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Abstract: This study aims to extract critical scenes/continents in the weld pool region during gas 

metal arc welding (GMAW). The scenes considered include the wire, arc, and weld pool, while 

other secondary ones such as oxides are temporarily excluded. They are critical to understanding, 

analyzing, monitoring and controlling the welding process, in particular the critical correlation how 

the welding parameter, arc and weld pool are dynamically correlated. Unfortunately, such 

fundamental correlation has not been studied and lack of effective ways to simultaneously 

monitor/extract these scenes is responsible. With the development of optoelectronic devices, 

weld pool regions can be better imaged. However, because of the nature of the scenes in particular 

the arc which is formed by ionized gas without a clear boundary and highly dynamic, detecting 

them using computer vision is challenging. Deep learning is an effective method, but model 

training usually needs a large number of labels. As manually labeling is expensive, we propose an 

approach to address this challenge that can train a model from a small, inaccurately labeled 

dataset. This approach is designed, per the characteristics of the scenes and their dynamics All-in-

One Network (AOD-Net) was deployed first for defogging, and then the YOLOX network was 

utilized to identify regions of interest to reduce the impact of molten metal splashes on image 

sharpness. Subsequently, we developed a timed segmentation network incorporating the Long 

Short-Term Memory (LSTM) mechanism into U-Net, which can be used to extract more accurate 

information about the weld pool by combining the temporal and spatial information in the 

continuous process of welding at a low cost because our scene of interest is in a continuous and 

dynamic evolutionary process. After defogging and removing the effects of molten metal spatter, 

we can obtain information on the dynamics of the weld pool and the weld arc at the same time. 

Experimental results verified that the trained network could extract the critical boundaries 

accurately under various welding conditions despite the highly dynamic changes and fuzziness of 

the views. 
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1．Introduction 

Gas Metal Arc Welding (GMAW) stands out as an exceptionally efficient welding technique where 

the filler material is continuously and automatically fed and melted through the arc. Its high level 

of automation makes it easily adaptable to robotic systems, rendering it the preferred choice for 

various applications such as additive manufacturing, cladding, and general welding processes [1]. 

The weld pool region is the epicenter for all intricate welding phenomena, necessitating real-time 

monitoring and control, particularly in robotic welding scenarios where human intervention is 



absent. While numerous techniques exist for monitoring the weld pool, including infrared sensors 

[2,3], vision-based methods emerge as the most direct surrogate for human observation. However, 

visual sensing of the weld pool region poses challenges, primarily due to the obstructive nature of 

arc radiation during welding processes. Richardson and Gutow introduced the coaxial observation 

method, employing a camera positioned coaxially above the tungsten electrode to observe the 

weld pool area effectively [4]. In another effort, by strategically utilizing a monochromatic or 

single-color laser as an illumination source, the reflection from the object to the imaging sensor 

can be enhanced, overcoming the dominance of arc radiation [5-9]. Furthermore, the illumination 

laser has been pulsed to reach very high power and synchronized with the shutter of the camera 

[10]. Since the specular reflection from the liquid weld pool is not collected by the camera's sensor, 

and the surrounding solid metal glows due to diffuse reflection to form a bright area, the dark area 

in the image is the weld pool. In this way, the boundaries of the weld pool can be clearly observed. 

This intricate synchronization ensures that the illumination laser, pulsating at high power, 

effectively enhances the contrast between the weld pool and its surroundings. By selectively 

filtering out specular reflections and capitalizing on the diffuse reflection from the surrounding 

metal, the resulting image distinctly highlights the weld pool's boundaries, enabling precise 

observation and analysis. 

High Dynamic Range (HDR) cameras offer another avenue to observe the weld pool region. They 

utilize advanced imaging technology to capture a broader range of luminance levels in a single 

image, thereby providing enhanced detail and clarity in both the brightest highlights and the 

darkest shadows. Cui employed an HDR camera to monitor welding processes, specifically 

studying the dynamic behavior of the molten pool and locking holes in real-time welding processes 

[13]. The ease of deployment of HDR cameras in manufacturing environments, coupled with their 

ability to produce high-clarity images distinguishing melt pool contours and arcs simultaneously, 

facilitates a comprehensive understanding of melt pool dynamics. This capability makes them 

ideal for our purpose of capturing all critical scenes in a single image. 

Even in high-quality images such as those captured by HDR cameras, the weld pool boundary is 

still easier to identify than that of the arc. Extracting the weld pool boundary from images requires 

target detection through image processing. There have been extensive works to detect weld pool 

boundary using conventional segmentation algorithms [4-14]. They focused on feature extraction 

from a single image, making it difficult to obtain advanced semantic information. Rother et al. 

extended the MRF segmentation method [15] and proposed for the first time the concept of 

collaborative segmentation, which refers to the extraction of common foreground regions from 

multiple images without human intervention. The foreground features of the seed images are 

extracted as a priori knowledge by utilizing the classical segmentation method and then used to 

process a set of images containing the same or similar objects. Vicente et al. [16] proposed to 

extend the Boykov-Jolly method using multiscale decomposition based on MRF collaborative 

segmentation, as well as the L1 criterion model [15], the L2 criterion model [17], and the reward 

model [18]. Alexe et al. [19] proposed a measure based on object scoring by quantitatively 

calculating the probability of any category of objects in an image window and using the highest 

scoring window as a feature calibration for each category of objects. Vincente et al. [20] used 

foreground objects and measured the similarity between the objects, extracting the highest 

scoring features from multiple candidate object categories in the iCoseg dataset with good 



experimental results. However, conventional algorithms require task-specific efforts to design the 

algorithm details per image characteristics. Although there have been various algorithms 

developed to detect the weld pool boundaries, they are all difficult to generalize. For arc 

boundaries, which are much more dynamic and fuzzier, there have been no reported successes. 

This underscores the need for innovative approaches in overcoming these challenges and 

developing generalizable robust algorithms capable of accurately delineating both weld pool and 

arc boundaries. 

Convolutional neural networks (CNNs) based deep learning models provide generalized solutions 

for robust algorithms. Segmentation is achieved through training models using labeled boundaries, 

minimizing the need for task-specific efforts. LeNet-5 [21], AlexNet [22], and VGG [23] have 

demonstrated success in image classification, where the output layer categorizes the image. 

However, deep learning models typically require large labeled datasets for training. Long et al [24] 

introduced Fully Convolutional Networks (FCNs) and designed an encode-decode structure to 

extract high-level semantic information and map it back to the source image size. Skip connections 

or shortcut connections improve coarse pixel localization, and U-Net [25] leverages skip 

connections and feature cascading from encoder to decoder layers to obtain fine-grained image 

details. This approach yields promising results even with small datasets. 

In terms of enabling deep learning techniques to process GMAW images, Baek et al. [26] proposed 

a model based on semantic segmentation of residual neural networks to effectively predict the 

depth of a molten weld pool, which is different from the weld pool boundary. Wang et al. [27] 

designed a multiscale feature fusion semantic segmentation network, Res-Seg, that can detect the 

weld pool boundary. The accuracy of the information obtained depends heavily on the dataset 

used for training, which requires a large number of datasets and accurate data labeling. Wang et 

al. [28] supplemented the melt pool dataset with a Deep Convolutional Generative Adversarial 

Network (DCGAN) [29] after designing the Res-Seg network. As such, there have been no 

generalizable successes in detecting the weld pool boundary, nor any mention of the arc boundary, 

in the highly dynamic and violent GMAW process without the availability of a large set of manual 

labels. 

The continuous welding process in automated welding is characterized by high temperatures, 

spatter, smoke, and intense brightness, which often result in captured images of the weld pool 

being unclear. Accurately labeling large datasets under such conditions poses a significant 

challenge. Because image-based methods for detecting the weld pool boundary are susceptible 

to interference from welding arc brightness and deformation, previous studies have mainly 

focused on mitigating the effects of the arc. Bea et al. [30] addressed this issue by capturing weld 

pool images at the moment of the short circuit of the arc welding process, thereby circumventing 

the interference of arc light. However, due to the high brightness and variable shape of the arc, 

traditional CCD cameras struggle to capture clear images, leading to a lack of research on image-

based welding arc boundary detection. Moreover, obtaining the boundary of the welding arc while 

simultaneously capturing the welding molten pool has not been adequately explored, largely due 

to the overwhelming brightness of the arc light. 

In this study, we utilize an HDR welding camera to capture usable images of the weld pool and the 

arc simultaneously. We propose a composite U-Net network integrated with LSTM-Cell [31] to 



extract key information of both the weld pool and the arc. Prior to processing, images undergo 

preprocessing using AOD-Net [32] and a Reinteresting module inspired by the YOLOX [33] network 

to mitigate the effects of spatter and smoke during welding. Leveraging the uniquely designed 

preprocessing module and feature recognition capabilities of the U-Net network, our model 

achieves precise and simultaneous extraction of the weld pool and welding arc boundaries, even 

with a limited training dataset. Experimental results demonstrate the robustness of the model, 

marking a significant advancement as it achieves the simultaneous detection of weld pool and 

welding arc boundaries, in addition to the wire, allowing us to automatically monitor the robotic 

welding process to assure process operation in the absence of human presence and analyze the 

welding process at higher level from big data.   

2．Welding Process： 

Two 6-degree-of-freedom (DOF) industrial robots, UR10e and UR16e, were used as a welding 

robot and a monitoring robot, respectively (Fig. 1). On the monitoring robot, the Xiris’ HDR weld 

camera XVC-1100, a digital weld camera for open-arc welding, was mounted to capture images of 

the arc and the molten pool. A bandpass filter centered at 650nm is mounted on the lens to filter 

out strong arc light. We use a PC to control the speed and direction of the welding robot and 

monitor the robot to follow the control to control the robot movement.  

 

Figure 1 Automated Welding Systems 

We set a constant welding speed during each experiment and the welding parameters are shown 

in Table 1. The welding power supply was operated in constant voltage mode with a high voltage 

of 40.8 V to ensure a spray transfer mode with less spatter and good bead appearance, thus 

making it suitable for bead-on-plate experiments on thick workpieces. The welding parameters 

were controlled by a computer using a PCI-6229 National Instruments data acquisition card 

running in C++. 

 

 

 

 



 

Table 1. Welding parameters. 

Welding Parameters Values 

Welding method GMAW 

Welding type bead on plate 

Polarity  DCEP 

Welding speed 3-12 mm/s 

Voltage 40.8 V 

Wire feeding speed 310 in./min 

Gas flow rate (95% Ar and 5% CO2) 15 ft3/h 

Contact tip to workpiece 20 mm 

Wire diameter 1.2 mm 

Workpiece thickness 20 mm 

 

Through several experiments, over 10 sets of videos of the welding process were captured. Each 

of them was segmented into images by frames for us to observe/screen. It was found that the 

visibility of the weld pool boundary in the captured images is often obscured by the smoke (Fig. 

2). During GMAW process, smoke is generated due to the intense heat generated by the arc spots 

causing wire, workpiece, and workpiece coating to overheat to vaporize. The vapors are highly 

dynamic and fluctuate within the weld pool view. They will condense into fine particles to produce 

welding fumes. The composition of these fumes may vary depending on the welding material, the 

type of electrode used, and any coatings on the metal.  

 

Figure 2 Smoke observable during the welding process 

At the same time, we have found that spatters may arise during the welding process (Fig. 3). For 

open arc GMAW process, the melted wire is transferred into the workpiece through spray or 

globular transfer mode. Spary transfer minimizes spatters, but the current is high. At higher 

current densities, the metal may overheat and burst, forming fine-grained spatters. 



 

Figure 3 Molten spatters from the welding process 

What we are primarily concerned with and aim to extract are the shape and width of the weld 

pool. Additionally, we need to extract information about the arc and torch. All complex welding 

phenomena in arc welding originate from the arc, which serves as the input of the welding process, 

while all welding phenomena occurring on the workpiece, which we are concerned with, 

constitute the resultant output. Welding parameters (such as current, voltage, speed, etc.) are the 

nominal and easily quantified inputs of the welding process. However, the actual inputs that 

directly control the welding process are the heat and force distribution of the arc. Welding 

parameters determine the integration of these distributions, but the actual distributions also 

require the center and standard deviation for a complete description. Therefore, in addition to the 

total heat/power of the arc, which is determined by welding parameters, the location of the arc 

center and the extent of arc spread are also critical in producing the welding output. Thus, 

monitoring and extracting this information are crucial for understanding and analyzing the welding 

process in greater depth.  

Arc behaviors have been widely studied. Wu [34] et al. analyzed the effect of SiO2-activated TIG 

arc plasma morphology, arc space electric field strength, arc temperature, arc current density, and 

arc on the geometry of the weld. Hua et al. [35] showed that the wire extension, arc length and 

welding current all affect the arc behaviors and instability. They analyzed the reasons for the 

increase in the arc deviation, which causes an increase in arc length and thus arc interruption. 

Fang et al. [36] showed that the welding arc shape can be judged during the welding current over 

zero to determine whether the arc extinguishing or re-arcing phenomenon occurs. Zhang [37] and 

others showed that the magnetic pipe will have an impact on the arc. Combined with Zhu [38] and 

others, they analyzed the magnetic bias blowing in the welding process on the welding arc, and 

the reasons for the welding arc can be inferred from welding to the magnetic field. Arc morphology 

helps determine the welding process's magnetic field distribution and other information. As such, 

the welding arc contains key information about the welding state, and obtaining the shape of the 

welding arc is one of the keys to understanding the welding process. Unfortunately, there have 

not been works to monitor and automatically extract the arc.  

Analysis of the welding process and captured videos can guide us in deciding what is critical and 

understanding the challenges in extracting it. It is evident that using conventional image 

processing approaches to extract the necessary critical information is challenging, and a deep 

learning approach is required. Additionally, manually labeling a larger number of images for critical 

information is unrealistic. A significant issue is that critical scenes are fuzzy, making them difficult 



for humans to identify clearly. Consequently, we will encounter the issue of limited labels and 

labeling errors. the dataset labeling, a set for labeling the molten pool, a set of arc and torch 

information for labeling. Labeling using Labelme open source labeling software, using polygonal 

labeling, labeling information obtained for the json format, this time you need to convert the json 

format data, converted to the form of the target mask. After the completion of the data set 

production, conversion is complete. 

3．Methodology： 

We present a combinatorial neural network for scene extraction from weld pool (area) images. As 

shown in Fig.4, the network first preprocesses the captured image, and then inputs the image into 

"Denoising Module" to denoise the weld pool part of the image. The image is then fed into the 

"Reinteresting Module" to identify the region of interest to minimize the effect of smoke and 

spatter. The next step is to extract the shape and size of the weld pool from the preprocessed 

image using a time series-based segmentation model in the "Timing Segmentation Module" and 

in the "Wire and Arc Segmentation" respectively, where the “Segmentation Module" obtains the 

Wire and Arc information. Once this process is completed, key information about the weld pool 

during the welding process is acquired in real time. 

 

Figure 4 Welding Process Melt Pool Critical Information Detection Network Architecture 

3.1 Preprocessing  

3.1.1 AOD-Net Defogging 

Since the smoke and spatter will also be captured, which would adversely affect the accuracy in 
extracting the weld pool, a pre-processing of the captured image may benefit. The pre-processing 
consists of Denoising and Reinteresting. A defogging model constructed using AOD-Net (an All-in-
One Network) [32] is used for image denoising. After inputting the image into the K-estimation 
module (Fig. 5), the K-value at each pixel in the image is output, which is substituted into the new 
atmospheric diffraction model to calculate the resultant image after defogging. 



 

Figure 5 AOD-Net de-smoking structure for welding process 

The model was designed based on a reformulated atmospheric scattering model that was 
transformed to yield the fog depth and concentration levels at each pixel in the evaluated image. 
Equation (1) represents the original atmospheric scattering model: 

𝐼(𝑥, 𝜆) = 𝑒−β(λ)𝑑(𝑥)𝑅(𝑥, 𝜆) + 𝐿∞[1 − 𝑒−𝛽(𝜆)𝑑(𝑥)]（1） 

where 𝐼(𝑥, 𝜆)  is the original unfogged image obtained by the detection system, and 𝑅(𝑥, 𝜆) 
denotes the defogged image that needs to be recovered. The parameter 𝑥 denotes the position 
of the pixel point in the image, 𝜆 is the wavelength of the light, and 𝐿∞ denotes the value of the 

atmospheric light at infinity (the source of the light comes from the sky at infinity). 𝑡 = 𝑒−β(λ)𝑑(𝑥) 
denotes the transfer function, the physical meaning of which is the proportion of light that can 
reach the detection system after particle attenuation, where β(λ)  denotes the scattering 
coefficient, which is used to characterize the scattering ability of the medium for different 
wavelengths of light, and 𝑑(𝑥) is the light transmission distance. We first neglect the 𝜆 variable in 
Equation (1), the wavelength of light, so that the transmission function becomes the transmission 
matrix 𝑡(𝑥),  and the recovered de-fogged image will be represented by 𝐽(𝑥) , and the value of 
atmospheric light at infinity is denoted using 𝐴. Equation (2) can be obtained. At this point we can 
get the expression Equation (3) for the defogged image 𝐽(𝑥), where 𝑏 is a constant bias defaulted 
to 1. 

𝐼(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝐴[1 − 𝑡(𝑥)]（2） 

𝐽(𝑥) = 𝐼(𝑥)
1

𝑡(𝑥)
− 𝐴

1

𝑡(𝑥)
+ 𝑏（3） 

At this point we want to get the image 𝐽(𝑥)  after defogging. This requires to calculate the 
transmission matrix 𝑡(𝑥)  and 𝐴 . However, for these two parameters we can only estimate. A 
separate estimation of these two parameters will lead to the accumulation of error and 
amplification. As such, AOD-Net is proposed to integrate these two parameters. Using 𝐾(𝑥) ,  
Equation (3) is rewritten as Equation (4). 

𝐽(𝑥) = 𝐼(𝑥)𝐾(𝑥) − 𝐾(𝑥) + 𝑏（4） 

To calculate the parameter 𝐾(𝑥),  AOD-Net is designed with a 𝐾 -estimation module, which is 

structured to utilize five convolutional layers to process the input data. Multi-scale information is 



integrated by combining concatenated layers of varying sizes. Illustrated in Fig. 6, the convolutional 

component of this model involves concatenation operations denoted as concat1, concat2, and 

concat3. Concat1 connects features extracted from conv1 and conv2 layers, concat2 combines 

features from conv2 and conv3 layers, and concat3 integrates features from conv1, conv2, conv3, 

and conv4 layers. The final convolutional layer, conv5, is responsible for generating the 

atmospheric attenuation coefficient (𝐾) of this image. This architecture ensures the incorporation 

of multi-scale information and the effective utilization of features extracted at different levels of 

abstraction, ultimately contributing to the accurate determination of the atmospheric conditions 

affecting the captured image.  

 

Figure 6 K-estimation module network structure 

Since the 𝐾 estimation module used is improved based on the atmospheric diffraction model, the 

training dataset of this network does not need to use weld pool images, but only images with 

different degrees of fog depths, and the use of this type of dataset makes the AOD-Net more 

robust and adaptable when dealing with weld pool images. The dataset we used is ground-truth 

images with depth meta-data from the indoor NYU2 Depth Database [32], which has 27256 data 

sets, a total of 10 epochs of training, and is used for weld pool defogging with good results. The 

obvious de-fogging effect can be seen (Fig.7). 



 

Figure 7 Comparison of the effect before and after applying the denoising module to the weld pool image 

3.1.2 YOLOX-s Reinteresting Weld Pool 

Given the interference of spatter during welding, which can often obscure the weld pool details in 
captured images, we mitigate this effect by amplifying the weld pool information. This is achieved 
through a process we term 'Reinteresting' the weld pool. To execute this, we refocus the image 
specifically on the weld pool region. This involves training the YOLOX-s network to accurately 
identify the weld pool amidst other elements in the image. Subsequently, we selectively eliminate 
extraneous information, leaving behind only the weld pool details. By implementing this 
'Reinteresting' approach, we enhance the clarity and prominence of the weld pool within the 
image, facilitating more accurate analysis and interpretation. In Fig.8, only the lower right corner 
of the original image has the information we need. After we use the "Reinteresting" module, the 
image will be automatically cropped to the weld pool, effectively avoiding the effects of molten 
metal spatter in other areas. 

 

 

 



 

Figure 8 "Reinteresting" the weld pool. 

YOLOX-s (Fig. 9) [33], introduced by Cavity Technologies in 2021, builds upon the foundation of the YOLOv5-
s model with significant improvements. One notable enhancement lies in its utilization of two data 
augmentation techniques, namely Mosaic and Mixup, at the input stage. The Mosaic algorithm, a derivation 
of the CutMix algorithm [33], stands out for its effectiveness in detecting small targets. Unlike CutMix, 
Mosaic integrates multiple images by employing random scaling, random cropping, and random 
arrangement. Additionally, it ensures that the changing relationships of each image are preserved in their 
corresponding image labels. This approach proves particularly beneficial for accurate detection in scenarios 
involving small targets. On the other hand, MixUp data augmentation focuses on enhancing class diversity 
within the training dataset. By employing linear interpolation to blend images from different classes, MixUp 
generates new training samples, effectively expanding the dataset. This technique promotes robustness and 
generalization of the model by exposing it to a wider range of class variations during training. 

 

Figure 9 YOLOX network improvements over previous YOLO networks in terms of decoupling headers 



The backbone of YOLOX-s is basically the same as that of YOLOv5-s, except that the activation 
function is changed to the SiLU function. That is, the Neck section is the same as YOLOv5-s, but 
with the activation function replaced by SiLU. The main improvement comes from changing YOLO 
head to Decoupled Head in Predication, since the "expressiveness" of YOLO head is poorer 
compared to that of Decoupled Head.  

 

 

Figure 10 Design of the decoupled head section of the YOLOX network 

In Fig.10, there are a total of three branches before the final Concat in the Decoupled Head 
structure). The first branch is used to categorize the target category in each frame and to predict 
each score, which is then convolved by a CBL of size 1x1 and two CBLs of size 3x3 and activated 
using the Sigmoid function. (Here CBL stands for Conv-BN-LeakyReLU, which is a common 
convolutional block structure. This structure consists of three parts: a convolutional layer (Conv), 
a batch normalization layer (BN, Batch Normalization), and a LeakyReLU activation function.)  The 
second branch is used to determine whether the target frame is foreground or background, similar 
to the first branch. The last branch is to predict the coordinate information (𝑥, 𝑦, 𝑤, ℎ)  of the 
target frame, which does not require Sigmoid function activation compared to the second branch. 
In the end these three branches are fused together by Concat. The network uses 3 Decoupled 
heads and outputs the results after the output Concat. 

3.2 Wire and Arc image segmentation 

3.2.1 U-Net Network 



The left of the U-Net network [25] (Fig. 11) acts as feature extraction and the right as upsampling. 

Such a structure is also called Encoder-Decoder structure in some literature. This network is 

named U-Net because the overall structure of the network resembles the capital letter U. Each 

blue box (except for the first input) corresponds to a multichannel feature map, where the number 

of channels is labeled at the top of the box. 𝑥 − 𝑦 magnitude is located at the bottom left corner 

of the box. The blue line boxes indicate the copied and cropped (Concat) feature maps. Arrows 

indicate the different operations. The network consists of a contracting path (contracting path) 

and an expanding path (expanding path). Shrinkage path (downsampling process) is used to obtain 

contextual information, extract the features of the feature map through multiple convolution 

operations in each layer to generate a new feature map and increase the number of features in 

the feature map, and reduce the size of the feature map through the max pool process to reduce 

the size of the feature map and connect each layer. When the feature map is small enough and 

the number of channels is large enough, the feature map is "expanded", i.e., the expansion path 

(up-sampling process) is used to locate the image accurately, which is similar to the structure of 

the contraction path, except that the max pool process is replaced by the inverse convolution 

process to expand the image and superimpose the feature maps corresponding to the contraction 

path layer in front of each layer. Therefore, the two paths are symmetrical to each other. The 

structure of the U-Net network makes it possible to use valid labeled data more efficiently from a 

very small number of training images. U-Net uses a completely different approach to feature 

fusion: concatenation, where U-Net uses features that are spliced together in the channel 

dimensions to form thicker features. FCN fusion, on the other hand, uses a summation of the 

corresponding points and does not form thicker features. 

 

Figure 11 U-Net network structure[25] 

In the weld pool image we obtained, there is information about the wire and arc which is also 
needed for us to combine with the extracted weld pool to completely depict the process. Since 
the features of the two are obvious after the image is preprocessed by our de-fogging and 
Reinteresting modules, the wire and arc can be easily segmented using a multi-objective 5-layer 



U-Net network. Because of the obvious features and the code-encode structure of the U-Net 
network, the data annotation does not need to be very accurate, and the training dataset does 
not need to be very large to obtain good results. As such, we only use 118 sets of data for training 
and validation. After training 200 epochs, good results are achieved that the trained model can 
segment the wire with arc (Fig. 12). It is interesting to note that the segmentation results are even 
better than labeling which may be inaccurate as the result of a manual process.  

 

Figure 12 Weld Pool Data and Results 

3.3 Segmentation of Weld Pool Images Based on Time Series 

3.3.1 Convolution LSTM 

As an improvement of the classical FC-LSTM network, Convolution LSTM (ConvLSTM) was 
proposed by Xingjian Shi et al [39]. First of all LSTM (Long Short-Term Memory) is a kind 
of RNN (Recurrent Neural Network). The LSTM structure consists of four parts: memory 
cells, input gates, output gates and forgetting gates (Fig. 13). 

 

Figure 13 Classical LSTM network structure 

The ConvLSTM model changes the fully-connect layer into a convolutional layer and 
replaces the input-to-state and state-to-state parts of FC-LSTM from feed-forward 
computation into the form of convolution. As a whole, the model structure of ConvLSTM 
is mainly divided into two parts: the temporal structure follows the typical RNN network 
structure; the spatial structure follows the CNN feature extraction method. To put it simply, 
the ConvLSTM model is equivalent to replacing all fully connected structures in LSTM with 



convolutional structures, while adopting a structure based on peep connections. Its only 
change is in the way the individual gating units are computed as shown in Fig. 14. 

 

Figure 14 ConvLSTM network weight relations 

3.3.2 U-Net fusion ConvLSTM 

Since the welding process is an industrial process that has a close connection in the 
temporal relationship, it has a certain correlation in the time dimension. Yin et al [40] used 
a time-series based model for predicting changes in geographic lake boundaries by fusing 
LSTM models in a U-Net network. We introduce a special RNN network, LSTM network, 
into the U-Net classical decode-encode network to convey the temporal information. The 
LSTM-Cell is constructed to integrate it into the U-Net image segmentation network (Fig. 
15). 

 

Figure 15 U-Net Fusion ConvLSTM Network Structure 

As shown in Fig. 16, the encode module of the network is employed to capture the weld 
pool information from continuously fed images. Additionally, the ConvLSTM Cell is 



integrated into the feature fusion process within each layer of both decode and encode 
operations. This Convolutional Long Short-Term Memory (ConvLSTM) network is a variant 
of the traditional LSTM network, utilizing convolution operations instead of matrix 
multiplication to retain spatial information within the image. 

 

 

Figure 16 ConvLSTM Structure Fusing Temporal and Spatial Features 

In ConvLSTM Cell the LSTM structure is used to preserve the temporal feature information 
of the image and the convolution operation is used to preserve the spatial features and 
used in the next frame (Fig. 17). 

 

Figure 17 ConvLSTM Cell 

At the same time the target features are obtained by downsampling and then upsampling 
is used to recover the information about the weld pool based on the obtained features. 
The input of the model is the weld pool image after Denoising and Reinteresting, and the 
output is the shape and size of the segmented weld pool (Fig. 18). 



 

Figure 18 ConvLSTM Cell passes temporal and spatial hidden features in U-Net 

In Fig. 18, input corresponds to the input feature maps after the convolution operation of 
each layer of downsampling, and output is the feature maps added to the corresponding 
downsampling layer before the convolution operation, and the blue box is the ConvLSTM 
-Cell, which can be set to more than one (i.e., the depth of the pass), in order to reduce 
the computational pressure, in the network we design, we currently use only one 
ConvLSTM-Cell. Its vertical direction is one time feature map passing, and the horizontal 
direction is time series feature passing. The passings rely on two functions, ℎ and 𝑐.  

4. Results and Discussion  

4.1 Training  

We used a computer with an Intel® Core™ i9-13900K CPU, 64GB of random access 
memory, and an NVIDIA GeForce RTX 4090 to train the model using the Pytorch library. In 
our model, AOD-Net for Defogging uses Adam optimization algorithm with an initial 
learning rate of 0.001, β1=0.9, β2=0.999 and weight decay set to be 1 × 10−8 . Loss 
function is MSE which is used to compute pixel differences between images before and 
after defogging. The SSIM structural similarity is used to measure the similarity in 
structural information between images before and after defogging. The Reinteresting 
Weld Pool section uses the SGD (Stochastic Gradient Descent) optimization algorithm, 
with the initial learning rate set to be 0.01, and the weight attenuation set to be 0.0005. 
The loss function uses IoU loss (Intersection over Union loss) to calculate the bounding 
box regression loss. The segmentation part of the U-Net network uses the Adam 
optimization algorithm. The initial learning rate is set to 0.001, the StepLR method is used 



to decay, and the learning rate decays 0.1 per 7 steps. The loss function uses Cross-Entropy 
Loss. The evaluation indicator uses Accuracy. 

4.1.1 Preprocessing Network Training 

First Denoising Module in AOD-Net, we use ground-truth images with depth meta-data 
from the indoor NYU2 Depth Database [41], of which 27256 sets of data are used for 
training and 1449 sets of data are used for training validation. A total of 10 Epochs were 
trained. In Fig. 19 We can see that the training loss and the testing loss will drop quickly 
to around 0.02 at the beginning and then stay at that level. The final model is used for 
weld image defogging with good results. 

 

Figure 19 Denoising Module Training Loss 

For YOLOX-s Reinteresting Weld Pool section, we use 911 sets of images labeled with the 
location of the weld pool as the dataset, set 80% of them as the training set and 20% as 
the validation set, the dataset is randomly sorted before being divided to ensure an even 
distribution of the samples, and a total of 300 Epochs are trained with the training loss 
shown in Fig.20. Since the weld pool is easily recognized in the image, our loss quickly 
drops from about 25% at the beginning to about 5%. The Loss is evaluated by the 
overlap of the predicted box with its manually labeled one. However, we just need the 
general location of the weld pool in the image. Hence, for our "Reinteresting" process 
the accuracy of the results reaches 99%. 



 

Figure 20 YOLOX-s Reinteresting Weld Pool 

4.1.1 Segmentation process training 

The image segmentation part is mainly Wire and Arc image segmentation using U-Net and 
segmentation of weld fusion pool using LSTM U-Net network. In segmentation of Wire 
and Arc we labeled 118 sets of data for the training dataset and another 20 sets of data 
for the validation set, for a total of 200 Epochs. We use Cross entropy to evaluate the loss 
In Fig.20. Cross entropy calculates the difference between a true probability distribution 
and a model-predicted probability distribution. If the model's prediction is very close to 
the true distribution, the cross entropy will be low, indicating that the model is performing 
well; if the model's prediction is very different from the true distribution, the cross entropy 
will be high, indicating that the model is not performing well. As the training progresses, 
the cross entropy of the model is decreasing. It indicates that the model is better for 
segmentation of Wire and Arc. 



 

Figure 21 Wire and Arc Segmentation Training Loss 

LSTM U-Net Model for Weld Pool Segmentation We labeled 336 sets of data for training 
and evaluation of the network, and since the network will segment based on temporal 
features of the process, we additionally chose 77 sets of data for training and evaluation 
only to verify that the network does not overfit a single process. We chose to use loss to 
evaluate the training process. In Fig.21 the training set evaluation Loss eventually drops 
below 1%, and the test set evaluation Loss is only slightly higher than the training set, but 
also eventually drops below 1%. This proves that the model has superior performance in 
the weld pool segmentation task. 

 

  

Figure 22 Segmentation of Weld Pool 



4.2 Results 

After the training, we obtained the model needed for each processing module, and the 
final results, after inputting the welding process images into each module according to the 
flow order, are shown in Fig. 22 as the four demonstration results (a), (b), (c), and (d), 
which come from the welding process under different conditions, where the red line 
indicates the boundaries of the weld molten pool, the blue line is the boundaries of the 
Arc, and the green line is the boundaries of the Wire. It can be seen that for all images 
captured from the various welding conditions/states, the method succeeds in dynamically 
obtaining the Weld Pool, Arc, and Wire boundaries simultaneously, and the method can 
process the images at more than 10 frames per second. This speed is sufficient to monitor 
the GMAW process. 

 

Figure 23 The final output of the Welding Process Melt Pool Critical Information Detection Model result information. 

In the image preprocessing part, AOD-Net Defogging uses SSIM values for evaluation. The 
SSIM value ranges from "0" to "1". The closer to "1", the more similar the defogging image 
is to the real image. The change of SSIM value with Epoch is shown in Fig. 24. The SSIM 
value in the training set tends to 0.95, and the SSIM value in the test set tends to 0.93. 
Judging from the evaluation parameter data, the effect is good. 



 

Figure 24 Defogging SSIM Value 

YOLOX-s Reinteresting Weld Pool is evaluated using mAP values, and the variation of 

mAP values with Epoch is shown in Fig. 25. mAP values converge to 0.95 in the training 

set, and the test set is around 0.9. It indicates that the model works well. 

 

Figure 25 Reinteresting Weld Pool mAP 

In the Wire and Arc image segmentation section we use U-Net for segmentation and use 

the Accuracy value as an evaluation. The variation of Accuracy value with Epoch is 

shown in Fig. 26. The Accuracy value of the training set tends to be close to 0.7 and the 

Accuracy of the test set also tends to be close to 0.7, but with a large fluctuation. 



 

Figure 26 Wire and Arc image segmentation Accuracy 

We also use the Accuracy value as the evaluation criterion in Segmentation of Weld Pool 

Images Based on Time Series. The change of Accuracy value with Epoch is shown in Fig. 

27. The Accuracy value of the training set is above 0.8 and changes little. The Accuracy 

value of the test set is also above 0.8 and tends to be stable. 

 

Figure 27 Segmentation of Weld Pool Images Based on Time Series Accuracy 

4.3 Module influence 

The modules in the model are combined separately to prove that each module in our 
proposed model has an effective influence on the final result. First, the result of using only 
the U-Net model for weld pool segmentation (Fig. 28) shows that the weld pool 
segmentation is incomplete, and the judgment of using spatter as the boundary 
segmentation of the weld pool is incorrect. 



 

Figure 28 U-Net Segmentation Results 

After using the U-Net model fused with LSTM, the segmentation can be almost 
complete, but due to the influence of the smoke generated during welding, the darker 
weld pool at the edge cannot be identified, as shown in Fig. 29. 

 

Figure 29 LSTM U-Net Segmentation Results 

Then we added the AOD-Net Defogging module to the U-Net model fused with LSTM to 
remove the effects of welding smoke. As shown in Fig. 30, the weld pool with difficult 
edges is successfully segmented. However, there is still molten metal splashes that affect 
the segmentation of the weld pool. 



 

Figure 30 LSTM U-Net & AOD-Net Segmentation Results 

Finally, YOLOX-s Reinteresting Weld Pool module was added to remove the influence of 

molten metal splashes on weld pool segmentation. As shown in Fig. 31, the final result is 

good. 

 

Figure 31 LSTM U-Net & AOD-Net, YOLOX-s Segmentation Results 

The average SSIM value of the three images of each model is obtained and calculated, as 

shown in Table 2. It can be seen that the SSIM value of segmentation using only the U-

Net network is the lowest, only 0.693. Then, as LSTM Cell, defogging module and 

Reinteresting Weld Pool module are added to the model, the SSIM value reaches 0.901, 

which shows that the modules designed in our network are very important for this 

segmentation task. 

 



Table 2 Average SSIM Values 

Model   Average SSIM value 

U-Net 0.693 

LSTM U-Net 0.795 

LSTM U-Net & AOD-Net 0.831 

LSTM U-Net & AOD-Net, YOLOX-s 0.901 

 

5. Conclusion and Future Work  

Due to challenges in acquiring clear weld images and accurately labeling data in GMAW, 
there are hurdles in directly applying state-of-the-art deep learning models to reconstruct 
its complete weld pool scenes. Effect reconstruction requires understanding of their 
characteristics so that appropriate deep learning networks can be designed and chosen 
accordingly despite the constraints in the image quality and label size. To this end, we 
analyzed the constituents in the weld pool scene and their dynamic behaviors, 
characteristics and inter-correlations. This empowered us to propose an innovative 
procedure to sequentially extract the constituents in the scene in an effective order that 
helps maximally migrate the effect from the inter-correlations. For respective constituents, 
we chose effective deep learning networks accordingly. They include U-Net that excels in 
accurate target segmentation with small datasets and LSTM network that can effectively 
utilize the strong temporal relationship in welding processes. They also include methods 
to effectively pre-process (denoise and reinterest) the image to migrate the effect of 
smoke and spatters on the subsequential recognition of the unclear weld pool boundary 
and dynamically fluctuating boundary of the arc during GMAW. As such, we designed an 
effective combinatorial deep learning networks to overcome various challenges from the 
physical process and dada limitation and successfully reconstruct the complex weld pool 
scene in the highly dynamic gas metal arc welding process. The model we proposed has 
achieved good results in the welding system we built. Experiments show that each module 
designed in the model has a significant effect on the extraction of key information of the 
weld pool.  

Future work includes analyzing the role of the extracted key information in regulating the 
welding process, and then combining it with automated welding production equipment 
to apply advanced control algorithms to meet the challenges of complex weldments and 
high-precision welding tasks. 
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