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Abstract—In this work, we performed a comprehensive
experimental and modeling study, clarifying the role of
ferroelectric materials in boosting the memory window of
FeFETs with gate-side charge injection for the first time.
We separated the ferroelectric contributions to the
memory window into remnant polarization and top charge
trap layer (CTL) trapping. Our findings demonstrate that:
(i) Ferroelectric materials enhance the memory window in
two ways: by switched more polarization when CTL traps
more, which provides screening charges, and through their
super-linear Q-V relationship that boosts the CTL electric
field and enhances charge trapping; (ii) The contributions
from polarization and CTL trapping mutually reinforce
each other, resulting in a larger memory window compared
to a ferroelectric + dielectric stack or a high-k + CTL stack,
where only one factor is active; (iii) Combined
experimental data and TCAD simulations confirm that
approximately one-third of the memory window is due to
increased polarization, while two-thirds result from CTL
trapping; (iv) The memory window can be further
enhanced with a blocking oxide on top of the CTL,
achieving up to a 16V window with an ONO blocking oxide.

I. INTRODUCTION

The insatiable appetite for high density storage, especially
in the era of data generation at an exponential rate and the large
language models exploding, calls for higher capacity and lower
power storage. Vertical NAND flash has been fueling this
paradigm shift due to its cost efficiency and clear scalable path.
However, such a scaling is met with significant challenges
related with the poor write efficiency of Flash. Because of the
inefficient tunneling process, flash memory write pulse voltage
and pulse width are excessive, posing significant challenges in
further scaling along the XY and Z dimensions. To address this
challenge, recently, FeFET, has been shown to be highly
promising by incorporating gate side injection (Fig.1(a)). It is
known that in the conventional FeFET, the channel side charge
injection causes many reliability concerns, as the charge
trapping counteracts the polarization induced Vry shift.
However, if the gate side injection can be induced, rather than
the channel side injection, the charge trapping can help boost
the memory window [1]. There have been many promising
reports that show a large memory window suitable for vertical
NAND application (Fig.1(b)). Fig.1(c) summarizes the reported
FeFET memory window including the conventional ones (i.e.,

follow a linear dependence on the ferroelectric thickness) and
the ones exploit the gate side injection. Though this memory
window boost is intuitive, the exact role that ferroelectric plays
has not been clarified, which is critical for future memory
optimization and reliability improvement. This work aims at
clarifying the ferroelectric role and provides the insights.

There are two components in the memory window, one
from the remnant polarization and one from the gate side charge
trapping. Though polarization is present in all kinds of FeFET,
the FeFET with top charge trap layer (CTL) boosts the
switchable polarization, compared with the FeFET with only
top dielectric without any trapping (Fig.2(a)). This is because
the trapped charge in the gate side acts as screening charge,
which can help polarization switching. To identify the role of
ferroelectric in inducing charge trapping, it is important to
compare with the stack with high-x (HK) dielectric and the top
CTL, in which case, no polarization is present. Looking at the
O-V relationship, the super-linear Q-7 of FE can help reduce
the required FE voltage drop compared with the HK for the
same charge or induce more charge switching for the same
voltage drop. From this analysis, it is clear that polarization and
gate side charge trapping reinforce each other, thus jointly
enhancing the window. In this work, we are clarifying such an
interaction and separating each component in memory window.

II. FARBICATION PROCESS

For a comprehensive study of the impact of gate stack
layers on FeFET performance, experimental investigations
were conducted in this work. Fig.3(a) demonstrates the control
sample with10-nm-thick HZO and other three stacks: 10nm
HZO with 5nm SiNyx on top (FE+CT), 10nm HfO, with Snm
SiNy on top (HK+CT), and 10nm HZO with 5nm Al,Os on top
(FE+DE). The integration fabrication process flow is depicted
in Fig.3(b). The fabrication is carried out on a P-type silicon.
After phosphorus ion implantation and activation, the isolation
oxide in the gate area is removed. The gate dielectric HZO,
HfO,, SiNy, ALO; are deposited through atomic layer
deposition (ALD) at 250°C. As for the FE+CT gate stack,
additional 1nm and 2nm Al,O; and 2nm SiO; are deposited to
study the effect of blocking oxide. Moreover, the common
flash structure SiO,/SiN,/SiO, (ONO) is fabricated as well.
Tungsten (W) layer is sputtered serve as source, drain, and gate
metal, followed by RTP annealing in forming gas (N>+Ho,
350°C) and N> (500°C). Fig.3(c) shows the top view scanning
electron microscopy (SEM). Fig.3(d) shows the transmission
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electron microscopy (TEM) of cross-sections of the four gate
stacks of FeFET, and the energy-dispersive x-ray spectroscopy
(EDS) line scans are shown in Fig.3(e), respectively. These
TEM and elemental profiles confirm the intended thickness
and material in the gate stack designs. The pulse /p-Vs of top
charge trapping layer and bottom ferroelectric layer were
shown in Fig.3(f) and (g). The experimental results
demonstrated FeFET with CTL is larger than dielectric layer
(i.e., weaker charge trapping) and that with ferroelectric layer
is larger than that with high-k dielectric.
III. CLARIFYING THE ROLE OF FERROELECTRICS

For detailed study, TCAD models are first built and
calibrated based on the 2nm blocking oxide structure
(Fig.4(a)). Ferroelectric Preisach model and SiNy charge trap
layer parameters are also given. The TCAD simulation can
well reproduce experimental results (Fig.4(b)). With such
models, the two contributors are studied: 1) Remnant
polarization (Prg), and 2) the super-linear O-V. To study the
first factor, TCAD simulations comparing the scenarios of
enabling or disabling the top CTL trapping are conducted.
Fig.5 (a) shows the average polarization at V=0V after write.
It shows that the switched polarization is enhanced 3.3x with
the CTL trapping compared with the one without trapping. As
a result, MW can be enhanced due to APgg/Crg component.
Fig.5(b) shows two cycles of program/erase waveforms
(x15V, 10us) and the corresponding trapped electron/hole
density. In Fig. 5(c), experimental Ip-Vg characteristics of
10nm HZO control FeFET (£4V, 10us) and FE+CT with 2nm
ALO; (£15V, 10us) are compared, where MWs are 1.6V and
approximately 12V, respectively. TCAD simulated /p-V (Fig.
5(d)) are consistent with the experiments. Using the simulated
results, the pure Pgg contribution is estimated to be 3.6V and
the remaining 8.4V memory window comes from the CTL
charge trapping (Fig.5(d)). This clarifies the pure remnant
polarization Pre provides around 1/3 contribution in the
enlarged MW, whereas 2/3 MW is due to the charge
trapping effect.

To show that the super-linear Q- of ferroelectric can boost
MW, a hypothetical nonlinear dielectric (Fig.6(a)) was
implemented in TCAD. Fig.6(b) presents the Q-V
implemented in TCAD with different nonlinearity. When the
same voltage is applied, super-linear dielectric can gain a
larger amount of charge (AQOnr) than linear dielectric charge
(AQL). This obviously induces higher injected charge in CTL
to increase MW. And the experimental pulse Ip-Vs between
FE+CT and HK+CT was shown in Fig. 6(c), which verifies the
FE could achieve higher MW compared to HK. But the
experiment also includes the polarization contribution (~4V in
Fig.5(c) and (d)), excluding which the pure charge trapping
contribution is about 4.7V, 1.7x of the HK+CT device.
Fig.6(d) shows trapped electron density in the CTL during -
15V program and electron loss after program. It shows that the
larger the nonlinearity, the higher the trapped electrons. This
charge trapping enhancement is originated from the enhanced
electric field in the CTL (Fig.6(e)) as the FE field reduces with
stronger nonlinearity.

After clarifying the role of ferroelectric, next with the help
of TCAD simulations, the two components are further
investigated by comparing the FE+CT and HK+CT stacks and
cross-validated with prior analysis. The electric field in the

CTL during both program (Fig.7(a)) and erase (Fig.7(b))
shows an enhanced CTL field and reduced FE field compared
with HK case. The corresponding band diagrams for program
(Fig.7(c)) and erase (Fig.7(d)) also shows the reduced FE field
compared with HK. As a result, the trapped electrons during
program (Fig.7(e)) and trapped holes during erase (Fig.7(f)).
Fig.7(g) summarizes the trapped electrons/holes/space charges
during programming/erase. From these results, it can be
estimated that the HK+CT will exhibit around 4.6V window
while the trapped contributed window is 8V for the FE+CT
case, again 1.7x of the HK case, consistent with experiment.
IV. CHARACTERISTICS OF GATE SIDE INJECTION FEFETS
WITHOUT AND WITH BLOCKING OXIDE

Further analysis of the fabricated devices is first conducted
on the devices without a block oxide. Fig.8(a) and (b) shows
the Ip-Vs curves with different programming voltages when
initialized at the low-Vru (LVT) and high-Vm (HVT) state,
respectively. The corresponding Vru as a function of
programming voltages are summarized in Fig.8(c) and (d),
respectively for three different stacks, i.e., FE+CT, FE+DE,
and HK+CT. It clearly shows that the slope of the incremental
step pulse programming (ISPP) (Fig.8(e) and (f)) of the
HK+CT is below 1, typically present for flash-based device,
indicating that the Vi increase is theoretically below the step
size of programming pulse [2]. However, with the mutual
reinforcement of the polarization and charge trapping, the ISPP
slope can be well above 1, suggesting superior tuning
efficiency of the FE+CT device. Fig.9(a) and (b) shows the
band diagrams during zero bias convention for FE+CT and
HK+CT. Due to the presence of polarization, the electric field
can help retain the trapped charges (Fig.9(c)), thus slowing the
charge loss during retention compared with HK+CT. Fig.9(d)
compares the retention between the two stacks, consistent with
the theoretical picture shown in Fig.9(a) and (b).

Next the impact of blocking oxides on the FeFET memory
window is presented. Fig.10(a)-(c) shows the TEM, elemental
mapping, and atomic composition along the gate stack with
2nm AlOj; blocking oxide, respectively. The corresponding
DC and pulsed Ip-Vg curves of different blocking oxide
thicknesses shows that the MW increases with the blocking
oxide thickness that 2nm Al,O3; has about 12V window with
+15V, 10us programming pulses. In all the devices, an ISPP
slope larger than 1 is observed. When comparing different
blocking oxides (Al,O3 vs. SiOs vs. Si0,/SiN,/SiO»), AlLO;
shows a similar window as SiO; while the ONO has a larger
window, but also need a larger write voltage (Fig.10(i) and (j)).

V. CONCLUSION

This work firstly clarifies ferroelectric material and charge
trapping mechanisms contributing to boosting MW in gate-
side-injection FeFET through simulation and experimental
results. This helps the better understanding and guide in FeFET
design in 3D NAND with higher storage. With =15V, 10us
pulse, FE+CT+2nmAl,O3 gate stack can reach to 12V memory
window. Optimizing the gate stack (such as ONO structure)
could potentially achieve better performance in future memory

applications.
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Detailed Analysis of Both Window Contributors Through Comparative Study of FE+CT and HK+CT Stacks
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