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Abstract: Background/Objectives: Predicting the biochemical pathway involvement of a compound

could facilitate the interpretation of biological and biomedical research. Prior prediction approaches

have largely focused on metabolism, training machine learning models to solely predict based on

metabolic pathways. However, there are many other types of pathways in cells and organisms that

are of interest to biologists. Methods: While several publications have made use of the metabolites

and metabolic pathways available in the Kyoto Encyclopedia of Genes and Genomes (KEGG), we

downloaded all the compound entries with pathway annotations available in the KEGG. From

these data, we constructed a dataset where each entry contained features representing compounds

combined with features representing pathways, followed by a binary label indicating whether the

given compound is associated with the given pathway. We trained multi-layer perceptron binary

classifiers on variations of this dataset. Results: The models trained on 6485 KEGG compounds and

502 pathways scored an overall mean Matthews correlation coefficient (MCC) performance of 0.847,

a median MCC of 0.848, and a standard deviation of 0.0098. Conclusions: This performance on all

502 KEGG pathways represents a roughly 6% improvement over the performance of models trained

on only the 184 KEGG metabolic pathways, which had a mean MCC of 0.800 and a standard deviation

of 0.021. These results demonstrate the capability to effectively predict biochemical pathways in

general, in addition to those specifically related to metabolism. Moreover, the improvement in the

performance demonstrates additional transfer learning with the inclusion of non-metabolic pathways.

Keywords: pathway prediction; Matthews correlation coefficient; machine learning; multi-layer

perceptron; transfer learning; KEGG

1. Introduction

A wide variety of small biomolecules are found in living systems and are involved
across all biological processes. Most of these biomolecules are involved in biochemical
reactions that comprise cellular metabolism, which is typically organized into metabolic
“pathways”, a term that may refer to classical pathways, for example glycolysis, or larger
pathway categories (sometimes called modules), for example carbohydrate metabolism.
These pathways form a network of metabolites interconnected by biochemical reactions
that can be represented as graphs (technically requiring hypergraphs), where the (hyper)
edges are reactions and the nodes are metabolites involved in a given reaction [1–3]. Several
knowledge bases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [4–6],
MetaCyc [7], and Reactome [8], contain pathway annotations for many biomolecules. This
manually defined, pathway-level organization of biomolecules is highly useful for interpret-
ing molecular experimental data derived from a biological system. However, knowledge
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of the pathway involvement of biomolecules is incomplete, and these knowledge bases
are missing many biomolecules and associated pathway annotations, many likely due
to unknown enzyme promiscuity. Moreover, it is costly, time consuming, and tedious to
generate and interpret experimental data to derive new pathway annotations, requiring
specialized analytical and biochemical expertise.

In response to these limitations, there is strong interest in developing alternative
methods that can provide pathway annotations for detected biomolecules. In particular,
machine learning models can be trained to predict the pathway involvement of compounds
lacking pathway annotations using compounds with known annotation. Toward this end,
Huckvale et al. created a KEGG-based benchmark dataset for metabolism [9], generating
features representing compounds using an atom coloring technique developed by Jin and
Moseley [10]. KEGG organizes its pathways in a hierarchy where higher levels in the
hierarchy are categories of pathways and the lowest level of the hierarchy comprises indi-
vidual pathways: https://www.genome.jp/kegg-bin/show_brite?br08901.keg (accessed
on 1 June 2024). Included in Level 1 (L1) of the hierarchy is the “Metabolism” top cate-
gory, with 12 Level 2 (L2) subcategories related to metabolism. The models trained on
the benchmark dataset, as well as the models from past publications, were designed to
predict the associations with only these L2 metabolic pathways, with many of the models
limited to predictions for only 11 of the 12 L2 “Metabolism” pathways [11–15]. These
models were severely limited by pathway granularity due to the size limitations of the
training dataset. Using a modification of this benchmark dataset where both compound
and pathway features were generated, Huckvale and Moseley demonstrated the capability
of training a single binary classifier that accepts a compound representation and a pathway
representation and outputs whether the given compound is associated with the given
pathway [16]. The cross-join of metabolite and pathway entries increased the size of the
training set from ~5600 to nearly 70,000 entries. Since this model was capable of predicting
an arbitrary number of pathways, Huckvale and Moseley expanded it to predict not only
the L2 metabolic pathways but also the Level 3 (L3) individual pathways, improving the
performance when the dataset increased to over 1,000,000 entries [17]. However, it was
still restricted to pathways below the L1 “Metabolism” pathway category, while there are
several other types of pathways of interest to biologists, including “Human Diseases” and
“Genetic Information Processing”. In this work, we expand on our prior work to include
all the pathways in the KEGG hierarchy (L1, L2, and L3) and all the KEGG compounds
with any pathway annotation, creating a dataset with over 3,200,000 entries. The resulting
binary classifier can predict the association of compounds to any KEGG pathway, not just
metabolic pathways, with improved prediction performance.

2. Materials and Methods

The KEGG organizes its pathways in a hierarchy with three levels, which is found
here: https://www.genome.jp/kegg-bin/show_brite?br08901.keg (accessed on 1 June
2024). The top level of the hierarchy contains the top pathway categories, which we will call
L1 pathways. The next level contains the pathway categories or modules, which we will call
L2 pathways. The lowest level contains the individual human-defined pathways, which
we will call L3 pathways. The L1 pathways include “Metabolism”, “Genetic Information
Processing”, “Environmental Information Processing”, “Cellular Processes”, “Organismal
Systems”, “Human Diseases”, and “Drug Development”. While past publications have only
considered the L2 under “Metabolism” and recently the L3 metabolic pathways, we used
the kegg_pull [18] Python package to download all the pathways in the hierarchy, including
the L1 pathways and all the L2 and L3 pathways underneith them. We additionally used
kegg_pull to download the KEGG compounds as molfiles and determined the mapping
from the compound to the associated pathways using the pathway annotations provided
by the KEGG.
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With the molfiles and pathway mappings, we used the dataset construction method
described by Huckvale and Moseley [16]. This includes converting the molfiles to com-
pound features using the atom coloring technique introduced by Jin and Moseley [10],
constructing the pathway features based on the features of the compounds associated with
them, and performing a cross-join of the compound features and the pathway features
where each entry in the resulting dataset is a pair of pathway features and compound
features concatenated together and the binary label indicates whether the corresponding
compound is associated with the corresponding pathway. In order to maximize the validity
of the evaluation of the test sets in the cross-validation (CV) analysis (i.e., prevent data
leakage from the training sets into the test sets), any duplicate compound or pathway
feature vectors were removed prior to the cross-join, resulting in removing 20 duplicate
pathway entries and 97 compound entries. Considering the significantly larger amount of
data, we were motivated to make the data loading technique used in model training more
efficient. While both this work and the work of Huckvale and Moseley [17] uses the Py-
Torch Python package [19] for implementing and training the multi-layer perceptron (MLP)
binary classifier, we did not use PyTorch’s built-in data loader in this work. Previously, the
built-in data loader was used, retrieving each entry one at a time by selecting the current
compound feature vector and pathway feature vector and concatenating them together,
followed by inserting the resulting vector into the next batch and loading the batch onto
the graphics processing unit (GPU). This batching technique was used because the entire
dataset could not fit into the available GPU random access memory (RAM) all at once.
While the cross-joined dataset was not able to fit in the GPU, the separated compound
features and pathway features could. This enabled us to create our own data loader that
samples the compound features and pathway features in batches rather than one at a time
and concatenates them together on the GPU. With all the data having been loaded onto
the GPU ahead of time and all the batching being performed by efficient tensor function
calls on the GPU rather than numpy function calls on the central processing unit (CPU), we
were able to reduce the training time of the model by more than 20-fold. Table S1 shows
the difference in computational resource usage between training the final model on the
full KEGG dataset using the previous data loading method and that using our novel data
loading method. We see a stark increase in GPU utilization usage from 8.8% to 93.7%,
followed by a stark decrease in the real computation time from 978.2 min to 47.1 min. The
speed improvement is over 20-fold, even though the increase in GPU utilization is only
10.6-fold. We suspect that the custom data loader avoids costly GPU wait states with the
transfer of data from the CPU RAM to the GPU RAM, providing better efficiency than one
would first expect. These results demonstrate that making better use of the GPU in the data
loading greatly decreases the model training time.

After constructing the dataset and implementing the novel data loading technique,
we tuned the model hyperparameters using the Optuna Python package version 3.3.0 [20].
With the best hyperparameters selected, we performed an analysis of 200 CV iterations on
the entire dataset using stratified train/test splits [21]. In these CV analyses, we tracked not
only the total number of true positives, true negatives, false positives, and false negatives
of all the dataset entries but those of each individual compound and pathway as well. This
enabled us to not only construct a confusion matrix and calculate overall metric, but also
to calculate the metrics per compound and per pathway as well. The metrics calculated
included the Matthew’s correlation coefficient (MCC), accuracy, precision, recall, F1 score,
and specificity. In order to ensure valid (i.e., not undefined due to division by 0) metrics for
each compound and pathway, we constructed the confusion matrix of each by summing
the true positives, true negatives, false positives, and false negatives across all CV iterations.
This manner of calculation prevents obtaining a standard deviation. So, for the full dataset,
we calculated the metrics per CV iteration and calculated the mean, median, and standard
deviation across the CV iterations.
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To determine the impact of the chemical information content of the compounds
and pathways on the model performance, we additionally created filtered datasets (from
a preliminary dataset constructed prior to de-duplicating the pathway and compound
entries). First, we created 15 datasets, each with an increasingly higher compound filter
threshold. The filtering was based on the number of non-hydrogen atoms in a compound
and compounds were removed from the training set if the number of non-hydrogen atoms
did not meet each filter threshold. Figure S1 shows how the number of compounds and
entries in the dataset decreases as the compound filter cutoff increases.

We performed a CV analysis of 50 CV iteration on each filtered dataset. We then filtered
by pathway size, defining the pathway size as the sum of the number of non-hydrogen
atoms across all the compounds associated with the pathway. The pathway filters first
ranged from 5 to 50 by multiples of 5, 50 to 100 by multiples of 10, and then 100 to 200 by
multiples of 20, a total of 20 pathway filters. We then performed 50 CV iterations on the
training set of each pathway filter. The motivation was to determine the ideal compound
size and pathway size for the full KEGG dataset. Figure S2 shows how the number of
pathways and entries in the dataset changes as the pathway filter increases.

Figure S3 shows scatter plots of the thresholds used to filter each training set (see
Figures S1 and S2) and compares the thresholds to the MCCs of the top compounds
in Figure S3a and the top pathways in Figure S3b. For consistent comparison, the top
compounds are the compounds remaining in the dataset of the highest compound size
filter threshold (i.e., 15) and the top pathways are the pathways remaining after the highest
pathway filter threshold (i.e., 200). This is because we cannot justify removing data from
the dataset merely because the overall score is higher, since this can only occur because the
smaller compounds and pathways are removed and they may be more difficult to predict.
But if the smaller compounds and pathways negatively impact the larger compounds and
pathways, then it is best to remove them. However, Table 1 shows that these Pearson
correlation coefficients are very close to zero, even though their p-value are statistically
significant. Thus, these relationships are real, but they are very weak. Due to these
negligible correlations, we decided to retain all the compounds and pathways for the
final model training and evaluation. The data and results of this preliminary analysis can
be found in the following Figshare: https://figshare.com/articles/journal_contribution/
FullKEGG_Preliminary_DO_NOT_USE/27173037 (accessed on 4 October 2024).

Table 1. Correlation results comparing the size filter thresholds to the MCCs of the largest compounds
and pathways.

Filter Type
Pearson Correlation

Coefficient
p Value

Compound 0.0107 0.0042
Pathway −0.0336 0.0067

In addition to testing the impact of filtering entries by compound and pathway size,
we also tested filtering by hierarchy level. Table 2 shows how the number of entries and
number of pathways differ between the full dataset containing the L1, L2, and L3 pathways
and two other datasets i.e., that containing only L2 and L3 pathways, and lastly, that
containing L3 pathways only. The number of compounds remains the same regardless of
which pathway hierarchy levels are included. We trained on each of these three datasets to
test how the inclusion of one hierarchy level impacts the performance of the others. The L2
and L3, as well as the L3 only, training sets were evaluated over 50 CV iterations, with the
metrics calculated by constructing a confusion matrix by summing the true positives, true
negatives, false positives, and false negatives across all the included pathways across all
CV iterations.
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Table 2. Dataset size statistics comparing the dataset with the pathways of all the hierarchy levels to
the L2 and L3 pathways only and the L3 pathways only.

Dataset #Compounds #Pathways #Entries

L1, L2, and L3 6485 502 3,255,470
L2 and L3 6485 495 3,210,075

L3 6485 439 2,846,915

The hardware used for this work included machines with up to 2 terabytes (TB) of
random-access memory (RAM) and central processing units (CPUs) of 3.8 gigahertz (GHz)
of processing speed. The name of the CPU chip was “Intel(R) Xeon(R) Platinum 8480CL”.
The CPUs were sourced from the Intel corporation in Santa Clara, California, USA. The
graphic processing units (GPUs) used had 81.56 gigabytes (GB) of GPU RAM, with the
name of the GPU card being “NVIDIA H100 80GB HBM3”. The GPUs were sourced from
the Nvidia corporation in Santa Clara, California, USA.

All code for this work was written in the major version 3 of the Python programming
language [22]. Data processing and storage were performed using the Pandas version
1.0.3 [23], NumPy version 1.26.4 [24], and H5Py version 3.9.0 [25] packages. Models were
constructed and trained using the PyTorch Lightning package version 2.2.1 [26] built on
the PyTorch package version 2.0.1 [19]. The metrics and the stratified train–test splits were
computed using the Sci-Kit Learn package version 1.3.0 [27]. The results were stored in an
SQL [28] database using the DuckDB package version 1.0.0 [29]. Data visualizations were
produced using the Tableau business intelligence software version 2024.2.2 [30] as well as
the seaborn package version 0.12.2 [31] built on the MatPlotLib package version 3.7.2 [32].
The results were finalized in a Jupyter notebook [33]. The computational resource usage
when training the final model was collected using the gpu_tracker package version 3.0.0 [34].
All code and data for reproducing these analyses can be accessed via the following Figshare
item: https://doi.org/10.6084/m9.figshare.27172941 (accessed on 21 October 2024).

3. Results

3.1. Main Results

The work of Huckvale and Moseley [17] produced the largest dataset for this task to
date and it consisted of both the L2 and L3 pathways under the “Metabolism” L1 pathway
with duplicate entries removed. However, our current work uses all the pathways in the
KEGG hierarchy, including the L1 pathways not considered before (not just “Metabolism”)
as well as all the L2 and L3 pathways underneath them. Table 3 shows the differences
between the previous dataset (metabolic pathways) and that of this work (full KEGG).

Table 3. Dataset size statistics of the full KEGG dataset with all the KEGG pathways and compounds
compared to the prior dataset containing only metabolic pathways and metabolites.

Dataset
#Compound

Features
#Pathway
Features

#Compounds #Pathways #Entries Reference

Metabolic
pathways

14,655 8977 5683 184 1,045,672 [17]

Full
KEGG

16,509 11,321 6485 502 3,255,470
Current
Study

Table 4 shows the mean, median, and standard deviation of the MCC calculated
from all the predictions in each test set (all compound-pathway paired entries) across the
200 CV iterations. These aggregations of the 200 MCC scores are provided for each set of
pathway hierarchy levels that were included in the dataset. This includes the L1, L2, and
L3 pathways, which is the same dataset as the full KEGG in Table 1, followed by L2 and L3,
and finally, L3 only. Table S2 contains these same scores for other metrics, including the
accuracy, precision, recall, specificity, and F1 score.



Metabolites 2024, 14, 582 6 of 15

Table 4. MCC for all the predictions in each CV iteration by the pathway hierarchy levels included in
the dataset.

Pathway Hierarchy
Levels Included

Mean MCC Median MCC Standard Deviation

L1, L2, and L3 0.847 0.848 0.0098
L2 and L3 0.819 0.821 0.0135

L3 0.726 0.729 0.0127

Figure 1 shows the distribution of MCCs across CV iterations for each dataset. The L1,
L2, and L3 dataset is the full dataset, containing all the pathways, and was run on 200 CV
iterations. The L2 and L3 dataset excluded the L1 pathways and was run on 50 iterations.
The L3 dataset contained only the L3 pathways and was also run on 50 CV iterations.

Figure 1. Distribution of MCCs across CV iterations for each dataset.

Table 5 shows the MCCs across the pathways of a certain hierarchy level for each
set of pathway hierarchy levels included in the dataset. The MCCs were calculated by
constructing a confusion matrix from the sum of the true positives, true negatives, false
positives, and false negatives across all the pathways of the given hierarchy level across all
CV iterations. For example, the L1 pathways in the full KEGG dataset scored an MCC of
0.950, while the L3 pathways, when trained on the dataset that only contains L3 pathways,
scored an MCC of 0.726.

Table 6 shows the MCCs across the pathways under each L1 pathway when trained
on the full KEGG dataset. The MCCs were calculated by summing the true positives (TPs),
true negatives (TNs), false positives (FPs), and false negatives (FNs) of all the pathways
under the L1 pathway, including the L1 pathway itself, and across all the CV iterations. We
see that the pathways under “Genetic Information Processing” were the easiest to predict,
while the pathways under “Cellular Processes” were the most difficult to predict.
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Table 5. MCCs of the pathways by their hierarchy level for each set of hierarchy levels included in
the dataset.

Pathway
Hierarchy
Levels in
Dataset

Pathway
Hierarchy
Level in
Test Set

MCC TP TN FP FN

L1, L2, and L3

L1 0.950 145,888 747,972 8497 4188
L2 0.904 272,893 6,937,627 35,588 19,742
L3 0.774 367,169 56,356,625 123,691 89,520

L2 and L3
L2 0.894 67,456 1,733,138 9833 5538
L3 0.769 91,863 14,087,893 32,136 22,543

L3 L3 0.726 85,204 14,085,671 34,729 28,996

Table 6. MCCs across all the pathways within each L1 pathway.

Top Pathway MCC TP TN FP FN

Genetic Information
Processing

0.866 2775 1,034,201 585 280

Metabolism 0.856 692,950 24,770,413 136,651 89,420
Environmental

Information Processing
0.802 19,765 3,601,466 5697 4004

Human Diseases 0.785 26,662 11,891,608 8012 6576
Drug Development 0.748 5366 6,732,952 1570 2042

Organismal Systems 0.747 31,386 11,615,945 11,873 9330
Cellular Processes 0.728 6798 3,877,363 3347 1789

Table 7 shows the MCC, F1 score, precision, recall, and specificity of the individual L1
pathways. We see that while “Genetic Information Processing” performed best when collec-
tively predicting the pathways under it (Table 6), “Environmental Information Processing”
performed best when predicting it by itself (Table 7). While “Metabolism” performed
second best in Table 6, Table 7 shows that predicting whether a compound is a metabolite,
i.e., associated with a metabolic pathway or not, is the most difficult. We see that for the
other L1 pathways, the MCC is similar to the F1 score, which is typical. However, the MCC
and F1 score are starkly different for “Metabolism”. We see that while precision and recall,
which are based on positive predictions, are very high, the F1 score, which is based on
precision and recall, is likewise high. Yet the specificity of “Metabolism”, which is based
on negative predictions, is much lower, driving down the MCC. This demonstrates the
superiority of the MCC as an overall performance metric, as it takes into account both
positive and negative predictions; however, for certain applications, a more specific metric
can be better.

Table 7. Scores for each L1 pathway.

L1 Pathway MCC
F1

Score
Specificity Precision Recall TP TN FP FN

Environmental
Information Processing

0.864 0.871 0.991 0.847 0.897 5853 121,547 1058 675

Human Diseases 0.853 0.861 0.991 0.845 0.877 6328 121,432 1162 886
Genetic Information

Processing
0.848 0.849 0.998 0.828 0.871 1162 128,224 241 172

Organismal Systems 0.837 0.847 0.987 0.813 0.884 7034 119,505 1621 921
Drug Development 0.827 0.831 0.996 0.820 0.842 2072 126,373 456 389
Cellular Processes 0.728 0.731 0.993 0.679 0.793 1870 126,397 885 488

Metabolism 0.706 0.985 0.594 0.975 0.995 121,569 4494 3074 657
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Figure 2 provides an explanation for the discrepancy regarding “Metabolism” in
Table 7. We see that “Metabolism” has a much larger size than the other L1 pathways
(where the pathway size is defined by the total number of non-hydrogen atoms across all
the compounds associated with the pathway), having more compounds associated with
it and more positive entries in the dataset that correspond to the “Metabolism” pathway.
The class imbalance problem [35] has made this machine learning task difficult due to the
tendency of there being many more compounds that are not associated with a pathway
while having relatively few that are associated with a pathway. However, the opposite but
equally challenging problem of having too many positive entries exists for the “Metabolism”
pathway, while the other pathways are challenged by having too many negatives. The
true positives of “Metabolism” contribute to an improved F1 score, but the number of
false negatives lowers the specificity. This also explains why the L1 pathways performed
very well in Table 5, since that MCC benefitted from the high number of true positives in
“Metabolism” combined with the plethora of true negatives in the remaining L1 pathways.

ffi

tt

tt

Figure 2. L1 pathway MCC and size as well as the number of pathway features with a positive value.

3.2. Comparing Pathway and Compound Size to MCC

Figure 3 shows the distribution of the size of the compounds (number of non-hydrogen
atoms in the molecule) in the full KEGG dataset and that of the pathway size (total number
of non-hydrogen atoms across the compounds associated with the pathway). To better see
the peak of the pathway size distribution, Figure 3b shows only the pathway counts for
those pathways with a size of 1000 or below, as compared to Figure 3a, which shows the
distribution for all the pathways. The pathway that exceeds 160,000 in size is “Metabolism”,
as shown in Figure 2.

Figure 4 shows the distribution of the MCC of individual compounds and pathways.
We see that pathways center between 0.6 and 0.9 MCC, while others are closer to 0 and
even slightly below 0 (i.e., slight inverse prediction). Even after 200 CV iterations, there
were still four pathways without a valid MCC score, meaning we could not calculate the
MCC without a division by zero, and therefore, they cannot be included in our results
individually (their false negative and true negative counts do still contribute to the sums
used to calculate the results in Tables 5–7). Table S3 shows these null pathways and their
size. We see that the MCCs of the individual compounds are close to one and left skewed.
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Figure 3. Distribution of pathway and compound size in the full KEGG dataset: (a) size distribution
of all the pathways; (b) distribution of pathways of a size less than 1000; and (c) size distribution of
the compounds. Size in this context is the number of non-hydrogen atoms in a compound or pathway
(summed across the compounds associated with the pathway).



Metabolites 2024, 14, 582 10 of 15

Figure 4. Distribution of the MCCs of individual pathways and compounds in the full KEGG dataset:
(a) distribution of the pathway MCCs; and (b) distribution of the compound MCC.

Figure 5 shows the relationship between the compound and pathway size and the
respective MCC. When log scaling the x-axis, we see that there is not a strong linear
correlation between the size and the MCC for either the pathways (Figure 5b) or the
compounds (Figure 5d). However, we observe a funnel shape for the pathways such that
there is less variance as the pathway size increases. And for the compounds, we see that
the maximum compound size does not reach 1.0 until reaching a size of 5.
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Figure 5. Relation of the pathway and compound size to the individual MCC of the full KEGG
dataset: (a) pathway size to pathway MCC; (b) pathway size to pathway MCC with log scale x-axis;
(c) compound size to compound MCC; and (d) compound size to compound MCC with log scale
x-axis.

4. Discussion

Table 8 compares the results of training on all the KEGG pathways (Table 4) to those
of training on only the metabolic pathways from the work of Huckvale and Moseley [17].
Specifically, Table 8 compares the mean and standard deviation of the MCCs of all the
predictions in each test set across the CV iterations. The MCC of 0.847 for the overall
performance of all the KEGG pathways compared to the MCC of 0.800 for that of the L2 and
L3 metabolic pathways demonstrates a modest increase in performance when incorporating
the L1 pathways and all the remaining L2 and L3 pathways under them.

Table 9 compares the results of training on all the KEGG pathways (Table 5) to the
results of training on only the metabolic pathways from the work of Huckvale and Mose-
ley [17]. Specifically, Table 9 compares the collective MCCs across the pathways of certain
hierarchy levels separated by the hierarchy levels of the pathways included in the dataset
used for training. We see that the performance of the L2 and L3 pathways remains compa-
rable when adding both the L1 pathways and non-metabolic pathways to the dataset. The
results of this work demonstrate the capability to not only effectively predict the metabolite
association with metabolic pathways but also generic biomolecules with annotations to a
broader set of biological and biomedical pathways.
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Table 8. Performance of the model trained on the metabolic KEGG pathways compared to that of all
the pathways.

Dataset Mean MCC
Median

MCC
Standard
Deviation

Reference

All L1, L2, and L3 0.847 0.848 0.0098 Current Study
All L2 and L3 0.819 0.821 0.0135 Current Study

Metabolic L2 and L3 0.800 - 0.021 [17]
All L3 0.726 0.729 0.0127 Current Study

Metabolic L3 0.655 - 0.031 [17]

Table 9. Performance of the model trained on the metabolic KEGG pathways compared to that of all
the pathways separated by hierarchy level.

Dataset
Pathway Hierarchy

Level in Test Set
MCC Reference

All L1, L2, and L3

All L1 0.950

Current Study
All L2 0.904
All L3 0.774

All L2 and L3
All L2 0.894
All L3 0.769

Metabolic L2 and L3 Metabolic L2 0.891
[17]

Metabolic L3 0.726

From Tables 6 and 7, we observe that certain L1 pathways are more difficult to predict
than others, both when measuring the collective performance of the L1 pathway and all the
L2 and L3 pathways under it as well as the individual performance of the L1 pathways
alone. “Genetic Information Processing” performs best collectively, while “Environmental
Information Processing” performs best individually. “Metabolism” performs more poorly
individually, by a sizable margin. This is likely a result of having too many positive entries
mapping to “Metabolism”, the opposite problem of having too few positives (and too many
negatives), which has primarily been the challenge in predicting pathway involvement until
now. This means that while we can effectively predict more specific metabolic pathways,
effectively predicting whether or not a compound is a metabolite at all likely requires
more compound entries associated with non-metabolic pathways. As demonstrated in
Tables 5, 8 and 9, these effects are partially ameliorated by transfer learning across the
pathway hierarchy.

In a preliminary dataset in which we had not removed the duplicate pathway and
compound feature vectors, CV analysis produced an average MCC of 0.822 (Table S4).
Upon removing the duplicate pathway and compound entries to maximize the validity of
the CV analysis by preventing data leakage between the training and test sets, we observe
an increase in the average MCC to 0.847 (Table 4). We believe that the inclusion of duplicate
pathways and compounds added confusion to the training, which is suggested by the
large drop in the standard deviation from 0.017 to 0.00098. While duplicate entries with
conflicting ground truth (e.g., one feature vector corresponds to a positive label while a
corresponding duplicate feature vector corresponds to a negative label) can lead to model
confusion, we found that there were only 20 such entries in the dataset out of a dataset
of over three million entries. So, a more plausible explanation for the added training
confusion is that smaller compounds and pathways are more likely to have duplicate
entries (duplicate atom color counts), while they are also more difficult to predict, so
removing such entries can increase the overall MCC.

When including all the compounds and pathways available in KEGG in the training
dataset, we do not observe a particularly strong linear correlation between the pathway
and compound size and the MCCs of individual pathways and compounds. However, we
still have evidence that both an increased compound size and an increased pathway size
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contribute to more reliable prediction. Specifically, there is less variance in performance
in the case of pathways as the pathway size increases. And in the case of compounds, the
maximum possible performance increases as the compound size increases.

5. Conclusions

While prior work on the machine learning task of predicting the pathway involvement
of a compound has primarily dealt with metabolism, this work demonstrates that a model
can be trained to effectively predict the pathway involvement of generic biomolecules
with biological and biomedical pathways. Moreover, the prediction performance keeps
improving as more compounds and pathways are included beyond merely metabolites and
metabolic pathways. This marks a significant milestone in the field and we recommend
that future work in this area should build on this standard. We believe that these models
are demonstrating the level of performance needed for predicting pathway annotations
for unannotated compound entries that are useful for certain application use-cases. One
possible early use-case is providing hypotheses for unknown enzyme promiscuity.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/metabo14110582/s1, Table S1: Computational resource usage of training
the final model of the past and current data loading method; Figure S1: Size of the datasets filtered by
compound size based on a threshold of the number of non-hydrogen atoms; Figure S2: Size of the
datasets filtered by pathway size based on a threshold of the total number of non-hydrogen atoms
across all the compounds associated with each pathway; Figure S3: Filter threshold of the number of
non-hydrogen atoms to the MCCs of the compounds and pathways of the highest threshold: (a) the
compound size filter of each dataset to the MCCs of the largest compounds when trained on that
dataset; and (b) the pathway size filter of each dataset to the MCCs of the largest pathways when
trained on that dataset; Table S2: Scores for all the metrics by pathway hierarchy levels included in
the training set; Table S3: Pathways with a null MCC; Table S4: MCCs by pathway hierarchy levels
included in the dataset (preliminary).
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