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ARTICLE INFO ABSTRACT

Keywords: In this tutorial we study a safety analog of the classical zero-sum differential game with positive definite

Safety penalties on the state and the two inputs. Consider a nonlinear system affine in two inputs, which are called

Inverse optimal control “offender” and “defender.” Let the inputs have the opposing objectives in relation to an infinite-time cost

Control barrier functions which, in addition to penalizing the inputs of both agents, incorporates a safety index of the system (a barrier
function), with the defender aiming to maximize the system safety and the offender aiming to minimize it.
If there is a pair of (offender, defender) non-Nash feedback policies of the L,h form with a safe outcome,
namely, where the defender maintains safety while the offender fails to violate safety, then there exists an
inverse optimal pair of policies that attain a Nash equilibrium relative to the safety minimax objective. In the
tutorial we study both deterministic and stochastic offenders. The deterministic offender applies its feedback
through its deterministic input value, while the stochastic offender applies its feedback through its incremental
covariance. In addition to Nash policies for a minimax offender-defender formulation, we provide feedback
laws for the defender, in the scenario where the offender action is unrestricted by optimality, and where the
defender ensures input-to-state safety in the deterministic and stochastic senses. This tutorial is derived from
our recent article on inverse optimal safety filters, by setting the nominal control to zero and declaring the
disturbance to be the offender agent.

Among several illustrative examples, one is particularly interesting and unconventional. We consider a
safety game played on a unicycle vehicle between its two inputs: the angular velocity and the linear velocity,
as the opposing players. We consider two scenarios. In the first, the angular velocity, acting as an offender,
attempts to run the vehicle into an obstacle by steering, while the linear velocity, acting as a defender, drives
the vehicle forward or in reverse to prevent the vehicle being run into the obstacle. In the second scenario,
the linear velocity acts as an offender and angular velocity acts as a defender (in the deterministic case by
varying the heading rate; in the stochastic case by varying the variance of a white noise driving the heading
rate). A “wind” towards the obstacle advantages the offender in both scenarios. The input policies derived
are optimal in the sense of their opposite objectives, under the best possible policy of the opponent, under
meaningful costs on their actions. The linear velocity input prevails, whether acting in the role of a defender,
in which case the collision with the obstacle is prevented, or in the role of an offender, in which case the
collision with the obstacle is achieved.

1. Introduction We consider two agents — an “offender” and a “defender” — whose

goals regarding safety are opposite. The offender aims to violate the

1.1. Goals of the tutorial

Even with as few agents as two, acting on a common system (rather
than on two distinct systems), the problem of guaranteeing safety of a
nonlinear dynamical system by feedback is a rich one.

In this tutorial, to keep things as clear and simple as possible, we
eliminate any performance objectives, and hence, a “nominal control”
and the associated safety filters, and focus on a problem in which two
agents are engaged purely in a competition over a system’s safety.

system’s safety, while the defender’s task is to maintain safety. In
engaging in such a manner, both agents’ goals are related not only to
the same system but also to the same control barrier function (CBF)
h(x), where the defender’s goal is to keep & positive and the offender’s
to make it negative, at least for a portion of the system’s infinite-horizon
operation.

If the offender is unrestricted in its action, the most that the de-
fender can expect to achieve is that the safety degrades gracefully with
the intensity of the offender’s action. We provide defender feedback
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laws to ensure that. However, to make the offender-defender com-
petition more “fair”, and mathematically well posed, we formulate a
zero-sum two-player non-cooperative game between the offender and
defender, where the running cost for both agents is related to the
CBF h, and where the input magnitudes of both agents are penalized
over the infinite horizon. We seek optimal control policies for both
the defender and the offender and find policies that constitute a Nash
equilibrium. Since, for arbitrary costs, the determination of the Nash
policies would require a solution of a Hamilton-Jacobi-Isaacs partial
differential equation (PDE), we formulate the problem as an inverse
optimal control problem, where the CBF h is given and the Nash
policies are found, which correspond to a meaningful running cost that
rewards the defender for enhancing safety and rewards the offender for
eroding safety.

We consider both deterministic and stochastic offenders. In the
stochastic case, the offender’s action is white but its intensity (covari-
ance) is a feedback law based on the safety game.

The tutorial contains theorems, proofs, and examples. Theorems are
stated for the sake of clarity and precision. The proofs are given in the
appendix, so as not to interfere with the flow of the tutorial exposition.
The examples chosen to illustrate the results are the simplest possible.
They are all scalar. Due to the relative complexity of the feedback
policies that the defender and offender need to employ in the scenarios
considered, scalar examples serve best the function of the illustration
of the concepts presented.

1.2. The CBF framework for safety

Our study of a two-agent competition over the safety of a single
system is pursued using a common CBF. Let us review some of the
principal literature on CBFs first.

The paper Ames, Grizzle, and Tabuada (2014) and Ames, Xu, Griz-
zle, and Tabuada (2017) marked a watershed in the study of nonlinear
control systems under state constraints. By advancing the CBF notion
proposed in Wieland and Allgower (2007), it laid the foundation for
a Lyapunov-like alternative to constraint-handling by MPC (Rawlings,
Mayne, & Diehl, 2017) or barrier Lyapunov functions (BLF) (Tee,
Ge, & Tay, 2009). Following the min-norm inspiration from Freeman
and Kokotovic (1996), the authors of Ames et al. (2014, 2017) pro-
posed to mitigate the safety-liveness tradeoff using a quadratic program
(QP). Virtually all the work on CBF-based safety maintenance today
employs QP-based redesigns of the nominal control, referred to as
“safety filters”. CBFs have since been used in a range of domains,
including multi-agent robotics (Glotfelter, Corts, & Egerstedt, 2017;
Santillo & Jankovic, 2021; Wang, Ames, & Egerstedt, 2017), auto-
motive systems (Ames et al.,, 2014; Rahman, Jankovic, & Santillo,
2021; Xu, Grizzle, Tabuada, & Ames, 2018), robust safety (Jankovic,
2018; Kolathaya & Ames, 2019; Xu, Tabuada, Grizzle, & Ames, 2015),
delay systems (Abel, Jankovi¢, & Krsti¢, 2020; Jankovi¢, 2018; Molnér,
Singletary, Orosz, & Ames, 2021; Prajna & Jadbabaie, 2005), and
stochastic systems (Clark, 2021; Prajna, Jadbabaie, & Pappas, 2007;
Santoyo, Dutreix, & Coogan, 2021).

Since CBFs define constraints and, as such, represent system out-
puts, when paired with system inputs they have relative degrees.
CBFs of high relative degree, under that name, were first studied in
the 2015 articles (Hsu, Xu, & Ames, 2015; Wu & Sreenath, 2015)
with progress following in Breeden and Panagou (2021), Nguyen and
Sreenath (2016), Xiao and Belta (2019), Xu (2018) and continuing.
However, control designs for specific CBFs of arbitrarily high relative
degrees first appeared a decade earlier, in the 2006 article (Krstic
& Bement, 2006), which presents backstepping designs for regula-
tion to the boundary of the safe set, referred to, at that time, as
‘non-overshooting control.” The backstepping design of CBFs originated
in Krstic and Bement (2006) is currently experiencing a revival, from
its use for stochastic nonlinear systems (Li & Krstic, 2020), to safety for
PDEs (Koga & Krstic, 2023).
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To reduce the conservativeness of classical asymptotic or expo-
nential safety, the notion of prescribed-time safety was introduced
in Abel, Steeves, Krstic, and Jankovic (2022), applied to robotics ex-
periments (Bertino, Naseradinmousavi, & Krstic, 2023) and source
seeking (Koga & Krstic, 2023), and extended to fixed-time safety with
homogeneous/nonsmooth feedback (Polyakov & Krstic, 2022).

Safe extremum seeking with CBFs that are measured but not known
analytically was introduced in Williams, Krstic, and Scheinker (2022).

1.3. L,h Safety filters and inverse optimality

Let g(x) denote the control-affine system’s input vector field. Then
L,h denotes %g. CBF-QPs have L,h as a factor multiplying a non-
negative quantity. A factor of L,h is a tell-tale sign of potential op-
timality. The so-called “LV controllers”, where V is a CBF, have
a storied history in nonlinear stabilization. Sontag’s ‘universal for-
mula’ (Sontag, 1989b) is an Ly controller. Sepulchre, Jankovié¢, and
Kokotovic (1997) produced a collection of results with such “damping
controllers” and showed that every L,V controller is optimal with
respect to a meaningful cost functional if multiplied by a factor of
two or more, which, in particular, indicates the controller’s infinite
gain margin. Such properties of L,V controllers inspired their further
development under uncertainties. In Krstic and Li (1998), for systems
affine in control and disturbances, inverse optimal controllers were
designed that solve a zero-sum game problem, in which the disturbance
maximizes and the control minimizes a meaningful cost. In Ito and
Freeman (2002) and Pan, Ezal, Krener, and Kokotovic (2001), global
inverse optimality was augmented with local direct optimality. In Deng
and Krstic (1997) and Deng, Krstic, and Williams (2001) stochastic
inverse optimal designs were introduced: L,V controllers for inverse
optimal stabilization in probability in Deng and Krstic (1997) and
controllers that are inverse optimal for a zero-sum game relative to
the unknown covariance acting as the opposing player in Deng et al.
(2001). Finally, in Li and Krstic (1997), adaptive L,V controllers were
designed that minimize a penalty not only on the plant’s state and the
input, but also on the parameter estimation error—thus far the only
pairings of controllers and parameter estimators which are not merely
optimal ‘asymptotically’ but over the entire time horizon.

The CBF-QP safety filters are only “pointwise optimal”.
Infinite-horizon optimality has been pursued in Almubarak, Sadegh,
and Theodorou (2022), Almubarak, Theodorou, and Sadegh (2021),
Chen, Ahmadi, and Ames (2020) and Cohen and Belta (2020) but only
towards achieving optimal stabilization, not optimal safety. In Krstic
(2023) we introduced a large variety of additional families of safety
filters, of which some have infinite-horizon optimality properties with
respect to safety. These safety filters maximize safety while minimiz-
ing the deviation of the control applied from the nominal control.
The contents of this tutorial article are deduced from Krstic (2023)
by setting the nominal control to zero, declaring the disturbance to
be the offending agent, and treating the control in Krstic (2023) as
the defending agent. The results of Krstic (2023) are probably more
easily understood in the stripped-down format in this tutorial, with
the issue of “liveness” eliminated from consideration and the control
and disturbance inputs put on the same footing, as the offender and
defender agents.

1.4. Disturbances as offender agents: Deterministic and stochastic

Under deterministic disturbances, two main ideas have emerged.
Robust CBFs (Jankovic, 2018) ensure safety under a disturbance with
a known bound. In Input-to-State Safety (ISSf) (Kolathaya & Ames,
2019), which mirrors input-to-state stability (ISS) (Sontag, 1989a), the
disturbance is bounded but potentially arbitrarily large and, being
also unvanishing, may take the system outside of the safe set, in
proportion to the size of the disturbance. Controllers that render the
safety violation proportional to the disturbance are introduced in the
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2006 work on non-overshooting control (Krstic & Bement, 2006) with
a backstepping design for a high relative degree CBF.

In the stochastic case, a general CBF-based safety analysis is pre-
sented in Clark (2021). A mean-non-overshooting tracking design for
stochastic strict-feedback systems is given in Li and Krstic (2020).

1.5. Organization of tutorial

Sections 2-5 deal with the case where the offender agent is de-
terministic. The main result, which solves an offender—defender game
over the system’s safety, is in Section 5, following an introduction
of min-norm safety designs for a defender countering an unrestricted
offender in Section 4. Stochastic offenders are dealt with in Section 7,
where noise-to-state safety subject to unrestricted incremental covari-
ance of the offender is presented, and in 8, where a minimax game,
played between a deterministic offender and a stochastic offender
employing feedback through incremental covariance, is solved. Sec-
tion 9 recapitulates the results and shows a side-by-side summary of
the deterministic results versus stochastic results and min-norm versus
Sontag-like designs.

A (unicycle) vehicle example plays a particularly important role
in our presentation. However, rather than considering a two-agent
example with two vehicles being the offender and defender agents,
which would be a safety game of the conventional pursuit-evasion
type, in Section 6 we consider an unconventional, and in our opinion
intellectually intriguing safety game involving a single vehicle whose
two inputs - linear velocity and angular velocity — are the two opposing
players. In other words, the “agency”, as offender and defender, is
assigned to the two inputs on the same vehicle. In colloquial terms,
one should imagine one actor having control over the steering wheel
and the other actor over the accelerator and brake pedals, as well as the
forward/reverse stick shift. In such a safety game, in which either input
can have either the offender or defender role, can the defender always
foil the objective of the offender to cause a collision with an obstacle?
Precise and not necessarily obvious answers to this question are given
in Examples 4, 5, 6, and 8. The bottom line is that steering has less
influence than forward/reverse driving over the collision outcome in a
game with a meaningful performance index in which the defender is
rewarded for increasing safety, offender for decreasing safety, and the
actions of both are penalized.

1.6. Notation

Let a < 0 < b. A continuous function y : (a,b) —» R with y(0) = 0
is of extended class K, ;) if it is strictly increasing. In particular, K =
K(o.+00)- A continuous function f : (a,b) X R,y — R is of class KL, if
it is of class KC(, 5 in its first argument and has a zero limit as its second
argument goes to infinity.

2. Input-to-state safety, under offender agent input
We start with definitions of a barrier function and safe set.

Definition 1 (Barrier Function). The scalar-valued differentiable func-
tion 4 : R" —» R with inf cpa A(x) < 0 and sup,cgs A(x) > 0 is referred to
as a barrier function candidate. The set C = {x € R" | h(x) > 0} without
isolated points is referred to as a safe set.

Consider first a system driven input u,,
x=fx)+g™®u, u €R™M, €))]

where f R" - R". g R" — R"™™  with an initial condition
xy = x(0). The sole (vector) input to this system, u,, is a disturbance.
This input’s effect on the system may be to drive the state out of the safe
set C. Hence, anticipating that in the sequel there will be an additional
input tasked with maintaining safety, and counteracting the effect of
the disturbance in a two-player game theoretic setting, we refer to the
disturbance u; as an offender agent. The other input, to be labeled u,
will be referred to as a defender agent.
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Definition 2 (ISSf). The system (1) is said to be input-to-state safe (ISSf)
on the set C if there exist p € K and f € KLin¢ pe) supneey =+ KLy such
that, for all initial conditions x, € R” and all locally bounded functions
u; : [0,400) - R™, the resulting solution satisfies

h(x(®) 2 p(h(xp),1) = p < sup |u1(1)|> , V20, @

0<z<r

where the function p is referred to as the ISSf gain function.

This property is not new. Controller design ensuring ISSf, using
backstepping for non-overshooting control, goes as far back as 2006
in the paper Krstic and Bement (2006)—see the safety bound (61)
of Theorem 3 with a disturbance of unlimited unknown bound d, as
well as the safety bound (90) of Proposition 1 with an observer-based
non-overshooting controller.

The following definition is a very slightly adjusted version of Lyu,
Xu, and Hong (2022, Definition 4).

Definition 3 (ISSf Barrier Function). The function & is called an ISSf
barrier function (ISSf-BF) if there exists a function p [0,4+0) —
[0, —inf h(£)) of class K and a function & in Kns ) sup ey Such that,
for all x € R",u; € R™,

min {0, hA(x)} < —p(luy ) = Lyh+ Ly huy > —a(h). 3)

The following result is a variation on Lyu et al. (2022, Theo-
rem 1), proved by adapting Krsti¢ and Deng (2000, Theorem 2.2)
and Kolathaya and Ames (2019, Theorem 1).

Lemma 1. For system (1), if there exists a ISSf-BF h, then the system is
ISSf with B(r,t) in (2) defined by the solution to h = —a(h), h(0) =r.

3. ISSf-CBFs and safety ensured by defender agent

Consider now, with locally Lipschitz f, g, g,, the system

x = f)+gXu +gxXu,, wu € R™M,u, e R, 4)

where u, is an offender and u, is a defender.

Definition 4 (ISSf-CBF). A scalar differentiable function 4 is called a
ISSf-control barrier function (ISSf-CBF) for (4) if there exists a class K
function p : Ry — [0,—inf ~(§)) and @ € K e suphey = Kn such
that, for all x € R",u; € R™,
min {0, A(x)} < —p(Ju;|)
> sup {Lht Ly huy+ Ly huy b > =a(h) ®)

uy ER™

The following result for CBFs is obtained by adapting our CLF
result (Krstic & Li, 1998, Lemma 2.1).

Lemma 2. A pair (h, p) satisfies (5) if and only if

L,h(x)=0 = o(x)20 (6)
where
o(x)= Lh- ‘Lgl h) o~ max{0, —h(x)}) + a(h(x)). %)

ISSf-CBFs, which do not require the disturbance to be in a known
compact set, are different from Robust CBFs (Choi, Lee, Sreenath,
Tomlin, & Herbert, 2021; Jankovic, 2018). That is the very purpose of
the antecedent in the implication (5) and the term p~!(max{0, —A(x)})
in (7).

In the next section, our defender will employ an ISSf variant of the
classical CBF-QP feedback law to guarantee ISSf in the presence of an
offender. However, before we proceed to this conventional approach,
we point out that safety can be ensured, by the defender, with a
number of other feedback choices, one of which is inspired by Sontag’s
formula (Sontag, 1989b) and converted from stabilization to safety.
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Theorem 1 (Defender Uses a Variant of Sontag’s Formula; Input-to-state
Safety Ensured). If there exists a ISSf-CBF, the system (4) is rendered ISSf
using the following Sontag-type control law:*

k(x), (L,.hT #0
Uy = ug(x) = (Ly, )" - ®
0, (L, T =0,
where, with w(x) defined in (7),
2
—o+ \/ @+ (ngh(ngh)T>
K(x) = T
Ly, h(Ly,h)
) LohLgh' ©
2
o+ \/aﬂ + (Leh(LhT)

4. Min-norm defender feedback laws that ensure ISSf

Now we turn our attention to designing a defender control u, that
achieves safety, in the presence of an offender input u,, using QP/min-
norm control. Let an ISSf-CBF h(x) be available, with associated (p, a).
Then, consider the QP problem for the defender agent, given by

fgp = arg min,egm lv]>  subject to (10)
@(x)+ Ly, h(x)v > 0. (11

The well-known explicit solution to this problem is (Freeman & Koko-
tovic, 1996)

0, w(x) >0
Hp=91 __ 2 (T, wkx) <0. a2

(L
2 e
[Lg,hl

Remark 1. Regarding the possible division by L, h = 0 in the second
case of (12), we recall that, by Lemma 2, every ISSf-CBF satisfies the
implication Ly, h=0= o(x) 20, which is equivalent to the implication

o(x) <0= L, h#0, and this precludes Ly h being zero in the second
case of (12), i.e., a division by zero is not possible.

Since controls like (12) appear in our paper at least half a dozen
times, for the sake of compactness we write it as
rmax {0, —w}

. as)
Ly, Al

figp = (Lg, h)
with a recollection from (6) that ® < 0 => Lgh # 0 and with a
notational convention that 0/0 = 0.

With the QP feedback (12) for the defender agent, we have the
following result.

Theorem 2 (Defender Using QP-ISSf-CBF Formula Ensures ISSf). The
control law

uy = iigp(x) 14)

with fgp(x) defined in (12) and w(x) defined in (7) renders system (4) ISSf
with respect to the ISSf-CBF h(x), with a gain function p, i.e., there exists
p € KL, such that, for all t > 0,

h(x(®) = p(h(xo),1) — p < sup Iul(f)|> . (15)

0<r<t

Example 1 (Integrator with Offender Having Higher Control Authority).
Consider the system

x=1+ x2)u1 + uy (16)

1 See also the proof of Theorem 3.2 in Krstic and Li (1998) and Remark 5
of Kolathaya and Ames (2019).
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with a ISSf-CBF
h(x) =—x. a7

One can consider (16) a “pursuit-evasion problem on a line”, where
x is the relative position between a pursuer/offender and an evader/
defender, u; is the pursuer input (aiming to drive 4 positive), u, is the
evader input (aiming to keep h negative), and the pursuer is “kine-
matically advantaged” at larger distances through the input coefficient
1 + x2. For some p € K, (7)is

o = —(1 + x2)p~ (max{0, x}) + a(h(x)) (18)

and the QP formula (12) gives

figp = min {0, —(1 + x?)p~" (max{0, x}) + a(h(x))} . (19)
Taking, e.g.,
a(hy=h, (20)

the overall feedback (14), given by
i, = min {0, —(1 + x»)p~ ' (max{0, x}) — x} s 21

guarantees, Vp € K,

x(t) <e'xy+p ( sup |u1(r)|> , Vi>0. (22)
0

<r<t

In the pursuit-evader interpretation, capture by the kinematically ad-
vantaged pursuer is possible but the degree of violation
p (supg<,<, lu1(¢)]) is in proportion to the magnitude of the pursuing
input u;. [J

A ‘half-Sontag’ formula (ug/2) also generates min-norm control.

Theorem 3 (“Half-Sontag” Formula Also has a Pointwise Min-norm Prop-

erty). The feedback

1
u, = Eus, (23)
with ug defined in (8), (9) and w defined in (7) renders system (4) ISSf and
is the pointwise minimizer of |v|*> subject to the following constraint more
conservative than (11):

1 2
3 <w— \/w2+(Lg2h(Lg2h)T) )+Lg2h1)20. (24)

5. Inverse optimal input-to-state safety game

Let us re-examine system (4) with its to agents: the offender u, and
defender u,. The presence of two agents, with exactly opposing goals in
relation to safety, leads us to formulate the problem of feedback control
design for the opposing agents as a differential game (Basar & Bernhard,
1998; Basar & Olsder, 1998) of the zero-sum type.

In this zero-sum game, the objective for both the offender and
the defender is for their respective control efforts, u; and u,, to re-
main small. However, their objectives contradict one another regarding
safety: defender u, desires to keep h(x(f)) from becoming too small,
while the offender u, desires to make A(x(#)) small and, in fact, negative.

We pursue the following zero-sum two-player minimax (supinf, to
be precise) optimization problem:

ot o [ (- (51) .

(25)

where U, U, are sets of locally bounded functions of x. In this problem,
Ry(x) = Ry(x)T > 0 for all x and uy, y and y’ are in class K, the
constants § and A are positive, and /(x) is a weight on the state, upper
bounded by a class K, function of A.
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We do not approach the game (25) as a problem of direct determi-
nation of a Nash equilibrium but as an inverse problem: both the Nash
control laws u’f and u;, as well as the weights /(x), Ry(x),y(-), are up
to the offender and the defender, respectively, to choose. Even h(x) is
available for design (by the defender), for a given safe set C.

Before we continue, let us introduce the following notation: For
a class K, function y whose derivative exists and is also a class K,
function, ¢y denotes the Legendre-Fenchel transform

Cy(r) = / ¢ N (s)ds (26)
0

=r(/Y ()~ 7 (¢")'() , (by Lemma 3.a) 27)
here (/)1 - i dr()
where (y')~!(r) stands for the inverse function of .

In the next theorem is this tutorial’s main result:a pair of defender—
offender feedback choices, which settle to a Nash equilibrium for a
game in which the defender is rewarded for enhancing safety and the
offender is rewarded for reducing safety.

Theorem 4 (A “defender-offender” Policy Pair that Attains a Nash Equi-
librium in an Inverse Optimal Sense). Consider the auxiliary system of (4),

h(x)T

(L
%= () = (VY@L )N ——— + gy (), (28)
|Lg, h(o)]

in which the offender agent employs the feedback

i (Lg h(x)"
up =iy (x) := =Ly (2| Lg A(x)])

B (29)
| Ly, h()|

and where y is a class K, function whose derivative y' is also a class
K, function. Suppose that there exists a matrix-valued function R,(x) =
R,(x)T > 0 such that the defender feedback of the form

T
Uy = iy (x) i= Ry(x)"! (ngh(x)> (30)

ensures safety of the system (28) with respect to CBF candidate h(x),
namely, ensures that

T
Lyh=€yQILy k) + Ly hR;' (Lgh) 2 —ath) (G3D)
for some « € K;,. Then the defender feedback
T
wy = B(x) = fi() = PR, (L hx)) o 22 32)

applied to (4) maximizes the cost functional

t
J(uy) = ulig{/l {IETO [2ﬂh(x(t))+/0 (l(x)—u;Rz(x)uz +pAy <@> )dr] }

(33)
for any 4 € (0,2), where
T
I(x) = —2ﬁ[th—fy(2|Lg]h|)+nghR;] (ngh) }
T
~pQ = DEYQILg h) = B =L RS (Leyh) (34)
< 2pa(h) (35)

is decrescent in the CBF h on the interval (inf h, sup h), and where the Nash
feedback for the offender is given by

(Ly, "

up = ui(x) 1= =) QILg h)——.
1 81 |Lg1h|

(36)

The parameter § > 2 in the statement of Theorem 4 represents
a design degree of freedom for the defender. The presence of the
offender’s design parameter 4 (note that it parameterizes not only the
penalty on the offender but also the penalty on the state’s proximity
to the boundary, i.e., the reward for the state’s distance from the
boundary, /(x)) indicates that the defender’s family of feedback laws
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is inverse optimal with respect to an entire family of different cost
functionals, and an entire family of offender feedback laws.

Remark 2. Even though not explicit in the proof of Theorem 4, the
CBF h(x) solves the following family of Hamilton-Jacobi-Isaacs (HJI)

PDEs:
Loh-2evein, ny+ 2o hR‘thT L _y 37
M=z 7(|g1 |)+§ o R, o +ﬁ_ , (37)

parameterized by (8, 1) € [2,0) X (0,2]. [

Remark 3. It is also easily seen from the proof of Theorem 4 that, even
for initial conditions on the boundary, the level of attenuation of the
offender’s action that the defender achieves is

20h(x(t)) +2p /oo a(h(x))dt
0

> 2Bh(x(t)) + / h I(x)dt
0

> ® TR _ 0 |u1|
> Uy Ry(X)u, dt — A r\ = dt
0 0
Z—ﬁ/l/ y<M> dr. (38)
O A,

Summarizing, we refer to the property

o+ [ (%)
(x(M) + a(h(x))dt =2 —= r{—)dr, (39)

as integral input-to-state safety (iISSf). [

Example 2 (Integrator Game Where Offender has a Higher Control Author-
ity). Consider the system from Example 1. Take

y(r) = ¢y@r)=r*. (40)
With
R, = ! 1)

max {0, —a(h(x))} + (1 + x2)2 >0

condition (31) is satisfied. The defender’s feedback policy (32) is given
by

uy = —R% =g [-(1 +x*)? + min {0, —x}] (42)

and, for all g > 2, is the maximizer of

t
— iop o _ 2, P,
J(wy) = ullgfl {,ILTO[ 2px(t) +/0 <l(x) Ryu; + A"l>df] } (43)
for any 4 € (0,2], with /(x) < -2px. The defender feedback (42)
achieves

x(+oo)+/0 x(t)dt < 2/1/0 u(Hdr. (44)

Additionally, for all g > 1, the defender feedback (42) with a(h) = h
guarantees

2
x(1) <e'xp+ 1 ( sup |u1(r)|) , Vt>0. (45)
4 0<r<rt

Now we turn our attention to the Nash policy of the offender, which is
given by

up = A1+ x%). (46)
Let us examine the offender-defender Nash policy pair (46), (42), for
an initial condition in the safe set x < 0. This pair is given by, simply,
Wy = —pL+x7,  p=2 (47)

= A1+ x2), 0<A<2. (48)

=
|

For the plant (16), the closed-loop system with the Nash feedback
policies is

x=-pHU+xP72, A-p<0. (49)
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With an initial condition x(0) < 0 in the safe set, and x < 0, the
forward invariance of the system in the set x < 0 is ensured. In other
words, the defender succeeds at maintaining safety when the offender’s
action is penalized with uf in the cost function. The value of the game
is J*(x(0)) = —2px(0) > 0, which is finite, in spite of the fact that
x(1), uy (x(1)), uy(x(1)) all grow without bound when 0 < 4 < . The
pursuit-evasion meaning of the outcome x(r) —» —oo for (49) when
x(0) < 0 is that the evader succeeds at the evasion. []

For the general result in Theorem 4, a natural question arises: Is
the ISSf QP feedback law of the defender, (12), (7), inverse optimal?
The following theorem, proven similarly to Theorem 4, answers the
question in the affirmative.

Theorem 5 (A Fortified QP-ISSf-CBF Policy by Defender Ensures a Nash
Outcome). Consider system (4) with associated ISSf-CBF h and a gain
function p. For any f > 2, the defender feedback

u, = ﬁap(x, ug) = Pigp(x), (50)
with dgp defined in
iino = (L. h Tw (51)
uqp ( 0 ) ng2h|2
w(x) = Lh— ‘Lgl h‘ p~Hmax{0, —h}) + a(h), (52)
maximizes
t
J(up) = inf { lim [2ﬂh(x(t))+/ (l(x)—Rz(x)|u2|2+l—iR](x)|u1 |2>d’r] }
u eV | 1o 0 A
(53)
for all 4 € (0,2], where
_ 1
Ri(x) = Py - >0 (54)
Ry(x) = LI (55)
297 (0
I(x) < 2Ba(h(x)), (56)
and the Nash feedback law of the offender is given by
» (Lg, h(x)T
up = uj(x) 1= —Ap~ (max{0, —h(x)}) (57)

PSR

The weight R, in (54) is infinite in the safe set h(x) > 0 where the
Nash feedback (57) spends no effort. Likewise, R, in (55) is infinite
when w > 0 since control (12) puts in no effort when the system is safe
on its own. We also recall from Remark 1 that (12) precludes ngh from
being zero when w < 0, so R, can, in fact, never be zero, namely, u, is
penalized for all x.

Example 3. Back to Example 1, the defender feedback law u, = fiigp,
p > 2, with

iigp = min {0, (1 + x*)p~" (max{0,x}) — x} , (58)
results in

+ )+/m fndr < 2 /oo ) dt (59)
ook L XOIS 5 e oson

which, unlike control (42) in Example 2, fails to achieve a finite integral
gain in the safe set x <0 like (44). [

6. Safety games for a unicycle vehicle

We return to the general result on inverse optimal zero-sum/mini-
max/offender—defender safety games in Theorem 4 and illustrate it with
two examples on a well-studied nonlinear system with two inputs—
the nonholonomic unicycle. The game is played not between two
(offender and defender) vehicles but between the two inputs (steering
and forward “driving”) on the same vehicle.
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Example 4 (Unicycle with Steering Offender). We first consider the
unicycle system with the state vector x = [x, y,6]7,

X=uycos+v (60)
Y =u,sinf (61)
0= up, (62)

where v € R is a constant drift (wind) disturbance in the x direction.
In this example we pose, for pedagogical purposes, a problem that
is unconventional and, arguably, artificial: we treat the two unicycle
inputs as opponents in a game. The steering (heading rate) input u, is
treated as the offender, trying to violate safety, while the propulsive
(linear velocity) input u, is treated as the defender, trying to maintain
safety. As for the uncommon labeling of the linear input as u, and the
angular input as u;, this is simply for consistency with our previous
presentation where the offender is labeled as agent 1 and the defender
as agent 2.

While for unicycles the obstacle is often taken as a circular “safety
bubble”, in this example we carefully select the simplest possible obsta-
cle that is consistent with the presence of a disturbance that advantages
the offender. Given the wind v in the x-direction, which we will take
to have a negative (leftward) velocity, we take the safe set to be the
right half-plane {x > 0}, namely, we take the safety boundary to be
the “wall” x = 0. Such a safe set would normally give rise to a simple
position-based CBF of the form

h(x) = x. (63)

But this CBF is “asymmetric” in terms of the relative degrees of the
two agents: it is relative degree one with respect to the defender u,
but relative degree two with respect to the offender u,. In other words,
h = x advantages the defender since the offender u; cannot directly
influence dh/dr. After a careful consideration, we take the CBF

hE) = cos2 6’ ©D
which is of relative degree one with respect to both u; and u,. There is
additional logic behind choosing the CBF (64), apart from “equalizing”
the relative degrees. For § = +x/2, the vehicle is headed in parallel
to the boundary, which is inherently safe. Finally, the vehicle cannot
be actuated in its “sideways” direction, and for this reason the CBF
h = x fails to satisfy the CBF condition at headings # = +r/2, making
the defense task impossible for the defender. Such a singularity for the
defender is removed with the CBF & = x/ cos” @ (see Fig. 1).

Let us now proceed with working out the details of the application
of Theorem 4. For the Lie derivatives of (64), one obtains

L h(x)= s 65
sh® cos? 0 ©5)
- 2xtan 6
Lgl h(.X) = m, (66)
- 1
ng h(x) = m (67)
Taking
v =2y@r=r",  ah)=h, (68)
in order to satisfy condition (31) one gets
1
R, = 7y (69)
max{0, —(x + v)} + 4x> tan
cos? 6
The defender’s Nash feedback policy is then
2
u = P (max{0,—(x + 0)) + 4220 55 o (70)
cos @ cos2 @
while the offender’s Nash feedback policy is
W= 20 <o (71)

! cos? 6
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Fig. 1. Plot of CBF h = x/cos? @ over the interval (-z/2,7/2) for 6. This CBF is of the same relative degree — one - relative to both inputs, angular velocity (offender) and linear
velocity (defender). To equalize the relative degrees for the two agents, the CBF treats headings parallel with the wall as safe, even when the vehicle is close to the wall, which

is natural since the nonholonomic unicycle cannot be actuated sideways.

Both of the policies blow up when cos § = 0, namely, at the heading
angles 0 = +x/2, which are parallel with the wall. Let us see that
this singularity is actually never encountered, unless the vehicle starts
parallel with the wall. We will see this by showing that the offender
policy (71) guarantees that the heading that starts in the interval
(—r/2,7/2) remains in that interval, and likewise, the heading starting
in (z/2,3x/2) is maintained in that interval by (71). The closed-loop
dynamics of  are

tan6

0 =-2Ax oy (72)
Consider the Lyapunov function

V:COSIZH—l:tanzé'. (73)
This is system (72)’s Lyapunov function both for the equilibrium 6 =
0 on the interval (—x/2,7/2) and for the equilibrium # = 7z on
the interval (x/2,37z/2). Its derivative is V = —4ix?tan’6/cos* 0 =

—44x? (1/cos? § — 1) / cos* 6, namely,
V= —4ixt(1+ V2V, 74

which is negative definite in V in the safe set x > 0. Hence, the
equilibria & = 0 and 6 = r are asymptotically stable with regions of
attraction (- /2,7 /2) and (x/2,3x/2), respectively, and, more impor-
tantly, each of these two intervals is forward invariant. In conclusion,
the heading values = +7/2, at which the Nash feedback laws u} and u}
are singular, will never be attained, unless the initial heading has one
of these two singular values. In fact, the heading will monotonically
converge to the headings orthogonal to the wall.

Let us now turn our attention to the game between the angular and
linear velocity inputs. What do their Nash feedback laws optimize? The
defender maximizes and the offender minimizes the cost functional

t 2
i [& +/ (n(xm, o() - Al
t—00 0 2

cos? (1) P max{0, —(x(z) + v)} + 4x2%
1
+ ﬁu%(1)>dr] s (75)
where
n(x,0) < (76)

cos26

In more specific terms, (75) indicates that at minimal (weighted) costs
to the agents’ respective efforts, the defender agent maximizes the
vehicle’s distance from the wall and its parallelism with the wall, while
the offender agent minimizes the vehicle’s distance from the wall and
maximizes its orthogonality to the wall. The defender’s cost to act is
infinite when the vehicle is orthogonal to the wall and far from the
wall, and indeed the defender is inactive in those conditions. The game
value, under the Nash feedback laws of the offender and defender, is
x(0)/ cos? 6(0).

It is without a doubt difficult to comprehend a situation where
the steering is used to run a vehicle into a wall, while acceleration,
braking, in both forward and reverse directions, is used to prevent such
a collision from happening. To gain better understanding, it is helpful
to rewrite (70) as

= (max{O, —(x +v)}

. 1 *\2
v +c059ﬁ(u1) >, p>2. 77)

The first term within the parentheses is simply the linear velocity action
under the CBF 4 = x, namely, when steering is not employed to
interfere with safety. When steering becomes a threat to safety, linear
velocity employs an additional action, in proportion to the square of
the harmful steering action.

If the vehicle heading is eastward, the linear velocity augmentation
is positive, namely, away from the wall. When the heading is nearly
parallel to the wall, namely, when cos @ is small in absolute value, the
action of steering becomes harmless and the augmentation cos Gizu’lk
is negligible. In other words, for a steering action (71) optimized to
attempt a collision with the wall by orienting the vehicle towards the
wall, and doing so faster when the vehicle is father from the wall (in
proportion to x), the best defense by linear velocity is simply to drive
in the direction away from the wall, and at a speed suitably adjusted
to the steering rate towards the wall and the heading towards the wall.

Next we present simulation results with the Nash policies (70), (71)
applied to the unicycle (60)-(62), with a leftward wind, v < 0. Fig. 2
shows two selected trajectories y(x) of the vehicle, with vehicle head-
ing superimposed as directed arrows, whereas Fig. 3 shows the time
responses of the heading 6(r), offender input u,(r), and defender input
u,(1). The figure captions provide observations and interpretations. []
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Fig. 2. Under leftward wind, all the trajectories starting on the safe (right) side of the wall obstacle at x = 0 converge to a vertical equilibrium manifold x = 0.5, to the right of
the wall, with terminal headings orthogonal to the wall in both trajectories. The dots represent the trajectories’ terminal points. The green arrows represent the heading directions
of the vehicle. Note that they are not tangential to the trajectories because of the wind v: based on (60), (61), arctan(x/y) # 6. The blue trajectory starts close to the wall, pointing
towards it but, while the steering attempts to turn the vehicle towards the wall, the defending linear velocity input acts negatively and drives the vehicle in reverse, away from the
wall. The red trajectory starts at a safer distance from the wall and, similar to the red trajectory, the defender successfully counteracts the offender’s attempt. In both trajectories,
the linear velocity input converges to a value that balances out with the wind velocity, settling at the equilibrium manifold x = 0.5, with a heading orthogonal to the wall in both
cases. The dashed vertical line at x = 1 represents the x-position to the left of which max{0,—(x + v)} becomes positive and the linear velocity input actively counteracts the wind
v < 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Example 5 (Unicycle with Steering Defender). In Example 4, one would
be legitimate to ask: why is the angular velocity chosen as the offender
and the linear velocity as the defender? Why not flip the roles? Indeed,
such a flipping of the roles is of interest. Skipping the details of the
calculations, for the unicycle model

Xx=ujcosf+v (78)
y=u;sinf (79)
0= uy , (80)

we obtain the Nash policies for the linear velocity offender u; and for
the angular velocity defender u, as, respectively,

. A
"= " cosO C)
it = %Ziﬁg (1 + max{0, —(x + v)}) . (82)

From (81) it is evident that the linear velocity acts towards the wall and
blows up when the vehicle is parallel to the wall, whereas from (82) it
is clear that the angular velocity is high near the wall and shuts off in
parallel with the wall. From these two observations it is clear that the
offender is highly advantaged and the defender stands practically no
chance of preventing the vehicle from being run into the wall. Plugging
(81) into (78), one gets

xX=—-A+v, (83)

which shows that, for v < A, the angular velocity defender is powerless
in trying to prevent the vehicle from being run into the wall by the

linear velocity offender, since
x(t) = xy— (A—0)t, 84

namely, the collision happens at time ¢ = x,/(4 — v). It is interesting to
also see what is happening with the heading in the meantime. Plugging
(82) into (79), one gets

Ecos&:—£(1+max{0,—(x+u)})0050, (85)
dt 2x
namely,
%cosze < —écoszﬁ = —ﬁcosze, (86)
from which one gets
£

cos2 (1) < <1 - ’1; Ut) ™ cos26,. 87)

0

Hence, no later than time 7 = x, /(4 — v) the vehicle’s heading becomes
parallel with the wall. We do not show simulation results for the
feedback pair (81), (82) since the outcome of running into the wall
is obvious from the above discussion.

The vehicle being run into the wall by the linear velocity offender
should not be regarded as a defeat of the angular velocity defender
because the defender’s task is not to keep x(¢) positive but to maximize
the following performance index under a minimizing policy of the
offender:

. x() d
A [6082 o0 /0 <"(x(r)’ o
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Heading Angle Over Time
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Fig. 3. The heading transient of the vehicle, controlled by the offender u,, is monotonic and orients the vehicle orthogonally to the wall, with the intent of running the vehicle
into the wall. The Nash policy inputs of the offender and defender are smooth and lead to the vehicle trajectories in Fig. 2.

2 ,tan®6 1 1
_ EXZ R gy u%(r) + ﬁuf(r)>dr] , (88)
where 7 satisfies (76). Furthermore, attaining x(rf) — 0 as, at the same
time, 0(r) - +x/2, is a Pyrrhic victory for the offender, since its input
[uj(®)] — oo.

The simultaneous occurrence of x(r) — 0 and 0(r) — +x/2 is the
consequence of the safety being defined through the CBF & = x/ cos? 0,
which allows the vehicle to reach the wall, as long as it does so with a
heading parallel to the wall.

The x-component of the velocity at the time of reaching the wall,
while heading parallel to the wall, is —A+v < 0. This “sideways” motion
of the unicycle does not contradict its nonholonomic character for two
reasons: wind of velocity v is acting on the unicycle and the linear
velocity input is infinite at that time.

By examining (85) and (87), it is intriguing that the Nash policy
(82) regulates the heading to be parallel with the wall. This outcome is
a consequence of optimality. Not only is the feedback (82) zero when
the heading is parallel with the wall, but it is also infinite when the
heading is orthogonal to the wall. It is easy to understand why this is
optimal: at any heading other than parallel with the wall, the linear
velocity input can “shift to reverse” and direct the vehicle towards the
wall, with the highest effect exhibited when the heading is orthogonal

to the wall. For this reason, enforcing parallel heading is the angular
velocity defender’s best (Nash) option. []

Example 6 (Summary of Unicycle Games from Examples 4 and 5). In
order to draw additional insight and some clear conclusions, we set
the wind velocity to v = 0 and focus our attention only on the safe set
x > 0, in which case max{0,—(x + v)} = 0 and the expressions for the
Nash policies simplify. For enhancing conceptual insight, we clean up
the expressions by setting § = 1 = 2. We also remind the reader that
the CBF is given by
X

h(x,0) = (89)

cos2@

For the game in which the steering is used for offense, we obtain
simple expressions for the angular velocity and linear velocity feedback
laws, respectively, as

ang. vel. offender: u’l‘ = —4htan6 (90)
lin. vel. defender: u} = 00250 u’fz, (91)

or, if @ is eliminated, the linear velocity defender is acting in response
to the angular velocity offender and the safety measure 4 as

u*4

PGy v — (92)
: W + 1612
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In (90), when the vehicle is far from the wall and heading (nearly) in
parallel with the wall, the steering offender turns vigorously towards
the wall. In response, in (91) the defender speeds in the direction away
from the wall and in proportion to the orthogonality to the wall and the
square of the turning rate of the offender. In plain terms, the defender
drives the vehicle away from the wall as the offender tries to steer it
into the wall.

On the other hand, when steering is used for defense, the ex-
pressions for the angular velocity and linear velocity feedback laws,
respectively, are

2

lin. vel. offender: ”T - 93)
cos 6

*2
* ul

2 4htan@’
or, if 6 is eliminated, the angular velocity defender is acting in response
to the linear velocity offender and the safety measure 4 as

ang. vel. defender: u 94)

4

%2 1
A S 95
4= (95)

1 u

In (93), when the vehicle heads (nearly) in parallel with the wall, the
driving offender directs the vehicle towards the wall, at high velocity.
In response, in (94) the defender turns in a manner that counteracts
the offender’s speed and direction relative to the wall, and does so
in proportion to the proximity and orthogonality to the wall. In plain
terms, the defender turns away from the wall, as the offender always
drives towards the wall.

It is also important to examine the optimality of these policies, based
on the payoff/cost functions (75) and (88). While the offender is always
penalized quadratically, with a weight that is independent of the state,
the weight of the quadratic penalty on the defender is given, in the two
respective cases, as

(96)

; - 1
R;nveLdet. — and

h2sin® 0
In other words, when the offense is by steering, and when the vehicle
is close to the wall and (nearly) orthogonal to it, the weight on
the driving control is high and the defender should slow down the
vehicle. In contrast, when the defense is by steering, and when the
vehicle is close to the wall and (nearly) orthogonal to it, the weight
on the steering control is low and the defender should turn vigorously
(towards heading parallel to the wall).

To summarize, the Nash policies of the opposing actors follow
common sense of their opposing goals relative to the collision with
the wall. Additionally, the specific quantitative formulae for these Nash
policies go beyond the mere common sense and actually guarantee, in
a precise manner, optimality of the non-cooperative kind.

Finally, we are able to provide the explicit expressions for the sys-
tem’s closed-loop trajectories. Calculations reveal that the CBF A(x, 6)
given in (89) actually remains constant when v = 0 and 4 = 2, in
both offender-defender scenarios. In other words, h(x(1),0(r)) = hy =
xo/ cos? 8. This result is then used to obtain the explicit trajectories
y(6) and y(x), getting, at the end, the following expressions in the closed
loop for both offender—defender scenarios:

R;ng.vel.det — /’l2 sin2 0.

x(0) = hycos 97)

y0) = % [sin(20) — 20] (98)

y(x):i[x\/@—l—hoarctanvﬁ—l] . 99)
x x

The expression (99) is arguably the most important, as it gives the
closed-loop trajectories of the vehicles, parameterized in the initial A, =
xo/ cos? 8. The vehicle paths y(x) are always monotonic — increasing
or decreasing in x — depending on the value of . The direction of the
trajectories depends on the offender-defender scenario. With steering
as the offender, the trajectories move eastward in the x-y plane, away

10

Annual Reviews in Control 57 (2024) 100939

from the wall, at an exponential rate x(r) = hy (1 —tan? 6, e~8h0(=10)),
With steering as the defender, the trajectories move westward, towards
the wall, at a linear (finite-time) rate of x(f) = x, —2(r — 1) (see Fig. 4).

It is perhaps fascinating that with two entirely different pairs of
feedback laws, for the two offender-defender scenarios, the vehicle
paths are the same for such distinct control laws. This has to be
attributed to the control laws originating from non-cooperative game
problems, in which there is in both cases one offender and one de-
fender, as well as a common safety metric for optimization. How-
ever, the vehicle paths being the same is far from expected. The two
offender—defender scenarios do not differ merely in the roles of the
offender and defender being reversed. The linear and angular velocity
inputs do not enter the unicycle in a “symmetric” manner and their de-
fender action is penalized differently in the two scenarios, as indicated

in (96). O

7. Noise-to-state safety (NSSf) and defender feedback laws that
ensures NSSf

Now we turn our attention to systems in which the offender input
w is stochastic, namely,

dx = f(x)dt + g, (x) dw + g, (x)u, dt, (100)

where w is an r-dimensional standard Wiener process and f, g, g, are
locally Lipschitz. However, a stochastic input w is not a policy—it is an
open-loop signal. To model a stochastic offender who is “strategic”, we
allow it to have a time-varying incremental covariance X,()X,(t)T dt,
which is unknown to the defender. In other words, we consider stochas-
tic inputs w that satisfy

E{dwdw"} =0z, dt (101)

where X,(7) is a bounded function taking values in the set of nonneg-
ative definite matrices. For matrices X = [x,x,,...,x,], we use the
Frobenius norm

X1 2 (e {XTx ) = (e {xxT)

and note that |X|r = |col(X)|, where col(X) = [x],x;, ... xIT,
For a barrier function candidate h(x), we recall that It6’s lemma
states that, along the solutions of (100), the following holds,

(102)

dh=Lhdt+ Ly hdw, (103)
where

1 0’h
Lh=Lpgh+5Tr {ZnglTﬁgIZI } (104)

is referred to as the infinitesimal generator of h.

When the covariance is unknown and time-varying, it needs to be
treated as a deterministic disturbance in Sections 2-4. Accordingly,
only a graceful degradation of safety in the presence of the offender
action X,(¢) can be expected, as in (2). We refer to such a stochastic
property as noise-to-state safety (NSSf).

From here on we proceed formally, with systems and controllers
that satisfy a certain barrier function inequality, without going a step
further to establish safety in probability, or at least in the mean, which
would be done by employing the techniques as in the proof of Theorem
3.2 in Krsti¢ and Deng (2000), the techniques in Theorem 3 in Clark
(2021), or the technique in the proof of Lemma 1 in Li and Krstic
(2020).

Hence, we pursue the attainment of the following barrier function
condition

min {0, A(x)} < —p (|zl zfm
(105)
2
Lyh+ Ly huy + LTr {ZTgT%gZI } > —a(h),

for system (100) with (101), by defender feedback u, = i,(x), and call
this condition the noise-to state barrier function condition (NSBFc).
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Trajectory
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Fig. 4. Two examples of vehicle paths given by the formula (99) for A, =1 (blue) and h, = 2 (red). Each path has one end on the x-axis (y = 0) and the other end on the wall
x = 0. For each initial condition, in either of the offender—defender scenarios, the vehicle travels along one such path. If the offender input is angular velocity, the motion is away
from the wall. If the offender input is linear velocity, the motion is towards the wall. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

Heretofore, we have dealt with CBF and ISSf-CBFs. We say that a
function 4 is a noise-to-state safety control barrier function (NSSf-CBF) if,
in addition to its usual conditions, it satisfies the implication

L,h=0 = >0, (106)
where
1| 10%h 1
o(x) = Leh(x)+a(h)— > |8, =8| p~ (max{0,—h(x)}) (107)
2 0x27 | p

for a class K p : [0,4+00) — [0, —inf A(¢)) and a € K},

Theorem 6 (Defender Uses Either Sontag or QP-NSSf-CBF Formula; Noise-
to-state Safety Ensured). Under a defender feedback of either the Sontag
type or of the QP type, namely,

|Lg, hI*
uy = ug(x) 1= (Ly, )" = (108)
0+ 1/w?+ (|Lg2h|2)
uy = gp(x) = (L, iy TL% 00} (109)

2
Ly, Al

along with w(x) defined in (107), system (100) with (101) satisfies the
NSBFc in (105).

Example7. To illustrate a design for NSSf, we return to Example 1 but
with the offender input u; replaced by offender white noise of unknown
variance X|(¢), namely, to

dx = (1 +x) 2 (1) dw + uy dr . (110)
To vary the design a bit but still keep it simple, we choose
h(x)=-x and a(h)=3h. (111)

Conducting the calculations with (107), with arbitrary p € K, we
arrive at the QP feedback for the defender,

figp = min {0, —(1 + x})%p~" (max{0, [x|x}) - x} . O 112)

11

8. Inverse optimal noise-to-state safety game

Next, we give a pair of offender-defender feedback laws which
ensure the attainment of a safety-based Nash equilibrium in a stochastic
inverse optimal sense.

Theorem 7 (A “Defender-Offender” Policy Pair that Attains a Nash Equi-
librium in a Stochastic Inverse Optimal Sense). Consider the defender
feedback law

v ¢n (|LonR; )

- (113)
‘nghR;1/2|

Uy = iy(x) = Ry (ngh)

where h(x) is a barrier function candidate, y, and y, are class K, functions
whose derivatives are also class K, functions, and R,(x,u,) is a matrix-
valued function such that R,(x) = R,(x)T > 0. If the defender feedback
(113) makes the system

dx = f(x)dt + g, (x)dw + gr(x)u, dt 114

satisfy the NSBFc with respect to an NSSf-CBF candidate h(x), where i is
an offender input represented by an r-dimensional stochastic process with
offender incremental covariance given by the feedback law

2

. 2n <g‘T%gl'r>
5 =28 s > (115)

" skl

81 5281 F

namely, if the condition

10%h Y
Lih—ty, (|g1 ﬁgl'r> + 7, (‘nghR2 () > —a(h) (116)
is satisfied, then the defender feedback

-1 -1/2
B v ()7 (|Ear®s)

uy = () = S R;" (L) B2 (117)

)Lg2hR;1/2‘
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maximizes the cost functional

o=,

t
lim E | 2ph(x() + / 1(x) = %7, </—2) ‘R;/zuzo
—00 0

(zlzﬂ
-
+Ban | |47 | (118)
where A € (0,2] and
0%h _
= a8, o )|
_ 0%h
~8B-2n, (|Le, RS - 2 = ey, (gfﬁgl F)
< 2Ba(h), (119)

and where the offender incremental covariance Nash feedback law is given
by

T 0%h
81 9281

)

Remark 4. Similar to Remark 2, even though not explicit in the
statement of Theorem 7, h(x) solves the following family of Hamilton—
Jacobi-Isaacs equations parameterized by f# € [2,00) and 4 € (0,2]:

T TV . et (|, 192k
52l =(2.2]) =-20D7" | |g) S (120)

0x?

T h ‘
1 0x2 81

2
T0°h
& Egl

th—%fyl( F>+§f}'z<|nghR;1/2D+% =0. (121)

This equation, which depends only on known quantities, helps explain
why we are formulating a defender policy through a differential game
for safety, with X, as an offender agent. []

Remark 5. Similar to Remark 3, we refer to the property

T
|2121 ‘F

t t
limE{h(x(t))+/ a(h(x))d,} 2_4/ o il 2
t—00 0 2 Jo 1

as integral noise-to-state safety (iNSSf). []

dt (122)

Example 8. In Examples 4 and 5 we illustrated the results of that
section on a unicycle, with the angular and linear velocity inputs being
opponents in a deterministic safety game. Following the results of the
present section, one could ask why at least one of the two agents would
not be made stochastic? This is indeed of interest, and possible. One
can make the angular velocity either stochastic or deterministic and
either the offender or defender. Likewise, one can consider all these
four possibilities for the linear velocity. In this example we focus on
one of these combinations, which we consider particularly interesting,
challenging, and perhaps natural. We make the linear velocity to be
a deterministic offender and the angular velocity to be a stochastic
defender, namely, we consider the unicycle system

X=ujcosf+v (123)
y=u;sinf (124)
df = dw, (125)

where the variance of the Brownian motion acting on the angular
velocity is the defender input,

E{dw?} = u,dr. (126)
One can note from (125) that the heading is
0(t) = 0y + w(), (127)

namely, the heading performs a “random walk” of controlled intensity
u,(¢) around the initial heading 6,,. Clearly, the angular velocity input u,

12
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is highly limited in how much it can influence safety since the heading
0(t) is a random walk around the initial heading. Note also that this
example is not covered by Theorem 7, in which the offender is stochas-
tic and the defender deterministic. In this example it is the opposite:
the offender is deterministic and the defender stochastic. We make this
switch (which requires a straightforward reformulating of Theorem 7)
for two reasons. One reason is to illustrate that there is nothing limiting
in Theorem 7 about attributing the stochastic character to the offender.
The other reason is that it turns out that it is only in the case where
the stochastic agent is angular velocity that the Nash policy, which has
the meaning of variance, is nonnegative.

Skipping the details of the calculations, with the CBF h = x/ cos? #
we obtain the Nash policies of the linear velocity deterministic offender
and of the angular velocity stochastic defender as, respectively,

" A

uy = — (128)
cos 6
2 _
wy = peos 8 Ly max(0, (et ) (129)
X 2(1 + 2sin” 6)

From (128) it is evident that the linear velocity acts towards the wall
and blows up when the vehicle is parallel to the wall, whereas from
(129) it is clear that the variance of angular velocity is high near the
wall and shuts off in parallel with the wall. From these two observations
it is clear that the offender is highly advantaged and the defender stands
practically no chance of preventing the vehicle from being run into
the wall since the heading does not really steer the vehicle but simply
makes its heading a Brownian motion of intensity (129), while (128)
ensures that the direction is always towards the wall. Nevertheless, the
two Nash policies attain a Nash equilibrium by having the offender
minimize and the defender maximize the performance index

X0 '
E{tlgg [c052 o | (n(xm,e(r))

2 X (1+2sin” 0>, 1,
_ 2 1 . ’
B cos® O 1 +max{0, —(x + U)}”z(f)"' 2/1141(7) T

where 7 satisfies (76).

Figs. 5 and 6 show the simulation results under the feedback laws
(128) and (129). The details of the observations are in the figures’
captions. In particular, while in both trajectories in Fig. 5 the vehicle
runs into the wall, which should not be regarded as a defeat of the
defender because the defender’s task in the performance index (130)
is not to keep the x(¢) positive but to maximize the performance index
(130) under a minimizing policy of the offender. [J

(130)

9. Conclusions

In this tutorial we have presented feedback control policies in a
two-agent scenario, where the offending and defending agents have
opposing objectives in relation to the system safety. Two types of
offenders have been considered: deterministic and stochastic. The de-
terministic offender applies its feedback through its deterministic input
value, while the stochastic offender applies its feedback through its
incremental covariance.

Two types of results were presented, in both the deterministic and
stochastic case. One set of results where the defender pursues input-
to-state/noise-to-state safety for an arbitrary unknown offender action.
The other set of results were of the zero-sum game type, where the
offenders and the defenders settle into a Nash equilibrium for a game
that is played over the system’s safety.

It will be of value to the reader of this tutorial that we recapitulate
some of its results, especially contrasting the results that come in pairs.

First, the basic ingredients in the design of the feedback for the
defender, in both the deterministic and stochastic case, where the
offender is unconstrained by a cost on his action, are the CBF-QP
feedback and the ‘half-Sontag’ feedback, given, respectively, by

rmax {0, —w(x)}

> (131)
Lyl

gp(x) = (Lg, 1)
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Trajectory
] Time: 1.00 sec
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Fig. 5. Two trajectories in which the dots represent the trajectories’ terminal points. The offender input, applied through a deterministic linear velocity, which always directs the
vehicle towards the wall, is advantaged over the defender input, applied through the variance of a stochastic angular velocity, which makes the heading a Brownian motion of
varying intensity around the initial heading. The result of this inequity is that, while in Fig. 2 the defender always prevents the safety violation, in the present figure the offender
always succeeds in violating safety, namely, in running the vehicle into the wall. This should not be regarded as a “win” for the offender and a “loss” for the defender because
the defender’s task in the performance index (130) is not to keep the x(r) positive but to maximize the performance index (130) under a minimizing policy of the offender.

— 2 4
0+ /o + |Lg2h|

- (132)
2(Lg, A

us(x)/2 = (L, )"
There is barely any difference between these two feedback laws when
|Lg, Al is small relative to |w|.

Second, the Nash policy of the offender, in the deterministic and
stochastic cases, is given, respectively, by

T
2 g, nya? (133)
up = —Ar)” QlLg, |)m

1
h g2l
* _ 1 261
(Z12])" = =40 <'g1Td—2g1 > —T(;;: 134
* d )gl W‘g])r

Evidently, the deterministic and stochastic policies are highly consistent
among one another, with the only difference arising out of Ito’s calculus
and the effect of the Hessian (rather than gradient) of the CBF.

Third, the resulting integral ISSf/NSSf properties, under the Nash
policies for the defender but under an arbitrary policy for the offender
are given by the inequalities, in the deterministic and stochastic cases,

respectively, by
YN e |uy |
()
t P ‘Z]ZH
lim E{h(x(t))+/ a(h(x))dt} ——/ 71 Pl (136)
=00 0 2 0 A

It is evident from these integral inequalities that the safety loss, in-
curred over the infinite horizon, may increase, at worst, in (class K)
proportion with the intensity of the offender’s action.

\%

h(X(t))+/w a(h(x))dr (135)
0

\%

Fourth, the underlying Hamilton-Jacobi-Isaacs PDEs solved by the
CBF h(x) under the inverse optimal actions of the offender and defender
are given, in the deterministic and stochastic case, respectively, by

A p _ T 1(x)
Lyh= 567 @ILhD+ 5 Ly hRy(0)™ (ngh) +55 =0 (137)
A 10%h B —1/2 Ix) _
Loa=2en ( g —ax2g1|r> + 8 en (|Lnis ) + Tr=0  as®

Finally, as evident throughout the tutorial, the defender and of-
fender policies are highly similar under the safety game scenario.

Looking towards future research, it is of interest to expand the
consideration from the unicycle example towards (1) more general
vehicle models, incorporating dynamics, and (2) offender inputs which
are of environmental nature (wind, gravity, etc.).

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
No data was used for the research described in the article.
Acknowledgments

The author thanks Kwang Hak Kim for the simulation results in
Examples 4 and 8, as well as Mrdjan Jankovic for a helpful discussion
on CBFs for nonholonomic vehicles. This work was funded by the Office
of Naval Research grant N00014-23-1-2376 and the National Science
Foundation grant ECCS-2151525.

13



M. Krstic Annual Reviews in Control 57 (2024) 100939

Heading Angle Over Time

/2 zo = 2.0, yo = 0.0, 6 =0
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> 0
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t
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Fig. 6. The two heading transients of the vehicle perform a random walk, but with a variance u;() given by (129) changing in time and going large (theoretically, towards
infinity) as x(r) — 0%, as the vehicle runs into the wall.

Appendix @ ¢y ) =ry'(N—y(). (142)
LegendreFenchel transform and Young’s inequality Lemma 4 (Young’s Inequality, Hardy, Littlewood, & Polya, 1989, Theorem
156). For any x,y € R", and for any y € K, whose derivative is also in
n )
Lemma 3 (Krstic & Li, 1998, Lemma A.1). If y and its derivative y’ ©
are class K, then the Legendre—Fenchel transform satisfies the following
properties: xTy <y(xD)+2r(UyD), (143)
@ ¢y =r")')-r (H'0) =/ ) (9)ds (139) o ) . .
0 and the equality is achieved if and only if
) ¢cty=vy (140)
(¢) ¢y is a class K, function (141) y= V'(M)ﬁ , that is, for x = (}")_1(|J’|)ﬁ . (144)
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Proofs of theorems

Proof of Theorem 1 (Defender Uses Sontag —> ISSf). We substitute (8)
into (4) and get

. 2
h=Loh+ Ly hu -+ \/a)2 + (Lo h(Lg, )

2 —a(h(x) + |Lg Al [~ (max{0,—h(x)}) — lu; ] . (145)
For min {0, A(x)} < —p(|u;|) we thus have
h=1L Frapas + L Py 2 —a(h(x), (146)

which, thanks to Lemma 1, completes the proof of ISSf. []

Proof of Theorem 2 (Defender Uses QP-ISSf-CBF —> ISSf). We substi-
tute (14) and (12) into (4), get

h=Leh+ Ly huy + Ly, hiiyp

—a(h(x)) + @ + max {0, —w} + ngl hlp~ (max{0, —h(x)}) + Lgl hu,

— a(h(x)) + max {w,0} + |Lg Al [p“(max{O,—h(x)}) = uy |]

v

v

— a(h(x)) + | Ly h| [p~" (max{0, —h(x)}) — |u,]] , (147)

and invoke Lemma 1. []

Proof of Theorem 3 (“Half-Sontag” Formula is Also Min-norm). The
pointwise minimization result is immediate from (10)-(12). For (4),
(23) ISSf follows from

j 1 2 T 2
h=—atheo) + 3 | @+ [0+ (L, h(Ly, T )

+ | Ly, hlp™ (max{0,—h(x)}) + Ly huy . [

(148)

Proof of Theorem 4 (Inverse Optimally Nash “Defender-Offender” Policy
Pair). Thanks to (31), (34), we get (35). Substituting /(x) into (33), it
follows that

1
J(uy) = inf {hm [2ﬂh(x(t))+ / <—2ﬁth+ﬂAfy(2|Lglh|)

u €V

T
—ﬂngth5‘<Lg2h> —uTR2u2+/}/1y<| 1|>>dr]}

t
lim [Zﬁh(x(t)) - 2;;/0 (th + Ly hd + nghu2>d1

= inf
u €V
t

T
—/ <u§R2u2—2ﬁnghu2+ﬂ2Lg2hR;1(Lg2h> )dr
0
/<ﬂ/1 (' 1|>+2ﬂL hu1+ﬁ/1fy(2|Lglh|)>dr]}

t t
= inf {lim [Zﬁh(x(t)) -28 / dh— / (uy — &) Ry(uy — @3)d7
0 0

u €V

+ﬂ/[ (' 1'>—Ay<<y’>—1(2|Lglh|>)

+2<A|Lgl Rl @IL, hI) + Ly, huy >] dr] }

(by (27))
= 2ph(x(0)) + p4 inf / H(u],u’f)dt
u €Vt Jo
- / (uy — @) Ry(uy — @3)d 7 dt, (149)
0
where
lu] iy @'
H(ul,u]k):y<@>—y<71>—y'< >)~|u |('4*—M1) (150)
and
)T

uix) = —a(y')” (2|Lglh|) |L NI (151)
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By Lemma 3.d, IT(u,

N | L (e @)y
m"”“””( )”( <7>>” T> Wl A

Then by Lemma 4 we have

vy (5) o[ (41)) - () ()

uy) can be rewritten as

(152)

=0, (153)
uy |uT| “*
and IT(u;,u}) = 0 if and only if == @H! (J/ (—)) PR , that is,
1
Iy, uT) =0 iff u = uT . (154)
Thus
ull&f/1 /0 H(ul,ul)dt =0 (155)

and the “worst case” disturbance is given by (151). The maximum of
(149) is reached with

uy = . (156)

Hence the control law (32) maximizes the cost functional (33). The

value function of (33) is

JH(x)=2ph(x). O (157)

Proof of Theorem 6 (NSSf Under Sontag or QP-NSSf-CBF Formula). For
both control laws, a direct substitution yields

Lh > —a(h(x)) (158)
whenever
min {0, A(x)} < —p (|2121T‘F> . O (159)

Proof of Theorem 7 (Stochastic Inverse Optimally Nash ‘“Defender-
Offender” Policy Pair). According to Dynkin’s formula and by substi-
tuting /(x) into J(u,), we have

Jwy) = Jint | lim E12h(x(0)

¢ s (2 (leﬂr
+/0 1(x) = 7y <E|R2 u2‘>+ﬂiy1 — dr

= jinf {hm E [28h(x(0))

t
2
+/0 2BLh |100) +(x) = A7 (E ‘R;/2u2|>

[2=1]
2

F

+ Ay, dr

= Zinf {2BE {V (x(0)}
e [ [ (3 1] - e ()

+2BLg, hu,
2
T0°h
& @glm

T 10%h
+ﬂTr{ gla 2g121 dr ;.

Using Lemma 4 we have

T T
~28L, huz—ﬁ2<ﬂ R 2) <—R;'/2<ngh)>

‘leT

1
+ By T|F +ﬂ1f}’1<

(160)
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2| p1/2 -1/2
< (3 ‘Rz/ u2|) o (‘ngth / |) (161)
and
*h T h
T, T _ T T
PTr {El 8 ﬁgl z } =p (col (2121 )) (col (gl ﬁ&))
(212” ?h
< pay | —L Al ==
< pin 7 +5 h(glang1|r)
(162)
and the equalities hold when (117) and
T 0%h
v _onet (| 192 81 o281
(Z,2]) =-20) (gl ax2g1|r> | ot (163)
819281,

So the “worst case” unknown covariance is given by (163), the mini-
mum of (160) is reached with

(164)

uy =ity
and

min J(u,) = 20E {h(x(0)}. [ (165)
up
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