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A B S T R A C T

In this tutorial we study a safety analog of the classical zero-sum differential game with positive definite
penalties on the state and the two inputs. Consider a nonlinear system affine in two inputs, which are called
‘‘offender’’ and ‘‘defender.’’ Let the inputs have the opposing objectives in relation to an infinite-time cost
which, in addition to penalizing the inputs of both agents, incorporates a safety index of the system (a barrier
function), with the defender aiming to maximize the system safety and the offender aiming to minimize it.
If there is a pair of (offender, defender) non-Nash feedback policies of the 𝐿𝑔ℎ form with a safe outcome,
namely, where the defender maintains safety while the offender fails to violate safety, then there exists an
inverse optimal pair of policies that attain a Nash equilibrium relative to the safety minimax objective. In the
tutorial we study both deterministic and stochastic offenders. The deterministic offender applies its feedback
through its deterministic input value, while the stochastic offender applies its feedback through its incremental
covariance. In addition to Nash policies for a minimax offender–defender formulation, we provide feedback
laws for the defender, in the scenario where the offender action is unrestricted by optimality, and where the
defender ensures input-to-state safety in the deterministic and stochastic senses. This tutorial is derived from
our recent article on inverse optimal safety filters, by setting the nominal control to zero and declaring the
disturbance to be the offender agent.

Among several illustrative examples, one is particularly interesting and unconventional. We consider a
safety game played on a unicycle vehicle between its two inputs: the angular velocity and the linear velocity,
as the opposing players. We consider two scenarios. In the first, the angular velocity, acting as an offender,
attempts to run the vehicle into an obstacle by steering, while the linear velocity, acting as a defender, drives
the vehicle forward or in reverse to prevent the vehicle being run into the obstacle. In the second scenario,
the linear velocity acts as an offender and angular velocity acts as a defender (in the deterministic case by
varying the heading rate; in the stochastic case by varying the variance of a white noise driving the heading
rate). A ‘‘wind’’ towards the obstacle advantages the offender in both scenarios. The input policies derived
are optimal in the sense of their opposite objectives, under the best possible policy of the opponent, under
meaningful costs on their actions. The linear velocity input prevails, whether acting in the role of a defender,
in which case the collision with the obstacle is prevented, or in the role of an offender, in which case the
collision with the obstacle is achieved.
. Introduction

.1. Goals of the tutorial

Even with as few agents as two, acting on a common system (rather
han on two distinct systems), the problem of guaranteeing safety of a
onlinear dynamical system by feedback is a rich one.

In this tutorial, to keep things as clear and simple as possible, we
liminate any performance objectives, and hence, a ‘‘nominal control’’
nd the associated safety filters, and focus on a problem in which two
gents are engaged purely in a competition over a system’s safety.

✩ This research was supported by NSF grant ECCS-2151525, AFOSR grant FA9550-22-1-0265, and ONR grant N00014-23-1-2376.
E-mail address: krstic@ucsd.edu.

We consider two agents – an ‘‘offender’’ and a ‘‘defender’’ – whose
goals regarding safety are opposite. The offender aims to violate the
system’s safety, while the defender’s task is to maintain safety. In
engaging in such a manner, both agents’ goals are related not only to
the same system but also to the same control barrier function (CBF)
ℎ(𝑥), where the defender’s goal is to keep ℎ positive and the offender’s
to make it negative, at least for a portion of the system’s infinite-horizon
operation.

If the offender is unrestricted in its action, the most that the de-
fender can expect to achieve is that the safety degrades gracefully with
the intensity of the offender’s action. We provide defender feedback
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laws to ensure that. However, to make the offender–defender com-
petition more ‘‘fair’’, and mathematically well posed, we formulate a
zero-sum two-player non-cooperative game between the offender and
defender, where the running cost for both agents is related to the
CBF ℎ, and where the input magnitudes of both agents are penalized
over the infinite horizon. We seek optimal control policies for both
the defender and the offender and find policies that constitute a Nash
equilibrium. Since, for arbitrary costs, the determination of the Nash
policies would require a solution of a Hamilton–Jacobi–Isaacs partial
differential equation (PDE), we formulate the problem as an inverse
optimal control problem, where the CBF ℎ is given and the Nash
olicies are found, which correspond to a meaningful running cost that
ewards the defender for enhancing safety and rewards the offender for
roding safety.

We consider both deterministic and stochastic offenders. In the
tochastic case, the offender’s action is white but its intensity (covari-
nce) is a feedback law based on the safety game.

The tutorial contains theorems, proofs, and examples. Theorems are
tated for the sake of clarity and precision. The proofs are given in the
ppendix, so as not to interfere with the flow of the tutorial exposition.
he examples chosen to illustrate the results are the simplest possible.
hey are all scalar. Due to the relative complexity of the feedback
olicies that the defender and offender need to employ in the scenarios
onsidered, scalar examples serve best the function of the illustration
f the concepts presented.

.2. The CBF framework for safety

Our study of a two-agent competition over the safety of a single
ystem is pursued using a common CBF. Let us review some of the
rincipal literature on CBFs first.

The paper Ames, Grizzle, and Tabuada (2014) and Ames, Xu, Griz-
le, and Tabuada (2017) marked a watershed in the study of nonlinear
ontrol systems under state constraints. By advancing the CBF notion
roposed in Wieland and Allgöwer (2007), it laid the foundation for
Lyapunov-like alternative to constraint-handling by MPC (Rawlings,
ayne, & Diehl, 2017) or barrier Lyapunov functions (BLF) (Tee,
e, & Tay, 2009). Following the min-norm inspiration from Freeman
nd Kokotovic (1996), the authors of Ames et al. (2014, 2017) pro-
osed to mitigate the safety-liveness tradeoff using a quadratic program
QP). Virtually all the work on CBF-based safety maintenance today
mploys QP-based redesigns of the nominal control, referred to as
‘safety filters’’. CBFs have since been used in a range of domains,
ncluding multi-agent robotics (Glotfelter, Corts, & Egerstedt, 2017;
antillo & Jankovic, 2021; Wang, Ames, & Egerstedt, 2017), auto-
otive systems (Ames et al., 2014; Rahman, Jankovic, & Santillo,
021; Xu, Grizzle, Tabuada, & Ames, 2018), robust safety (Jankovic,
018; Kolathaya & Ames, 2019; Xu, Tabuada, Grizzle, & Ames, 2015),
elay systems (Abel, Janković, & Krstić, 2020; Janković, 2018; Molnár,
ingletary, Orosz, & Ames, 2021; Prajna & Jadbabaie, 2005), and
tochastic systems (Clark, 2021; Prajna, Jadbabaie, & Pappas, 2007;
antoyo, Dutreix, & Coogan, 2021).

Since CBFs define constraints and, as such, represent system out-
uts, when paired with system inputs they have relative degrees.
BFs of high relative degree, under that name, were first studied in
he 2015 articles (Hsu, Xu, & Ames, 2015; Wu & Sreenath, 2015)
ith progress following in Breeden and Panagou (2021), Nguyen and
reenath (2016), Xiao and Belta (2019), Xu (2018) and continuing.
owever, control designs for specific CBFs of arbitrarily high relative
egrees first appeared a decade earlier, in the 2006 article (Krstic

Bement, 2006), which presents backstepping designs for regula-
ion to the boundary of the safe set, referred to, at that time, as
non-overshooting control.’ The backstepping design of CBFs originated
n Krstic and Bement (2006) is currently experiencing a revival, from
ts use for stochastic nonlinear systems (Li & Krstic, 2020), to safety for
2

DEs (Koga & Krstic, 2023).
To reduce the conservativeness of classical asymptotic or expo-
ential safety, the notion of prescribed-time safety was introduced
n Abel, Steeves, Krstic, and Jankovic (2022), applied to robotics ex-
eriments (Bertino, Naseradinmousavi, & Krstic, 2023) and source
eeking (Koga & Krstic, 2023), and extended to fixed-time safety with
omogeneous/nonsmooth feedback (Polyakov & Krstic, 2022).

Safe extremum seeking with CBFs that are measured but not known
nalytically was introduced in Williams, Krstic, and Scheinker (2022).

.3. 𝐿𝑔ℎ Safety filters and inverse optimality

Let 𝑔(𝑥) denote the control-affine system’s input vector field. Then
𝑔ℎ denotes 𝜕ℎ

𝜕𝑥 𝑔. CBF-QPs have 𝐿𝑔ℎ as a factor multiplying a non-
negative quantity. A factor of 𝐿𝑔ℎ is a tell-tale sign of potential op-
timality. The so-called ‘‘𝐿𝑔𝑉 controllers’’, where 𝑉 is a CBF, have
a storied history in nonlinear stabilization. Sontag’s ‘universal for-
mula’ (Sontag, 1989b) is an 𝐿𝑔𝑉 controller. Sepulchre, Janković, and
Kokotović (1997) produced a collection of results with such ‘‘damping
controllers’’ and showed that every 𝐿𝑔𝑉 controller is optimal with
respect to a meaningful cost functional if multiplied by a factor of
two or more, which, in particular, indicates the controller’s infinite
gain margin. Such properties of 𝐿𝑔𝑉 controllers inspired their further
development under uncertainties. In Krstic and Li (1998), for systems
affine in control and disturbances, inverse optimal controllers were
designed that solve a zero-sum game problem, in which the disturbance
maximizes and the control minimizes a meaningful cost. In Ito and
Freeman (2002) and Pan, Ezal, Krener, and Kokotovic (2001), global
inverse optimality was augmented with local direct optimality. In Deng
and Krstic (1997) and Deng, Krstic, and Williams (2001) stochastic
inverse optimal designs were introduced: 𝐿𝑔𝑉 controllers for inverse
optimal stabilization in probability in Deng and Krstic (1997) and
controllers that are inverse optimal for a zero-sum game relative to
the unknown covariance acting as the opposing player in Deng et al.
(2001). Finally, in Li and Krstic (1997), adaptive 𝐿𝑔𝑉 controllers were
designed that minimize a penalty not only on the plant’s state and the
input, but also on the parameter estimation error—thus far the only
pairings of controllers and parameter estimators which are not merely
optimal ‘asymptotically’ but over the entire time horizon.

The CBF-QP safety filters are only ‘‘pointwise optimal’’.
Infinite-horizon optimality has been pursued in Almubarak, Sadegh,
and Theodorou (2022), Almubarak, Theodorou, and Sadegh (2021),
Chen, Ahmadi, and Ames (2020) and Cohen and Belta (2020) but only
towards achieving optimal stabilization, not optimal safety. In Krstic
(2023) we introduced a large variety of additional families of safety
filters, of which some have infinite-horizon optimality properties with
respect to safety. These safety filters maximize safety while minimiz-
ing the deviation of the control applied from the nominal control.
The contents of this tutorial article are deduced from Krstic (2023)
by setting the nominal control to zero, declaring the disturbance to
be the offending agent, and treating the control in Krstic (2023) as
the defending agent. The results of Krstic (2023) are probably more
easily understood in the stripped-down format in this tutorial, with
the issue of ‘‘liveness’’ eliminated from consideration and the control
and disturbance inputs put on the same footing, as the offender and
defender agents.

1.4. Disturbances as offender agents: Deterministic and stochastic

Under deterministic disturbances, two main ideas have emerged.
Robust CBFs (Jankovic, 2018) ensure safety under a disturbance with
a known bound. In Input-to-State Safety (ISSf) (Kolathaya & Ames,
2019), which mirrors input-to-state stability (ISS) (Sontag, 1989a), the
disturbance is bounded but potentially arbitrarily large and, being
also unvanishing, may take the system outside of the safe set, in
proportion to the size of the disturbance. Controllers that render the
safety violation proportional to the disturbance are introduced in the
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2006 work on non-overshooting control (Krstic & Bement, 2006) with
a backstepping design for a high relative degree CBF.

In the stochastic case, a general CBF-based safety analysis is pre-
sented in Clark (2021). A mean-non-overshooting tracking design for
stochastic strict-feedback systems is given in Li and Krstic (2020).

1.5. Organization of tutorial

Sections 2–5 deal with the case where the offender agent is de-
terministic. The main result, which solves an offender–defender game
over the system’s safety, is in Section 5, following an introduction
of min-norm safety designs for a defender countering an unrestricted
offender in Section 4. Stochastic offenders are dealt with in Section 7,
where noise-to-state safety subject to unrestricted incremental covari-
ance of the offender is presented, and in 8, where a minimax game,
played between a deterministic offender and a stochastic offender
employing feedback through incremental covariance, is solved. Sec-
tion 9 recapitulates the results and shows a side-by-side summary of
the deterministic results versus stochastic results and min-norm versus
Sontag-like designs.

A (unicycle) vehicle example plays a particularly important role
in our presentation. However, rather than considering a two-agent
example with two vehicles being the offender and defender agents,
which would be a safety game of the conventional pursuit-evasion
type, in Section 6 we consider an unconventional, and in our opinion
intellectually intriguing safety game involving a single vehicle whose
two inputs – linear velocity and angular velocity – are the two opposing
players. In other words, the ‘‘agency’’, as offender and defender, is
assigned to the two inputs on the same vehicle. In colloquial terms,
one should imagine one actor having control over the steering wheel
and the other actor over the accelerator and brake pedals, as well as the
forward/reverse stick shift. In such a safety game, in which either input
can have either the offender or defender role, can the defender always
foil the objective of the offender to cause a collision with an obstacle?
Precise and not necessarily obvious answers to this question are given
in Examples 4, 5, 6, and 8. The bottom line is that steering has less
influence than forward/reverse driving over the collision outcome in a
game with a meaningful performance index in which the defender is
rewarded for increasing safety, offender for decreasing safety, and the
actions of both are penalized.

1.6. Notation

Let 𝑎 < 0 < 𝑏. A continuous function 𝛾 ∶ (𝑎, 𝑏) → R with 𝛾(0) = 0
is of extended class (𝑎,𝑏) if it is strictly increasing. In particular,  =
[0,+∞). A continuous function 𝛽 ∶ (𝑎, 𝑏) × R≥0 → R is of class (𝑎,𝑏) if
t is of class (𝑎,𝑏) in its first argument and has a zero limit as its second
rgument goes to infinity.

. Input-to-state safety, under offender agent input

We start with definitions of a barrier function and safe set.

efinition 1 (Barrier Function). The scalar-valued differentiable func-
ion ℎ ∶ R𝑛 → R with inf𝑥∈R𝑛 ℎ(𝑥) < 0 and sup𝑥∈R𝑛 ℎ(𝑥) > 0 is referred to
s a barrier function candidate. The set  = {𝑥 ∈ R𝑛

| ℎ(𝑥) ≥ 0} without
solated points is referred to as a safe set.

Consider first a system driven input 𝑢1,

̇ = 𝑓 (𝑥) + 𝑔1(𝑥)𝑢1 , 𝑢1 ∈ R𝑚1 , (1)

here 𝑓 ∶ R𝑛 → R𝑛, 𝑔1 ∶ R𝑛 → R𝑛×𝑚1 , with an initial condition
0 = 𝑥(0). The sole (vector) input to this system, 𝑢1, is a disturbance.
his input’s effect on the system may be to drive the state out of the safe
et . Hence, anticipating that in the sequel there will be an additional
nput tasked with maintaining safety, and counteracting the effect of
he disturbance in a two-player game theoretic setting, we refer to the
isturbance 𝑢1 as an offender agent. The other input, to be labeled 𝑢2
ill be referred to as a defender agent.
3

efinition 2 (ISSf). The system (1) is said to be input-to-state safe (ISSf)
n the set  if there exist 𝜌 ∈  and 𝛽 ∈ (inf ℎ(𝜉),supℎ(𝜉)) =∶ ℎ such
hat, for all initial conditions 𝑥0 ∈ R𝑛 and all locally bounded functions
1 ∶ [0,+∞) → R𝑚1 , the resulting solution satisfies

(𝑥(𝑡)) ≥ 𝛽(ℎ(𝑥0), 𝑡) − 𝜌
(

sup
0≤𝜏≤𝑡

|𝑢1(𝜏)|
)

, ∀𝑡 ≥ 0 , (2)

here the function 𝜌 is referred to as the ISSf gain function.

This property is not new. Controller design ensuring ISSf, using
ackstepping for non-overshooting control, goes as far back as 2006
n the paper Krstic and Bement (2006)—see the safety bound (61)
f Theorem 3 with a disturbance of unlimited unknown bound 𝑑, as
ell as the safety bound (90) of Proposition 1 with an observer-based
on-overshooting controller.

The following definition is a very slightly adjusted version of Lyu,
u, and Hong (2022, Definition 4).

efinition 3 (ISSf Barrier Function). The function ℎ is called an ISSf
arrier function (ISSf-BF) if there exists a function 𝜌 ∶ [0,+∞) →
0,− inf ℎ(𝜉)) of class  and a function 𝛼 in (inf ℎ(𝜉),supℎ(𝜉)) such that,
or all 𝑥 ∈ R𝑛, 𝑢1 ∈ R𝑚1 ,

min {0, ℎ(𝑥)} ≤ −𝜌(|𝑢1|) ⇒ 𝐿𝑓ℎ + 𝐿𝑔1ℎ𝑢1 ≥ −𝛼(ℎ) . (3)

The following result is a variation on Lyu et al. (2022, Theo-
em 1), proved by adapting Krstić and Deng (2000, Theorem 2.2)
nd Kolathaya and Ames (2019, Theorem 1).

emma 1. For system (1), if there exists a ISSf-BF ℎ, then the system is
SSf with 𝛽(𝑟, 𝑡) in (2) defined by the solution to ℎ̇ = −𝛼(ℎ), ℎ(0) = 𝑟.

3. ISSf-CBFs and safety ensured by defender agent

Consider now, with locally Lipschitz 𝑓, 𝑔1, 𝑔2, the system

𝑥̇ = 𝑓 (𝑥) + 𝑔1(𝑥)𝑢1 + 𝑔2(𝑥)𝑢2 , 𝑢1 ∈ R𝑚1 , 𝑢2 ∈ R𝑚2 , (4)

where 𝑢1 is an offender and 𝑢2 is a defender.

Definition 4 (ISSf-CBF). A scalar differentiable function ℎ is called a
ISSf-control barrier function (ISSf-CBF) for (4) if there exists a class 
function 𝜌 ∶ R≥0 → [0,− inf ℎ(𝜉)) and 𝛼 ∈ (inf ℎ(𝜉),supℎ(𝜉)) =∶ ℎ such
that, for all 𝑥 ∈ R𝑛, 𝑢1 ∈ R𝑚1 ,

min {0, ℎ(𝑥)} ≤ −𝜌(|𝑢1|)
⇒ sup

𝑢2∈R𝑚2

{

𝐿𝑓ℎ + 𝐿𝑔1ℎ𝑢1 + 𝐿𝑔2ℎ𝑢2
}

≥ −𝛼(ℎ). (5)

The following result for CBFs is obtained by adapting our CLF
result (Krstic & Li, 1998, Lemma 2.1).

Lemma 2. A pair (ℎ, 𝜌) satisfies (5) if and only if

𝐿𝑔2ℎ(𝑥) = 0 ⇒ 𝜔(𝑥) ≥ 0 (6)

where

𝜔(𝑥) = 𝐿𝑓ℎ − |

|

|

𝐿𝑔1ℎ
|

|

|

𝜌−1(max{0,−ℎ(𝑥)}) + 𝛼(ℎ(𝑥)) . (7)

ISSf-CBFs, which do not require the disturbance to be in a known
compact set, are different from Robust CBFs (Choi, Lee, Sreenath,
Tomlin, & Herbert, 2021; Jankovic, 2018). That is the very purpose of
the antecedent in the implication (5) and the term 𝜌−1(max{0,−ℎ(𝑥)})
in (7).

In the next section, our defender will employ an ISSf variant of the
classical CBF-QP feedback law to guarantee ISSf in the presence of an
offender. However, before we proceed to this conventional approach,
we point out that safety can be ensured, by the defender, with a
number of other feedback choices, one of which is inspired by Sontag’s
formula (Sontag, 1989b) and converted from stabilization to safety.
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Theorem 1 (Defender Uses a Variant of Sontag’s Formula; Input-to-state
Safety Ensured). If there exists a ISSf-CBF, the system (4) is rendered ISSf
using the following Sontag-type control law:1

𝑢2 = 𝑢S(𝑥) = (𝐿𝑔2ℎ)
T

{

𝜅(𝑥), (𝐿𝑔2ℎ)
𝑇 ≠ 0

0, (𝐿𝑔2ℎ)
T = 0 ,

(8)

where, with 𝜔(𝑥) defined in (7),

𝜅(𝑥) =
−𝜔 +

√

𝜔2 +
(

𝐿𝑔2ℎ(𝐿𝑔2ℎ)
T
)2

𝐿𝑔2ℎ(𝐿𝑔2ℎ)
T

=
𝐿𝑔2ℎ(𝐿𝑔2ℎ)

T

𝜔 +
√

𝜔2 +
(

𝐿𝑔2ℎ(𝐿𝑔2ℎ)
T
)2

. (9)

4. Min-norm defender feedback laws that ensure ISSf

Now we turn our attention to designing a defender control 𝑢2 that
achieves safety, in the presence of an offender input 𝑢1, using QP/min-
norm control. Let an ISSf-CBF ℎ(𝑥) be available, with associated (𝜌, 𝛼).
Then, consider the QP problem for the defender agent, given by

̄QP = argmin𝑣∈R𝑚2 |𝑣|2 subject to (10)

𝜔(𝑥) + 𝐿𝑔2ℎ(𝑥)𝑣 ≥ 0 . (11)

The well-known explicit solution to this problem is (Freeman & Koko-
tovic, 1996)

̄QP =

⎧

⎪

⎨

⎪

⎩

0, 𝜔(𝑥) ≥ 0

− 𝜔
|𝐿𝑔2ℎ|

2
(𝐿𝑔2ℎ)

𝑇 , 𝜔(𝑥) < 0 . (12)

emark 1. Regarding the possible division by 𝐿𝑔2ℎ = 0 in the second
ase of (12), we recall that, by Lemma 2, every ISSf-CBF satisfies the
mplication 𝐿𝑔2ℎ = 0 ⇒ 𝜔(𝑥) ≥ 0, which is equivalent to the implication
(𝑥) < 0 ⇒ 𝐿𝑔2ℎ ≠ 0, and this precludes 𝐿𝑔2ℎ being zero in the second

case of (12), i.e., a division by zero is not possible.

Since controls like (12) appear in our paper at least half a dozen
times, for the sake of compactness we write it as

̄QP = (𝐿𝑔2ℎ)
𝑇 max {0,−𝜔}

|𝐿𝑔2ℎ|
2

, (13)

ith a recollection from (6) that 𝜔 < 0 ⇒ 𝐿𝑔2ℎ ≠ 0 and with a
otational convention that 0∕0 = 0.

With the QP feedback (12) for the defender agent, we have the
ollowing result.

heorem 2 (Defender Using QP-ISSf-CBF Formula Ensures ISSf). The
ontrol law

2 = 𝑢̄QP(𝑥) (14)

ith 𝑢̄QP(𝑥) defined in (12) and 𝜔(𝑥) defined in (7) renders system (4) ISSf
ith respect to the ISSf-CBF ℎ(𝑥), with a gain function 𝜌, i.e., there exists

𝛽 ∈ ℎ such that, for all 𝑡 ≥ 0,

ℎ(𝑥(𝑡)) ≥ 𝛽(ℎ(𝑥0), 𝑡) − 𝜌
(

sup
0≤𝜏≤𝑡

|𝑢1(𝜏)|
)

. (15)

Example 1 (Integrator with Offender Having Higher Control Authority).
Consider the system

̇ = (1 + 𝑥2)𝑢1 + 𝑢2 (16)

1 See also the proof of Theorem 3.2 in Krstic and Li (1998) and Remark 5
f Kolathaya and Ames (2019).
4

b

with a ISSf-CBF

ℎ(𝑥) = −𝑥 . (17)

One can consider (16) a ‘‘pursuit-evasion problem on a line’’, where
𝑥 is the relative position between a pursuer/offender and an evader/
defender, 𝑢1 is the pursuer input (aiming to drive ℎ positive), 𝑢2 is the
evader input (aiming to keep ℎ negative), and the pursuer is ‘‘kine-
matically advantaged’’ at larger distances through the input coefficient
1 + 𝑥2. For some 𝜌 ∈ ∞, (7) is

𝜔 = −(1 + 𝑥2)𝜌−1(max{0, 𝑥}) + 𝛼(ℎ(𝑥)) (18)

nd the QP formula (12) gives

̄QP = min
{

0,−(1 + 𝑥2)𝜌−1(max{0, 𝑥}) + 𝛼(ℎ(𝑥))
}

. (19)

aking, e.g.,

(ℎ) = ℎ , (20)

he overall feedback (14), given by

2 = min
{

0,−(1 + 𝑥2)𝜌−1(max{0, 𝑥}) − 𝑥
}

, (21)

uarantees, ∀𝜌 ∈ ∞,

(𝑡) ≤ e−𝑡𝑥0 + 𝜌
(

sup
0≤𝜏≤𝑡

|𝑢1(𝜏)|
)

, ∀𝑡 ≥ 0 . (22)

n the pursuit-evader interpretation, capture by the kinematically ad-
antaged pursuer is possible but the degree of violation
(

sup0≤𝜏≤𝑡 |𝑢1(𝜏)|
)

is in proportion to the magnitude of the pursuing
nput 𝑢1. □

A ‘half-Sontag’ formula (𝑢S∕2) also generates min-norm control.

heorem 3 (‘‘Half-Sontag’’ Formula Also has a Pointwise Min-norm Prop-
rty). The feedback

2 =
1
2
𝑢S , (23)

with 𝑢S defined in (8), (9) and 𝜔 defined in (7) renders system (4) ISSf and
is the pointwise minimizer of |𝑣|2 subject to the following constraint more
conservative than (11):

1
2

(

𝜔 −

√

𝜔2 +
(

𝐿𝑔2ℎ(𝐿𝑔2ℎ)
T
)2

)

+ 𝐿𝑔2ℎ𝑣 ≥ 0 . (24)

5. Inverse optimal input-to-state safety game

Let us re-examine system (4) with its to agents: the offender 𝑢1 and
defender 𝑢2. The presence of two agents, with exactly opposing goals in
relation to safety, leads us to formulate the problem of feedback control
design for the opposing agents as a differential game (Başar & Bernhard,
1998; Başar & Olsder, 1998) of the zero-sum type.

In this zero-sum game, the objective for both the offender and
the defender is for their respective control efforts, 𝑢1 and 𝑢2, to re-
main small. However, their objectives contradict one another regarding
safety: defender 𝑢2 desires to keep ℎ(𝑥(𝑡)) from becoming too small,
while the offender 𝑢1 desires to make ℎ(𝑥(𝑡)) small and, in fact, negative.

We pursue the following zero-sum two-player minimax (supinf, to
be precise) optimization problem:

sup
𝑢2∈2

inf
𝑢1∈1

{

lim
𝑡→∞

[

2𝛽ℎ(𝑥(𝑡)) + ∫

𝑡

0

(

𝑙(𝑥) − 𝑢T2𝑅2(𝑥)𝑢2 + 𝛽𝜆𝛾
(

|𝑢1|
𝜆

))

d𝜏
]}

,

(25)

where 1,2 are sets of locally bounded functions of 𝑥. In this problem,
𝑅2(𝑥) = 𝑅2(𝑥)T > 0 for all 𝑥 and 𝑢0, 𝛾 and 𝛾 ′ are in class ∞, the
constants 𝛽 and 𝜆 are positive, and 𝑙(𝑥) is a weight on the state, upper
ounded by a class  function of ℎ.
∞
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We do not approach the game (25) as a problem of direct determi-
nation of a Nash equilibrium but as an inverse problem: both the Nash
control laws 𝑢∗1 and 𝑢∗2, as well as the weights 𝑙(𝑥), 𝑅2(𝑥), 𝛾(⋅), are up
to the offender and the defender, respectively, to choose. Even ℎ(𝑥) is
available for design (by the defender), for a given safe set .

Before we continue, let us introduce the following notation: For
a class ∞ function 𝛾 whose derivative exists and is also a class ∞
function, 𝓁𝛾 denotes the Legendre–Fenchel transform

𝓁𝛾(𝑟) =∫

𝑟

0
(𝛾 ′)−1(𝑠)𝑑𝑠 (26)

=𝑟(𝛾 ′)−1(𝑟) − 𝛾
(

(𝛾 ′)−1(𝑟)
)

, (by Lemma 3.a) (27)

where (𝛾 ′)−1(𝑟) stands for the inverse function of 𝑑𝛾(𝑟)
𝑑𝑟

.
In the next theorem is this tutorial’s main result: a pair of defender–

ffender feedback choices, which settle to a Nash equilibrium for a
ame in which the defender is rewarded for enhancing safety and the
ffender is rewarded for reducing safety.

heorem 4 (A ‘‘defender-offender’’ Policy Pair that Attains a Nash Equi-
librium in an Inverse Optimal Sense). Consider the auxiliary system of (4),

̇ = 𝑓 (𝑥) − 𝑔1(𝑥)𝓁𝛾(2|𝐿𝑔1ℎ(𝑥)|)
(𝐿𝑔1ℎ(𝑥))

T

|𝐿𝑔1ℎ(𝑥)|
2
+ 𝑔2(𝑥)𝑢2 (28)

in which the offender agent employs the feedback

𝑢1 = 𝑢̄1(𝑥) ∶= −𝓁𝛾(2|𝐿𝑔1ℎ(𝑥)|)
(𝐿𝑔1ℎ(𝑥))

T

|𝐿𝑔1ℎ(𝑥)|
2

(29)

and where 𝛾 is a class ∞ function whose derivative 𝛾 ′ is also a class
∞ function. Suppose that there exists a matrix-valued function 𝑅2(𝑥) =
𝑅2(𝑥)T > 0 such that the defender feedback of the form

𝑢2 = 𝑢̄2(𝑥) ∶= 𝑅2(𝑥)−1
(

𝐿𝑔2ℎ(𝑥)
)T

(30)

ensures safety of the system (28) with respect to CBF candidate ℎ(𝑥),
namely, ensures that

𝐿𝑓ℎ − 𝓁𝛾(2|𝐿𝑔1ℎ|) + 𝐿𝑔2ℎ𝑅
−1
2

(

𝐿𝑔2ℎ
)T

≥ −𝛼(ℎ) (31)

for some 𝛼 ∈ ℎ. Then the defender feedback

𝑢2 = 𝑢̄∗2(𝑥) ∶= 𝛽𝑢̄2(𝑥) = 𝛽𝑅−1
2

(

𝐿𝑔2ℎ(𝑥)
)T

, 𝛽 ≥ 2 (32)

applied to (4) maximizes the cost functional

𝐽 (𝑢2) = inf
𝑢1∈1

{

lim
𝑡→∞

[

2𝛽ℎ(𝑥(𝑡))+∫

𝑡

0

(

𝑙(𝑥)−𝑢T2𝑅2(𝑥)𝑢2+𝛽𝜆𝛾
(

|𝑢1|
𝜆

))

d𝜏
]}

(33)

or any 𝜆 ∈ (0, 2], where

(𝑥) = −2𝛽
[

𝐿𝑓ℎ − 𝓁𝛾(2|𝐿𝑔1ℎ|) + 𝐿𝑔2ℎ𝑅
−1
2

(

𝐿𝑔2ℎ
)T

]

−𝛽(2 − 𝜆)𝓁𝛾(2|𝐿𝑔1ℎ|) − 𝛽(𝛽 − 2)𝐿𝑔2ℎ𝑅
−1
2

(

𝐿𝑔2ℎ
)T

(34)

≤ 2𝛽𝛼(ℎ) (35)

s decrescent in the CBF ℎ on the interval (inf ℎ, supℎ), and where the Nash
eedback for the offender is given by

1 = 𝑢∗1(𝑥) ∶= −𝜆(𝛾 ′)−1(2|𝐿𝑔1ℎ|)
(𝐿𝑔1ℎ)

T

|𝐿𝑔1ℎ|
. (36)

The parameter 𝛽 ≥ 2 in the statement of Theorem 4 represents
a design degree of freedom for the defender. The presence of the
offender’s design parameter 𝜆 (note that it parameterizes not only the
penalty on the offender but also the penalty on the state’s proximity
to the boundary, i.e., the reward for the state’s distance from the
5

boundary, 𝑙(𝑥)) indicates that the defender’s family of feedback laws 𝑥
is inverse optimal with respect to an entire family of different cost
functionals, and an entire family of offender feedback laws.

Remark 2. Even though not explicit in the proof of Theorem 4, the
CBF ℎ(𝑥) solves the following family of Hamilton–Jacobi–Isaacs (HJI)
DEs:

𝑓ℎ − 𝜆
2
𝓁𝛾(2|𝐿𝑔1ℎ|) +

𝛽
2
𝐿𝑔2ℎ𝑅

−1
2

(

𝐿𝑔2ℎ
)T

+ 𝑙
2𝛽

= 0 , (37)

arameterized by (𝛽, 𝜆) ∈ [2,∞) × (0, 2]. □

emark 3. It is also easily seen from the proof of Theorem 4 that, even
or initial conditions on the boundary, the level of attenuation of the
ffender’s action that the defender achieves is

𝛽ℎ(𝑥(𝑡)) + 2𝛽 ∫

∞

0
𝛼(ℎ(𝑥)) d𝑡

≥ 2𝛽ℎ(𝑥(𝑡)) + ∫

∞

0
𝑙(𝑥) d𝑡

≥ ∫

∞

0
𝑢T2𝑅2(𝑥)𝑢2 d𝑡 − 𝛽𝜆∫

∞

0
𝛾
(

|𝑢1|
𝜆

)

d𝑡

≥ −𝛽𝜆∫

∞

0
𝛾
(

|𝑢1|
𝜆

)

d𝑡 . (38)

Summarizing, we refer to the property

ℎ(𝑥(𝑡)) + ∫

∞

0
𝛼(ℎ(𝑥)) d𝑡 ≥ −𝜆

2 ∫

∞

0
𝛾
(

|𝑢1|
𝜆

)

d𝑡 , (39)

as integral input-to-state safety (iISSf). □

Example 2 (Integrator Game Where Offender has a Higher Control Author-
ity). Consider the system from Example 1. Take

𝛾(𝑟) = 𝓁𝛾(2𝑟) = 𝑟2 . (40)

With

𝑅2 =
1

max {0,−𝛼(ℎ(𝑥))} + (1 + 𝑥2)2
> 0 , (41)

condition (31) is satisfied. The defender’s feedback policy (32) is given
by

𝑢2 = −
𝛽
𝑅2

= 𝛽
[

−(1 + 𝑥2)2 + min {0,−𝑥}
]

(42)

and, for all 𝛽 ≥ 2, is the maximizer of

𝐽 (𝑢2) = inf
𝑢1∈1

{

lim
𝑡→∞

[

−2𝛽𝑥(𝑡) + ∫

𝑡

0

(

𝑙(𝑥) − 𝑅2𝑢
2
2 +

𝛽
𝜆
𝑢21

)

d𝜏
]}

(43)

for any 𝜆 ∈ (0, 2], with 𝑙(𝑥) ≤ −2𝛽𝑥. The defender feedback (42)
achieves

𝑥(+∞) + ∫

∞

0
𝑥(𝑡) d𝑡 ≤ 1

2𝜆 ∫

∞

0
𝑢21(𝑡) d𝑡 . (44)

dditionally, for all 𝛽 ≥ 1, the defender feedback (42) with 𝛼(ℎ) = ℎ
uarantees

(𝑡) ≤ e−𝑡𝑥0 +
1
4

(

sup
0≤𝜏≤𝑡

|𝑢1(𝜏)|
)2

, ∀𝑡 ≥ 0 . (45)

Now we turn our attention to the Nash policy of the offender, which is
given by

𝑢∗1 = 𝜆(1 + 𝑥2) . (46)

Let us examine the offender–defender Nash policy pair (46), (42), for
an initial condition in the safe set 𝑥 < 0. This pair is given by, simply,

𝑢∗2 = −𝛽(1 + 𝑥2)2 , 𝛽 ≥ 2 (47)

𝑢∗1 = 𝜆(1 + 𝑥2) , 0 < 𝜆 ≤ 2 . (48)

For the plant (16), the closed-loop system with the Nash feedback
policies is

̇ = (𝜆 − 𝛽)(1 + 𝑥2)2 , 𝜆 − 𝛽 < 0 . (49)
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With an initial condition 𝑥(0) < 0 in the safe set, and 𝑥̇ < 0, the
orward invariance of the system in the set 𝑥 < 0 is ensured. In other
ords, the defender succeeds at maintaining safety when the offender’s
ction is penalized with 𝑢21 in the cost function. The value of the game
s 𝐽 ∗(𝑥(0)) = −2𝛽𝑥(0) > 0, which is finite, in spite of the fact that
(𝑡), 𝑢1(𝑥(𝑡)), 𝑢2(𝑥(𝑡)) all grow without bound when 0 < 𝜆 < 𝛽. The
ursuit-evasion meaning of the outcome 𝑥(𝑡) → −∞ for (49) when

𝑥(0) < 0 is that the evader succeeds at the evasion. □

For the general result in Theorem 4, a natural question arises: Is
the ISSf QP feedback law of the defender, (12), (7), inverse optimal?
The following theorem, proven similarly to Theorem 4, answers the
question in the affirmative.

Theorem 5 (A Fortified QP-ISSf-CBF Policy by Defender Ensures a Nash
Outcome). Consider system (4) with associated ISSf-CBF ℎ and a gain
function 𝜌. For any 𝛽 ≥ 2, the defender feedback

𝑢2 = 𝑢̄∗QP(𝑥, 𝑢0) = 𝛽𝑢̄QP(𝑥) , (50)

with 𝑢̄QP defined in

𝑢̄QP = (𝐿𝑔2ℎ)
𝑇 max {0,−𝜔}

|𝐿𝑔2ℎ|
2

(51)

𝜔(𝑥) = 𝐿𝑓ℎ − |

|

|

𝐿𝑔1ℎ
|

|

|

𝜌−1(max{0,−ℎ}) + 𝛼(ℎ) , (52)

aximizes

(𝑢2) = inf
𝑢1∈1

{

lim
𝑡→∞

[

2𝛽ℎ(𝑥(𝑡))+∫

𝑡

0

(

𝑙(𝑥)−𝑅2(𝑥)|𝑢2|
2+

𝛽
𝜆
𝑅1(𝑥)|𝑢1|

2
)

d𝜏
]}

(53)

or all 𝜆 ∈ (0, 2], where

1(𝑥) =
1

𝜌−1(max{0,−ℎ})
> 0 (54)

2(𝑥) =
|𝐿𝑔2ℎ|

2

max {0,−𝜔}
> 0 (55)

𝑙(𝑥) ≤ 2𝛽𝛼(ℎ(𝑥)) , (56)

nd the Nash feedback law of the offender is given by

1 = 𝑢∗1(𝑥) ∶= −𝜆𝜌−1(max{0,−ℎ(𝑥)})
(𝐿𝑔1ℎ(𝑥))

T

|𝐿𝑔1ℎ(𝑥)|
. (57)

The weight 𝑅1 in (54) is infinite in the safe set ℎ(𝑥) ≥ 0 where the
Nash feedback (57) spends no effort. Likewise, 𝑅2 in (55) is infinite
when 𝜔 ≥ 0 since control (12) puts in no effort when the system is safe
on its own. We also recall from Remark 1 that (12) precludes 𝐿𝑔2ℎ from
being zero when 𝜔 < 0, so 𝑅2 can, in fact, never be zero, namely, 𝑢2 is
penalized for all 𝑥.

Example 3. Back to Example 1, the defender feedback law 𝑢2 = 𝛽𝑢̄QP,
𝛽 ≥ 2, with

̄QP = min
{

0,−(1 + 𝑥2)𝜌−1(max{0, 𝑥}) − 𝑥
}

, (58)

results in

𝑥(+∞) + ∫

∞

0
𝑥(𝑡) d𝑡 ≤ 1

2𝜆 ∫

∞

0

𝑢21(𝑡)

𝜌−1(max{0, 𝑥(𝑡)})
d𝑡 , (59)

hich, unlike control (42) in Example 2, fails to achieve a finite integral
ain in the safe set 𝑥 ≤ 0 like (44). □

. Safety games for a unicycle vehicle

We return to the general result on inverse optimal zero-sum/mini-
ax/offender–defender safety games in Theorem 4 and illustrate it with

wo examples on a well-studied nonlinear system with two inputs—
he nonholonomic unicycle. The game is played not between two
offender and defender) vehicles but between the two inputs (steering
nd forward ‘‘driving’’) on the same vehicle.
6

Example 4 (Unicycle with Steering Offender). We first consider the
unicycle system with the state vector 𝑥̄ = [𝑥, 𝑦, 𝜃]T,

̇ = 𝑢2 cos 𝜃 + 𝑣 (60)

𝑦̇ = 𝑢2 sin 𝜃 (61)

𝜃̇ = 𝑢1 , (62)

where 𝑣 ∈ R is a constant drift (wind) disturbance in the 𝑥 direction.
In this example we pose, for pedagogical purposes, a problem that
is unconventional and, arguably, artificial: we treat the two unicycle
inputs as opponents in a game. The steering (heading rate) input 𝑢1 is
treated as the offender, trying to violate safety, while the propulsive
(linear velocity) input 𝑢2 is treated as the defender, trying to maintain
safety. As for the uncommon labeling of the linear input as 𝑢2 and the
angular input as 𝑢1, this is simply for consistency with our previous
presentation where the offender is labeled as agent 1 and the defender
as agent 2.

While for unicycles the obstacle is often taken as a circular ‘‘safety
bubble’’, in this example we carefully select the simplest possible obsta-
cle that is consistent with the presence of a disturbance that advantages
the offender. Given the wind 𝑣 in the 𝑥-direction, which we will take
to have a negative (leftward) velocity, we take the safe set to be the
right half-plane {𝑥 > 0}, namely, we take the safety boundary to be
the ‘‘wall’’ 𝑥 = 0. Such a safe set would normally give rise to a simple
position-based CBF of the form

ℎ(𝑥̄) = 𝑥. (63)

But this CBF is ‘‘asymmetric’’ in terms of the relative degrees of the
two agents: it is relative degree one with respect to the defender 𝑢2
but relative degree two with respect to the offender 𝑢1. In other words,
ℎ = 𝑥 advantages the defender since the offender 𝑢1 cannot directly
influence dℎ∕d𝑡. After a careful consideration, we take the CBF

ℎ(𝑥̄) = 𝑥
cos2 𝜃

, (64)

which is of relative degree one with respect to both 𝑢1 and 𝑢2. There is
additional logic behind choosing the CBF (64), apart from ‘‘equalizing’’
the relative degrees. For 𝜃 = ±𝜋∕2, the vehicle is headed in parallel
to the boundary, which is inherently safe. Finally, the vehicle cannot
be actuated in its ‘‘sideways’’ direction, and for this reason the CBF
ℎ = 𝑥 fails to satisfy the CBF condition at headings 𝜃 = ±𝜋∕2, making
he defense task impossible for the defender. Such a singularity for the
efender is removed with the CBF ℎ = 𝑥∕ cos2 𝜃 (see Fig. 1).

Let us now proceed with working out the details of the application
f Theorem 4. For the Lie derivatives of (64), one obtains

𝐿𝑓ℎ(𝑥̄) =
𝑣

cos2 𝜃
, (65)

𝐿𝑔1ℎ(𝑥̄) =
2𝑥 tan 𝜃
cos2 𝜃

, (66)

𝑔2ℎ(𝑥̄) =
1

cos 𝜃
. (67)

Taking

𝛾(𝑟) = 𝓁𝛾(2𝑟) = 𝑟2 , 𝛼(ℎ) = ℎ, (68)

in order to satisfy condition (31) one gets

𝑅2 =
1

max{0,−(𝑥 + 𝑣)} + 4𝑥2 tan
2 𝜃

cos2 𝜃

. (69)

The defender’s Nash feedback policy is then

𝑢∗2 =
𝛽

cos 𝜃

(

max{0,−(𝑥 + 𝑣)} + 4𝑥2 tan
2 𝜃

cos2 𝜃

)

, 𝛽 ≥ 2. (70)

while the offender’s Nash feedback policy is

𝑢∗ = −𝜆 2𝑥 tan 𝜃 , 0 < 𝜆 ≤ 2 . (71)
1 cos2 𝜃
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Fig. 1. Plot of CBF ℎ = 𝑥∕cos2 𝜃 over the interval (−𝜋∕2, 𝜋∕2) for 𝜃. This CBF is of the same relative degree – one – relative to both inputs, angular velocity (offender) and linear
elocity (defender). To equalize the relative degrees for the two agents, the CBF treats headings parallel with the wall as safe, even when the vehicle is close to the wall, which
s natural since the nonholonomic unicycle cannot be actuated sideways.
Both of the policies blow up when cos 𝜃 = 0, namely, at the heading
ngles 𝜃 = ±𝜋∕2, which are parallel with the wall. Let us see that
his singularity is actually never encountered, unless the vehicle starts
arallel with the wall. We will see this by showing that the offender
olicy (71) guarantees that the heading that starts in the interval
−𝜋∕2, 𝜋∕2) remains in that interval, and likewise, the heading starting
n (𝜋∕2, 3𝜋∕2) is maintained in that interval by (71). The closed-loop

dynamics of 𝜃 are

𝜃̇ = −2𝜆𝑥 tan 𝜃
cos2 𝜃

. (72)

Consider the Lyapunov function

𝑉 = 1
cos2 𝜃

− 1 = tan2 𝜃 . (73)

This is system (72)’s Lyapunov function both for the equilibrium 𝜃 =
on the interval (−𝜋∕2, 𝜋∕2) and for the equilibrium 𝜃 = 𝜋 on

he interval (𝜋∕2, 3𝜋∕2). Its derivative is 𝑉̇ = −4𝜆𝑥2 tan2 𝜃∕ cos4 𝜃 =
4𝜆𝑥2

(

1∕ cos2 𝜃 − 1
)

∕ cos4 𝜃, namely,

̇ = −4𝜆𝑥2(1 + 𝑉 )2𝑉 , (74)

hich is negative definite in 𝑉 in the safe set 𝑥 > 0. Hence, the
quilibria 𝜃 = 0 and 𝜃 = 𝜋 are asymptotically stable with regions of
ttraction (−𝜋∕2, 𝜋∕2) and (𝜋∕2, 3𝜋∕2), respectively, and, more impor-
antly, each of these two intervals is forward invariant. In conclusion,
he heading values 𝜃 = ±𝜋∕2, at which the Nash feedback laws 𝑢∗1 and 𝑢∗2
re singular, will never be attained, unless the initial heading has one
f these two singular values. In fact, the heading will monotonically
onverge to the headings orthogonal to the wall.

Let us now turn our attention to the game between the angular and
inear velocity inputs. What do their Nash feedback laws optimize? The
efender maximizes and the offender minimizes the cost functional

lim
𝑡→∞

[

𝑥(𝑡)
cos2 𝜃(𝑡)

+ ∫

𝑡

0

(

𝜂(𝑥(𝜏), 𝜃(𝜏)) − 1
2𝛽

𝑢22(𝜏)

max{0,−(𝑥(𝜏) + 𝑣)} + 4𝑥2 tan2 𝜃(𝜏)
cos2 𝜃(𝜏)

+ 1
2𝜆

𝑢21(𝜏)
)

d𝜏
]

, (75)

here

(𝑥, 𝜃) ≤ 𝑥 . (76)
7

cos2 𝜃
In more specific terms, (75) indicates that at minimal (weighted) costs
to the agents’ respective efforts, the defender agent maximizes the
vehicle’s distance from the wall and its parallelism with the wall, while
the offender agent minimizes the vehicle’s distance from the wall and
maximizes its orthogonality to the wall. The defender’s cost to act is
infinite when the vehicle is orthogonal to the wall and far from the
wall, and indeed the defender is inactive in those conditions. The game
value, under the Nash feedback laws of the offender and defender, is
𝑥(0)∕ cos2 𝜃(0).

It is without a doubt difficult to comprehend a situation where
the steering is used to run a vehicle into a wall, while acceleration,
braking, in both forward and reverse directions, is used to prevent such
a collision from happening. To gain better understanding, it is helpful
to rewrite (70) as

𝑢∗2 = 𝛽
(

max{0,−(𝑥 + 𝑣)}
cos 𝜃

+ cos 𝜃 1
𝜆2

(𝑢∗1)
2
)

, 𝛽 ≥ 2. (77)

The first term within the parentheses is simply the linear velocity action
under the CBF ℎ = 𝑥, namely, when steering is not employed to
interfere with safety. When steering becomes a threat to safety, linear
velocity employs an additional action, in proportion to the square of
the harmful steering action.

If the vehicle heading is eastward, the linear velocity augmentation
is positive, namely, away from the wall. When the heading is nearly
parallel to the wall, namely, when cos 𝜃 is small in absolute value, the
action of steering becomes harmless and the augmentation cos 𝜃 1

𝜆2
𝑢∗1

is negligible. In other words, for a steering action (71) optimized to
attempt a collision with the wall by orienting the vehicle towards the
wall, and doing so faster when the vehicle is father from the wall (in
proportion to 𝑥), the best defense by linear velocity is simply to drive
in the direction away from the wall, and at a speed suitably adjusted
to the steering rate towards the wall and the heading towards the wall.

Next we present simulation results with the Nash policies (70), (71)
applied to the unicycle (60)–(62), with a leftward wind, 𝑣 < 0. Fig. 2
shows two selected trajectories 𝑦(𝑥) of the vehicle, with vehicle head-
ing superimposed as directed arrows, whereas Fig. 3 shows the time
responses of the heading 𝜃(𝑡), offender input 𝑢1(𝑡), and defender input

𝑢2(𝑡). The figure captions provide observations and interpretations. □
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Fig. 2. Under leftward wind, all the trajectories starting on the safe (right) side of the wall obstacle at 𝑥 = 0 converge to a vertical equilibrium manifold 𝑥 = 0.5, to the right of
he wall, with terminal headings orthogonal to the wall in both trajectories. The dots represent the trajectories’ terminal points. The green arrows represent the heading directions
f the vehicle. Note that they are not tangential to the trajectories because of the wind 𝑣: based on (60), (61), arctan(𝑥∕𝑦) ≠ 𝜃. The blue trajectory starts close to the wall, pointing
owards it but, while the steering attempts to turn the vehicle towards the wall, the defending linear velocity input acts negatively and drives the vehicle in reverse, away from the
all. The red trajectory starts at a safer distance from the wall and, similar to the red trajectory, the defender successfully counteracts the offender’s attempt. In both trajectories,

he linear velocity input converges to a value that balances out with the wind velocity, settling at the equilibrium manifold 𝑥 = 0.5, with a heading orthogonal to the wall in both
ases. The dashed vertical line at 𝑥 = 1 represents the 𝑥-position to the left of which max{0,−(𝑥+ 𝑣)} becomes positive and the linear velocity input actively counteracts the wind
< 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
n
a
(

xample 5 (Unicycle with Steering Defender). In Example 4, one would
e legitimate to ask: why is the angular velocity chosen as the offender
nd the linear velocity as the defender? Why not flip the roles? Indeed,
uch a flipping of the roles is of interest. Skipping the details of the
alculations, for the unicycle model

̇ = 𝑢1 cos 𝜃 + 𝑣 (78)

𝑦̇ = 𝑢1 sin 𝜃 (79)

𝜃̇ = 𝑢2 , (80)

e obtain the Nash policies for the linear velocity offender 𝑢1 and for
he angular velocity defender 𝑢2 as, respectively,

∗
1 = − 𝜆

cos 𝜃
(81)

∗
2 =

𝛽
2𝑥

cos 𝜃
sin 𝜃

(1 + max{0,−(𝑥 + 𝑣)}) . (82)

From (81) it is evident that the linear velocity acts towards the wall and
blows up when the vehicle is parallel to the wall, whereas from (82) it
is clear that the angular velocity is high near the wall and shuts off in
parallel with the wall. From these two observations it is clear that the
offender is highly advantaged and the defender stands practically no
chance of preventing the vehicle from being run into the wall. Plugging
(81) into (78), one gets

̇ = −𝜆 + 𝑣 , (83)

which shows that, for 𝑣 < 𝜆, the angular velocity defender is powerless
n trying to prevent the vehicle from being run into the wall by the
8

linear velocity offender, since

𝑥(𝑡) = 𝑥0 − (𝜆 − 𝑣)𝑡 , (84)

amely, the collision happens at time 𝑡 = 𝑥0∕(𝜆− 𝑣). It is interesting to
lso see what is happening with the heading in the meantime. Plugging
82) into (79), one gets
d
d𝑡

cos 𝜃 = −
𝛽
2𝑥

(1 + max{0,−(𝑥 + 𝑣)}) cos 𝜃 , (85)

namely,
d
d𝑡

cos2 𝜃 ≤ −
𝛽
𝑥
cos2 𝜃 = −

𝛽
𝑥0 − (𝜆 − 𝑣)𝑡

cos2 𝜃 , (86)

from which one gets

cos2 𝜃(𝑡) ≤
(

1 − 𝜆 − 𝑣
𝑥0

𝑡
)

𝛽
𝜆−𝑣

cos2 𝜃0 . (87)

Hence, no later than time 𝑡 = 𝑥0∕(𝜆 − 𝑣) the vehicle’s heading becomes
parallel with the wall. We do not show simulation results for the
feedback pair (81), (82) since the outcome of running into the wall
is obvious from the above discussion.

The vehicle being run into the wall by the linear velocity offender
should not be regarded as a defeat of the angular velocity defender
because the defender’s task is not to keep 𝑥(𝑡) positive but to maximize
the following performance index under a minimizing policy of the
offender:

lim
[

𝑥(𝑡)
+

𝑡 (

𝜂(𝑥(𝜏), 𝜃(𝜏))

𝑡→∞ cos2 𝜃(𝑡) ∫0
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Fig. 3. The heading transient of the vehicle, controlled by the offender 𝑢1, is monotonic and orients the vehicle orthogonally to the wall, with the intent of running the vehicle
into the wall. The Nash policy inputs of the offender and defender are smooth and lead to the vehicle trajectories in Fig. 2.
− 2
𝛽
𝑥2 tan

2 𝜃
cos2 𝜃

1
1 + max{0,−(𝑥 + 𝑣)}

𝑢22(𝜏) +
1
2𝜆

𝑢21(𝜏)
)

d𝜏
]

, (88)

where 𝜂 satisfies (76). Furthermore, attaining 𝑥(𝑡) → 0 as, at the same
time, 𝜃(𝑡) → ±𝜋∕2, is a Pyrrhic victory for the offender, since its input
|𝑢∗1(𝑡)| → ∞.

The simultaneous occurrence of 𝑥(𝑡) → 0 and 𝜃(𝑡) → ±𝜋∕2 is the
consequence of the safety being defined through the CBF ℎ = 𝑥∕ cos2 𝜃,
which allows the vehicle to reach the wall, as long as it does so with a
heading parallel to the wall.

The 𝑥-component of the velocity at the time of reaching the wall,
while heading parallel to the wall, is −𝜆+𝑣 < 0. This ‘‘sideways’’ motion
of the unicycle does not contradict its nonholonomic character for two
reasons: wind of velocity 𝑣 is acting on the unicycle and the linear
velocity input is infinite at that time.

By examining (85) and (87), it is intriguing that the Nash policy
(82) regulates the heading to be parallel with the wall. This outcome is
a consequence of optimality. Not only is the feedback (82) zero when
the heading is parallel with the wall, but it is also infinite when the
heading is orthogonal to the wall. It is easy to understand why this is
optimal: at any heading other than parallel with the wall, the linear
velocity input can ‘‘shift to reverse’’ and direct the vehicle towards the
9

wall, with the highest effect exhibited when the heading is orthogonal
to the wall. For this reason, enforcing parallel heading is the angular
velocity defender’s best (Nash) option. □

Example 6 (Summary of Unicycle Games from Examples 4 and 5). In
order to draw additional insight and some clear conclusions, we set
the wind velocity to 𝑣 = 0 and focus our attention only on the safe set
𝑥 > 0, in which case max{0,−(𝑥 + 𝑣)} = 0 and the expressions for the
Nash policies simplify. For enhancing conceptual insight, we clean up
the expressions by setting 𝛽 = 𝜆 = 2. We also remind the reader that
the CBF is given by

ℎ(𝑥, 𝜃) = 𝑥
cos2 𝜃

. (89)

For the game in which the steering is used for offense, we obtain
simple expressions for the angular velocity and linear velocity feedback
laws, respectively, as

ang. vel. offender: 𝑢∗1 = −4ℎ tan 𝜃 (90)

lin. vel. defender: 𝑢∗2 = cos 𝜃
2

𝑢∗1
2 , (91)

or, if 𝜃 is eliminated, the linear velocity defender is acting in response
to the angular velocity offender and the safety measure ℎ as

𝑢∗2
2 = 4ℎ2

𝑢∗1
4

∗2 2
. (92)
𝑢1 + 16ℎ
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In (90), when the vehicle is far from the wall and heading (nearly) in
parallel with the wall, the steering offender turns vigorously towards
the wall. In response, in (91) the defender speeds in the direction away
from the wall and in proportion to the orthogonality to the wall and the
square of the turning rate of the offender. In plain terms, the defender
drives the vehicle away from the wall as the offender tries to steer it
into the wall.

On the other hand, when steering is used for defense, the ex-
pressions for the angular velocity and linear velocity feedback laws,
respectively, are

lin. vel. offender: 𝑢∗1 = − 2
cos 𝜃

(93)

ang. vel. defender: 𝑢∗2 =
𝑢∗1

2

4ℎ tan 𝜃
, (94)

or, if 𝜃 is eliminated, the angular velocity defender is acting in response
to the linear velocity offender and the safety measure ℎ as

𝑢∗2
2 = 1

4ℎ2
𝑢∗1

4

𝑢∗1
2 − 4

. (95)

In (93), when the vehicle heads (nearly) in parallel with the wall, the
driving offender directs the vehicle towards the wall, at high velocity.
In response, in (94) the defender turns in a manner that counteracts
the offender’s speed and direction relative to the wall, and does so
in proportion to the proximity and orthogonality to the wall. In plain
terms, the defender turns away from the wall, as the offender always
drives towards the wall.

It is also important to examine the optimality of these policies, based
on the payoff/cost functions (75) and (88). While the offender is always
penalized quadratically, with a weight that is independent of the state,
the weight of the quadratic penalty on the defender is given, in the two
respective cases, as

𝑅 lin.vel.def .
2 = 1

ℎ2 sin2 𝜃
and 𝑅 ang.vel.def .

2 = ℎ2 sin2 𝜃 . (96)

n other words, when the offense is by steering, and when the vehicle
s close to the wall and (nearly) orthogonal to it, the weight on
he driving control is high and the defender should slow down the
ehicle. In contrast, when the defense is by steering, and when the
ehicle is close to the wall and (nearly) orthogonal to it, the weight
n the steering control is low and the defender should turn vigorously
towards heading parallel to the wall).

To summarize, the Nash policies of the opposing actors follow
ommon sense of their opposing goals relative to the collision with
he wall. Additionally, the specific quantitative formulae for these Nash
olicies go beyond the mere common sense and actually guarantee, in
precise manner, optimality of the non-cooperative kind.

Finally, we are able to provide the explicit expressions for the sys-
em’s closed-loop trajectories. Calculations reveal that the CBF ℎ(𝑥, 𝜃)
iven in (89) actually remains constant when 𝑣 = 0 and 𝜆 = 2, in
oth offender–defender scenarios. In other words, ℎ(𝑥(𝑡), 𝜃(𝑡)) = ℎ0 =
0∕ cos2 𝜃0. This result is then used to obtain the explicit trajectories
(𝜃) and 𝑦(𝑥), getting, at the end, the following expressions in the closed
oop for both offender–defender scenarios:

(𝜃) = ℎ0 cos2 𝜃 (97)

𝑦(𝜃) =
ℎ0
2

[sin(2𝜃) − 2𝜃] (98)

𝑦(𝑥) = ±

[

𝑥

√

ℎ0
𝑥

− 1 − ℎ0 arctan
√

ℎ0
𝑥

− 1

]

. (99)

The expression (99) is arguably the most important, as it gives the
closed-loop trajectories of the vehicles, parameterized in the initial ℎ0 =
0∕ cos2 𝜃0. The vehicle paths 𝑦(𝑥) are always monotonic – increasing
r decreasing in 𝑥 – depending on the value of ℎ0. The direction of the
rajectories depends on the offender–defender scenario. With steering
s the offender, the trajectories move eastward in the 𝑥-𝑦 plane, away
10

t

rom the wall, at an exponential rate 𝑥(𝑡) = ℎ0
(

1 − tan2 𝜃0 e−8ℎ0(𝑡−𝑡0)
)

.
ith steering as the defender, the trajectories move westward, towards

he wall, at a linear (finite-time) rate of 𝑥(𝑡) = 𝑥0 −2(𝑡− 𝑡0) (see Fig. 4).
It is perhaps fascinating that with two entirely different pairs of

eedback laws, for the two offender–defender scenarios, the vehicle
aths are the same for such distinct control laws. This has to be
ttributed to the control laws originating from non-cooperative game
roblems, in which there is in both cases one offender and one de-
ender, as well as a common safety metric for optimization. How-
ver, the vehicle paths being the same is far from expected. The two
ffender–defender scenarios do not differ merely in the roles of the
ffender and defender being reversed. The linear and angular velocity
nputs do not enter the unicycle in a ‘‘symmetric’’ manner and their de-
ender action is penalized differently in the two scenarios, as indicated
n (96). □

. Noise-to-state safety (NSSf) and defender feedback laws that
nsures NSSf

Now we turn our attention to systems in which the offender input
is stochastic, namely,

d𝑥 = 𝑓 (𝑥) d𝑡 + 𝑔1(𝑥) d𝑤 + 𝑔2(𝑥)𝑢2 d𝑡 , (100)

here 𝑤 is an 𝑟-dimensional standard Wiener process and 𝑓, 𝑔1, 𝑔2 are
ocally Lipschitz. However, a stochastic input 𝑤 is not a policy—it is an
pen-loop signal. To model a stochastic offender who is ‘‘strategic’’, we
llow it to have a time-varying incremental covariance 𝛴1(𝑡)𝛴1(𝑡)T d𝑡,
hich is unknown to the defender. In other words, we consider stochas-

ic inputs 𝑤 that satisfy
{

d𝑤 d𝑤T} = 𝛴1(𝑡)𝛴1(𝑡)T d𝑡 (101)

here 𝛴1(𝑡) is a bounded function taking values in the set of nonneg-
tive definite matrices. For matrices 𝑋 = [𝑥1, 𝑥2,… , 𝑥𝑛], we use the
robenius norm

𝑋|
▵
=
(

Tr
{

𝑋T𝑋
})1∕2 =

(

Tr
{

𝑋𝑋T})1∕2 (102)

nd note that |𝑋| = |col(𝑋)|, where col(𝑋) = [𝑥T1 , 𝑥
T
2 ,… , 𝑥T𝑛 ]

T.
For a barrier function candidate ℎ(𝑥), we recall that Itô’s lemma

tates that, along the solutions of (100), the following holds,

ℎ = ℎ d𝑡 + 𝐿𝑔1ℎ d𝑤 , (103)

here

ℎ = 𝐿𝑓+𝑔2𝑢2ℎ + 1
2
Tr

{

𝛴T
1 𝑔

T
1
𝜕2ℎ
𝜕𝑥2

𝑔1𝛴1

}

(104)

is referred to as the infinitesimal generator of ℎ.
When the covariance is unknown and time-varying, it needs to be

treated as a deterministic disturbance in Sections 2–4. Accordingly,
only a graceful degradation of safety in the presence of the offender
action 𝛴1(𝑡) can be expected, as in (2). We refer to such a stochastic
property as noise-to-state safety (NSSf).

From here on we proceed formally, with systems and controllers
that satisfy a certain barrier function inequality, without going a step
further to establish safety in probability, or at least in the mean, which
would be done by employing the techniques as in the proof of Theorem
3.2 in Krstić and Deng (2000), the techniques in Theorem 3 in Clark
(2021), or the technique in the proof of Lemma 1 in Li and Krstic
(2020).

Hence, we pursue the attainment of the following barrier function
condition

min {0, ℎ(𝑥)} ≤ −𝜌
(

|

|

|

𝛴1𝛴
T
1
|

|

|

)

⇓

𝐿𝑓ℎ + 𝐿𝑔2ℎ𝑢2 +
1
2Tr

{

𝛴T
1 𝑔

T 𝜕2ℎ
𝜕𝑥2

𝑔𝛴1

}

≥ −𝛼(ℎ) ,
(105)

for system (100) with (101), by defender feedback 𝑢2 = 𝑢̄2(𝑥), and call
his condition the noise-to state barrier function condition (NSBFc).
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Fig. 4. Two examples of vehicle paths given by the formula (99) for ℎ0 = 1 (blue) and ℎ0 = 2 (red). Each path has one end on the 𝑥-axis (𝑦 = 0) and the other end on the wall
= 0. For each initial condition, in either of the offender–defender scenarios, the vehicle travels along one such path. If the offender input is angular velocity, the motion is away

rom the wall. If the offender input is linear velocity, the motion is towards the wall. (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)
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Heretofore, we have dealt with CBF and ISSf-CBFs. We say that a
unction ℎ is a noise-to-state safety control barrier function (NSSf-CBF) if,
n addition to its usual conditions, it satisfies the implication

𝑔2ℎ = 0 ⇒ 𝜔 ≥ 0 , (106)

here

(𝑥) = 𝐿𝑓ℎ(𝑥) + 𝛼(ℎ) − 1
2
|

|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

|
𝜌−1(max {0,−ℎ(𝑥)}) (107)

for a class  𝜌 ∶ [0,+∞) → [0,− inf ℎ(𝜉)) and 𝛼 ∈ ℎ.

Theorem 6 (Defender Uses Either Sontag or QP-NSSf-CBF Formula; Noise-
to-state Safety Ensured). Under a defender feedback of either the Sontag
type or of the QP type, namely,

𝑢2 = 𝑢S(𝑥) ∶= (𝐿𝑔2ℎ)
T

|𝐿𝑔2ℎ|
2

𝜔 +
√

𝜔2 +
(

|𝐿𝑔2ℎ|
2
)2

, (108)

𝑢2 = 𝑢̄QP(𝑥) ∶= (𝐿𝑔2ℎ)
𝑇 max {0,−𝜔(𝑥)}

|𝐿𝑔2ℎ|
2

, (109)

along with 𝜔(𝑥) defined in (107), system (100) with (101) satisfies the
SBFc in (105).

xample 7. To illustrate a design for NSSf, we return to Example 1 but
ith the offender input 𝑢1 replaced by offender white noise of unknown
ariance 𝛴1(𝑡), namely, to

d𝑥 = (1 + 𝑥2)𝛴1(𝑡) d𝑤 + 𝑢2 d𝑡 . (110)

To vary the design a bit but still keep it simple, we choose

ℎ(𝑥) = −𝑥3 and 𝛼(ℎ) = 3ℎ . (111)

Conducting the calculations with (107), with arbitrary 𝜌 ∈ ∞, we
arrive at the QP feedback for the defender,

̄ = min
{

0,−(1 + 𝑥2)2𝜌−1 max{0, |𝑥|𝑥} − 𝑥
}

. □ (112)
11

QP ( )
8. Inverse optimal noise-to-state safety game

Next, we give a pair of offender–defender feedback laws which
ensure the attainment of a safety-based Nash equilibrium in a stochastic
inverse optimal sense.

Theorem 7 (A ‘‘Defender-Offender’’ Policy Pair that Attains a Nash Equi-
librium in a Stochastic Inverse Optimal Sense). Consider the defender
feedback law

𝑢2 = 𝑢̄2(𝑥) = 𝑅−1
2

(

𝐿𝑔2ℎ
)T 𝓁𝛾2

(

|

|

|

𝐿𝑔2ℎ𝑅
−1∕2
2

|

|

|

)

|

|

|

𝐿𝑔2ℎ𝑅
−1∕2
2

|

|

|

2
, (113)

where ℎ(𝑥) is a barrier function candidate, 𝛾1 and 𝛾2 are class ∞ functions
whose derivatives are also class ∞ functions, and 𝑅2(𝑥, 𝑢0) is a matrix-
valued function such that 𝑅2(𝑥) = 𝑅2(𝑥)T > 0. If the defender feedback
(113) makes the system

d𝑥 = 𝑓 (𝑥) d𝑡 + 𝑔1(𝑥)𝑑𝑤̄ + 𝑔2(𝑥)𝑢2 d𝑡 (114)

atisfy the NSBFc with respect to an NSSf-CBF candidate ℎ(𝑥), where 𝑤̄ is
n offender input represented by an 𝑟-dimensional stochastic process with
ffender incremental covariance given by the feedback law

̄1𝛴̄
T
1 = −2𝑔T1

𝜕2ℎ
𝜕𝑥2

𝑔1

𝓁𝛾1

(

|

|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

|

)

|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

2



, (115)

namely, if the condition

𝐿𝑓ℎ − 𝓁𝛾1

(

|

|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

|

)

+ 𝓁𝛾2
(

|

|

|

𝐿𝑔2ℎ𝑅
−1∕2
2

|

|

|

)

≥ −𝛼(ℎ) (116)

s satisfied, then the defender feedback

2 = 𝑢̄∗2(𝑥) =
𝛽
2
𝑅−1
2

(

𝐿𝑔2ℎ
)T

(

𝛾 ′2
)−1

(

|

|

|

𝐿𝑔2ℎ𝑅
−1∕2
2

|

|

|

)

| −1∕2|
, 𝛽 ≥ 2 (117)
|

|

𝐿𝑔2ℎ𝑅2 |

|
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maximizes the cost functional

𝐽 (𝑢2) = inf
𝛴1∈1

⎧

⎪

⎨

⎪

⎩

lim
𝑡→∞

𝐸
⎡

⎢

⎢

⎣

2𝛽ℎ(𝑥(𝑡)) + ∫

𝑡

0

⎛

⎜

⎜

⎝

𝑙(𝑥) − 𝛽2𝛾2

(

2
𝛽
|

|

|

𝑅1∕2
2 𝑢2

|

|

|

)

+ 𝛽𝜆𝛾1
⎛

⎜

⎜

⎝

|

|

|

𝛴1𝛴T
1
|

|

|
𝜆

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

𝑑𝜏
⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

, (118)

where 𝜆 ∈ (0, 2] and

𝑙(𝑥) = −2𝛽
[

𝐿𝑓ℎ − 𝓁𝛾1

(

|

|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

|

)

+ 𝓁𝛾2
(

|

|

|

𝐿𝑔2ℎ𝑅
−1∕2
2

|

|

|

)

]

− 𝛽 (𝛽 − 2)𝓁𝛾2
(

|

|

|

𝐿𝑔2ℎ𝑅
−1∕2
2

|

|

|

)

− 𝛽(2 − 𝜆)𝓁𝛾1

(

|

|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

|

)

≤ 2𝛽𝛼(ℎ) , (119)

nd where the offender incremental covariance Nash feedback law is given
y

1𝛴
T
1 =

(

𝛴1𝛴
T
1
)∗ ∶= −𝜆(𝛾 ′1)

−1
(

|

|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

|

) 𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

. (120)

Remark 4. Similar to Remark 2, even though not explicit in the
statement of Theorem 7, ℎ(𝑥) solves the following family of Hamilton–
acobi–Isaacs equations parameterized by 𝛽 ∈ [2,∞) and 𝜆 ∈ (0, 2]:

𝐿𝑓ℎ − 𝜆
2
𝓁𝛾1

(

|

|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

|

)

+
𝛽
2
𝓁𝛾2

(

|

|

|

𝐿𝑔2ℎ𝑅
−1∕2
2

|

|

|

)

+
𝑙(𝑥)
2𝛽

= 0. (121)

This equation, which depends only on known quantities, helps explain
why we are formulating a defender policy through a differential game
for safety, with 𝛴1 as an offender agent. □

Remark 5. Similar to Remark 3, we refer to the property

lim
𝑡→∞

𝐸
{

ℎ(𝑥(𝑡)) + ∫

𝑡

0
𝛼(ℎ(𝑥)) d𝑡

}

≥ −𝜆
2 ∫

𝑡

0
𝛾1

⎛

⎜

⎜

⎝

|

|

|

𝛴1𝛴T
1
|

|

|
𝜆

⎞

⎟

⎟

⎠

d𝑡 (122)

s integral noise-to-state safety (iNSSf). □

xample 8. In Examples 4 and 5 we illustrated the results of that
ection on a unicycle, with the angular and linear velocity inputs being
pponents in a deterministic safety game. Following the results of the
resent section, one could ask why at least one of the two agents would
ot be made stochastic? This is indeed of interest, and possible. One
an make the angular velocity either stochastic or deterministic and
ither the offender or defender. Likewise, one can consider all these
our possibilities for the linear velocity. In this example we focus on
ne of these combinations, which we consider particularly interesting,
hallenging, and perhaps natural. We make the linear velocity to be
deterministic offender and the angular velocity to be a stochastic

efender, namely, we consider the unicycle system

𝑥̇ = 𝑢1 cos 𝜃 + 𝑣 (123)

𝑦̇ = 𝑢1 sin 𝜃 (124)

𝜃 = d𝑤 , (125)

here the variance of the Brownian motion acting on the angular
elocity is the defender input,

{d𝑤2} = 𝑢2d𝑡 . (126)

ne can note from (125) that the heading is

(𝑡) = 𝜃0 +𝑤(𝑡) , (127)

amely, the heading performs a ‘‘random walk’’ of controlled intensity
12

2(𝑡) around the initial heading 𝜃0. Clearly, the angular velocity input 𝑢2
s highly limited in how much it can influence safety since the heading
(𝑡) is a random walk around the initial heading. Note also that this
xample is not covered by Theorem 7, in which the offender is stochas-
ic and the defender deterministic. In this example it is the opposite:
he offender is deterministic and the defender stochastic. We make this
witch (which requires a straightforward reformulating of Theorem 7)
or two reasons. One reason is to illustrate that there is nothing limiting
n Theorem 7 about attributing the stochastic character to the offender.
he other reason is that it turns out that it is only in the case where
he stochastic agent is angular velocity that the Nash policy, which has
he meaning of variance, is nonnegative.

Skipping the details of the calculations, with the CBF ℎ = 𝑥∕ cos2 𝜃
e obtain the Nash policies of the linear velocity deterministic offender
nd of the angular velocity stochastic defender as, respectively,

∗
1 = − 𝜆

cos 𝜃
(128)

𝑢∗2 = 𝛽 cos
2 𝜃
𝑥

1 + max{0,−(𝑥 + 𝑣)}
2(1 + 2 sin2 𝜃)

. (129)

From (128) it is evident that the linear velocity acts towards the wall
and blows up when the vehicle is parallel to the wall, whereas from
(129) it is clear that the variance of angular velocity is high near the
wall and shuts off in parallel with the wall. From these two observations
it is clear that the offender is highly advantaged and the defender stands
practically no chance of preventing the vehicle from being run into
the wall since the heading does not really steer the vehicle but simply
makes its heading a Brownian motion of intensity (129), while (128)
ensures that the direction is always towards the wall. Nevertheless, the
two Nash policies attain a Nash equilibrium by having the offender
minimize and the defender maximize the performance index

𝐸
{

lim
𝑡→∞

[

𝑥(𝑡)
cos2 𝜃(𝑡)

+ ∫

𝑡

0

(

𝜂(𝑥(𝜏), 𝜃(𝜏))

− 2
𝛽

𝑥2

cos6 𝜃
(1 + 2 sin2 𝜃)2

1 + max{0,−(𝑥 + 𝑣)}
𝑢22(𝜏) +

1
2𝜆

𝑢21(𝜏)
)

d𝜏
]}

, (130)

here 𝜂 satisfies (76).
Figs. 5 and 6 show the simulation results under the feedback laws

128) and (129). The details of the observations are in the figures’
aptions. In particular, while in both trajectories in Fig. 5 the vehicle
uns into the wall, which should not be regarded as a defeat of the
efender because the defender’s task in the performance index (130)
s not to keep the 𝑥(𝑡) positive but to maximize the performance index
130) under a minimizing policy of the offender. □

. Conclusions

In this tutorial we have presented feedback control policies in a
wo-agent scenario, where the offending and defending agents have
pposing objectives in relation to the system safety. Two types of
ffenders have been considered: deterministic and stochastic. The de-
erministic offender applies its feedback through its deterministic input
alue, while the stochastic offender applies its feedback through its
ncremental covariance.

Two types of results were presented, in both the deterministic and
tochastic case. One set of results where the defender pursues input-
o-state/noise-to-state safety for an arbitrary unknown offender action.
he other set of results were of the zero-sum game type, where the
ffenders and the defenders settle into a Nash equilibrium for a game
hat is played over the system’s safety.

It will be of value to the reader of this tutorial that we recapitulate
ome of its results, especially contrasting the results that come in pairs.

First, the basic ingredients in the design of the feedback for the
efender, in both the deterministic and stochastic case, where the
ffender is unconstrained by a cost on his action, are the CBF-QP
eedback and the ‘half-Sontag’ feedback, given, respectively, by

𝑢̄QP(𝑥) = (𝐿𝑔2ℎ)
𝑇 max {0,−𝜔(𝑥)}

2
, (131)
|𝐿𝑔2ℎ|
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Fig. 5. Two trajectories in which the dots represent the trajectories’ terminal points. The offender input, applied through a deterministic linear velocity, which always directs the
vehicle towards the wall, is advantaged over the defender input, applied through the variance of a stochastic angular velocity, which makes the heading a Brownian motion of
varying intensity around the initial heading. The result of this inequity is that, while in Fig. 2 the defender always prevents the safety violation, in the present figure the offender
always succeeds in violating safety, namely, in running the vehicle into the wall. This should not be regarded as a ‘‘win’’ for the offender and a ‘‘loss’’ for the defender because
the defender’s task in the performance index (130) is not to keep the 𝑥(𝑡) positive but to maximize the performance index (130) under a minimizing policy of the offender.
C
a

𝐿

𝑢S(𝑥)∕2 = (𝐿𝑔2ℎ)
T
−𝜔 +

√

𝜔2 + |𝐿𝑔2ℎ|
4

2|𝐿𝑔2ℎ|
2

(132)

here is barely any difference between these two feedback laws when
𝐿𝑔2ℎ| is small relative to |𝜔|.

Second, the Nash policy of the offender, in the deterministic and
tochastic cases, is given, respectively, by

𝑢∗1 = −𝜆(𝛾 ′1)
−1(2|𝐿𝑔1ℎ|)

(𝐿𝑔1ℎ)
T

|𝐿𝑔1ℎ|
(133)

(

𝛴1𝛴
T
1
)∗ = −𝜆(𝛾 ′1)

−1
(

|

|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

|

) 𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

(134)

vidently, the deterministic and stochastic policies are highly consistent
mong one another, with the only difference arising out of Ito’s calculus
nd the effect of the Hessian (rather than gradient) of the CBF.

Third, the resulting integral ISSf/NSSf properties, under the Nash
olicies for the defender but under an arbitrary policy for the offender
re given by the inequalities, in the deterministic and stochastic cases,
espectively, by

ℎ(𝑥(𝑡)) + ∫

∞

0
𝛼(ℎ(𝑥)) d𝑡 ≥ −𝜆

2 ∫

∞

0
𝛾
(

|𝑢1|
𝜆

)

d𝑡 (135)

lim
𝑡→∞

𝐸
{

ℎ(𝑥(𝑡)) + ∫

𝑡

0
𝛼(ℎ(𝑥)) d𝑡

}

≥ −𝜆
2 ∫

𝑡

0
𝛾1

⎛

⎜

⎜

⎝

|

|

|

𝛴1𝛴T
1
|

|

|
𝜆

⎞

⎟

⎟

⎠

d𝑡 (136)

It is evident from these integral inequalities that the safety loss, in-
curred over the infinite horizon, may increase, at worst, in (class )
roportion with the intensity of the offender’s action.
13
Fourth, the underlying Hamilton–Jacobi–Isaacs PDEs solved by the
BF ℎ(𝑥) under the inverse optimal actions of the offender and defender
re given, in the deterministic and stochastic case, respectively, by

𝑓ℎ − 𝜆
2
𝓁𝛾1(2|𝐿𝑔1ℎ|) +

𝛽
2
𝐿𝑔2ℎ𝑅2(𝑥)−1

(

𝐿𝑔2ℎ
)T

+
𝑙(𝑥)
2𝛽

= 0 (137)

𝐿𝑓ℎ − 𝜆
2
𝓁𝛾1

(

|

|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

|

)

+
𝛽
2
𝓁𝛾2

(

|

|

|

𝐿𝑔2ℎ𝑅
−1∕2
2

|

|

|

)

+
𝑙(𝑥)
2𝛽

= 0 (138)

Finally, as evident throughout the tutorial, the defender and of-
fender policies are highly similar under the safety game scenario.

Looking towards future research, it is of interest to expand the
consideration from the unicycle example towards (1) more general
vehicle models, incorporating dynamics, and (2) offender inputs which
are of environmental nature (wind, gravity, etc.).
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Fig. 6. The two heading transients of the vehicle perform a random walk, but with a variance 𝑢∗2(𝑡) given by (129) changing in time and going large (theoretically, towards
infinity) as 𝑥(𝑡) → 0+, as the vehicle runs into the wall.
Appendix

Legendre–Fenchel transform and Young’s inequality

Lemma 3 (Krstic & Li, 1998, Lemma A.1). If 𝛾 and its derivative 𝛾 ′

are class ∞, then the Legendre–Fenchel transform satisfies the following
properties:

(𝑎) 𝓁𝛾(𝑟) = 𝑟(𝛾 ′)−1(𝑟) − 𝛾
(

(𝛾 ′)−1(𝑟)
)

= ∫

𝑟

0
(𝛾 ′)−1(𝑠)𝑑𝑠 (139)

(𝑏) 𝓁𝓁𝛾 = 𝛾 (140)
14

(𝑐) 𝓁𝛾 is a class ∞ function (141)
(𝑑) 𝓁𝛾(𝛾 ′(𝑟)) = 𝑟𝛾 ′(𝑟) − 𝛾(𝑟) . (142)

Lemma 4 (Young’s Inequality, Hardy, Littlewood, & Polya, 1989, Theorem

156). For any 𝑥, 𝑦 ∈ R𝑛, and for any 𝛾 ∈ ∞ whose derivative is also in

∞,

𝑥T𝑦 ≤ 𝛾(|𝑥|) + 𝓁𝛾(|𝑦|) , (143)

and the equality is achieved if and only if

𝑦 = 𝛾 ′(|𝑥|) 𝑥 , that is, for 𝑥 = (𝛾 ′)−1(|𝑦|)
𝑦

. (144)

|𝑥| |𝑦|
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Proofs of theorems

Proof of Theorem 1 (Defender Uses Sontag ⟹ ISSf). We substitute (8)
nto (4) and get

̇ = 𝐿𝑓ℎ + 𝐿𝑔1ℎ𝑢1 − 𝜔 +

√

𝜔2 +
(

𝐿𝑔2ℎ(𝐿𝑔2ℎ)
T
)2

≥ − 𝛼(ℎ(𝑥)) + |𝐿𝑔1ℎ|
[

𝜌−1(max{0,−ℎ(𝑥)}) − |𝑢1|
]

. (145)

For min {0, ℎ(𝑥)} ≤ −𝜌(|𝑢1|) we thus have

ℎ̇ = 𝐿𝑓+𝑔2𝛼S + 𝐿𝑔1ℎ𝑢1 ≥ −𝛼(ℎ(𝑥)) , (146)

which, thanks to Lemma 1, completes the proof of ISSf. □

Proof of Theorem 2 (Defender Uses QP-ISSf-CBF ⟹ ISSf). We substi-
tute (14) and (12) into (4), get

ℎ̇ = 𝐿𝑓ℎ + 𝐿𝑔1ℎ𝑢1 + 𝐿𝑔2ℎ𝑢̄QP
= − 𝛼(ℎ(𝑥)) + 𝜔 + max {0,−𝜔} + |𝐿𝑔1ℎ|𝜌

−1(max{0,−ℎ(𝑥)}) + 𝐿𝑔1ℎ𝑢1
≥ − 𝛼(ℎ(𝑥)) + max {𝜔, 0} + |𝐿𝑔1ℎ|

[

𝜌−1(max{0,−ℎ(𝑥)}) − |𝑢1|
]

≥ − 𝛼(ℎ(𝑥)) + |𝐿𝑔1ℎ|
[

𝜌−1(max{0,−ℎ(𝑥)}) − |𝑢1|
]

, (147)

and invoke Lemma 1. □

Proof of Theorem 3 (‘‘Half-Sontag’’ Formula is Also Min-norm). The
pointwise minimization result is immediate from (10)–(12). For (4),
(23) ISSf follows from

ℎ̇ = − 𝛼(ℎ(𝑥)) + 1
2

(

𝜔 +

√

𝜔2 +
(

𝐿𝑔2ℎ(𝐿𝑔2ℎ)
T
)2

)

+ |𝐿𝑔1ℎ|𝜌
−1(max{0,−ℎ(𝑥)}) + 𝐿𝑔1ℎ𝑢1 . □ (148)

Proof of Theorem 4 (Inverse Optimally Nash ‘‘Defender-Offender’’ Policy
Pair). Thanks to (31), (34), we get (35). Substituting 𝑙(𝑥) into (33), it
follows that

𝐽 (𝑢2) = inf
𝑢1∈1

{

lim
𝑡→∞

[

2𝛽ℎ(𝑥(𝑡)) + ∫

𝑡

0

(

−2𝛽𝐿𝑓ℎ + 𝛽𝜆𝓁𝛾(2|𝐿𝑔1ℎ|)

− 𝛽2𝐿𝑔2ℎ𝑅
−1
2

(

𝐿𝑔2ℎ
)T

− 𝑢T2𝑅2𝑢2 + 𝛽𝜆𝛾
(

|𝑢1|
𝜆

))

𝑑𝜏
]}

= inf
𝑢1∈1

{

lim
𝑡→∞

[

2𝛽ℎ(𝑥(𝑡)) − 2𝛽 ∫

𝑡

0

(

𝐿𝑓ℎ + 𝐿𝑔1ℎ𝑑 + 𝐿𝑔2ℎ𝑢2

)

𝑑𝜏

− ∫

𝑡

0

(

𝑢T2𝑅2𝑢2 − 2𝛽𝐿𝑔2ℎ𝑢2 + 𝛽2𝐿𝑔2ℎ𝑅
−1
2

(

𝐿𝑔2ℎ
)T)

𝑑𝜏

+ ∫

𝑡

0

(

𝛽𝜆𝛾
(

|𝑢1|
𝜆

)

+ 2𝛽𝐿𝑔1ℎ𝑢1 + 𝛽𝜆𝓁𝛾(2|𝐿𝑔1ℎ|)
)

𝑑𝜏
]}

= inf
𝑢1∈1

{

lim
𝑡→∞

[

2𝛽ℎ(𝑥(𝑡)) − 2𝛽 ∫

𝑡

0
𝑑ℎ − ∫

𝑡

0
(𝑢2 − 𝑢̄∗2)

T𝑅2(𝑢2 − 𝑢̄∗2)𝑑𝜏

+ 𝛽 ∫

𝑡

0

[

𝜆𝛾
(

|𝑢1|
𝜆

)

− 𝜆𝛾
(

(𝛾 ′)−1(2|𝐿𝑔1ℎ|)
)

+2
(

𝜆|𝐿𝑔1ℎ|(𝛾
′)−1(2|𝐿𝑔1ℎ|) + 𝐿𝑔1ℎ𝑢1

)]

𝑑𝜏
]}

(by (27))

= 2𝛽ℎ(𝑥(0)) + 𝛽𝜆 inf
𝑢1∈1 ∫

∞

0
𝛱(𝑢1, 𝑢∗1) d𝑡

− ∫

∞

0
(𝑢2 − 𝑢̄∗2)

T𝑅2(𝑢2 − 𝑢̄∗2)𝑑𝜏 d𝑡 , (149)

where

𝛱(𝑢1, 𝑢∗1) = 𝛾
(

|𝑢1|
𝜆

)

− 𝛾
(

|𝑢∗1|
𝜆

)

− 𝛾 ′
(

|𝑢∗1|
𝜆

) (𝑢∗1)
T

𝜆|𝑢∗1|
(𝑢∗1 − 𝑢1) (150)

nd

∗
1(𝑥) = −𝜆(𝛾 ′)−1(2|𝐿𝑔1ℎ|)

(𝐿𝑔1ℎ)
T

. (151)
15

|𝐿𝑔1ℎ|
By Lemma 3.d, 𝛱(𝑢1, 𝑢∗1) can be rewritten as

𝛱(𝑢1, 𝑢∗1) = 𝛾
(

|𝑢1|
𝜆

)

+ 𝓁𝛾
(

𝛾 ′
(

|𝑢∗1|
𝜆

))

+ 𝛾 ′
(

|𝑢∗1|
𝜆

) (𝑢∗1)
T

|𝑢∗1|
𝑢1
𝜆

. (152)

Then by Lemma 4 we have

𝛱(𝑢1, 𝑢∗1) ≥ 𝛾
(

|𝑢1|
𝜆

)

+ 𝓁𝛾
(

𝛾 ′
(

|𝑢∗1|
𝜆

))

− 𝛾
(

|𝑢1|
𝜆

)

− 𝓁𝛾
(

𝛾 ′
(

|𝑢∗1|
𝜆

))

= 0 , (153)

and 𝛱(𝑢1, 𝑢∗1) = 0 if and only if
𝑢1
𝜆

= (𝛾 ′)−1
(

𝛾 ′
(

|𝑢∗1|
𝜆

)) 𝑢∗1
|𝑢∗1|

, that is,

𝛱(𝑢1, 𝑢∗1) = 0 iff 𝑢1 = 𝑢∗1 . (154)

Thus

inf
𝑢1∈1 ∫

∞

0
𝛱(𝑢1, 𝑢∗1) d𝑡 = 0 , (155)

and the ‘‘worst case’’ disturbance is given by (151). The maximum of
(149) is reached with

𝑢2 = 𝑢̄∗2 . (156)

Hence the control law (32) maximizes the cost functional (33). The
value function of (33) is

𝐽 ∗(𝑥) = 2𝛽ℎ(𝑥) . □ (157)

Proof of Theorem 6 (NSSf Under Sontag or QP-NSSf-CBF Formula). For
both control laws, a direct substitution yields

ℎ ≥ −𝛼(ℎ(𝑥)) (158)

whenever

min {0, ℎ(𝑥)} ≤ −𝜌
(

|

|

|

𝛴1𝛴
T
1
|

|

|

)

. □ (159)

Proof of Theorem 7 (Stochastic Inverse Optimally Nash ‘‘Defender-
Offender’’ Policy Pair). According to Dynkin’s formula and by substi-
tuting 𝑙(𝑥) into 𝐽 (𝑢2), we have

𝐽 (𝑢2) = inf
𝛴1∈1

{

lim
𝑡→∞

𝐸 [2𝛽ℎ(𝑥(𝑡))

+∫

𝑡

0

⎛

⎜

⎜

⎝

𝑙(𝑥) − 𝛽2𝛾2

(

2
𝛽
|

|

|

𝑅1∕2
2 𝑢2

|

|

|

)

+ 𝛽𝜆𝛾1
⎛

⎜

⎜

⎝

|

|

|

𝛴1𝛴T
1
|

|

|
𝜆

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

𝑑𝜏
⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

= inf
𝛴1∈1

{

lim
𝑡→∞

𝐸 [2𝛽ℎ(𝑥(0))

+∫

𝑡

0

⎛

⎜

⎜

⎝

2𝛽ℎ ∣(100) +𝑙(𝑥) − 𝛽2𝛾2

(

2
𝛽
|

|

|

𝑅1∕2
2 𝑢2

|

|

|

)

+ 𝛽𝜆𝛾1
⎛

⎜

⎜

⎝

|

|

|

𝛴1𝛴T
1
|

|

|
𝜆

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

𝑑𝜏
⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

= inf
𝛴1∈1

{2𝛽𝐸 {𝑉 (𝑥(0))}

+ lim
𝑡→∞

𝐸 ∫

𝑡

0

[

−𝛽2𝛾2

(

2
𝛽
|

|

|

𝑅1∕2
2 𝑢2

|

|

|

)

− 𝛽2𝓁𝛾2
(

|

|

|

𝐿𝑔2ℎ𝑅
−1∕2
2

|

|

|

)

+2𝛽𝐿𝑔2ℎ𝑢2

+ 𝛽𝜆𝛾1
⎛

⎜

⎜

⎝

|

|

|

𝛴1𝛴T
1
|

|

|
𝜆

⎞

⎟

⎟

⎠

+ 𝛽𝜆𝓁𝛾1

(

|

|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

|

)

+ 𝛽Tr
{

𝛴T
1 𝑔

T
1
𝜕2ℎ
𝜕𝑥2

𝑔1𝛴1

}]

𝑑𝜏
}

. (160)

Using Lemma 4 we have

−2𝛽𝐿𝑔 ℎ𝑢2 = 𝛽2
(

2𝑅1∕2𝑢2

)T (

−𝑅−1∕2
(

𝐿𝑔 ℎ
)T

)

2 𝛽 2 2 2
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a

(

R

A

A

A

A

A

A

B

B

B

B

C

C

C

C

D

D

F

G

H

H

X

X

X

≤ 𝛽2𝛾2

(

2
𝛽
|

|

|

𝑅1∕2
2 𝑢2

|

|

|

)

+ 𝛽2𝓁𝛾2
(

|

|

|

𝐿𝑔2ℎ𝑅
−1∕2
2

|

|

|

)

(161)

and

𝛽Tr
{

𝛴T
1 𝑔

T
1
𝜕2ℎ
𝜕𝑥2

𝑔1𝛴1

}

= 𝛽
(

col
(

𝛴1𝛴
T
1
))T

(

col
(

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1

))

≤ 𝛽𝜆𝛾1
⎛

⎜

⎜

⎝

|

|

|

𝛴1𝛴T
1
|

|

|
𝜆

⎞

⎟

⎟

⎠

+ 𝛽𝜆𝓁𝛾1

(

|

|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

|

)

(162)

nd the equalities hold when (117) and

𝛴1𝛴
T
1
)∗ = −𝜆(𝛾 ′1)

−1
(

|

|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

|

) 𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

𝑔T1
𝜕2ℎ
𝜕𝑥2

𝑔1
|

|

|

. (163)

So the ‘‘worst case’’ unknown covariance is given by (163), the mini-
mum of (160) is reached with

𝑢2 = 𝑢̄∗2 (164)

and

min
𝑢2

𝐽 (𝑢2) = 2𝛽𝐸 {ℎ(𝑥(0))} . □ (165)
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