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ABSTRACT
As the world searches for groundbreaking, 

unconventional computing technologies, espe-
cially for intelligent edge applications, biological 
AI is emerging as an energy-efficient, robust, and 
reliable alternative. Researchers have unveiled the 
immense computing capacity inherent in biocom-
puting elements such as bacterial cells. The com-
puting power of bacteria can be harnessed through 
Gene Regulatory Neural Networks (GRNNs). Bio-
films, acting as sophisticated collections of GRNNs, 
leverage the natural distributed computing archi-
tecture with capabilities like parallel processing 
and analog computing in individual cells while con-
suming very little energy relative to conventional 
computing systems. This study introduces the con-
cept of Biofilm Living AI Devices (BLAIDs), which 
proposes engineering biofilms using optogenetics 
to function as self-sustaining AI edge devices that 
interface with modern telecommunications archi-
tectures. Our simulation-based analysis demon-
strates the computing complexity and reliability of 
BLAID, establishing it as a compelling candidate for 
the next generation of low-energy computing and 
advanced AI technologies.

INTRODUCTION

Our lives are increasingly becoming more depen-
dent on Artificial Intelligence (AI). We are witness-
ing this at the level of applications that support 
our everyday lives, as well as advancements in 
the development of systems and infrastructures 
that support our society in general. A partic-
ular area that is witnessing more integration of 
AI is edge computing, where AI capabilities are 
deployed closer to data sources, reducing laten-
cy and enhancing processing efficiency. Edge AI 
leverages the power of distributed devices to per-
form real-time data analysis, enabling faster, more 
context-aware decision-making without relying 
on centralized cloud infrastructures. This shift is 
particularly crucial as we encounter an explosion 
of data from numerous devices and sensors con-
nected through the Internet of Things (IoT). With 
the introduction of molecular communications 
(MCs), where information is encoded into mole-
cules rather than electromagnetic (EM) waves, we 
saw the introduction of the Internet of Bio-Nano 
Things (IoBNT) [1] that elevates IoT by intercon-
necting to engineered biological systems, expand-
ing our paradigm of computing devices that are 
built from natural biological components.

With the pursuit of pushing the frontiers of 
AI, the computing and communication research 
communities are increasingly interested in incor-
porating biological systems with conventional 
computing systems to utilize their natural AI prop-
erties [2]. An excellent example is the concept of 
Organoid Intelligence, which is expected to trans-
form AI by integrating living cells, such as brain 
organoids, into conventional computing systems, 
thereby creating new forms of bio-hybrid systems. 
This approach has shown that in vitro cultured 
neurons can be trained for computing applica-
tions and possibly function in synergy with silicon 
technologies. Although this sounds appealing, 
there are several complexities in using neurons to 
perform AI, which can lead to unreliable comput-
ing. These challenges include
• Culturing and maintaining these fragile and 

demanding cells over long periods
• Addressing ethical concerns
• Managing their unpredictable connectivity 

changes
This has led the research community to investi-
gate other cell lines to create Living AI, with one 
promising candidate being bacteria. Bacteria 
have been leveraged to create AI machines that 
include single perceptron [3] as well as consortia 
population neural networks [4].

In this paper, we propose the Internet of Bio-
film Living AI, where we aim to use bacteria as 
a source of Living AI and to interconnect them 
in the form of a biofilm to the wider Internet as 
shown in Fig. 1. Our aim is twofold:
• To harness the natural computing capabilities 

of bacteria, accessible via the Internet for 
computational tasks

• To propose biofilms as a platform for intel-
ligent computation, enabling novel appli-
cations in healthcare and environmental 
monitoring, where bacteria naturally thrive.

To extract AI properties from bacteria to perform 
computing, we focus on their gene regulatory 
systems. Notably, Gene Regulatory Networks 
(GRNs) hold a critical role in this emerging para-
digm as natural computing architectures, enabling 
cells to make decisions in response to their chang-
ing environment through a complex interplay of 
gene regulatory processes.

Transcriptomic data can be used to quantify 
the regulatory influence of one gene over another, 
assigning weights analogous to those in artificial 
neural networks (ANNs) [5]. Once these gene-
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gene interaction weights are inferred, the result-
ing GRN can be interpreted as a neural network 
with an inherently random architecture, which 
we refer to as the Gene Regulatory Neural Net-
work (GRNN) (Fig. 1). In contrast to conventional 
biocomputing approaches that engineer fully syn-
thetic genetic circuits for specific functions [4], 
our method utilizes the organism’s native GRN 
as a pre-existing computational scaffold. In a sep-
arate study, we showed that the GRNN can be 
viewed as a repository of numerous sub-GRNNs. 
Using Network Architecture Search (NAS) algo-
rithms, application-specific sub-GRNNs can be 
identified for general-purpose computing tasks, 
mitigating the need for extensive network training 
[6]. Further, bacterial cells, functioning as indi-
vidual processing units with GRNNs, collective-
ly form biofilms that exhibit intelligent behaviors 
with feedback loops, non-linear signal processing, 
and complex population-wide behaviors.

In this study, we explore the integration of 
Biofilm Living AI into conventional fifth and sixth 
generation (5G/6G) telecommunication systems 
enabling them to be controlled for computing 
tasks using standard plug-and-play interfaces. 
As shown in Fig. 1, the Biofilm Living AI Device 
(BLAID) can be interconnected through mas-
sive Machine-Type Communication (mMTC) 
connectivity, where we extend the connection 
of machines to engineered biological systems. 
To interface EM waves with the biofilm, we pro-
pose utilizing optogenetics as a promising solu-
tion to activate specific target genes. Optogenetic 
systems have been successfully implemented in 
bacteria to control gene expression for diverse 
applications, ranging from driving metabolic flux 
and regulating the gut microbiome to controlling 
cell morphology and managing co-culture dynam-
ics [7]. This allows precise, light-based control of 
gene expression as inputs to the GRNN. Integra-
tion of light as a key regulator not only enhances 
the functionality of GRNNs but also open new 
avenues for applications in biofilm computing, 
where traditional methods may fall short.

Once the target genes are triggered, internal bio-
chemical-based communication within the cells per-
forms computing similar to ANN, producing outputs 
ranging from mRNA to phenotypes. This approach 
merges two pillars of MC and EM- based nano-com-
munications into a biofilm computing body.

To this end, this paper first investigates the 
computing architecture of Biofilm Living AI and 
the engineering of BLAID. Subsequently, we 
explore internet interfacing via optogenetics, 
examine computing across various MC scales, 
and conduct a simulation-based analysis of its 
computational properties. Finally, we discuss chal-
lenges, future directions, and conclusions.

BIOFILM LIVING AI
While current AI research has predominantly 
focused on neuronal cultures and organoids, we 
propose leveraging the inherent computational 
intelligence of non-neuronal organisms to broad-
en the scope of AI. Bacteria exhibit sophisticated 
decision-making, adapting effectively to chang-
ing conditions through complex GRNs. This 
section subsequently dives deep into designing 
biofilm-based AI systems leveraging natural com-
putational capabilities using GRNNs.

GENE REGULATORY NEURAL NETWORKS

The field of DNA computing has advanced as a 
promising alternative to traditional silicon-based 
computing. This concept gained momentum due 
to the functional similarities between a gene and 
a perceptron model. An expression of a gene 
results in the production of bio-molecules, includ-
ing mRNAs, proteins, and small non-coding RNAs, 
and subsequently diffuse into the cytoplasm. These 
biomolecules can serve as transcription factors 
(TFs) and intracellular signaling molecules. These 
diffusible molecules accumulate in the cytoplasm, 
potentially contributing to cellular memory or 
noise, while a subset of TFs acts as inputs that 
bind to the promoter region of a target gene. The 
influence of TFs on gene expression depends on 
factors including TF-binding affinity, regulatory ele-
ments (such as enhancers and silencers), and the 
stability of the DNA-TF complex, which collectively 
act as weights. Our previous study introduced a 
framework to quantify these gene-gene interac-
tion-based weights of a GRN using transcriptomic 
data and converting it into a GRNN [5]. The com-
bined effect of multiple TF species, along with their 
associated weights, modulates the expression level 
of the target gene, analogous to the input-weight-
ed summation mechanism in a perceptron. This 
analogy is illustrated in the top panel of Fig. 1.

The computation process of each gene results 
in non-linear behavior in the temporal domain, 
comparable to a perceptron with a Rectified Lin-
ear Unit (ReLU) activation function. Our previous 
investigations have demonstrated that GRNNs, 
due to their intricate structural complexity (e.g., 
the Escherichia coli GRNN comprising over 4,000 
genes and 10,000 interactions), are capable of per-
forming regression tasks ranging from simple linear 
to complex polynomial regressions. They can like-
wise perform pattern recognitions including image 
classifications, while exhibiting analog and parallel 
processing capabilities that are well-suited for com-
plex, real-time computing applications [6].

FIGURE 1. BLAID architecture utilizes biofilm-based GRNNs for bio-hybrid computing by integrating optogenetic 
control, MC, and near-infrared (NIR) interfaces for stimulating upconverting nanoparticles (UCNP). By converting 
bacterial GRNs into GRNNs, biofilms function as distributed, low-energy computing units capable of classification, 
regression and reservoir computing. Supported by 6G infrastructure, BLAID enables multi-functional applications 
in in-body computing, environmental computing, and biocomputing, bridging biological intelligence with 
next-generation AI and telecommunications networks.
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DISTRIBUTED COMPUTING WITH MOLECULAR COMMUNICATIONS

Bacteria, often live in biofilms typically containing 
107 to 109 per square centimetre, where each 
bacterial cell functions as an individual process-
ing unit equipped with a GRNN. Within biofilms, 
the GRNN computing capabilities can extend to 
multi-cellular communities that support multi-lay-
ered distributed GRNN computing architectures 
as depicted in Fig. 2. This is facilitated by MC via 
quorum sensing (QS) and other signaling path-
ways. Such decentralized computing architecture, 
in turn, enables parallel processing and real-time 
decision-making of biofilms, similar to distributed 
computing models found in silicon-based systems.

Unlike traditional computing, these computa-
tions are emergent, arising from stochastic molec-
ular exchanges that enable adaptive responses to 
environmental changes. This form of emergent 
computation offers insights into creating more 
adaptive and robust systems for generic comput-
ing to process information and communicate effi-
ciently in unpredictable and unstable conditions.

Metabolic cross-feeding and the division of 
labor within biofilms represent specialized com-
putational tasks, wherein resource management 
is collectively optimized, analogous to task alloca-
tion protocols in distributed computing networks. 
The extracellular matrix serves not only as a phys-
ical scaffold but also as a medium for signal prop-
agation, similar to a shared data bus in computer 
networks. Environmental factors such as nutrient 
availability and cell density act as either external 
inputs or as regulatory signals that modulate the 
computing state of the biofilm, thereby influenc-
ing its computational capacity. This integrated bio-
logical communication and computation enable 
biofilms to efficiently process inputs, resulting in 
sophisticated non-linear computing.

ENGINEERING BLAID

Effective interfacing with GRNNs is crucial for 
designing BLAID. To achieve this, we propose a 
three-tiered engineering approach focusing on 
input interfacing, spatial engineering of biofilm, 
and output interfacing.
1. Input interfacing: This study explores opto-

genetics as a promising approach for pre-
cise control over gene expression using light 
as an external input. Light-sensitive proteins 

like phytochromes, cryptochromes, and LOV 
domains are commonly employed to mod-
ulate cellular processes, facilitating GRNN 
engineering by incorporating optogenetic 
circuits to regulate specific genes and act 
as data input gateways, thereby enhancing 
precision and control. In one-component sys-
tems (Fig. 1), a single protein serves as both 
the light sensor and TF, whereas in two-com-
ponent systems, these roles are divided 
between a light-sensing protein and a TF, 
enabling more nuanced and sophisticated 
gene regulation [7].

2. Spatial engineering of biofilm: Recent 
advances in synthetic biology have enabled 
the engineering of biofilms to enable fit-for-
purpose fabrication of devices containing 
cellular components. Synthetic GRNs and 
QS circuits allow cells to self-regulate bio-
film thickness [8], while optogenetics facili-
tate photolithographic deposition of biofilms 
onto material surfaces [9]. This approach 
allows precise exogenous control over bio-
film spatial patterns and thickness (Fig. 3), 
enabling the biofilm to be shaped to fit 
Upconversion Nanoparticle (UCNP) and 
light-sensing substrates.

3. Output interfacing: Here, we propose using 
in-vivo mRNA sensors [10] to trigger expres-
sion redox active molecules in response to 
the mRNA signals. Redox active molecules 
can serve as electrochemical signals that can 
be detected using electrodes embedded 
in the second biofilm substrate to enable 
BLAIDs to be integrated into living electronic 
devices [11].

INTERFACING TO THE INTERNET

This section explores the mechanisms through 
which engineered light-sensitive biofilms can 
interface with external systems, enabling real-time 
communication and interaction via Internet by 
modeling light propagation through biofilm.

COMMUNICATING WITH BIOFILM AI

We first model the interaction between engi-
neered light-sensitive cells and incident light as it 
propagates through biofilm substrates designed 
to support biofilm growth. This approach allows 
us to simulate how light interacts with bacterial 
cells embedded within the biofilm structure. To 
achieve effective light activation in this system, 
we use near-infrared (NIR) laser, emitting photons 
in the 700–1000 nm range. NIR light is advanta-
geous due to its deeper penetration into biolog-
ical tissues, minimized scattering, and reduced 
absorption within this frequency window, which 
collectively minimize photodamage, autofluores-
cence, as well as phototoxicity.

Despite these advantages, many biological 
transcriptional systems are responsive to visible 
(400–700 nm) or ultraviolet (< 400 nm) light 
rather than NIR wavelengths [12]. This mismatch 
presents a key challenge in leveraging the bene-
fits of NIR light for effective biological activation. 
UCNPs are uniquely suited to address this issue. 
In BLAID, the first layer incorporates UCNPs that 
emit visible light upon NIR laser excitation. This 
emission occurs through a series of energy trans-
fers among dopant ions within the nanoparticles, 

FIGURE 2. Illustration of multiscale communications within BLAID, showing multiscale interactions. NIR light activates 
UCNPs, emitting visible light to control gene expression via optogenetics. Cell-cell and gene-gene communication 
occurs through molecular and TF di�usion, driving GRNN dynamics. One- and two-component systems enable 
precise genetic control for bio-hybrid computation.
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culminating in the release of higher-energy pho-
tons. The efficiency of this upconversion process 
relies on the use of NIR wavelengths that align 
with the UCNPs’ absorption peaks, as deviations 
from these optimal wavelengths reduce absorp-
tion and photon yield.

The interaction between the NIR laser and 
UCNPs exemplifies EM nanocommunication, 
which plays a pivotal role in enabling precise and 
efficient interfaces across biological, physical, 
and digital domains, supported by advancements 
in miniature devices such as optical nanoanten-
nas. In our system, NIR photons act as EM car-
riers of information, with the laser emitting at a 
wavelength of 820 nm. A Gaussian beam is used 
to model the NIR laser propagation through a 
region populated by E. coli cells (dark red, ellip-
tical shape) and nanoparticles (gold points) as 
illustrated in Fig. 4. An interaction occurs at the 
substrate-biofilm interface, where the dynamics of 
NIR light propagation change as it travels through 
the biofilm. Using the same methodology as in 
[13], we observe that, in the initial stages, reflec-
tion and early spreading dominate, causing an 
intensity loss at the surface. As the light pene-
trates deeper into the biofilm, scattering becomes 
more prominent, impacting the power reaching 
the UCNPs in the biofilm.

Assuming a distance of 2 mm between the NIR 
laser and the biofilm and a propagation distance 
of 30 µm within the biofilm, we demonstrate two 
cases: high and low power. In the high power sce-
nario, with an input power of 50 mW, the intensity 
reaching the nanoparticles in the biofilm is 100 
mW/mm2. Considering an upconversion efficiency 
of h = 10%, the visible light intensity emitted by the 
nanoparticles is 10 mW/mm2. This intensity level 
is in excess of literature values required to activate 
light-responsive proteins, enabling targeted manip-
ulation of biological processes within the biofilm, 
as demonstrated in optogenetic studies [14]. In 
the low power scenario, with an input power of 
10 mW, the intensity reaching the nanoparticles in 
the biofilm is 20 mW/mm2. Considering the same 
h, the visible light intensity emitted by the nanopar-
ticles is only 2 mW/mm2. Light penetration depth 
critically influences cell-to-cell communication in 
the biofilm, impacting its computational properties. 
Deeper penetration enables more cells to receive 
input and engage with external signals, while lim-
ited penetration confines activation to surface lay-
ers. This phenomenon is systematically analyzed 
through the in silico experiments described later.

MMTC AND BLAID CONNECTIVITY

This study further proposes using mMTC to inte-
grate BLAID into networks, facilitating seam-
less interaction with digital infrastructures for 
enhanced real-time data exchange in intelligent 
edge computing. By harnessing 5G/6G frequen-
cy bands, along with the advanced capabilities 
of mMTC, this architecture enables ultra-dense 
device connectivity and low-latency, real-time 
data processing.

In particular, 6G wireless technology promis-
es a significant leap in connectivity, offering data 
rates up to 1 terabit-per-second (Tbps), 1 ms laten-
cy, and spectral efficiency of 100 bps/Hz. A key 
feature of 6G is mMTC, designed for dense IoT 
networks. With mMTC, the base station can trans-

mit data to the NIR laser in our bio-integrated sys-
tem in real-time, controlling intensity, frequency, 
and duration with sub-millisecond precision. This 
low-latency, high-reliability link allows for instanta-
neous adjustments to laser parameters based on 
continuous feedback from biofilm sensors. The 
base station can monitor feedback signals, such 
as visible emissions or molecular markers from the 
biofilm, and send precise data to the laser as inputs 
or regulatory signals to maintain or modify the bio-
film’s computing properties as needed. In addition, 
mMTC’s high device density capabilities support 
continuous data exchange, enabling the 6G net-
work to interpret rapid changes in the biofilm envi-
ronment and adjust laser settings without delay. 
This efficient communication loop ensures that the 
laser operates in close alignment with the comput-
ing needs, optimizing control over nanoparticle 
activation and the overall capabilities of BLAID.

FIGURE 3. An optogenetic gene circuit for spatial biofilm patterning: a) A 
blue light-activated gene circuit involving yf1 (light-sensitive kinase), 
fixJ (response regulator), and cl (transcriptional repressor) control 
expression of cdrA and cdrB (biofilm matrix proteins) [9]; b) Biofilm pat-
terns are controlled using a photo mask for selective gene expression. 
The bottom shows a Shewanella oneidensis biofilm stained with crystal 
violet, where light guides biofilm formation. S. oneidensis biofilms are 
well-suited for bioelectronic applications due to the ability to perform 
extracellular electron transfer. 

FIGURE 4. Simulation of laser interaction with a UCNP-embedded biofilm 
under high- and low-power NIR light. NIR light (red arrows) excits 
UCNPs to emit visible light (purple waves), modulating gene expression 
in the GRNN. Higher power enables deeper penetration and stronger 
UCNP activation. 

This low-latency, high-re-

liability link allows for 

instantaneous adjustments 

to laser parameters based 

on continuous feedback 

from biofilm sensors.
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COMPUTATIONAL COMPLEXITY AND STABILITY OF BLAID

In this study, we first utilize the entropy difference 
of input and output signals (∆E) as a key metric 
to understand non-linear transformations during 
internal computational processes BLAID. The 
magnitude of non-linear transformations reveals 
the capacity of a system to process complex data, 
enabling pattern recognition, adaptability, and 
generalization of key traits of intelligent behavior 
while assessing its potential for decision-making 
and handling intricate data relationships.

  Lyapunov exponents quantify the chaotic 
behavior of processes by measuring the diver-
gence or convergence of trajectories relative to 
relevant system variables [15]. By employing the 
Lyapunov exponent, the stability of these compu-
tational processes can then be assessed, revealing 
how perturbations evolve over time and whether 
the system maintains computational coherence or 
diverges chaotically. This approach further helps 
differentiate whether the observed nonlinear 
transformations result from intrinsic computation-
al dynamics or from random noise interference.

IN SILICO BLAID SETUP

To effectively harness the capabilities of BLAID, an 
in silico 3D biofilm is constructed using Python, care-
fully designed to replicate the natural characteristics 
of microbial biofilms. Cells are randomly distribut-
ed within a 30  30  30 mm3 volume to emulate 
realistic spatial heterogeneity. Cell-to-cell communi-
cation is modeled using a Graph Neural Network 
(GNN), where each node represents an individual 
E. coli cell and edges capture the diffusion-based 
QS interactions. The selected model organism is E. 

coli, and each GNN node is embedded with an E. 
coli GRNN, implemented as a randomly structured 
ANN that governs the node’s update dynamics.

The E. coli GRNN incorporates four key QS 
components: three signaling molecules: autoin-
ducer-1 (AI-1), autoinducer-3 (AI-3), and indole 
— and the transcription factor SdiA, which detects 
acyl-homoserine lactones from other Gram-neg-
ative species. To better align the in silico model 
with natural biofilm behavior, the GNN’s mes-
sage-passing layer simulates diffusion-based sig-
naling using AI-2, AI-3, and indole, which are 
well-characterized in E. coli communication. The 
gene b3067 is selected as the GRNN input gate-
way due to its high regulatory connectivity, with 
1703 outgoing edges, allowing broad influence 
on gene expression. The simulation framework, 
including the GNN architecture and diffusion 
modeling, is described in detail in [5].

Next, UCNPs are positioned within the bio-
film and the substrate. GRNNs of cells near the 
UCNPs receive upconverted signals, which are 
computed within the GRNN and transmitted via 
QS signaling molecules to neighboring cells. This 
compute-and-communicate process ripples through 
the biofilm, creating a distributed computing archi-
tecture. The in silico experiment includes 169 setups 
covering 13 different UCNP concentrations and 13 
maximum NIR input power levels. UCNP concentra-
tion ranges from 0 to 3.0  10–2 mm in increments 
of 2.5  10–3mm, while NIR input power ranges 
from 0 to 120 mW in increments of 10 mW.

Entropy of input and output signals is then cal-
culated using a histogram-based binning method, 
with the entropy difference ∆E derived by subtract-
ing input entropy from output entropy. This metric 
provides insight into computing complexity and 
the system’s non-linear signal transformation char-
acteristics. Additionally, the Lyapunov exponent of 
the output signal was computed to evaluate the 
system’s sensitivity to initial conditions. A negative 
Lyapunov exponent suggests converging trajecto-
ries, indicating stable and predictable behavior.

RESULTS ANALYSIS

The 3D surface in Fig. 5a, representing ∆E as a 
function of varying UCNP concentrations and max-
imum input laser power, exhibits no discernible 
trend. Instead, it displays highly irregular and fluctu-
ating patterns, suggesting a complex and nonlinear 
dependence on these parameters. Regions of high 
entropy drift suggest significant information trans-
formation or computational complexity introduced 
by BLAID under these conditions. The results indi-
cate that changes in UCNP concentration and laser 
intensity have a non-linear effect on entropy differ-
ence, highlighting specific parameter combinations 
that either maximize or minimize information trans-
formation. According to Fig. 4, light penetration 
depth influences the biofilm’s ability to receive and 
process input signals, affecting cellular response 
at different depths. Despite a linear increase in 
laser power, system behavior remains non-linear 
due to complex interactions like feedback loops, 
saturation effects, and varying sensitivities in gene 
and cell communication. From a computational 
perspective, understanding this relationship is cru-
cial for optimizing processes, enabling efficient 
information extraction or enhancing complexity, 
depending on the intended application.

FIGURE 5. Computational analysis of BLAID showing: a) entropy di�erence (∆E) and; b) Lyapunov exponent across 
UCNP concentrations and laser powers. Higher ∆E indicates greater computational complexity, supporting tasks 
like regression and pattern recognition. Negative Lyapunov values ensure stability, while near-zero values sug-
gest flexible dynamics.
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Figure 5b illustrates the Lyapunov exponent val-
ues for different UCNP concentrations and maxi-
mum input laser power, exhibiting no regular pattern 
similar to Fig. 5a. Rather, the surface displays irregu-
lar fluctuations, suggesting a complex and nonlinear 
dependence on these parameters. The Lyapunov 
exponent is used to evaluate the BLAID’s sensitivity 
to initial conditions, providing insight into the stability 
and predictability of the output. In this figure, nega-
tive Lyapunov exponent values across the parameter 
space suggest that the system predominantly exhib-
its convergent behavior, indicating stability in most 
conditions. However, variations in the Lyapunov 
exponent, particularly regions approaching zero, 
imply a transition zone where the system becomes 
more sensitive and potentially exhibits more com-
plex or chaotic dynamics. These insights are import-
ant for understanding how specific combinations of 
UCNP concentration and laser intensity influence 
the stability of the BLAID, allowing for fine-tuning to 
achieve desired levels of stability or complexity.

It is important to note that, each unique combi-
nation of UCNP concentration and maximum NIR 
power represents a distinct computational state. A 
computational state with a larger ∆E suggests that, 
given the specific UCNP concentration and NIR 
power, the BLAID can achieve enhanced non-lin-
ear computational capabilities. Conversely, a state 
with a smaller ∆E would be sufficient for tasks with 
lower computational complexity. Furthermore, 
with fixed UCNP concentration and maximum NIR 
power, BLAID is expected to maintain computa-
tional complexity with sufficient stability, as indicat-
ed by negative Lyapunov exponent values.

In conclusion, combined results from Figs. 5a 
and 5b reveal how UCNP concentration and input 
laser intensity influence the system’s information 
processing and stability. The entropy analysis quan-
tifies the system’s information transformation capac-
ity, identifying conditions for optimal computational 
efficiency. Concurrently, the Lyapunov exponent 
analysis reveals regions of stability versus chaotic 
behavior, indicating the system’s long-term predict-
ability. Together, these metrics provide a robust 
framework for optimizing experimental parameters 
with a tailored trade-off between computational 
complexity and stability for specific applications.

CHALLENGES AND FUTURE DIRECTIONS

CHALLENGES FOR INTERNET OF BIOFILM LIVING AI

Developing Novel Application Services: The objec-
tive of BLAID is to pursue new opportunities and 
capabilities of AI that can go beyond algorithms 
or devices inspired from neural systems. This can 
result in novel applications that interface directly to 
chemical-based AI. However, this will require
• Discovery of novel mMTC services that can 

allow BLAID to be controlled from 6G
• Developing service directories that allow 

applications to dynamically match and map 
to GRNNs for deployment.
Security for BLAID: While security is a major 

challenge for conventional AI, it will be even more 
pronounced when considering Living AI. First and 
foremost, we are working with living cells to per-
form AI tasks. This also means that attackers could 
• Exploit numerous inherent natural functional-

ities for malicious purposes (e.g., activating 
toxin production),

• Manipulate plasticity in a way that results 
in GRNNs with weights unsuitable for their 
intended applications.

Addressing this will require novel nanoscale 
sensing techniques within the culture to ensure 
that these functionalities are not triggered. Ethi-
cal guidelines must also be established to ensure 
that BLAID is used for legitimate applications, and 
properly disposed of after use.

CHALLENGES IN CONTROLLING AND MANAGING BLAID

Efficient Light Penetration: NIR light generally 
penetrates biological tissues effectively, but within 
biofilms, structural density affects light scattering, 
limiting targeted region access. Achieving stable 
beam propagation and sufficient penetration is 
challenging, especially since adequate intensity is 
needed for nanoparticle activation. Furthermore, 
UPCNs often exhibit limited efficiency, particularly 
at lower power intensities safer for biological sys-
tems, necessitating optimization of nanoparticle 
composition and size. In addition, NIR lasers and 
upconversion processes can cause localized heat-
ing, potentially damaging cells or altering biofilm 
integrity. Balancing sufficient energy for gene acti-
vation while minimizing thermal effects is crucial, 
especially for long-term use.

Non-linear Dynamics and Environmental Influ-
ence: The computational capabilities of BLAID 
depend on non-linear transformations within the 
GRNN, which are sensitive to environmental vari-
ations and MC limitations. Signal degradation, 
diffusion variability, and interference from the extra-
cellular matrix complicate consistent biofilm-based 
computing. Furthermore, maintaining communi-
cation stability and fidelity over extended periods 
is difficult, as prolonged activity can alter biofilm 
structure, affecting signal transmission.

Training Biofilm Living AI for Computing: Bac-
terial cells exhibit adaptive plasticity in response 
to environmental changes, which can be direct-
ed similarly to training AI/ML models to fine-tune 
computation for specific applications. Directed 
plasticity could enable biofilms to adapt, advancing 
bio-computing, environmental sensing and preci-
sion medicine. Future research may explore using 
light as a teaching signal to directly regulate GRNN 
weights for more precise cellular responses. This 
will require software to compile transcriptomic 
data and algorithms to determine the appropriate 
light signals for adjusting GRNN weights.

CONCLUSION

In conclusion, this study presents the Biofilm Liv-
ing AI Device (BLAID), an innovative, energy-effi-
cient biocomputing platform that utilizes bacterial 
biofilms with Gene Regulatory Neural Networks 
(GRNNs) for distributed, analog computation. 
BLAID’s adaptability, computational complexity, 
and integration with 5G/6G networks make it a 
promising solution for intelligent edge computing. 
This study further showed the computing capacity 
and the reliability of BLAID using series of in silico 
experiments. However, challenges such as light 
penetration, security, and environmental sensitivi-
ty still need to be addressed.

Future research should focus on hybrid inter-
facing systems that combine molecular and 
optical inputs, along with advanced methods to 
regulate GRNN weights for predictable, determin-

It is important to note that, 

each unique combination 

of UCNP concentration 

and maximum NIR power 

represents a distinct com-

putational state.
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istic outcomes. These advancements could enable 
scalable, programmable biofilm-based computing, 
driving progress in bio-nano technologies and syn-
thetic biology.

Overall, BLAID has the potential to transform 
energy-efficient AI by integrating biological sys-
tems into novel computational applications in 
environmental monitoring, bioremediation, and 
healthcare, bridging the gap between synthetic 
and biological intelligence.
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