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Abstract: This study aims to extract critical scenes/continents in the weld pool region during gas
metal arc welding (GMAW). The scenes considered include the wire, arc, and weld pool, while
other secondary ones such as oxides are temporarily excluded. They are critical to understanding,
analyzing, monitoring and controlling the welding process, in particular the critical correlation how
the welding parameter, arc and weld pool are dynamically correlated. Unfortunately, such
fundamental correlation has not been studied and lack of effective ways to simultaneously
monitor/extract these scenes is responsible. With the development of optoelectronic devices,
weld pool regions can be better imaged. However, because of the nature of the scenes in particular
the arc which is formed by ionized gas without a clear boundary and highly dynamic, detecting
them using computer vision is challenging. Deep learning is an effective method, but model
training usually needs a large number of labels. As manually labeling is expensive, we propose an
approach to address this challenge that can train a model from a small, inaccurately labeled
dataset. This approach is designed, per the characteristics of the scenes and their dynamics All-in-
One Network (AOD-Net) was deployed first for defogging, and then the YOLOX network was
utilized to identify regions of interest to reduce the impact of molten metal splashes on image
sharpness. Subsequently, we developed a timed segmentation network incorporating the Long
Short-Term Memory (LSTM) mechanism into U-Net, which can be used to extract more accurate
information about the weld pool by combining the temporal and spatial information in the
continuous process of welding at a low cost because our scene of interest is in a continuous and
dynamic evolutionary process. After defogging and removing the effects of molten metal spatter,
we can obtain information on the dynamics of the weld pool and the weld arc at the same time.
Experimental results verified that the trained network could extract the critical boundaries
accurately under various welding conditions despite the highly dynamic changes and fuzziness of
the views.
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1 . Introduction

Gas Metal Arc Welding (GMAW) stands out as an exceptionally efficient welding technique where
the filler material is continuously and automatically fed and melted through the arc. Its high level
of automation makes it easily adaptable to robotic systems, rendering it the preferred choice for
various applications such as additive manufacturing, cladding, and general welding processes [1].

The weld pool region is the epicenter for all intricate welding phenomena, necessitating real-time
monitoring and control, particularly in robotic welding scenarios where human intervention is



absent. While numerous techniques exist for monitoring the weld pool, including infrared sensors
[2,3], vision-based methods emerge as the most direct surrogate for human observation. However,
visual sensing of the weld pool region poses challenges, primarily due to the obstructive nature of
arc radiation during welding processes. Richardson and Gutow introduced the coaxial observation
method, employing a camera positioned coaxially above the tungsten electrode to observe the
weld pool area effectively [4]. In another effort, by strategically utilizing a monochromatic or
single-color laser as an illumination source, the reflection from the object to the imaging sensor
can be enhanced, overcoming the dominance of arc radiation [5-9]. Furthermore, the illumination
laser has been pulsed to reach very high power and synchronized with the shutter of the camera
[10]. Since the specular reflection from the liquid weld pool is not collected by the camera's sensor,
and the surrounding solid metal glows due to diffuse reflection to form a bright area, the dark area
in the image is the weld pool. In this way, the boundaries of the weld pool can be clearly observed.
This intricate synchronization ensures that the illumination laser, pulsating at high power,
effectively enhances the contrast between the weld pool and its surroundings. By selectively
filtering out specular reflections and capitalizing on the diffuse reflection from the surrounding
metal, the resulting image distinctly highlights the weld pool's boundaries, enabling precise
observation and analysis.

High Dynamic Range (HDR) cameras offer another avenue to observe the weld pool region. They
utilize advanced imaging technology to capture a broader range of luminance levels in a single
image, thereby providing enhanced detail and clarity in both the brightest highlights and the
darkest shadows. Cui employed an HDR camera to monitor welding processes, specifically
studying the dynamic behavior of the molten pool and locking holes in real-time welding processes
[13]. The ease of deployment of HDR cameras in manufacturing environments, coupled with their
ability to produce high-clarity images distinguishing melt pool contours and arcs simultaneously,
facilitates a comprehensive understanding of melt pool dynamics. This capability makes them
ideal for our purpose of capturing all critical scenes in a single image.

Even in high-quality images such as those captured by HDR cameras, the weld pool boundary is
still easier to identify than that of the arc. Extracting the weld pool boundary from images requires
target detection through image processing. There have been extensive works to detect weld pool
boundary using conventional segmentation algorithms [4-14]. They focused on feature extraction
from a single image, making it difficult to obtain advanced semantic information. Rother et al.
extended the MRF segmentation method [15] and proposed for the first time the concept of
collaborative segmentation, which refers to the extraction of common foreground regions from
multiple images without human intervention. The foreground features of the seed images are
extracted as a priori knowledge by utilizing the classical segmentation method and then used to
process a set of images containing the same or similar objects. Vicente et al. [16] proposed to
extend the Boykov-Jolly method using multiscale decomposition based on MRF collaborative
segmentation, as well as the L1 criterion model [15], the L2 criterion model [17], and the reward
model [18]. Alexe et al. [19] proposed a measure based on object scoring by quantitatively
calculating the probability of any category of objects in an image window and using the highest
scoring window as a feature calibration for each category of objects. Vincente et al. [20] used
foreground objects and measured the similarity between the objects, extracting the highest
scoring features from multiple candidate object categories in the iCoseg dataset with good



experimental results. However, conventional algorithms require task-specific efforts to design the
algorithm details per image characteristics. Although there have been various algorithms
developed to detect the weld pool boundaries, they are all difficult to generalize. For arc
boundaries, which are much more dynamic and fuzzier, there have been no reported successes.
This underscores the need for innovative approaches in overcoming these challenges and
developing generalizable robust algorithms capable of accurately delineating both weld pool and
arc boundaries.

Convolutional neural networks (CNNs) based deep learning models provide generalized solutions
for robust algorithms. Segmentation is achieved through training models using labeled boundaries,
minimizing the need for task-specific efforts. LeNet-5 [21], AlexNet [22], and VGG [23] have
demonstrated success in image classification, where the output layer categorizes the image.
However, deep learning models typically require large labeled datasets for training. Long et al [24]
introduced Fully Convolutional Networks (FCNs) and designed an encode-decode structure to
extract high-level semantic information and map it back to the source image size. Skip connections
or shortcut connections improve coarse pixel localization, and U-Net [25] leverages skip
connections and feature cascading from encoder to decoder layers to obtain fine-grained image
details. This approach yields promising results even with small datasets.

In terms of enabling deep learning techniques to process GMAW images, Baek et al. [26] proposed
a model based on semantic segmentation of residual neural networks to effectively predict the
depth of a molten weld pool, which is different from the weld pool boundary. Wang et al. [27]
designed a multiscale feature fusion semantic segmentation network, Res-Seg, that can detect the
weld pool boundary. The accuracy of the information obtained depends heavily on the dataset
used for training, which requires a large number of datasets and accurate data labeling. Wang et
al. [28] supplemented the melt pool dataset with a Deep Convolutional Generative Adversarial
Network (DCGAN) [29] after designing the Res-Seg network. As such, there have been no
generalizable successes in detecting the weld pool boundary, nor any mention of the arc boundary,
in the highly dynamic and violent GMAW process without the availability of a large set of manual
labels.

The continuous welding process in automated welding is characterized by high temperatures,
spatter, smoke, and intense brightness, which often result in captured images of the weld pool
being unclear. Accurately labeling large datasets under such conditions poses a significant
challenge. Because image-based methods for detecting the weld pool boundary are susceptible
to interference from welding arc brightness and deformation, previous studies have mainly
focused on mitigating the effects of the arc. Bea et al. [30] addressed this issue by capturing weld
pool images at the moment of the short circuit of the arc welding process, thereby circumventing
the interference of arc light. However, due to the high brightness and variable shape of the arc,
traditional CCD cameras struggle to capture clear images, leading to a lack of research on image-
based welding arc boundary detection. Moreover, obtaining the boundary of the welding arc while
simultaneously capturing the welding molten pool has not been adequately explored, largely due
to the overwhelming brightness of the arc light.

In this study, we utilize an HDR welding camera to capture usable images of the weld pool and the
arc simultaneously. We propose a composite U-Net network integrated with LSTM-Cell [31] to



extract key information of both the weld pool and the arc. Prior to processing, images undergo
preprocessing using AOD-Net [32] and a Reinteresting module inspired by the YOLOX [33] network
to mitigate the effects of spatter and smoke during welding. Leveraging the uniquely designed
preprocessing module and feature recognition capabilities of the U-Net network, our model
achieves precise and simultaneous extraction of the weld pool and welding arc boundaries, even
with a limited training dataset. Experimental results demonstrate the robustness of the model,
marking a significant advancement as it achieves the simultaneous detection of weld pool and
welding arc boundaries, in addition to the wire, allowing us to automatically monitor the robotic
welding process to assure process operation in the absence of human presence and analyze the
welding process at higher level from big data.

2 . Welding Process:

Two 6-degree-of-freedom (DOF) industrial robots, UR10e and UR16e, were used as a welding
robot and a monitoring robot, respectively (Fig. 1). On the monitoring robot, the Xiris’ HDR weld
camera XVC-1100, a digital weld camera for open-arc welding, was mounted to capture images of
the arc and the molten pool. A bandpass filter centered at 650nm is mounted on the lens to filter
out strong arc light. We use a PC to control the speed and direction of the welding robot and
monitor the robot to follow the control to control the robot movement.

Figure 1 Automated Welding Systems

We set a constant welding speed during each experiment and the welding parameters are shown
in Table 1. The welding power supply was operated in constant voltage mode with a high voltage
of 40.8 V to ensure a spray transfer mode with less spatter and good bead appearance, thus
making it suitable for bead-on-plate experiments on thick workpieces. The welding parameters
were controlled by a computer using a PCI-6229 National Instruments data acquisition card
running in C++.



Table 1. Welding parameters.

Welding Parameters Values
Welding method GMAW
Welding type bead on plate
Polarity DCEP
Welding speed 3-12 mm/s
Voltage 40.8V

Wire feeding speed 310 in./min

Gas flow rate (95% Ar and 5% CO2) 15 ft3/h

Contact tip to workpiece 20 mm
Wire diameter 1.2 mm
Workpiece thickness 20 mm

Through several experiments, over 10 sets of videos of the welding process were captured. Each
of them was segmented into images by frames for us to observe/screen. It was found that the
visibility of the weld pool boundary in the captured images is often obscured by the smoke (Fig.
2). During GMAW process, smoke is generated due to the intense heat generated by the arc spots
causing wire, workpiece, and workpiece coating to overheat to vaporize. The vapors are highly
dynamic and fluctuate within the weld pool view. They will condense into fine particles to produce
welding fumes. The composition of these fumes may vary depending on the welding material, the
type of electrode used, and any coatings on the metal.

(a) (b) (c) (d)

Figure 2 Smoke observable during the welding process

At the same time, we have found that spatters may arise during the welding process (Fig. 3). For
open arc GMAW process, the melted wire is transferred into the workpiece through spray or
globular transfer mode. Spary transfer minimizes spatters, but the current is high. At higher
current densities, the metal may overheat and burst, forming fine-grained spatters.
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Figure 3 Molten spatters from the welding process

What we are primarily concerned with and aim to extract are the shape and width of the weld
pool. Additionally, we need to extract information about the arc and torch. All complex welding
phenomena in arc welding originate from the arc, which serves as the input of the welding process,
while all welding phenomena occurring on the workpiece, which we are concerned with,
constitute the resultant output. Welding parameters (such as current, voltage, speed, etc.) are the
nominal and easily quantified inputs of the welding process. However, the actual inputs that
directly control the welding process are the heat and force distribution of the arc. Welding
parameters determine the integration of these distributions, but the actual distributions also
require the center and standard deviation for a complete description. Therefore, in addition to the
total heat/power of the arc, which is determined by welding parameters, the location of the arc
center and the extent of arc spread are also critical in producing the welding output. Thus,
monitoring and extracting this information are crucial for understanding and analyzing the welding
process in greater depth.

Arc behaviors have been widely studied. Wu [34] et al. analyzed the effect of SiO2-activated TIG
arc plasma morphology, arc space electric field strength, arc temperature, arc current density, and
arc on the geometry of the weld. Hua et al. [35] showed that the wire extension, arc length and
welding current all affect the arc behaviors and instability. They analyzed the reasons for the
increase in the arc deviation, which causes an increase in arc length and thus arc interruption.
Fang et al. [36] showed that the welding arc shape can be judged during the welding current over
zero to determine whether the arc extinguishing or re-arcing phenomenon occurs. Zhang [37] and
others showed that the magnetic pipe will have an impact on the arc. Combined with Zhu [38] and
others, they analyzed the magnetic bias blowing in the welding process on the welding arc, and
the reasons for the welding arc can be inferred from welding to the magnetic field. Arc morphology
helps determine the welding process's magnetic field distribution and other information. As such,
the welding arc contains key information about the welding state, and obtaining the shape of the
welding arc is one of the keys to understanding the welding process. Unfortunately, there have
not been works to monitor and automatically extract the arc.

Analysis of the welding process and captured videos can guide us in deciding what is critical and
understanding the challenges in extracting it. It is evident that using conventional image
processing approaches to extract the necessary critical information is challenging, and a deep
learning approach is required. Additionally, manually labeling a larger number of images for critical
information is unrealistic. A significant issue is that critical scenes are fuzzy, making them difficult



for humans to identify clearly. Consequently, we will encounter the issue of limited labels and
labeling errors. the dataset labeling, a set for labeling the molten pool, a set of arc and torch
information for labeling. Labeling using Labelme open source labeling software, using polygonal
labeling, labeling information obtained for the json format, this time you need to convert the json
format data, converted to the form of the target mask. After the completion of the data set
production, conversion is complete.

3 . Methodology:

We present a combinatorial neural network for scene extraction from weld pool (area) images. As
shown in Fig.4, the network first preprocesses the captured image, and then inputs the image into
"Denoising Module" to denoise the weld pool part of the image. The image is then fed into the
"Reinteresting Module" to identify the region of interest to minimize the effect of smoke and
spatter. The next step is to extract the shape and size of the weld pool from the preprocessed
image using a time series-based segmentation model in the "Timing Segmentation Module" and
in the "Wire and Arc Segmentation" respectively, where the “Segmentation Module" obtains the
Wire and Arc information. Once this process is completed, key information about the weld pool
during the welding process is acquired in real time.
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Figure 4 Welding Process Melt Pool Critical Information Detection Network Architecture
3.1 Preprocessing

3.1.1 AOD-Net Defogging

Since the smoke and spatter will also be captured, which would adversely affect the accuracy in
extracting the weld pool, a pre-processing of the captured image may benefit. The pre-processing
consists of Denoising and Reinteresting. A defogging model constructed using AOD-Net (an All-in-
One Network) [32] is used for image denoising. After inputting the image into the K-estimation
module (Fig. 5), the K-value at each pixel in the image is output, which is substituted into the new
atmospheric diffraction model to calculate the resultant image after defogging.
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Figure 5 AOD-Net de-smoking structure for welding process

The model was designed based on a reformulated atmospheric scattering model that was
transformed to yield the fog depth and concentration levels at each pixel in the evaluated image.
Equation (1) represents the original atmospheric scattering model:

I(x, 1) = e—BO\)d(x)R(x, D) + Lo [1-— e—[i’(/’l)d(x)] (1)

where I(x, 1) is the original unfogged image obtained by the detection system, and R(x, 1)
denotes the defogged image that needs to be recovered. The parameter x denotes the position
of the pixel point in the image, 4 is the wavelength of the light, and L, denotes the value of the
atmospheric light at infinity (the source of the light comes from the sky at infinity). t = e~ PA()
denotes the transfer function, the physical meaning of which is the proportion of light that can
reach the detection system after particle attenuation, where B(A) denotes the scattering
coefficient, which is used to characterize the scattering ability of the medium for different
wavelengths of light, and d (x) is the light transmission distance. We first neglect the A variable in
Equation (1), the wavelength of light, so that the transmission function becomes the transmission
matrix £(x), and the recovered de-fogged image will be represented by J(x), and the value of
atmospheric light at infinity is denoted using A. Equation (2) can be obtained. At this point we can
get the expression Equation (3) for the defogged image J(x), where b is a constant bias defaulted
to 1.

I(x) =] ()t(x) + A[1 = t(x)] (2)

1 1
———A——+Db (3)

J(x) = 1(x) OO

At this point we want to get the image J(x) after defogging. This requires to calculate the
transmission matrix t(x) and A. However, for these two parameters we can only estimate. A
separate estimation of these two parameters will lead to the accumulation of error and
amplification. As such, AOD-Net is proposed to integrate these two parameters. Using K(x),
Equation (3) is rewritten as Equation (4).

JG) = 1)K (x) —K(x) +b (4)

To calculate the parameter K(x), AOD-Net is designed with a K-estimation module, which is
structured to utilize five convolutional layers to process the input data. Multi-scale information is



integrated by combining concatenated layers of varying sizes. lllustrated in Fig. 6, the convolutional
component of this model involves concatenation operations denoted as concatl, concat2, and
concat3. Concatl connects features extracted from convl and conv2 layers, concat2 combines
features from conv2 and conv3 layers, and concat3 integrates features from convl, conv2, conv3,
and conv4 layers. The final convolutional layer, conv5, is responsible for generating the
atmospheric attenuation coefficient (K) of this image. This architecture ensures the incorporation
of multi-scale information and the effective utilization of features extracted at different levels of
abstraction, ultimately contributing to the accurate determination of the atmospheric conditions
affecting the captured image.
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Figure 6 K-estimation module network structure
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Since the K estimation module used is improved based on the atmospheric diffraction model, the
training dataset of this network does not need to use weld pool images, but only images with
different degrees of fog depths, and the use of this type of dataset makes the AOD-Net more
robust and adaptable when dealing with weld pool images. The dataset we used is ground-truth
images with depth meta-data from the indoor NYU2 Depth Database [32], which has 27256 data
sets, a total of 10 epochs of training, and is used for weld pool defogging with good results. The
obvious de-fogging effect can be seen (Fig.7).
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Figure 7 Comparison of the effect before and after applying the denoising module to the weld pool image

3.1.2 YOLOX-s Reinteresting Weld Pool

Given the interference of spatter during welding, which can often obscure the weld pool details in
captured images, we mitigate this effect by amplifying the weld pool information. This is achieved
through a process we term 'Reinteresting' the weld pool. To execute this, we refocus the image
specifically on the weld pool region. This involves training the YOLOX-s network to accurately
identify the weld pool amidst other elements in the image. Subsequently, we selectively eliminate
extraneous information, leaving behind only the weld pool details. By implementing this
'Reinteresting' approach, we enhance the clarity and prominence of the weld pool within the
image, facilitating more accurate analysis and interpretation. In Fig.8, only the lower right corner
of the original image has the information we need. After we use the "Reinteresting" module, the
image will be automatically cropped to the weld pool, effectively avoiding the effects of molten
metal spatter in other areas.



Figure 8 "Reinteresting" the weld pool.

YOLOX-s (Fig. 9) [33], introduced by Cavity Technologies in 2021, builds upon the foundation of the YOLOv5-
s model with significant improvements. One notable enhancement lies in its utilization of two data
augmentation techniques, namely Mosaic and Mixup, at the input stage. The Mosaic algorithm, a derivation
of the CutMix algorithm [33], stands out for its effectiveness in detecting small targets. Unlike CutMix,
Mosaic integrates multiple images by employing random scaling, random cropping, and random
arrangement. Additionally, it ensures that the changing relationships of each image are preserved in their
corresponding image labels. This approach proves particularly beneficial for accurate detection in scenarios
involving small targets. On the other hand, MixUp data augmentation focuses on enhancing class diversity
within the training dataset. By employing linear interpolation to blend images from different classes, MixUp
generates new training samples, effectively expanding the dataset. This technique promotes robustness and
generalization of the model by exposing it to a wider range of class variations during training.
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Figure 9 YOLOX network improvements over previous YOLO networks in terms of decoupling headers



The backbone of YOLOX-s is basically the same as that of YOLOv5-s, except that the activation
function is changed to the SiLU function. That is, the Neck section is the same as YOLOv5-s, but
with the activation function replaced by SiLU. The main improvement comes from changing YOLO
head to Decoupled Head in Predication, since the "expressiveness" of YOLO head is poorer
compared to that of Decoupled Head.
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Figure 10 Design of the decoupled head section of the YOLOX network

In Fig.10, there are a total of three branches before the final Concat in the Decoupled Head
structure). The first branch is used to categorize the target category in each frame and to predict
each score, which is then convolved by a CBL of size 1x1 and two CBLs of size 3x3 and activated
using the Sigmoid function. (Here CBL stands for Conv-BN-LeakyRelLU, which is a common
convolutional block structure. This structure consists of three parts: a convolutional layer (Conv),
a batch normalization layer (BN, Batch Normalization), and a LeakyReLU activation function.) The
second branch is used to determine whether the target frame is foreground or background, similar
to the first branch. The last branch is to predict the coordinate information (x, y,w, h) of the
target frame, which does not require Sigmoid function activation compared to the second branch.
In the end these three branches are fused together by Concat. The network uses 3 Decoupled
heads and outputs the results after the output Concat.

3.2 Wire and Arc image segmentation

3.2.1 U-Net Network



The left of the U-Net network [25] (Fig. 11) acts as feature extraction and the right as upsampling.
Such a structure is also called Encoder-Decoder structure in some literature. This network is
named U-Net because the overall structure of the network resembles the capital letter U. Each
blue box (except for the first input) corresponds to a multichannel feature map, where the number
of channels is labeled at the top of the box. x — y magnitude is located at the bottom left corner
of the box. The blue line boxes indicate the copied and cropped (Concat) feature maps. Arrows
indicate the different operations. The network consists of a contracting path (contracting path)
and an expanding path (expanding path). Shrinkage path (downsampling process) is used to obtain
contextual information, extract the features of the feature map through multiple convolution
operations in each layer to generate a new feature map and increase the number of features in
the feature map, and reduce the size of the feature map through the max pool process to reduce
the size of the feature map and connect each layer. When the feature map is small enough and
the number of channels is large enough, the feature map is "expanded", i.e., the expansion path
(up-sampling process) is used to locate the image accurately, which is similar to the structure of
the contraction path, except that the max pool process is replaced by the inverse convolution
process to expand the image and superimpose the feature maps corresponding to the contraction
path layer in front of each layer. Therefore, the two paths are symmetrical to each other. The
structure of the U-Net network makes it possible to use valid labeled data more efficiently from a
very small number of training images. U-Net uses a completely different approach to feature
fusion: concatenation, where U-Net uses features that are spliced together in the channel
dimensions to form thicker features. FCN fusion, on the other hand, uses a summation of the
corresponding points and does not form thicker features.
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Figure 11 U-Net network structure[25]

In the weld pool image we obtained, there is information about the wire and arc which is also
needed for us to combine with the extracted weld pool to completely depict the process. Since
the features of the two are obvious after the image is preprocessed by our de-fogging and
Reinteresting modules, the wire and arc can be easily segmented using a multi-objective 5-layer



U-Net network. Because of the obvious features and the code-encode structure of the U-Net
network, the data annotation does not need to be very accurate, and the training dataset does
not need to be very large to obtain good results. As such, we only use 118 sets of data for training
and validation. After training 200 epochs, good results are achieved that the trained model can
segment the wire with arc (Fig. 12). It is interesting to note that the segmentation results are even
better than labeling which may be inaccurate as the result of a manual process.

Original Image Label Prediction

Figure 12 Weld Pool Data and Results

3.3 Segmentation of Weld Pool Images Based on Time Series
3.3.1 Convolution LSTM

As an improvement of the classical FC-LSTM network, Convolution LSTM (ConvLSTM) was
proposed by Xingjian Shi et al [39]. First of all LSTM (Long Short-Term Memory) is a kind
of RNN (Recurrent Neural Network). The LSTM structure consists of four parts: memory
cells, input gates, output gates and forgetting gates (Fig. 13).
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Figure 13 Classical LSTM network structure

The ConvLSTM model changes the fully-connect layer into a convolutional layer and
replaces the input-to-state and state-to-state parts of FC-LSTM from feed-forward
computation into the form of convolution. As a whole, the model structure of ConvLSTM
is mainly divided into two parts: the temporal structure follows the typical RNN network
structure; the spatial structure follows the CNN feature extraction method. To put it simply,
the ConvLSTM model is equivalent to replacing all fully connected structures in LSTM with



convolutional structures, while adopting a structure based on peep connections. Its only
change is in the way the individual gating units are computed as shown in Fig. 14.
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Figure 14 ConvLSTM network weight relations

3.3.2 U-Net fusion ConvLSTM

Since the welding process is an industrial process that has a close connection in the
temporal relationship, it has a certain correlation in the time dimension. Yin et al [40] used
a time-series based model for predicting changes in geographic lake boundaries by fusing
LSTM models in a U-Net network. We introduce a special RNN network, LSTM network,
into the U-Net classical decode-encode network to convey the temporal information. The
LSTM-Cell is constructed to integrate it into the U-Net image segmentation network (Fig.
15).
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Figure 15 U-Net Fusion ConvLSTM Network Structure

As shown in Fig. 16, the encode module of the network is employed to capture the weld
pool information from continuously fed images. Additionally, the ConvLSTM Cell is



integrated into the feature fusion process within each layer of both decode and encode
operations. This Convolutional Long Short-Term Memory (ConvLSTM) network is a variant
of the traditional LSTM network, utilizing convolution operations instead of matrix
multiplication to retain spatial information within the image.

Encoding Network Prediction

ConvLST My ConvLST M,

ConvLST M, ConvLST M,

Input e ’ ‘/_.4—97l / Forecasting Network

Figure 16 ConvLSTM Structure Fusing Temporal and Spatial Features

In ConvLSTM Cell the LSTM structure is used to preserve the temporal feature information
of the image and the convolution operation is used to preserve the spatial features and
used in the next frame (Fig. 17).

Figure 17 ConvLSTM Cell

At the same time the target features are obtained by downsampling and then upsampling
is used to recover the information about the weld pool based on the obtained features.
The input of the model is the weld pool image after Denoising and Reinteresting, and the
output is the shape and size of the segmented weld pool (Fig. 18).
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Figure 18 ConvLSTM Cell passes temporal and spatial hidden features in U-Net

In Fig. 18, input corresponds to the input feature maps after the convolution operation of
each layer of downsampling, and output is the feature maps added to the corresponding
downsampling layer before the convolution operation, and the blue box is the ConvLSTM
-Cell, which can be set to more than one (i.e., the depth of the pass), in order to reduce
the computational pressure, in the network we design, we currently use only one
ConvLSTM-Cell. Its vertical direction is one time feature map passing, and the horizontal
direction is time series feature passing. The passings rely on two functions, h and c.

4. Results and Discussion

4.1 Training

We used a computer with an Intel® Core™ i9-13900K CPU, 64GB of random access
memory, and an NVIDIA GeForce RTX 4090 to train the model using the Pytorch library. In
our model, AOD-Net for Defogging uses Adam optimization algorithm with an initial
learning rate of 0.001, B1=0.9, p2=0.999 and weight decay set to be 1 x 1078. Loss
function is MISE which is used to compute pixel differences between images before and
after defogging. The SSIM structural similarity is used to measure the similarity in
structural information between images before and after defogging. The Reinteresting
Weld Pool section uses the SGD (Stochastic Gradient Descent) optimization algorithm,
with the initial learning rate set to be 0.01, and the weight attenuation set to be 0.0005.
The loss function uses IoU loss (Intersection over Union loss) to calculate the bounding
box regression loss. The segmentation part of the U-Net network uses the Adam
optimization algorithm. The initial learning rate is set to 0.001, the StepLR method is used



to decay, and the learning rate decays 0.1 per 7 steps. The loss function uses Cross-Entropy
Loss. The evaluation indicator uses Accuracy.

4.1.1 Preprocessing Network Training

First Denoising Module in AOD-Net, we use ground-truth images with depth meta-data
from the indoor NYU2 Depth Database [41], of which 27256 sets of data are used for
training and 1449 sets of data are used for training validation. A total of 10 Epochs were
trained. In Fig. 19 We can see that the training loss and the testing loss will drop quickly
to around 0.02 at the beginning and then stay at that level. The final model is used for
weld image defogging with good results.

—— Train Loss
0.16 | —— Val Loss

Figure 19 Denoising Module Training Loss

For YOLOX-s Reinteresting Weld Pool section, we use 911 sets of images labeled with the
location of the weld pool as the dataset, set 80% of them as the training set and 20% as
the validation set, the dataset is randomly sorted before being divided to ensure an even
distribution of the samples, and a total of 300 Epochs are trained with the training loss
shown in Fig.20. Since the weld pool is easily recognized in the image, our loss quickly
drops from about 25% at the beginning to about 5%. The Loss is evaluated by the
overlap of the predicted box with its manually labeled one. However, we just need the
general location of the weld pool in the image. Hence, for our "Reinteresting" process
the accuracy of the results reaches 99%.
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Figure 20 YOLOX-s Reinteresting Weld Pool
4.1.1 Segmentation process training

The image segmentation part is mainly Wire and Arc image segmentation using U-Net and
segmentation of weld fusion pool using LSTM U-Net network. In segmentation of Wire
and Arc we labeled 118 sets of data for the training dataset and another 20 sets of data
for the validation set, for a total of 200 Epochs. We use Cross entropy to evaluate the loss
In Fig.20. Cross entropy calculates the difference between a true probability distribution
and a model-predicted probability distribution. If the model's prediction is very close to
the true distribution, the cross entropy will be low, indicating that the model is performing
well; if the model's prediction is very different from the true distribution, the cross entropy
will be high, indicating that the model is not performing well. As the training progresses,
the cross entropy of the model is decreasing. It indicates that the model is better for
segmentation of Wire and Arc.
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Figure 21 Wire and Arc Segmentation Training Loss

LSTM U-Net Model for Weld Pool Segmentation We labeled 336 sets of data for training
and evaluation of the network, and since the network will segment based on temporal
features of the process, we additionally chose 77 sets of data for training and evaluation
only to verify that the network does not overfit a single process. We chose to use loss to
evaluate the training process. In Fig.21 the training set evaluation Loss eventually drops
below 1%, and the test set evaluation Loss is only slightly higher than the training set, but
also eventually drops below 1%. This proves that the model has superior performance in
the weld pool segmentation task.
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Figure 22 Segmentation of Weld Pool



4.2 Results

After the training, we obtained the model needed for each processing module, and the
final results, after inputting the welding process images into each module according to the
flow order, are shown in Fig. 22 as the four demonstration results (a), (b), (c), and (d),
which come from the welding process under different conditions, where the red line
indicates the boundaries of the weld molten pool, the blue line is the boundaries of the
Arc, and the green line is the boundaries of the Wire. It can be seen that for all images
captured from the various welding conditions/states, the method succeeds in dynamically
obtaining the Weld Pool, Arc, and Wire boundaries simultaneously, and the method can
process the images at more than 10 frames per second. This speed is sufficient to monitor
the GMAW process.

(c) (d)

Figure 23 The final output of the Welding Process Melt Pool Critical Information Detection Model result information.

In the image preprocessing part, AOD-Net Defogging uses SSIM values for evaluation. The
SSIM value ranges from "0" to "1". The closer to "1", the more similar the defogging image
is to the real image. The change of SSIM value with Epoch is shown in Fig. 24. The SSIM
value in the training set tends to 0.95, and the SSIM value in the test set tends to 0.93.
Judging from the evaluation parameter data, the effect is good.
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Figure 24 Defogging SSIM Value
YOLOX-s Reinteresting Weld Pool is evaluated using mAP values, and the variation of

mMAP values with Epoch is shown in Fig. 25. mAP values converge to 0.95 in the training
set, and the test set is around 0.9. It indicates that the model works well.
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Figure 25 Reinteresting Weld Pool mAP

In the Wire and Arc image segmentation section we use U-Net for segmentation and use
the Accuracy value as an evaluation. The variation of Accuracy value with Epoch is
shown in Fig. 26. The Accuracy value of the training set tends to be close to 0.7 and the
Accuracy of the test set also tends to be close to 0.7, but with a large fluctuation.
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Figure 26 Wire and Arc image segmentation Accuracy

We also use the Accuracy value as the evaluation criterion in Segmentation of Weld Pool
Images Based on Time Series. The change of Accuracy value with Epoch is shown in Fig.
27. The Accuracy value of the training set is above 0.8 and changes little. The Accuracy
value of the test set is also above 0.8 and tends to be stable.
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Figure 27 Segmentation of Weld Pool Images Based on Time Series Accuracy

4.3 Module influence

The modules in the model are combined separately to prove that each module in our
proposed model has an effective influence on the final result. First, the result of using only
the U-Net model for weld pool segmentation (Fig. 28) shows that the weld pool
segmentation is incomplete, and the judgment of using spatter as the boundary
segmentation of the weld pool is incorrect.
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Figure 28 U-Net Segmentation Results

After using the U-Net model fused with LSTM, the segmentation can be almost
complete, but due to the influence of the smoke generated during welding, the darker
weld pool at the edge cannot be identified, as shown in Fig. 29.

o 100 200 100 200

Figure 29 LSTM U-Net Segmentation Results

Then we added the AOD-Net Defogging module to the U-Net model fused with LSTM to
remove the effects of welding smoke. As shown in Fig. 30, the weld pool with difficult
edges is successfully segmented. However, there is still molten metal splashes that affect
the segmentation of the weld pool.
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Figure 30 LSTM U-Net & AOD-Net Segmentation Results

Finally, YOLOX-s Reinteresting Weld Pool module was added to remove the influence of
molten metal splashes on weld pool segmentation. As shown in Fig. 31, the final result is
good.
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Figure 31 LSTM U-Net & AOD-Net, YOLOX-s Segmentation Results

The average SSIM value of the three images of each model is obtained and calculated, as
shown in Table 2. It can be seen that the SSIM value of segmentation using only the U-
Net network is the lowest, only 0.693. Then, as LSTM Cell, defogging module and
Reinteresting Weld Pool module are added to the model, the SSIM value reaches 0.901,
which shows that the modules designed in our network are very important for this
segmentation task.



Table 2 Average SSIM Values

Model Average SSIM value
U-Net 0.693
LSTM U-Net 0.795
LSTM U-Net & AOD-Net 0.831
LSTM U-Net & AOD-Net, YOLOX-s 0.901

5. Conclusion and Future Work

Due to challenges in acquiring clear weld images and accurately labeling data in GMAW,
there are hurdles in directly applying state-of-the-art deep learning models to reconstruct
its complete weld pool scenes. Effect reconstruction requires understanding of their
characteristics so that appropriate deep learning networks can be designed and chosen
accordingly despite the constraints in the image quality and label size. To this end, we
analyzed the constituents in the weld pool scene and their dynamic behaviors,
characteristics and inter-correlations. This empowered us to propose an innovative
procedure to sequentially extract the constituents in the scene in an effective order that
helps maximally migrate the effect from the inter-correlations. For respective constituents,
we chose effective deep learning networks accordingly. They include U-Net that excels in
accurate target segmentation with small datasets and LSTM network that can effectively
utilize the strong temporal relationship in welding processes. They also include methods
to effectively pre-process (denoise and reinterest) the image to migrate the effect of
smoke and spatters on the subsequential recognition of the unclear weld pool boundary
and dynamically fluctuating boundary of the arc during GMAW. As such, we designed an
effective combinatorial deep learning networks to overcome various challenges from the
physical process and dada limitation and successfully reconstruct the complex weld pool
scene in the highly dynamic gas metal arc welding process. The model we proposed has
achieved good results in the welding system we built. Experiments show that each module
designed in the model has a significant effect on the extraction of key information of the
weld pool.

Future work includes analyzing the role of the extracted key information in regulating the
welding process, and then combining it with automated welding production equipment
to apply advanced control algorithms to meet the challenges of complex weldments and
high-precision welding tasks.
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