, v} of
%€ is called a singular decomposition if it is orthogonal and 0,,&; =0, 0ryj =1;.
It is shown in [47, Sects. 2 and 3] that ¥ admits a singular decomposition.
Ordering the pairs (1}, y;) by the action difference, we obtain

A1) —A M) <AL (y2) —A(M2) <+

In this paper we refer to the multiset formed by the differences <f (y;) — </ (n;)
together with dimy HF(L, L') many oco’s (corresponding to the basis elements «;)
as the barcode of ¢ = CF(L,L) and denote it by %(L,L"). Moreover, abusing
notation, we call these numbers finite/infinite bars. In the original definition
[47, Def. 6.3], barcode also contains information about the location of these
bars, i.e., the bars are pinned, whereas our version only keeps the length of the
bars. For our purposes the length data suffices; hence, for simplicity, we forgo
the locations. The barcode %(L, L) is independent of the choice of a singular
decomposition and other auxiliary data involved in the construction of CF(L, L');
see [47, Thm. 7.1] and [45, Prop. 6.2]. Also note that B(L,L) = %(L’, L) as was
shown in [47, Prop. 2.20]; see also [11, Sec. 3.3.1].

Recall that the Hofer norm of a Hamiltonian diffeomorphism ¢: M — M is
defined as

=inf H;—minH ,
ot =inf [ (maxrt, - min 1) d

where the infimum is taken over all 1-periodic in time Hamiltonians H gener-
ating ¢, i.e., ¢ = @ . We refer the reader to, e.g., [36] and references therein for
a very detailed discussion of the Hofer norm. The Hofer distance between two
Hamiltonian isotopic Lagrangian submanifolds L and L’ is

dy(L, L) = inf{llgl, | o) =L'};
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see [8] and, e.g., [46] for further references.

The most important feature of the barcode, at least for our purposes, is that
it is continuous in the Lagrangian with respect to the C*°-norm and even the
Hofer norm (or the y-norm; see Section 2.3). In order to state the continuity
property, let us first recall the relevant metric on the space of barcodes. We
say that the barcodes %8,, 98, are § -matched if, after deleting as needed bars of
length < 26, one can find a bijection %; — %; ﬁi — ﬁé such that I,Bi - ﬁ§| <26.
The infimum of all such ¢’s is called the bottleneck distance between 98;. This
is indeed a distance on the space of un-pinned barcodes, which is bounded
from above by the bottleneck distance on the space of pinned barcodes under
the natural forgetful map between these spaces. The continuity property can
be stated as follows; see [47, Sect. 12] for details. Assume that Lagrangian sub-
manifolds L, L' and L” are Hamiltonian isotopic such that L th L' and L h L".
Then the bottleneck distance between %(L,L") and 98(L, L") is bounded from
above by the Hofer distance d (L', L"). This property allows one to extend the
definition of the barcode “by continuity” to the case where the manifolds are
not transverse.

2.1.2. Barcode entropy. In this section we review the definition of barcode en-
tropy introduced in [11]. Let L, L’ be two transverse Lagrangians as in the previ-
ous section and let (L, L) be the barcode of the Floer complex CF(L,L’). Set

be(L,L):=|{Be B L)|p>e}|,
and denote the total number of bars in the barcode by
b(L, L") :=|%B(L,L)| = be(L,L".

Omitting the definition of the barcode in the non-transverse case, we extend
the barcode counting function be(L, L') to the situation where L and L' need not
be transverse by setting

2.1 be(L, L") :=liminfb, (L, L) € Z.
L—L'

Here the limit is taken over all Lagrangian submanifolds L M L which are Hamil-
tonian isotopic to L' and converge to L' in the C*-topology (or at least in the
Cl-topology). As a consequence, d,(L, L") — 0, where d,, is the Hofer distance.
Alternatively, we could have required L be Hamiltonian isotopic to L, trans-
verse to L' and converge to L. Since be(L,L') € Z, the limit in (2.1) is necessarily
attained, i.e., there exists L arbitrarily close to L' such that be(L, L") = be(L, L).
Observe that definition (2.1) extends to the transverse case. Namely, one direc-
tion is a consequence of the “C*-stability” of essentially all the data related
to CF(L,L’); alternatively, though unnecessary, one can use the continuity of
barcodes. As for the other direction, one can, for instance, take the constant
sequence.

REMARK 2.1. In this paper we use the barcode counting function as a stable
lower bound for the number of intersections. Namely, first of all, note that

ILNL'| =dimp CE(L, L") =2b(L, L") —dimy HF(L, L") = b(L,L") = b (L, L")
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whenever L L. This directly follows from the definition of the barcode. In
particular, in the transverse case, b¢(L,L') gives a lower bound for the number
of intersections:

(2.2) ILNL'|=b(L,L)=b.(L L.

Assume now that Lagrangians L, L' and L” are Hamiltonian isotopic, L” th L and
d,(L',L") < 6/2. Then, whether or not L and L’ are transverse, we have

(2.3) ILNL"| = be(L, L") = beis(L, L.

Here the first inequality is just (2.2) and the second inequality, which holds
regardless of LM L” or not, is the extension of the continuity property from the
previous section via the limit (2.1) to the non-transverse case.

DEFINITION 2.2 (Relative Barcode Entropy). The barcode entropy of ¢ relative
to (L, L) is
h(p; L, L) :=limhe(g; L, L") € [0,00],
e\.0

where

log* be(L, L¥)

He(p; L, L") :=limsup and LF:= ¢*(L)).

k—o0

Here and throughout the paper, the logarithm is taken base 2 and log*™ = log
except that logJr 0 = 0. Note that . (¢; L, L) is increasing as € \ 0, and hence the
limit exists, although a priori it could be infinite.

Next, we discuss the absolute barcode entropy. Let M be a closed monotone
symplectic manifold and again let ¢ : M — M be a Hamiltonian diffeomorphism.
Then we can apply the above constructions to L = A = L/, the diagonal in the
symplectic square (M x M, (-w,w)), with ¢ replaced by id x ¢, or directly to the
Floer complex CF(¢) of ¢ for all free homotopy classes of loops in M. In the latter
case we denote by %(¢p) the resulting barcode. For instance, we have

be((pk) ::bE(L,Lk)
= Hbars of length greater than ¢ in the barcode %((pk)}| ,

where L = A and L* is the graph of ¢*, and in the second equality we tacitly as-
sumed that ¢* is non-degenerate. We emphasize that we include the 1-periodic
orbits in all free homotopy classes of loops in M as generators of CF(¢) in con-
trast with a more common definition involving only contractible 1-periodic or-
bits. This is absolutely essential for the definition of barcode entropy.

DEFINITION 2.3 (Absolute Barcode Entropy). The e-barcode entropy of ¢ is

log* be(@*
fie () :=limsup g—g((p)
k—o0 k

and the (absolute) barcode entropy of ¢ is
=1 ,
n(p) lim fie(¢p) € 10, o0]
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or, in other words,
() :=h(id x @; A, A).

Again, the limit in the definition of 7 (¢) exists since 7. (¢) is increasing as
e\ 0.

By [11, Thm. 5.1], A(p; L, L) < h,,(¢) < oo, and hence be(L,Lk) grows at most
exponentially:

(2.4) be(L, L¥) < 2°F for large k,
where we can take any ¢ > h,,,(¢). In particular, 71(¢) <h,,(¢) < co and again
(2.5) be () <2

for large k. At the same time, the number of periodic points of ¢, and hence
b((pk), can grow arbitrarily fast and, as a consequence, the shortest bar can also
go to zero arbitrarily fast; see [2] and Section 3.3. One of our goals in this paper
is to refine (2.4), (2.5) and [11, Thm. 5.1].

REMARK 2.4. Although Definition 2.3 closely resembles the definition of topo-
logical entropy, the similarity is rather deceiving. For instance, the e-entropy
family 7. (¢) is well-defined for every € > 0, while its counterpart for topological
entropy depends on the background metric. Note that as a consequence when
hi(p) > 0 we obtain a new numerical invariant of ¢: the threshold value of € for
which the entropy is positive, supfe > 0 | fic(¢) > 0}.

2.2. Barcode growth and sequential entropy. In this section we consider the
growth of be, (L, L¥) for a certain class of sequences €. > 0. To be more precise,
a bounded sequence € > 0 is said to be subexponential if

€x2™ — oo forall n >0
or, equivalently,

logher

(2.6) lim 0.

k—o0
For instance, a constant sequence or a polynomially decaying sequence is subex-
ponential. For a sequence ¢ > 0, define the relative sequential {e}-barcode
entropy to be

. log* b, (L, L*
fiie, (@; L, L)) :=limsup l0g” bay (1, L7) € [0,00] with L* := ¥ (L").

k—o0 k

Furthermore, let us partially order positive sequences by {e}} < {ex} whenever
e’k < ey for all large k € N. Clearly,

2.7) Ry (@ L L) 2 e (95 L, L) when (€]} < {ex).

Then, in the setting of Section 2.1, we define the relative sequential barcode
entropy as
h(@;L L) :=sup e, (@; L, L) € [0,00],

{ex}
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where the supremum is taken over all subexponential sequences {ex}. (In this
definition one can replace the supremum by the direct limit with respect to the
reversed partial ordering, i.e., as the sequences get closer and closer to zero.) The
absolute sequential entropy ﬁ((p) and its {ex}-counterpart ﬁ{ek}((p) are defined in
a similar fashion. By (2.7), for every subexponential sequence € — 0, we have

(2.8) B(@; L, L) < e,y (@; L L) < fip; L, L) and 7() < fige, () < Ailg).

(We are not aware of any examples where the inequality between 7 and 7 is
strict and hypothetically it is possible that the sequential barcode entropy is
always equal to the barcode entropy.) Our key result is the following refinement
of (2.4), (2.5) and [11, Thm. 5.1].

THEOREM 2.5. Let (e} be a subexponential sequence. Then be, (L,Lk) grows at
most exponentially. Furthermore,

fi(@; L, L) < hy, ().

Note that, as a consequence, ﬁ{ek}((p;L, L) < oo and fi(p; L, L") < oo which is
a priori not obvious. We prove Theorem 2.5 in Section 3. Here we only point
out that the proof of Theorem 2.5 ultimately relies on Yomdin’s theorem, [49],
and in the theorem and throughout the paper all maps and submanifolds are
assumed to be C*°-smooth.

Applying Theorem 2.5 to id x ¢ and the diagonal, we arrive at a refinement
of [11, Thm. A]:

COROLLARY 2.6. Let {€i} be a subexponential sequence. Then b, ((pk) grows at
most exponentially, and
h(g) < hy, ().

As a consequence of Theorem 2.5 and Corollary 2.6, b, (L, L¥) and b, (¢*)
grow at most exponentially whenever the sequence {€;} is subexponential:

be, (L, Lk) <2 and be, ((pk) <2k for large k,

where we can take any ¢ > h,, (). These inequalities refine (2.4) and (2.5).

Recall that 7i(¢) = h,,, (¢|x) for any (closed) hyperbolic subset K [11, Thm. B].
By (2.8), this lower bound, like any lower bound on 7i(¢), also holds for 7i(¢).
Furthermore, by [11, Thm. CJ, #i(¢) = h,,,(¢) when M is a surface, and thus we
have the following result.

COROLLARY 2.7. Assume that ¢ is a compactly supported Hamiltonian diffeo-
morphism of a surface. Then

2.9) () = fiie,y (@) = i) = iy (),

whenever {ey} is subexponential and ey — 0.

To summarize, sequential barcode entropy has essentially the same key prop-
erties as the barcode entropy originally defined in [11]. For instance, proper-
ties (i)-(iv) from Prop. 4.4 therein holds for sequential barcode entropy too. A
possible exception is the Hofer lower semi-continuity of the relative barcode
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entropy in the Lagrangian (part (v) of Prop. 4.4). Unlike the properties (i)-(iv),
the proof of (v) from [11] does not carry over to the sequential case. On the
other hand, as we mentioned above, it is entirely possible that in general the
two entropies are equal. Yet, Corollary 2.7 in its full form certainly does not
generalize to higher dimensions. Namely, there are examples of Hamiltonian
diffeomorphisms where dim M = 6 and the last equality in (2.9) turn into a strict
inequality with h,,,(¢) >0 and 7(p) = ﬁ{ek}((p) = ﬁ((p) =0; see [9].

REMARK 2.8 (Topological sequential entropy). One could also modify the defini-
tion of topological entropy in a way similar to sequential barcode entropy. The
resulting “sequential” topological entropy is equal to the topological entropy for
C*°-maps of compact manifolds M. This is a consequence of Yomdin’s theory [7,
Prop. 3.10]. (We are grateful to David Burguet for explaining to us the connec-
tion and a proof of the equality.) On the other hand, it is not hard to construct
a C°-map with zero topological entropy and, for instance, infinite “sequential”
topological entropy.

Namely, let (M, g) be a closed Riemannian manifold of dimM =2 and Bj c M
be a sequence of disjoint balls of subexponentially decreasing radius 6 ; — 0. We
can take any such sequence 6. For each j € N, there is a diffeomorphism ¢;
of M (which can be taken to be a Hamiltonian diffeomorphism if the mani-
fold is symplectic) supported in B; with h,,(¢;) = 0 and such that the maxi-
mal number of §;/ j-separated points with respect to the metric d;fj (x,y) :=
maXg<j<k—1 dg(<pj.(x),¢§.(y)) is greater than j/ for k = j, and hence all k= j. To

construct such a diffeomorphism, we first show that there exist j/ disjoint finite
sequences of j points xg,...,xjs._l, s=1,...,j/, in B; which are §/ j-separated,

i.e., max; dg(x$,x¢) > 8/ j whenever, s # s'. Then we define ¢;: B; — B; on dis-
joint path-connected neighborhoods of these sequences, turning the sequences
into orbits and making sure that the resulting map ¢; has zero topological en-
tropy. Let ¢: M — M be the map given by composing all ¢; or, equivalently,
taking their “disjoint union”. By construction, the “sequential” topological en-
tropy of ¢ is infinite but h,,(¢) = 0. (If, instead of j/, we took 2/ sequences,
we would get a map with positive, but possibly finite, “sequential” topological
entropy and zero topological entropy.)

REMARK 2.9 (Lower bounds on the growth of b, ((pk)). A related question is that
of a lower bound on be(¢¥) or be(L, L¥), although it is not entirely clear how
to pose this question in a meaningful way. The difficulty is that one cannot
expect any particular growth behavior without additional conditions on ¢ or M.
For instance, obviously b ((pk) =n+1 for all € > 0 when ¢ is a non-degenerate
pseudo-rotation of CP”; see also Proposition 2.17. We refer the reader to Section
2.4 for more details on pseudo-rotations. Furthermore, when dim M =2 and ¢
is autonomous, or even integrable, we conjecture that be(¢*) grows at most
polynomially with k. On the other hand, in all dimensions, when ¢ has a lo-
cally maximal hyperbolic subset K with h,,, (¢|x) > 0, the sequence k — b (¢*")
grows exponentially for some N € N and € > 0. This is a consequence of [29,
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Thm. 18.5.6] and [11, Prop. 3.8 and 6.2]. Therefore, by [31], be(¢*") grows ex-
ponentially for C*°-generic ¢ when dim M = 2. (To be more precise, the set of ¢
such that this sequence grows exponentially for some € > 0 and N depending on
@ is C*°-residual.) When the genus of M is positive we do not have any example
of a strongly non-degenerate ¢ with h,,,(¢) = 0, although we believe that such
Hamiltonian diffeomorphisms exist. It is not clear what growth of b (¢*) one
should expect in this case.

2.3. Lower bounds on the y-norm. As observed in [11, Sect. 6.1.5] our results
on barcode and topological entropy and their proofs yield as a byproduct lower
bounds on the spectral norm a.k.a. y-norm of the iterates of ¢. One of such
results is Proposition 2.10, stated below, which refines [11, Prop. 6.5].

Recall that when M?" is a closed symplectic manifold the y-norm of a Hamil-
tonian diffeomorphism ¢ is defined as

Y(@) = inf{c(H) +c(H™) | ¢ = pp},

where H™ is the Hamiltonian generating the flow ((p%)_l and c is the spectral
invariant associated with the fundamental class [M] € H,,,(M). Then

(@) < ll@ll 4.

We refer the reader to, e.g., [15, 34, 35, 39, 48] for the proof and a further discus-
sion of the y-norm.

PROPOSITION 2.10. Let¢: M — M be a Hamiltonian diffeomorphism of a closed
weakly monotone symplectic manifold with more than dimH., (M) hyperbolic
periodic points. Then the sequence y((pk), k €N, is bounded away from zero.

We prove this proposition in Section 3.4. Note that having more than
dimH.. (M) hyperbolic periodic points, or more than any fixed number of hy-
perbolic periodic points, is an open property in C!-topology. By the Conley con-
jecture [19, 20, 38] every Hamiltonian diffeomorphism ¢ of a positive genus sur-
face Zg>1 has infinitely many periodic points. By the Lefschetz formula, roughly
speaking, at least half of these periodic points are hyperbolic if ¢ is strongly non-
degenerate, which is the case C*°-generically (recall that, in dimension two, an
elliptic or a negative hyperbolic fix point has Lefschetz index 1 and a positive
hyperbolic one has index —1). Hence we have:

COROLLARY 2.11. There exists a C 1-open neighborhood U ¢ Ham(Zg>1,w) of
the set of strongly non-degenerate Hamiltonian diffeomorphisms of Zg>1 such
that the sequence y((pk), k €N, is bounded away from zero for every ¢ € U. In
particular, this sequence is bounded away from zero C*-generically.

REMARK 2.12. For a strongly non-degenerate Hamiltonian diffeomorphism ¢
of M = 2, the sequence y(¢*) is not bounded away from zero if and only if ¢
is a pseudo-rotation. Indeed, this sequence contains a subsequence converging
to zero for all, not necessarily non-degenerate, pseudo-rotations of CP"; see
[22]. In the opposite direction, when M = S?, the existence of one hyperbolic
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periodic point is enough to bound the sequence y(¢*) away from zero. Strictly
speaking, we need a positive hyperbolic periodic point but the positivity can
always be achieved up to passing to an even iteration. Hence, more generally,
without any non-degeneracy assumption, if this is not the case for ¢, then all
periodic points of ¢ are elliptic (by our conventions 1 is an elliptic eigenvalue,
hence in dimension two, all degenerate fixed points are elliptic). For strongly
non-degenerate Hamiltonian diffeomorphisms ¢, by the Lefschetz formula, this
forces ¢ to be a pseudo-rotation.

The conditions of the proposition are satisfied by an even wider margin when
¢ has a hyperbolic invariant set with positive topological entropy. (We refer the
reader to, e.g., [29, Sect. 6] for the definition and a detailed discussion of hyper-
bolic invariant sets. Here, all such sets are required to be compact by definition.)
To be more precise, recall that a compact invariant set K of ¢ is said to be locally
maximal if there exists a neighborhood U o K such that K is the maximal invari-
ant subset of U or, in other words, x € K whenever the entire orbit {¢* (x) | k € Z}
through x is contained in U. For instance, the orbit K = {(pk(x)} of a hyperbolic
periodic point x is locally maximal. By [3, Thm. 3.3], whenever ¢ has a hy-
perbolic invariant set K it also has a locally maximal hyperbolic invariant set
K’ with h,,, (¢|x) arbitrarily close to h,, (¢lx). In particular, h,,(¢lx’) > 0 if
h,, (¢lx) >0, and ¢|x has infinitely many (hyperbolic) periodic orbits; cf. [29,
Thm. 18.5.6]. Thus we have proved the following.

COROLLARY 2.13. Assume that a Hamiltonian diffeomorphism ¢: M — M has
a hyperbolic invariant set K with h,, (plx) > 0. Then the sequence y(¢*), k€N,
is bounded away from zero.

By the results from [28], ¢ always has a hyperbolic invariant set when dim M =
2 and h,, (¢) > 0. Furthermore, C*°-generically h,,, (¢) > 0 in dimension two as is
proved in [31]. Therefore, we have the following (cf. Corollary 2.11 and Remark
2.12).

COROLLARY 2.14. Let ¢ be a Hamiltonian diffeomorphism of a surface M with
h,,(¢) > 0. Then the sequence y((pk), k € N, is bounded away from zero. In
particular, again, this sequence is bounded away from zero C*-generically in
dimension two.

REMARK 2.15. Actually, to derive from Proposition 2.10 the fact that the se-
quence y(¢*) is bounded away from zero C®-generically in dimension two,
we do not need to invoke results from [19, 20, 38] or [31]. Indeed, note that
whenever ¢ has an elliptic periodic point one can create a horseshoe and hence
infinitely many hyperbolic periodic points by a C*°-small perturbation. This is
a consequence of the Birkhoff-Lewis theorem. Then, in the hypothetical situa-
tion where ¢ does not have elliptic periodic points, a standard index argument
shows that it must have infinitely many hyperbolic periodic points.

REMARK 2.16. The converse of Corollary 2.14 (or Proposition 2.10) is not true
in general. Even in dimension two, the sequence y((pk), k €N, can be bounded
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away from zero when h,,,(¢) = 0. It is easy to construct an autonomous Hamil-
tonian diffeomorphism ¢ of a surface of positive genus with no hyperbolic pe-
riodic points and y(tpk) — oo. For instance, as in [39, Ex. 5.6], one can take
H = sin(270) where 0 is the first angular coordinate on T2 = R?/Z2. This is of
course impossible for M = S? because the y-norm in this case is bounded from
above; see [15] and also [41, 42]. Interestingly, other than this fact and Remark
2.12 and Corollary 2.14 essentially nothing seems to be known about the behav-
ior of the y-norm under iterations when M = S2. For instance, we do not know
whether the converse of Corollary 2.14 (or Proposition 2.10) is true for M = S?,
or even if the sequence y((pk) is bounded away from zero when the Hamiltonian
is autonomous and a convex or concave function of the latitude.

The reader can also find further results, based on [13], on the generic growth
of the y-norm in [12].

2.4. Approximate identities and Hamiltonian pseudo-rotations. In this sec-
tion, looking at the results from Section 2.3 from a different perspective, we
focus on two classes of maps with subexponential growth of b,: y-approximate
identities and Hamiltonian pseudo-rotations of CP”.

Defining approximate identities, it is useful to work in a greater generality
than needed for our purposes. Consider a class of compactly supported dif-
feomorphisms ¢ of a smooth manifold M (e.g., all such diffeomorphisms or,
as above, compactly supported Hamiltonian diffeomorphisms, etc.), equipped
with some metric, e.g., the CY- or C!- or C"-metric or the Y-metric in the Hamil-
tonian case which we are interested in here. The norm |¢|| is by definition the
distance from ¢ to the identity. Following [23], we will call ¢ a | - |-approximate
identity, or a || - ||-a.i. for the sake of brevity, if ¢’ — id with respect to | - || for
some sequence k; — co. We will often suppress the norm in the notation. In dy-
namics, a.i.’s are usually referred to as rigid maps which sometimes clashes with
the same term used for structural stability. (We believe that a confusion with
approximate identities in analysis is unlikely.) Approximate identities have been
extensively studied, although usually from a perspective different than ours; see,
e.g., [4, 17, 18] and also [23] for further references.

The definition can be refined or modified in several ways and one such re-
finement is of particular interest to us. Namely, for a given € > 0, consider the
iterations ¢ such that

lo™ <e.

Thus k; = k;(e) is a strictly increasing sequence. Then ¢ is said to be || - ||-almost
periodic if for every € > 0 the sequence k; is quasi-arithmetic, i.e., the differ-
ence between any two consecutive terms is bounded by a constant, possibly
depending on €. Almost periodic maps are closely related to compact group
actions on M: ¢ is C°-almost periodic if and only if the family {¢*} is equicon-
tinuous and thus generates a compact abelian group of (compactly supported)
homeomorphisms, [24].
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Almost periodicity and rigidity (the C°-a.i. condition) impose strong restric-
tions on the dynamics of ¢. For instance, a C°-a.i. clearly cannot be topologi-
cally mixing and every point of M belongs to its w- and a-limit sets. In partic-
ular, a C%-a.i. cannot have hyperbolic invariant sets. (See, e.g., [4, 23] for more
details, examples and references.) Furthermore, as pointed out in [4, p. 681],
any C°-a.i. has zero topological entropy, although this fact is not immediately
obvious.

In the Hamiltonian setting, it is natural to consider a.i.’s and almost periodic
maps ¢ with respect to the y-norm and we are concerned here with the effect
of these conditions on the dynamics of ¢. For instance, by Corollaries 2.13
and 2.14, a y-a.i. ¢ cannot have locally maximal hyperbolic invariant sets with
positive entropy and in dimension two we necessarily have h,,,(¢) = 0. Here we
focus on barcode entropy and the barcode growth.

PROPOSITION 2.17. Let ¢ be ay-almost periodic Hamiltonian diffeomorphism of
a closed monotone symplectic manifold M and let L and L' be closed Lagrangian
submanifolds of M as in Section 2.1. Then for every € > 0 the sequences b, (L, Lk)

and b (¢*) are bounded. In particular, h(¢; L, L') = 0 and h(p) = 0.

We prove this proposition, which is an easy consequence of a result from
[30], in Section 3.5 where we also show that 7i(¢; L, L") = 0 and %(¢p) = 0 for y-
a.i’s under a certain growth condition on the sequence k;; see Proposition 3.9.
We conjecture that this is true for all y-a.i.s.

A C%-almost periodic Hamiltonian diffeomorphism or C°-a.i. is automatically
y-almost periodic or, respectively, y-a.i. when M is symplectically aspherical,
[6], and also for some other classes of monotone symplectic manifolds M in-
cluding CP”, [41]. However, we are not aware of any example of Hamiltonian
C%-a.i’s on a symplectically aspherical manifold and hypothetically such maps
do not exist. (See [37] for the proof in the C 1_case and [23] for a further discus-
sion.)

To date, the only known examples of Hamiltonian y-a.i.’s or y-almost peri-
odic Hamiltonian diffeomorphisms (beyond those coming from torus actions)
are Hamiltonian pseudo-rotations ¢ of CP" (see [22, 23] and also [26]), although
one can expect the same to be true for Hamiltonian pseudo-rotations of many
other manifolds. A Hamiltonian pseudo-rotation is a Hamiltonian diffeomor-
phism with the minimal possible number of periodic points, where minimality
is interpreted in the spirit of Arnold’s conjecture. The actual definitions vary in
general (see [10, 22, 40]), but for M = CP" the requirement is that ¢ has exactly
n+ 1 periodic points, which are then necessarily the fixed points. Moreover, by
[22] and [40], all periodic points have one-dimensional local Floer homology, in
particular, b.(¢¥) = n+1 for any € > 0.

The simplest example of a Hamiltonian pseudo-rotation is a generic element
in a Hamiltonian circle or torus action with isolated fixed points. However, in
general, Hamiltonian pseudo-rotations can have very interesting dynamics. For
instance, Hamiltonian (a.k.a. area-preserving, in this case) pseudo-rotations of
$? = CP! with exactly three invariant measures, which are then the two fixed
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points and the area form, were constructed in [1]; see also [17]. This construc-
tion was extended to symplectic toric manifolds of any dimension in [32].
As an immediate consequence of Proposition 2.17, we have the following.

COROLLARY 2.18. Let ¢ be a Hamiltonian pseudo-rotation of CP" and let L and
L' be Lagrangian submanifolds of CP" as in Section 2.1. Then for every ¢ >0 the
sequence be(L,Lk) is bounded. In particular, h(@;L,L") = 0.

We do not know if we can replace barcode entropy by sequential barcode en-
tropy in Proposition 2.17 and Corollary 2.18. Note also that the absolute counter-
part of Corollary 2.18 is obvious in contrast with Proposition 2.17: b, ((pk) =n+l
for any e > 0, and hence fi(¢) = fi(¢p) = 0, for a pseudo-rotation ¢ of CP”.

We conjecture that h,,,(¢) = 0 for any Hamiltonian pseudo-rotation of CP”,
and Corollary 2.18 provides some indirect evidence supporting this conjecture.
In dimension two, the conjecture follows immediately from, e.g., the results in
[28] asserting that any area-preserving positive-entropy C'*%-diffeomorphism
of a compact surface must have a horseshoe, and hence has infinitely many
periodic points. Furthermore, Hamiltonian pseudo-rotations ¢ of D? or CP"
satisfying a certain additional condition on the rotation number or the rotation
vector are known to be C%-a.i.’s; see [5] and also [4] for D? and [22] for CP" and
[26] for Anosov-Katok pseudo-rotations. Thus, in this case, h,,(¢) = 0 by the
observation from [4] mentioned above.

3. PROOFS AND REFINEMENTS

In this section we prove Theorem 2.5, Proposition 2.10 and also refine and
prove Proposition 2.17. Along the way we discuss some other ways to measure
barcode growth. The proof of Theorem 2.5 hinges on a construction from [11],
which we call a Lagrangian tomograph and describe next.

3.1. Lagrangian tomograph. Let L be a closed Lagrangian submanifold of a
symplectic manifold M?". A Lagrangian tomograph is a map ¥: B x L — M,
where B = B? is a ball of possibly very large dimension d, which satisfies the
following properties:

(i) The map V¥ is a submersion onto its image, the maps ¥ := W[5« are
smooth embeddings for all s€ B and ¥ =(; where ¢;: L — M is the inclu-
sion map;

(ii) The images L= ‘P({s} X L) are Lagrangian submanifolds of M Hamiltonian
isotopic to L.

Thus a Lagrangian tomograph is a family of Lagrangian submanifolds L
which are parametrized by a ball B and meet some additional requirements.
We call d = dim B the dimension of the tomograph. Note that we have Ly = L by
(i). A Lagrangian tomograph always exists for any closed Lagrangian subman-
ifold L. In fact, a Lagrangian tomograph of dimension d exists if and only if L
admits an immersion into R? ; see [11, Lemma 5.6]. We will need the following
lemma.
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LEMMA 3.1. For some C, > 0 depending only on the tomograph, we have
3.1 du(Lo, Ls) = Cyllsll.

Proof. Since B is compact it suffices to show that (3.1) holds when ||s|| is small.
Fix a Weinstein neighborhood of L = L. Then, near s =0, each Lagrangian L; is
given by the graph of some exact form a;. Let a; = d f; be a smooth family of
primitives; see [16]. (Note that, since ¥ is smooth, the family a; is smooth in
s € B.) The claim (3.1) follows from the following two inequalities:

dy(Lo,Lg) < mLast _rnLinfs = Cyllisl

for some constant C, > 0. Here, in the first inequality one can take n* f;: T*L —
R, where n: T* L — L is the projection map, as the generating Hamiltonian. (The
first inequality turns into equality when | s|| is sufficiently small, [33], but we do
not need this fact.) The second inequality follows from the smoothness of the
family f. O

Next, let I be a closed n-dimensional submanifold of M. Set
N(s):=|LgnL| €0, c0].

Since ¥ is a submersion, ¥, M L for almost all s € B. Hence N(s) < co almost
everywhere and N is an integrable function on B.

Fix an auxiliary Riemannian metric on M and let ds be a smooth measure on
B, e.g., the standard Lebesgue measure. The key to the proof of Theorem 2.5 is
the following observation.

LEMMA 3.2 (Crofton’s inequality; Lemma 5.3 in [11]). We have
f N(s)ds < Cer-vol(L),
B

where the constant Cc, depends on ds, ¥ and the metric on M, but not on L.

Of course, the lemma holds without the requirement that the submanifolds
L, are Lagrangian — Condition (i) is sufficient. However, Condition (ii) is es-
sential for the rest of the proof and hence we included it in the definition of a
Lagrangian tomograph.

3.2. Proof of Theorem 2.5. As are many arguments of this type, the proof is
ultimately based on Yomdin’s theorem, [49], and quite similar to the proof of
(11, Thm. 5.1]. To prove the theorem, it suffices to show that

(3.2) hep (@) = Fiie, ) (@; L, L)

for every subexponential sequence {e;} with ﬁ{ek}((p;L, L) > 0. We will further
assume that b, (Lo, L¥) > 0 for all € € {ex}. This can be always achieved without
changing the growth rate via passing to a subsequence.

Set L¥:= ¢*(L). By Lemma 3.2, we have a sequence of integrable functions
Nj on B such that

f Ni(s)ds < Ceq-vol (L¥),
B
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where the constant C, is independent of k.
For any sequence of balls By < B of radius 0 centered at the origin, we have
the following chain of inequalities:

Cexvol (L¥) = f Nidsz | Nids= f be12(Ls, LY) ds,
B By By

where in the last inequality we used (2.2). Let C,; be the constant from (3.1). By
(2.3),

beys2(Ls, L*) = by, (Lo, L¥)
with ng =€r/2+2C,0. Then, setting 6 = €x/4C,;, we obtain the inequality
beyr2(Ls, L*) = be, (Lo, L¥)

as long as s € By. Therefore,
Dey 2 (Lo, L) ds = f be, (Lo, L¥) ds = vol (B) be, (Lo, LY),
By By

where we took ds to be the Lebesgue measure. To summarize,
(3.3) vol (L¥) = ¢} vol (By) be, (Lo, L¥).
Taking log™ of both sides and dividing by k, we have

log* vol (LX) log" be, (Lo, LF

(3.4) grvol(L7) | log" b (Lo L),
k k

where d = dim B. Due to the condition that {e¢} is subexponential, i.e., (2.6), the

second term on the right goes to zero as k — co. Thus, passing to the limit, we

have

log* e

+0(1/k),

log* vol (L
limsup 2801 ()
k—oo

> Ryey (@5 L, L.

By Yomdin’s theorem, [49], the left hand side is bounded from above by h,,(¢),
and (3.2) follows, which concludes the proof of the theorem. O

REMARK 3.3. This argument actually tells us a little bit more than Theorem 2.5.
Focusing on the case of absolute entropy for the sake of simplicity, observe that
(3.3) holds whenever ¢y is sufficiently small. The threshold for ¢ is determined
by the tomograph. Then, by (3.4), for any sequence {e;} which eventually be-
comes small enough, for instance whenever €; — 0, subexponential or not, we
have
. llog™ el
h, () + d -limsup gT = ey ().

3.3. The shortest bar and total persistence. In this section we briefly discuss
some other ways to measure the size of a barcode and relevant notions of bar-

code entropy. The first one is centered around the shortest bar.
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PROPOSITION 3.4. Let ¢ be a strongly non-degenerate Hamiltonian diffeomor-
phism ¢: M — M, where M is closed and weakly monotone; cf. Section 2.1. De-
note by ,Brl?in the shortest bar for ¢* and by p(k) the number of k-periodic points
of ¢. Then

log* p(k)—d - |log" pi"|

T )
where we can take as d the minimal dimension of the Euclidean space which M
can be immersed into.

(3.5) h,, (¢) = limsup

To put this result in perspective, recall that when dim M > 2 there is no clear-
cut connection between the growth of p(k) and topological entropy in either
direction; see [27]. Proposition 3.4 resolves the problem to a certain extent by
providing a lower bound for topological entropy in terms of the exponential
growth rate of p(k), but with a correction term coming from the decay of ﬁﬁ‘in.
Furthermore, even in dimension two, p(k) can grow arbitrarily fast, even when
@ is strongly non-degenerate; see [2, Thm. 1.2]. Then, by (3.5), ,Bll?in must go to
zero superexponentially and (3.5) still provides some information.

Proof. Observe that

p(k) = 2be(p¥) — dim M
for all € < ﬁ‘lzﬁn. Then, as in Remark 3.3, it is not hard to see from (3.4) with
€x = min{c, ﬁ‘,;“n} that

(3.6) kh, () +d - [log" min {c, B} = log™ p(k) + o(k),

where ¢ > 0 is the threshold mentioned in the remark. On the other hand, we
have ,Bll?m < II(kaIH < kll@lly; see [45]. Tt follows that

(3.7) [log* min{c, [i‘,?in}| = |log* ﬁ‘,?in| +O0(logk).
Now, (3.5) follows from (3.6) and (3.7). O

Another way to measure the size of a barcode is by looking at the total per-
sistence, i.e., the sum of the finite bar lengths taken to some power a > 0. To be
more specific, set

oa@) =) Bilp)*€0,00],
where a > 0 is fixed and the sum is over all finite bars in %(¢). This is a Floer
theoretic variant of the total persistence; see, e.g., [14, 43] and references therein.
Clearly, the above sum is finite when ¢ is strongly non-degenerate and this is
the case we will focus on here. Then we introduce a family of total persistence
barcode entropies
+ k
h(a, @) :=limsup M €
k—o0 k

In the strongly non-degenerate case, similarly to above, one can regard 7i(a, ¢)
as the exponential growth rate of periodic points p(k) counted with certain
weights coming from the barcode.

[0, oo].
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PROPOSITION 3.5. Let ¢ be a strongly non-degenerate Hamiltonian diffeomor-
phism of a closed and weakly monotone symplectic manifold M. Then, for ii(a, )
defined as above:
(i) The function a — h(a, @) is (non-strictly) decreasing.
(ii) We have hi(a,p) = hc (@) for all e > 0. As a consequence, hi(a, @) = li(p).
(iii) For a = d, where d is the dimension of a tomograph,

hi(a, ) <h,,(p) <oo.

In the same vein, a variant of total persistence barcode entropy can be de-
fined for a Lagrangian or a pair of Lagrangians, and a similar result holds in this
setting.

COROLLARY 3.6. Assume that M is a closed surface. Then, for a« = 3 and any
strongly non-degenerate Hamiltonian diffeomorphism ¢: M — M, we have

h(a, @) = Alp) =h,,(@).

Proof. Any closed surface can be immersed into R® and even embedded when
M is orientable. Hence, when M is such a surface, there exists a Lagrangian
tomograph of dimension d = 3; see [11]. Now, for a = 3, in dimension two we
have the chain of (in)equalities

n(p) < h(a, p) <h,, (@) =hy),
where the first two inequalities follow from the proposition and in the last equal-

ity we use [11, Thm. C]. Therefore, all three invariants are equal. O

REMARK 3.7. We do not know if it can happen that 7i(a, ¢) = co for some 0 <
a <d, e.g., for a =1 which corresponds to the total bar length growth. But if it
can, the infimum

@, = infla > 0| hi(a, @) < oo}
would be a new Hausdorff dimension-type invariant of ¢ associated with the
barcodes B(¢*).

Proof of Proposition 3.5. We start by introducing a “truncated” version of the
invariant zi(a, ¢). For b >0, set

ol (p") =Y min{b, B;(p*)}"
and let /1% (a, @) be the exponential growth rate (in k) of UZ((pk). More precisely,

+ b,k
hb(a,(p) :=limsup M € [0, o0].
k—o0 k
Clearly,
UZ(qo) =0q(9),
and hence

nP (@, ) < hi(a, ).
We claim that in fact

(3.8) i’ (@, ) = h(a, @)
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for all b> 0 and a > 0. Deferring the proof of (3.8) to the end, let us first prove
the proposition.

For Part (i), we set b = 1 and observe that U}Z(q)k) is decreasing in a > 0. It
follows that the growth rate %'(a, ), and hence 7(a,¢) by (3.8), is also a de-
creasing function of a > 0.

Furthermore,

€"be(p) < T4 ()
for all ¢ and e > 0. Applying this inequality to ¢, taking log™ and passing to the
limit we obtain Part (ii). (This argument is independent of (3.8).)

Next, let us focus on Part (iii). By Part (i), we may assume that a = d. Let Lk
be the graph of ¢* and Ly the diagonal in M x M. Thus for any € > 0, b.(¢~) =
be(Lo, L")

Fix a tomograph L; about Ly. Then as in Section 3.2 we have

Ni(s) 2 b(Ls, LX) = beysi (Ls L¥) 2 bacyy s (Lo, LX) = bacyy 1 (%)
whenever Lg h LF; see (2.3) and Lemma 3.1. Integrating both sides and using

Lemma 3.2, we obtain

(3.9 Ccrvol (Lk) EfBNk(S) dSZfBbch”s” ((pk) ds.

A change of variables with r = 3Cy| s|| yields

o
(3.10) L bSCHIISII ((pk) ds= CL br ((pk)rd_l dar

for some C >0 and ry > 0 independent of k. On the other hand, the truncated

To(,nk :
sum o) (") can also be written as

o To
8.11) UZJ(‘Pk)Zd'Z[O l[o,ﬁi(wk))(”rd_ldr:d'fo br(¢")r*ar,

where 1, 1) (r) is the characteristic function of [a, b). Here the second equality
is a consequence of the identity

2 Lo i (1) = br (@5).
We combine (3.9), (3.10) and (3.11) to infer as in the proof of Theorem 2.5 that

htop ((P) = hrO (d) (P) = h(dy (,0)

It remains to prove the claim (3.8). As in (3.7), the claim relies on the linear
upper bound ﬁi((pk) < kll@ll 4 see [45]. More precisely, we have

(3.12) Y oprs Y Bi@N)T s Y (kloln®
Bi(pk)>b ﬁi((p")>b Bil@F)>b

Here all three terms and, in particular, the first two have the same exponential
growth rate. Now, (3.8) is a consequence of (3.12) and the general fact that

log™® + log™ log™®
og" (px+ qi) ngpk,limsup ngCIIc}

3.13 li
( ) imsup .

’

= max {lim sup
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which holds for any real sequences py =0 and g = 0. Namely, set

pr= Y b* and pi= Y Bi(eN)
Bil@*)>b Bi@b)>b

and also
ae= Y. PBile"™
Bi(p¥)<b

Then

ag(q)k) =pr+qr and aa(q)k) = P + Gk

By (3.12), py and p;c have the same exponential growth rate. Then it follows

from (3.13) that o2 (@) and 04(¢*) have the same exponential growth rate,
too. O

REMARK 3.8. Just as in Theorem 2.5, a similar construction can also be carried
out in the relative setting for a pair of Lagrangians and an analogue of Proposi-
tion 3.5 also holds in this case, with the same proof.

3.4. Proof of Proposition 2.10. For some N € N, ¢ has more than dimH. (M)
hyperbolic N-periodic points. We denote the set of such points by .#". Thus
|| > dimH, (M) and clearly .# is a locally maximal hyperbolic set. Further-
more, every point in £ is also ¢ N-periodic for all £ € N. Then, arguing as in the
proof of [11, Thm. B] and using [11, Prop. 3.8 and 6.2], we conclude that for a
sufficiently small € > 0 and any Z € N,

be(p™N) > dimH.. (M),

and hence ¢’V has a finite bar of length greater than e > 0.
Also recall that as is proved in [30, Thm. A], for any ¢,

(3.14) ﬁmax (@) =v(p),

where the left-hand side is the boundary depth, i.e., the longest finite bar in the
barcode of ¢. Thus, for a sufficiently small € > 0,

(3.15) € < Bmax(0™) =y (™).

Next, arguing by contradiction, assume that there exists a sequence k; —
oo such that y((pki ) — 0. We claim that when k; < k; are large enough, the
difference k; — k; is not divisible by N. This will imply the proposition; for
then the sequence k; would contain an infinite subsequence with the difference
between any two terms not divisible by N. This is impossible because there are
only finitely many residues modulo N.

To prove the claim, assume the contrary:

k i— ki =¢N.
Then by the triangle inequality for y, we have
Y(@™) <y(@") +y(07).
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Here, the right hand side becomes arbitrarily small when k; and k; are large, but
the left hand side is bounded from below by € > 0 by (3.15). This contradiction
concludes the proof of the proposition. O

3.5. Proof and a refinement of Proposition 2.17. Although we do not have any
examples of y-a.i.’s which are not pseudo-rotations, and hence y-almost peri-
odic when M = CP”", it is interesting to see that the zero-entropy part of the
statement of the proposition holds under a less restrictive condition than y-
almost periodicity.

To state the result, let us assume that ¢ is a y-a.i. and denote by k; = k;(e)
a strictly increasing sequence of integers such that y((pk" ) < e. Furthermore,
assume that there exists @ < 1 independent of € and such that

(3.16) kiz1—k; < ak;,
when k; is sufficiently large (depending on €). For instance, all y-almost periodic

Hamiltonian diffeomorphisms meet this requirement.

PROPOSITION 3.9. Let ¢ be a y-a.i. satisfying (3.16). Then h(p;L,L') =0 and
i) =0.

Proof of Propositions 2.17 and 3.9. The absolute case of the propositions con-
cerning b, ((pk) and 71(¢) follows from the relative case by setting L = L' to be
the diagonal in M x M and replacing ¢ by id x ¢. Hence we will focus on the
relative case.

The key to the proof is [30, Thm. B] which asserts, roughly speaking, that one
can replace the Hofer norm in (2.3) by the y-norm. Namely, recall that for any
two Lagrangian submanifolds L' and L” Hamiltonian isotopic to each other the
y-distance between L' and L” is defined as

y(', L") :=inf{yw) |y = L"} <d, (L', L").
Then, as a consequence of [30, Thm. B], we have the following refinement of
(2.3):
(3.17) be+s5(L,L') < be(L,L") when y(L', L") < /2.

In the setting of Proposition 2.17, fix € > 0. We claim that there exist N e N
such that

(3.18) be(L, LF) < max bejo(L, LY)
0</=<N
for all sufficiently large k € N. Indeed, since ¢ is y-almost periodic, there exists
a sequence of positive integers
k1<k2<k3<...

such that

y((pki) <el/dand kj1—k;<N
for some N. Let k = k; and write k= k; + ¢ with 0< ¢ < N. Then

L* = ki (LY) with y (") < e/a.
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Hence, by (3.17),
be(L, LX) < bepa (L, LY)
for all k = k;. This proves (3.18) and completes the proof of Proposition 2.17.
Turning to the proof of Proposition 3.9, for the sake of brevity, set

be(k) := be(L, L¥) and Fie := e (; L, L).

Let k; be a strictly increasing sequence of positive integers such that

}/((pki) <eldand k.1 —k; < ak; with a < 1.
As above, for k = k;, write k = k; + £ where now 0 < ¢ < ak;. Then

be (k) = be (ki + €) < bey2(0).

Furthermore, for any 7 > /2 and some constant C,

log" bej2(0) <né +C <nak; +C <nak+C.
Combining these inequalities, we have

log" b (k) <nak+C.

Dividing by k and passing to the upper limit as k — oo, we see that 7, < na
for all n > ¢/, and hence fi, < afic/2. Equivalently, fig/o = a lh, witho<a<1.
Iterating this argument, we conclude that

hizhyi,=2a 'he—ocoas i — oo
unless i, = 0. Since 7 < co, we must have /i, = 0, and hence 7 = 0. O

REMARK 3.10. As we have pointed out in Section 2.4, we do not know if we
can replace barcode entropy by sequential barcode entropy in Propositions 2.17
and 3.9.

Acknowledgments. We are grateful to David Burguet for useful discussions.

REFERENCES

[1] D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomor-
phisms, Trudy Moskov. Mat. Obs¢., 23 (1970), 3-36.

[2] M. Asaoka, Abundance of fast growth of the number of periodic points in 2-dimensional
area-preserving dynamics, Comm. Math. Phys., 356 (2017), 1-17.

[3] A. Avila, S. Crovisier and A. Wilkinson, C! density of stable ergodicity, Adv. Math., 379
(2021), Paper No. 107496, 68 pp.

[4] A. Avila, B. Fayad, P. Le Calvez, D. Xu and Z. Zhang, On mixing diffeomorphisms of the disk,
Invent. Math., 220 (2020), 673-714.

[5] B. Bramham, Pseudo-rotations with sufficiently Liouvillean rotation number are C°-rigid,
Invent. Math., 199 (2015), 561-580.

(6] L. Buhovsky, V. Humiliére and S. Seyfaddini, The action spectrum and C° symplectic topol-
ogy, Math. Ann., 380 (2021), 293-316.

[7]1 J. Buzzi, Ergodicité intrinseque de produits fibrés d’applications chaotiques unidimension-
nelles, Bull. Soc. Math. France, 126 (1998), 51-77.

[8] Y. V. Chekanov, Invariant Finsler metrics on the space of Lagrangian embeddings, Math. Z.,
234 (2000), 605-619.

[9] E. Cineli, A generalized pseudo-rotation with positive topological entropy, preprint,
arXiv:2310.14761.

JOURNAL OF MODERN DYNAMICS VOLUME 20, 2024, 275-298


http://www.ams.org/mathscinet-getitem?mr=MR370662&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3694021&return=pdf
http://dx.doi.org/10.1007/s00220-017-2972-0
http://dx.doi.org/10.1007/s00220-017-2972-0
http://www.ams.org/mathscinet-getitem?mr=MR4198639&return=pdf
http://dx.doi.org/10.1016/j.aim.2020.107496
http://www.ams.org/mathscinet-getitem?mr=MR4094968&return=pdf
http://dx.doi.org/10.1007/s00222-019-00937-7
http://www.ams.org/mathscinet-getitem?mr=MR3302121&return=pdf
http://dx.doi.org/10.1007/s00222-014-0525-0
http://www.ams.org/mathscinet-getitem?mr=MR4263685&return=pdf
http://dx.doi.org/10.1007/s00208-021-02183-w
http://dx.doi.org/10.1007/s00208-021-02183-w
http://www.ams.org/mathscinet-getitem?mr=MR1651381&return=pdf
http://dx.doi.org/10.24033/bsmf.2320
http://dx.doi.org/10.24033/bsmf.2320
http://www.ams.org/mathscinet-getitem?mr=MR1774099&return=pdf
http://dx.doi.org/10.1007/PL00004814
http://arxiv.org/pdf/2310.14761

ON THE GROWTH OF THE FLOER BARCODE 297

(10] E. Cineli, V. L. Ginzburg and B. Z. Giirel, Pseudo-rotations and holomorphic curves, Selecta
Math., 26 (2020), Paper No. 78, 31 pp.

[11] E. Cineli, V. L. Ginzburg and B. Z. Giirel, Topological entropy of Hamiltonian diffeomor-
phisms: A persistence homology and Floer theory perspective, preprint,arXiv:2111.03983.

[12] E. Cineli, V. L. Ginzburg and B. Z. Giirel, On the generic behavior of the spectral norm,
Pacific J. Math., 328 (2024), 119-135.

[13] E. Cineli and S. Seyfaddini, The strong closing lemma and Hamiltonian pseudo-rotations,
preprint, arXiv:2210.00771.

[14] D. Cohen-Steiner, H. Edelsbrunner, J. Harer and Y. Mileyko, Lipschitz functions have Lp-
stable persistence, Found. Comput. Math., 10 (2010), 127-139.

[15] M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res.
Not., 2003, 1635-1676.

[16] J. Espinoza and R. Ramos, On smooth families of exact forms, preprint, arXiv:1903.07830.

[17] B. Fayad and A. Katok, Constructions in elliptic dynamics, Ergodic Theory Dynam. Systems,
24 (2004), 1477-1520.

[18] B. Fayad and R. Krikorian, Some questions around quasi-periodic dynamics, in Proceedings
of the International Congress of Mathematicians-Rio de Janeiro 2018. Vol. III. Invited lectures,
1909-1932, World Sci. Publ., Hackensack, NJ, 2018.

[19] J. Franks and M. Handel, Periodic points of Hamiltonian surface diffeomorphisms, Geom.
Topol., 7 (2003), 713-756.

[20] V. L. Ginzburg, The Conley conjecture, Ann. of Math. (2), 172 (2010), 1127-1180.

[21] V. L. Ginzburg and B. Z. Giirel, Action and index spectra and periodic orbits in Hamiltonian
dynamics, Geom. Topol., 13 (2009), 2745-2805.

[22] V. L. Ginzburg and B. Z. Giirel, Hamiltonian pseudo-rotations of projective spaces, Invent.
Math., 214 (2018), 1081-1130.

[23] V. L. Ginzburg and B. Z. Glirel, Approximate identities and Lagrangian Poincaré recurrence,
Arnold Math. J., 5 (2019), 5-14.

[24] W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, Colloquium Publications, Vol.
36., American Mathematical Society, Providence, R. I., 1955.

[25] B. Z. Giirel, Totally non-coisotropic displacement and its applications to Hamiltonian dy-
namics, Comm. Contemp. Math., 10 (2008), 1103-1128.

(26] D. Joksimovi¢ and S. Seyfaddini, A Hélder type inequality for the C? distance and Anosov—
Katok Pseudo-Rotations, Int. Math. Res. Not. IMRN, (2024), no. 8, 6303-6324.

[27] V. Kaloshin, An extension of the Artin-Mazur theorem, Ann. of Math. (2), 150 (1999), 729-
741.

(28] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst.
Hautes Etudes Sci. Publ. Math., (1980), 137-173.

[29] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, with
a supplementary chapter by A. Katok and L. Mendoza, Encyclopedia of Mathematics and
its Applications, 54, Cambridge University Press, Cambridge, 1995.

[30] A. Kislev and E. Shelukhin, Bounds on spectral norms and applications, Geom. Topol., 25
(2021), 3257-3350.

(31] P. Le Calvez and M. Sambarino, Homoclinic orbits for area preserving diffeomorphisms of
surfaces, Ergodic Theory Dynam. Systems, 42 (2022), 1122-1165.

[32] E Le Roux and S. Seyfaddini, The Anosov-Katok method and pseudo-rotations in symplectic
dynamics, J. Fixed Point Theory Appl., 24 (2022), Paper No. 36, 39 pp.

[33] D. Milinkovi¢, Geodesics on the space of Lagrangian submanifolds in cotangent bundles,
Proc. Amer. Math. Soc., 129 (2001), 1843-1851.

[34] Y.-G. Oh, Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamil-
tonian diffeomorphism group, Duke Math. J., 130 (2005), 199-295.

[35] Y.-G. Oh, Construction of spectral invariants of Hamiltonian paths on closed symplectic
manifolds, in The Breadth of Symplectic and Poisson Geometry, 525-570, Progr. Math., 232,
Birkh&duser, Boston, MA, 2005.

JOURNAL OF MODERN DYNAMICS VOLUME 20, 2024, 275-298


http://www.ams.org/mathscinet-getitem?mr=MR4177575&return=pdf
http://dx.doi.org/10.1007/s00029-020-00609-y
http://arxiv.org/pdf/2111.03983
http://www.ams.org/mathscinet-getitem?mr=MR4732759&return=pdf
http://dx.doi.org/10.2140/pjm.2024.328.119
http://arxiv.org/pdf/2210.00771
http://www.ams.org/mathscinet-getitem?mr=MR2594441&return=pdf
http://dx.doi.org/10.1007/s10208-010-9060-6
http://dx.doi.org/10.1007/s10208-010-9060-6
http://www.ams.org/mathscinet-getitem?mr=MR1979584&return=pdf
http://dx.doi.org/10.1155/S1073792803210011
http://arxiv.org/pdf/1903.07830
http://www.ams.org/mathscinet-getitem?mr=MR2104594&return=pdf
http://dx.doi.org/10.1017/S0143385703000798
http://www.ams.org/mathscinet-getitem?mr=MR3966835&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2026545&return=pdf
http://dx.doi.org/10.2140/gt.2003.7.713
http://www.ams.org/mathscinet-getitem?mr=MR2680488&return=pdf
http://dx.doi.org/10.4007/annals.2010.172.1127
http://www.ams.org/mathscinet-getitem?mr=MR2529945&return=pdf
http://dx.doi.org/10.2140/gt.2009.13.2745
http://dx.doi.org/10.2140/gt.2009.13.2745
http://www.ams.org/mathscinet-getitem?mr=MR3878727&return=pdf
http://dx.doi.org/10.1007/s00222-018-0818-9
http://www.ams.org/mathscinet-getitem?mr=MR3981449&return=pdf
http://dx.doi.org/10.1007/s40598-019-00097-9
http://www.ams.org/mathscinet-getitem?mr=MR74810&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2483254&return=pdf
http://dx.doi.org/10.1142/S0219199708003198
http://dx.doi.org/10.1142/S0219199708003198
http://www.ams.org/mathscinet-getitem?mr=MR4735626&return=pdf
http://dx.doi.org/10.1093/imrn/rnad103
http://dx.doi.org/10.1093/imrn/rnad103
http://www.ams.org/mathscinet-getitem?mr=MR1726706&return=pdf
http://dx.doi.org/10.2307/121093
http://www.ams.org/mathscinet-getitem?mr=MR573822&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1326374&return=pdf
http://dx.doi.org/10.1017/CBO9780511809187
http://www.ams.org/mathscinet-getitem?mr=MR4372632&return=pdf
http://dx.doi.org/10.2140/gt.2021.25.3257
http://www.ams.org/mathscinet-getitem?mr=MR4374968&return=pdf
http://dx.doi.org/10.1017/etds.2021.40
http://dx.doi.org/10.1017/etds.2021.40
http://www.ams.org/mathscinet-getitem?mr=MR4406868&return=pdf
http://dx.doi.org/10.1007/s11784-022-00955-8
http://dx.doi.org/10.1007/s11784-022-00955-8
http://www.ams.org/mathscinet-getitem?mr=MR1814118&return=pdf
http://dx.doi.org/10.1090/S0002-9939-00-05851-2
http://www.ams.org/mathscinet-getitem?mr=MR2181090&return=pdf
http://dx.doi.org/10.1215/00127094-8229689
http://dx.doi.org/10.1215/00127094-8229689
http://www.ams.org/mathscinet-getitem?mr=MR2103018&return=pdf
http://dx.doi.org/10.1007/0-8176-4419-9_18
http://dx.doi.org/10.1007/0-8176-4419-9_18

298

(36]

(37]

(38]

(39]

[40]
(41]

[42]

[43]

(44]

(45]

(46]

(47]

(48]

(49]

ERMAN CINELI, VIKTOR GINZBURG AND BASAK GUREL

L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Math-
ematics ETH Ziirich, Birkhduser Verlag, Basel, 2001.

L. Polterovich, Growth of maps, distortion in groups and symplectic geometry, Invent. Math.,
150 (2002), 655-686.

D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems
and the Maslov index, Comm. Pure Appl. Math., 45 (1992), 1303-1360.

M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific
J. Math., 193 (2000), 419-461.

E. Shelukhin, On the Hofer-Zehnder conjecture, Ann. of Math. (2), 195 (2022), 775-839.

E. Shelukhin, Viterbo conjecture for Zoll symmetric spaces, Invent. Math., 230 (2022), 321-
373.

E. Shelukhin, Symplectic cohomology and a conjecture of Viterbo, Geom. Funct. Anal., 32
(2022), 1514-1543.

P Skraba and K. Turner, Wasserstein stability for persistence diagrams, preprint,
arXiv:2006.16824.

M. Usher, Boundary depth in Floer theory and its applications to Hamiltonian dynamics
and coisotropic submanifolds, Israel J. Math., 184 (2011), 1-57.

M. Usher, Hofer’'s metrics and boundary depth, Ann. Sci. Ec. Norm. Supér, 46 (2013),
57-128.

M. Usher, Observations on the Hofer distance between closed subsets, Math. Res. Lett., 22
(2015), 1805-1820.

M. Usher and J. Zhang, Persistent homology and Floer-Novikov theory, Geom. Topol., 20
(2016), 3333-3430,

C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann., 292
(1992), 685-710.

Y. Yomdin, Volume growth and entropy, Israel J. Math., 57 (1987), 285-300.

ERMAN CINELI <erman.cineli@imj-prg.fr>: Institut de Mathématiques de Jussieu - Paris Rive
Gauche (IMJ-PRG), 4 place Jussieu, Boite Courrier 247, 75252 Paris Cedex 5, France

VIKTOR L. GINZBURG <ginzburg@ucsc.edu>: Department of Mathematics, UC Santa Cruz, Santa
Cruz, CA 95064, USA

BASAK Z. GUREL <basak.gurel@Qucf . edu>: Department of Mathematics, University of Central
Florida, Orlando, FL 32816, USA

JOURNAL OF MODERN DYNAMICS VOLUME 20, 2024, 275-298


http://www.ams.org/mathscinet-getitem?mr=MR1826128&return=pdf
http://dx.doi.org/10.1007/978-3-0348-8299-6
http://www.ams.org/mathscinet-getitem?mr=MR1946555&return=pdf
http://dx.doi.org/10.1007/s00222-002-0251-x
http://www.ams.org/mathscinet-getitem?mr=MR1181727&return=pdf
http://dx.doi.org/10.1002/cpa.3160451004
http://dx.doi.org/10.1002/cpa.3160451004
http://www.ams.org/mathscinet-getitem?mr=MR1755825&return=pdf
http://dx.doi.org/10.2140/pjm.2000.193.419
http://www.ams.org/mathscinet-getitem?mr=MR4413744&return=pdf
http://dx.doi.org/10.4007/annals.2022.195.3.1
http://www.ams.org/mathscinet-getitem?mr=MR4480149&return=pdf
http://dx.doi.org/10.1007/s00222-022-01124-x
http://www.ams.org/mathscinet-getitem?mr=MR4536469&return=pdf
http://dx.doi.org/10.1007/s00039-022-00619-2
http://arxiv.org/pdf/2006.16824
http://www.ams.org/mathscinet-getitem?mr=MR2823968&return=pdf
http://dx.doi.org/10.1007/s11856-011-0058-9
http://dx.doi.org/10.1007/s11856-011-0058-9
http://www.ams.org/mathscinet-getitem?mr=MR3087390&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3507263&return=pdf
http://dx.doi.org/10.4310/MRL.2015.v22.n6.a14
http://www.ams.org/mathscinet-getitem?mr=MR3590354&return=pdf
http://dx.doi.org/10.2140/gt.2016.20.3333
http://www.ams.org/mathscinet-getitem?mr=MR1157321&return=pdf
http://dx.doi.org/10.1007/BF01444643
http://www.ams.org/mathscinet-getitem?mr=MR889979&return=pdf
http://dx.doi.org/10.1007/BF02766215
mailto:erman.cineli@imj-prg.fr
mailto:ginzburg@ucsc.edu
mailto:basak.gurel@ucf.edu

	1. Introduction
	2. Definitions and results
	2.1. Floer homology and barcode entropy
	2.2. Barcode growth and sequential entropy
	2.3. Lower bounds on the -norm
	2.4. Approximate identities and Hamiltonian pseudo-rotations

	3. Proofs and refinements
	3.1. Lagrangian tomograph
	3.2. Proof of Theorem 2.5
	3.3. The shortest bar and total persistence
	3.4. Proof of Proposition 2.10
	3.5. Proof and a refinement of Proposition 2.17

	References

