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Abstract

Although Artificial Intelligence (AI) projects are common and desired by many institutions and research teams, there are
still relatively few success stories of Al in practical use for the Earth science community. Many Al practitioners in Earth
science are trapped in the prototyping stage and their results have not yet been adopted by users. Many scientists are still
hesitating to use Al in their research routine. This paper aims to capture the landscape of Al-powered geospatial data sci-
ences by discussing the current and upcoming needs of the Earth and environmental community, such as what practical Al
should look like, how to realize practical Al based on the current technical and data restrictions, and the expected outcome
of Al projects and their long-term benefits and problems. This paper also discusses unavoidable changes in the near future
concerning Al, such as the fast evolution of Al foundation models and Al laws, and how the Earth and environmental com-
munity should adapt to these changes. This paper provides an important reference to the geospatial data science community
to adjust their research road maps, find best practices, boost the FAIRness (Findable, Accessible, Interoperable, and Reus-
able) aspects of Al research, and reasonably allocate human and computational resources to increase the practicality and
efficiency of Earth Al research.
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1 Introduction

Recently, the rapid growth of artificial intelligence (AI)
has ushered in transformative possibilities across various
domains, including Earth sciences. While Al holds immense
potential to revolutionize how scientists collect, analyze, and
interpret data, there exists a significant hurdle to its practi-
cal application. The current landscape of Al in Earth sci-
ences presents formidable challenges, requiring substantial
efforts that may hinder widespread engagement in Al-driven
research. Despite exciting lab results in mineral explora-
tion, seismic analysis, and climate modeling, the practical
implementation of Al in these fields demands meticulous
attention [1-3]. We define practical Al as Al that is used in
real-world applications or has strong potential for real-world
use. This includes Al technologies that have been tested
and validated in relevant environments and are intended
for practical deployment. For more context, practical Al
corresponds to Level 3 or higher in the NASA Technology
Readiness Scale [4], which indicates that the technology has
been validated in relevant environments and shows promise
for practical implementation. One of the most compelling
facets of Al in Earth sciences is its capacity to handle vast
datasets. For instance, satellite imagery can detect changes
in land use, monitor environmental degradation, and study
natural disasters. In mineral exploration, Al algorithms can
identify mineral deposits based on geophysical data patterns,
minimizing the need for extensive field surveys. Addition-
ally, Al enhances seismic data analysis, aiding geologists
in understanding Earth's interior structure and predicting

earthquakes [5, 6]. Climate modeling, a complex and time-
consuming process, benefits from Al techniques, such as
machine learning and deep learning, improving accuracy
and efficiency [7, 8].

Amidst these advancements, popular general Al applica-
tions like ChatGPT for writing and Midjourney for image
creation represent noteworthy progresses that science com-
munity can learn from. These applications showcase Al's
potential to significantly impact geoscientific practices by
uncovering relationships within diverse datasets and unveil-
ing patterns that were previously hidden. The dynamic appli-
cation of Al in Earth sciences signifies a rapidly evolving
and exciting field. Its ability to analyze extensive datasets,
streamline tasks, and reveal concealed relationships posi-
tions Al to revolutionize geoscientific methodologies, facili-
tating once-unattainable discoveries. This paper endeavors
to explore best practices and future directions, providing
insights to enhance the practicality and usability of Al for
Earth scientists. Collaboration across disciplines, including
computer science, mathematics, and geology, is imperative
to develop Al tools tailored for Earth sciences. Educating
and training geoscientists in Al tool usage fosters a culture
of innovation and collaboration. Addressing these factors is
crucial to making AI more practical and usable, potentially
leading to groundbreaking discoveries. The included road-
map for Al (as shown in Fig. 1) elucidates its evolution from
specialized training to integration into diverse datasets, rein-
forcing the importance of ongoing learning, monitoring Al
behavior, and navigating ethical considerations. This paper
delves into the existing challenges, best practices, and future
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aspirations of Al in Earth sciences, recognizing the necessity
of a collective effort to unlock its full potential.

2 The importance of Al in the Earth sciences

Before putting Al into practice, we need to understand what
Al can do for Earth sciences. In other words, what will
the future Earth scientific research look like? This section
introduces research directions and attempts to picture what
practical Al products or services will look like in the future.

2.1 Data collection and processing

Much of the work for data collection and processing has
been automated (Fig. 2). Coordinated data collection, stand-
ardization, and open data sharing can facilitate scientific
research on large scientific problems, for example, global
environmental change [9], which can be further acceler-
ated by Al-approaches. Our future society will continue to
rely significantly on the current or under-development data
infrastructure, like satellites, drones, stations, in-situ sen-
sors, mobile devices, etc. Al is expected to help augment the
capture and processing of daily or on-premise datasets. For
example, due to the interruption by uncontrollable variables
like sun magnetic storms, sensor accidental malfunctions,
clouds, extreme weather, dead batteries, etc., there is always
missing data and bad quality data. AI has been one of the
promising solutions to deliver seamless time series by auto-
mated gap-filling. One typical machine learning application
is fixing the Landsat 7 imagery with stripes because of the
failure of Scan Line Corrector since 2003 (reference). In the
future, we can expect Al services that can intelligently fill
and adjust the originally collected raw data to create more
complete and continuous observations, which is always
ideal. Al-enhanced data enrichment can increase meaning-
ful and actionable information for scientists from abundant
data and provide a firmer bond between science and society.

Ideally, techniques like Diffusion Models [10] and GAN
(Generative Adversarial Networks) [11] could create reliable
data based on other variables’ data series, even if there is no
device actually observing that variable. This action will save

Fig.2 Data collection and
processing illustration

a huge number of resources and avoid deploying function-
overlapping physical sensors. For example, the future Earth
Science Community could deploy a single stationary net-
work to collect all the fundamental datasets, and scientists
across the spectrum of Earth Science domains can derive
their domain-specific datasets from using AI. We can reuse
the existing satellites or launch a new series of satellites to
form a constellation covering the globe with a short revisit
time and rich radio spectrum. Then produce all the datasets
from the raw satellite observations using Al services in an
automated manner. Even if the original constellation did not
meet the coverage or frequency requirements by the domain,
or even did not cover the domain in the original proposals,
Al can model the relationships and transform the dataset to
new datasets that are directly needed by scientists from the
new domain.

2.2 Anomaly detection

Anomalies refer to those events that do not fit into the
expected pattern or the known physics of a model and is
one of the most important pieces of information for scientists
and stakeholders. Detecting anomalies in the sea of big data
is a key task for AI/ML in the era of big data. Future Earth
science communities will begin to understand the intercon-
nected or teleconnected processes in Earth systems to get a
full picture of the underlying mechanisms. Right now, sci-
entists are challenged by the need to single out anomalies. It
has been a very challenging task to distinguish useful anom-
alies from data noises or non-meaningful events [12, 13].

An example of how anomalies can be detected using
ML is by using a hybrid architecture combining deep belief
networks (DBN) and one-class support vector machines
(OCSVM) [14]. The DBN model is used to extract abstract
features, which are then fed into the OCSVM for anomaly
detection. The DBN model's training happens layer-by-layer,
which enables the extraction of relevant features from the
input data. When dealing with an input vector vi, the activa-
tion of the hidden units #; is determined as follows:

h; =f<bi + ijijvi> (1)

Earth data collection from remote sensing technology
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where f is the sigmoid function, b; biased values, and Wy
the weight matrix. The extracted features are thus provided
as inputs to OCSVM, which finds a hyper-plane boundary
to effectively separate the multivariate anomaly from the
background. The decision function f(x), used for determin-
ing hyper-plane is expressed as:

Jf(x) = sin(w * ¢(x) — p) )

where w is the weighted vector expressed as,

ve B e g

where ¢(x) is the map function and p is the offset.

In the context of anomaly detection, the hyper-plane
determined using the above decision function can be con-
sidered an indicator to assess whether a sample, denoted as
X, is classified as an anomaly or not based on the following
set of rules:

f(x) > 0, if x e background

f(x) < 0, if x € anomaly

The hyperplanes created through the combination of
deep belief networks (DBN) and one-class support vec-
tor machines, both of which are ML methods, can be used
for anomaly detection in geoscience. However, the field is
changing fast [15] and a lot of new technologies are emerg-
ing quickly [16] since the ChatGPT was first released [17],
e.g., large language models (transformer) [18, 19] and diffu-
sion models [20]. Large language models have shown prom-
ise in anomaly detection tasks by leveraging their ability to
understand and analyze textual data, enabling them to iden-
tify anomalies in natural language patterns or textual data
streams. Similarly, diffusion models, known for their capa-
bility to generate high-quality images and understand com-
plex data distributions, are now being explored for anomaly
detection in image-based or video applications.

In the future, Al is expected to simplify the task by accu-
rately and automatically detecting useful anomalies with
prebuilt production-level Al systems. As anomaly detection
is often directly connected to the alert systems (e.g., flooding
alert, wind storm alert, etc.), the adoption of Al services may

o - &

Filtering

Earth data Alert system with Al

Fig. 3 Anomaly detection illustration
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significantly reduce or eliminate alert spam or false alarms
(Fig. 3). Al will relieve scientists from being overwhelmed
by tedious data filtering tasks and focusing on finding solid
evidence to answer core scientific problems. Another key
place that Al could improve is the threshold settings. Right
now, most threshold setting for anomalies is manually done
by experts, which requires years of experience to find rea-
sonable threshold values, which are generally static and
may not be ideal in some time-sensitive cases (e.g., missing
signals of early warning of landslides or wildfires) [21]. Al
can dynamically adjust the thresholds based on sophisticated
contexts and the knowledge Al models has learned from the
accumulated decades of historical records, which will be
more accurate and quicker than experts-adjusted threshold
setting approaches. The expected results will allow earlier
and more accurate alerts for all kinds of natural hazards and
provide better opportunities for emergency response teams
to act and contain the damages.

2.3 Monitoring and measurement

One of the main benefits brought by Al to Earth and environ-
mental system monitoring is automation. Most teams want to
involve Al to maximally reduce the level of time-consuming
human intervention in their monitoring routines. Unmanned
monitoring is more scalable to cover larger areas at a higher
frequency (Fig. 4). With the capability of smoothly connect-
ing workflow by direct data transformation and rule enforce-
ment by Al the latency between the observation time and
the monitoring time by scientists is expected to be further
condensed until it is close to real-time synchronization.
Many scientists envision how Al could boost data quality in
both temporal and spatial dimensions [22]. Al is intended to
function as a guardian to block or limit poor quality data and
only allow good quality data to initially reach the dashboard
of scientists or decision makers.

The measurement strategy needs to be optimized for
the targeted problems. For field measurements, it is trou-
blesome for scientists to determine the best places to take
measurements, how much battery the devices should be
equipped with, and the interval for each observation period.
Al techniques such as reinforcement learning can serve as

Anomaly detection

Lad o

Filter false alerts
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Fig.4 Seismic wave monitoring
and analysis with AL

optimization models to answer planning questions, such as
the best route, or the best observations to achieve a research
goal. The models can learn based on the rules and targets set
by scientists, like the extent of valid places suitable for sen-
sor planting, the target observation coverage, and the maxi-
mum number of available devices, etc. With algorithms like
genetic algorithms, Al can turn the task into an optimization
problem and find a reliable model to guide scientists to fulfill
their measurement plan at low costs.

In addition, Al can create a pathway for blending those
non-conventional monitoring approaches with the current
standard monitoring strategy, such as crowdsourcing or citi-
zen science projects. For many research teams, crowdsourc-
ing is the most economical approach for monitoring and
measurement collection. However, it is known that crowd-
sourced data quality is a big issue [23]. Although there are
ways to improve data quality, such as assigning each crowd-
sourcer a "reliability score" and weighting the data from
people with higher scores more heavily, it still poses a con-
cern among data users regarding the overall quality. In the
future, we expect that Al can be embedded into the collection
devices by citizen scientists to guide them to take better qual-
ity observations. Meanwhile, Al services will be developed
to boost the crowdsourced data quality and make them more
usable and trustworthy by the science community.

2.4 Short-term prediction

Short-term prediction generally refers to the prediction made
several hours or several days in advance, and is the most com-
mon prediction we receive on a daily basis and essential for
social sectors like agriculture and aviation to function. Most
weather services are short-term, including both hindcasting
(within ~ 6 h) or forecasting (several days). Google-owned
DeepMind already delivers improved short-term weather
forecasting using Al models [24]. Many workshops have
held to discuss how to use latest Al techniques in operational
weather forecasting [25-27]. These workshops bring together

Manual monitoring

Scalable monitoring

Surface-waves

Extensive coverage

experts from academia, industry, and government agencies to
share insights, collaborate on research projects, and address
challenges in applying Al to weather prediction. In the near
future, we expect to see the adoption of Al becoming more
common in production-level weather services. There are many
Al companies and tech giants actively working toward that
goal. For the general public and local communities, they will
see more accurate and timely short-term weather forecasts
because Al can save the computational-expensive calculation
required by high-resolution predictions for short turnaround
times (i.e. <2 h). Generative models have been used to make
nowcasting rainfall using the radar data hours earlier and the
results are very promising compared to other existing mod-
els [24]. Because the short-term prediction cares more about
the trends and there is limited time for the trends becoming
unrecognizable, Al is considered to have a huge advantage to
tackle the task, and provide probabilistic improved values with
enhanced accuracy and time advance.

For the Earth science research communities, the involve-
ment of Al is no doubt a huge transition from the traditional
physics-informed numeric models to primarily data-driven
Al models. Scientists will find the Al prediction less inter-
pretable than numeric models as Al directly learned all the
patterns from the data instead of pre-fixed physics equa-
tions. However, Al approaches can also strengthen tradi-
tional process-based models by effectively uncovering pre-
viously unknown relations between variables or processes
as was e.g. shown in the field of ecology [28]. The reason-
ing within models and simulated processes will no longer
be as transparent and adjustable as the traditional models.
The primary focus of research will be slowly shifted from
model parameter tuning to data engineering. However, in
the future, AI may completely replace the existing numeri-
cal model-based prediction. Scientists will continue to work
in a hybrid environment where numerical models and Al
models coexist for a long time, and their relationship will
be interdependent. An ideal but very possible situation may
be that AI models will rely on numerical model results for

@ Springer
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training, while numerical models can use Al models to skip
some computation-expensive steps.

It took several years before the scientific community
picked up ML as a new approach and explored it in envi-
ronmental applications. Instead of replacing the entire
numerical weather prediction (NWP) models, the science
community has explored how to use this new technology
and smoothly evolution in each core of the current NWP
workflow from data assimilation, forecasting to postprocess-
ing. A review from [29] includes a thorough discussion on
the possibility of replacing the core part of the NWP mod-
els and the opportunities and challenges of Al for weather
and climate prediction. Recently, various types of ML and
hybrid models applications are explored from replacing
specific parameterizations in a model to speed up complex
and time-consuming components [30] to uncertainty quan-
tification [31] and improving models with post processing
(e.g. downscaling; Price 2022). Table 1 listed the common

ensure accuracy. The number of model parameters increases as model com-
science data and managing the spatial and temporal heterogeneity of data
desirable level of accuracy can be computationally expensive and time-con-
physics models under development, and not much existing work to learn from

plexity increases, making it difficult to identify the model
In the current literature, there exists a relatively limited number of Al-enhanced

Training models can be time and resource intensive. The process to achieve a

Contain many assumptions and approximations and require model validation to
Could be largely influenced by unique types of noise and missing values in geo-

research directions in this domain. g
<
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Fig.5 Flowchart for represent-
ing the Al-enhanced physics
model
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V =u +2as
=Vt

Equations in
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Physics model

mathematical operators and physics constants, including
partial differential equations (PDEs) (Fig. 6). They are moti-
vated by the need for machine learning methods that can
handle imperfect data, such as missing or noisy values and
outliers, and still provide accurate and physically consistent
predictions.

One illustrative example as described in [33] on how
PINNS integrate information from both measurements and
partial differential equations (PDEs) by embedding the PDEs
into the loss function of a neural network using automatic
differentiation. The one-dimensional advection—diffusion

Fig.6 Flowchart for represent-
ing physics informed Al model
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equation, which encapsulates the behavior of scalar quanti-
ties such as temperature or moisture in the atmosphere, can
be expressed as:

oJu ou
+

0%u
ot ox

“

where u is the representation of neural network, t is the time,
and x represents the input variables. The loss function includes
a supervised loss of data measurements of u from the initial
and boundary conditions and an unsupervised loss of PDE
described above are represented using the equation below:

Neural network

Iterative proccss

Physics model

Loss function

=

L +W L
data “data  PDE PDE
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L = wWauqLyara + WepeLppe 5)

where L is the loss function. The definition of L, is:

1 Niata 2
Liua = mzﬂ:l (i ) = ;) (6)

Which ensures agreement with observed data and

2
1 Nppe ( Ou ou (3214
R — —_— — ) — 7
2 <8t+u0x V0x2> @

Lppg = N
PDE

enforces the equation's physics, where the sample points
(x;- ;) represent the initial location and time while (x;,7)
covering the entire domain; W,,,, and Wp, are the weights
used to balance the interplay between the two loss terms
[33]. These weights play an important role in improving
the trainability of PINNs. The network is then trained by
minimizing the loss via gradient-based optimizers until the
loss is smaller than a threshold (g).

However, not all domain scientists are convinced that Al
can completely replace the NWP in the short term. In the
near future, it is expected that people will continuously focus
on a hybrid environment where numerical and Al models
coexist for a long time. Further studies and directions are
expected from the improvement of explainable and physics-
based Al to enhance the model's trustworthiness and using
advanced AI approaches such as self-supervised learning
and transfer learning to improve the models' generalization
capability. For instance, [37] from NVIDIA delivers Al
model for weather forecasting.

2.5 Long-term prediction

Long term is a relative concept in Earth sciences and could
have different durations within different domains. In geology,
it could mean several thousands to millions of years for global
and regional tectonism, while in meteorology, it is several
months to years. The phrase “Long Term” is usually used
during strategic planning and global-scale trends are required
as supporting information. One typical example is to forecast
climate changes at global level for next century [38]. How-
ever, based on the experimental results thus far, both Al and
numerical models are struggling with long term predictions.
The advantage of Al is not obvious over physics-based mod-
els when the forecasting time scale increases. This finding
is understandable as the performance of Al depends on the
quality of training data. For long term predictions, the train-
ing data coverage will become relatively insufficient and the
quality decreases. Making Al learn long-term patterns is chal-
lenging, similar to the problems blocking the numerical mod-
eling communities in the past decades. Thus, we think that for
long-term forecasting, the speed of Al adoption will not be as
fast as Al adoption for short-term prediction. We look forward

@ Springer

to new revolutionizing techniques that could learn solid long-
term patterns from limited training data and make accurate
assertions about large-scale trends of Earth systems at a big-
ger time scale. Any progress in Al for long term prediction
will have invaluable impacts to guide us in mitigating climate
change and other grand issues facing our society.

2.6 Answering present questions using historical
data and knowledge

In many scientists’ impressions, Al is pictured as a robot
which can answer any questions and provide instant appro-
priate advice based on history and context scenarios. How
similar is this to reality? Recent natural language process-
ing research has produced some eye-opening services that
can deliver efficient question-answering performances on
replying to chats, searching queries, following guidance, and
finding quote sources. It is expected to see more and more
research on training natural language processing models
to digest the Earth science papers to answer relevant ques-
tions. Similar to other Al models, question—answer models
also require high quality training datasets. There are some
ongoing efforts to prepare science questions and answers
[39]. More Al-ready science Q&A datasets are expected to
be created in the near future, and intelligent answering ser-
vices for Earth and environmental scientific questions are
provided in the foreseeable future. Earth system sciences
are sophisticated and contain much knowledge accumulated
in many years of research and field work. It is important to
make sure we have a strong workforce who have access to
and understand this field of research. An Al model who can
instantly answer the next generation’s scientific questions
and provide personal training will be critical to accelerate
the research progress of Earth sciences.

Recent advancements in natural language processing
have introduced transformer-based Al models with a self-
attention mechanism. These models are revolutionizing
how we extract knowledge from existing data. The self-
attention mechanism acts as a dynamic spotlight, enabling
Al to understand the complex interplay of scientific concepts
within the text. As described in [40], self-attention calculates
a weighted sum of values (V) using the similarities between
a query vector (Q) and a set of key vectors (K). This mecha-
nism helps in computing the context-aware representation of
each word in the sentence considering all the other words in
the sentence. This process can be mathematically described
in the following equation:

Attention(Q, K, V) = softmax( QKT) *V
, K, = 8
7 ®)

Here, Q, K, and V are matrices that represent the queries,
keys, and values, respectively. Each i-th row of the Q, K, and
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V matrices corresponds to the i-th word in the sentence, and
each j-th column of the matrices corresponds to the j-th
dimension in the representation. —= denotes the dimension

Vi
of the key vector and acts as a scaling factor. The dot product
of the query vector of the i-th word and the key vector of the

j-th word is divided by the square root of Ld to ensure that
k

77

the dot product values are within a small range of magni-
tudes. Then, the softmax function normalizes these dot prod-
ucts across all the words in the sentence to generate a prob-
ability distribution over those words. Then, the values of
each word in the sentence are multiplied by the correspond-
ing probability and summed to obtain the context-aware
representation of that word. Thus, self-attention allows the
model to capture the importance of each word in relation to
the other words in the sentence, making it an effective tool
for various NLP tasks, including reading comprehension,
abstractive summarization, and textual entailment.

2.7 Exploration of unknowns

Many Earth scientists are wondering if Al can solve daunt-
ing science questions. Due to the fact that Al heavily relies
on the training data and the patterns hidden in the histori-
cal data, many scientists doubt Al can find new knowledge
outside the traditional unknown physics. It is true that most
current popular Al models are probabilistic fitting and statis-
tical machines, instead of intelligent reasoning engines. One
key capability for exploring new knowledge is self-learning
and evolving, which is a capability most current Al models
do not have. We expect more intelligent Al models being
proposed and tested to explore the unknown territory in
Earth sciences, and provide real intelligence to reveal novel
knowledge that was not discovered before.

Some promising research at Columbia University has
used Al to observe physical phenomena and uncover rel-
evant variables which stimulate unexpected scientific dis-
covery [41]. It could be considered a good start to use Al
to extend our knowledge base. However, it still takes much

Fig. 7 Al for flooding response
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effort to build general artificial intelligence to make Al mod-
els evolvable and less dependent on the scale and volume of
the training data so Al models can do deductive reasoning
based on the existing knowledge and derive new knowledge
rules after combining with new observations.

2.8 Social impacts and applications

The stakeholders of geospatial datasets also include social
scientists. Many social studies use remote sensing and sta-
tionary observations provided by federal agencies to analyze
the relationships between social dynamics and environmen-
tal and climate changes [42—44]. Recent COVID-19 studies
also use Al and geospatial satellite data to detect critical
areas where individuals have a higher risk of contracting
COVID (Atek, 2022). As shown in Fig. 7, Al methods have
been used in natural hazard risk assessment, such as using
Al for assessing the properties of the physical hazard itself in
the flooding models or estimating the loss of system function
given hazard loading [45, 46]. More applications of Al in the
fields between social science and geospatial data sciences
will be created to deliver more usable and actionable results
to inform and guide our communities and country to better
daily decisions and policy making.

In addition, ethical questions have been raised with the
use of Al in Earth monitoring and predictive systems [47].
Social scientists can study and learn about the impacts of
such technological evolvement and echo the concerns of
our society on Al adoption and navigate Earth Al research-
ers to develop community-friendly Al services. Recently
social science can play an important role in explaining the
Al-derived products and their social impacts during inter-
action with real people. Social science researchers employ
certain cognitive biases and social expectations to explain
the Al process [48]. Similar to philosophy, cognitive and
social psychology, Al development also needs to answer
questions such as what constitutes an explanation, what
the function and structure of the explanation is, and how
to generate explanations and evaluate the explanations’

Al flood analysis
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quality [49]. Consequently, practical Al can build on exist-
ing research in social science since they provide a foundation
for how people define, generate, select, evaluate and present
explanations.

2.9 Data discovery and data curation

Al has been applied to assist researchers in quickly and accu-
rately discovering Earth and planet science data they need.
Generally, there are a variety of users of Earth science data,
with varying levels of expertise and backgrounds. By lever-
aging the advances in Al fields such as NLP, data providers
and distributors can help users find more relevant data. For
example, NASA's distributed active archive centers hold
EOS mission data and maintain seamless access to the data
for users. For any DAAC to fulfill its mission, it is therefore
essential that it be able to function as an effective data dis-
covery tool. ML can be used by search engines to determine
the most relevant results through an enhanced understanding
of user search queries. Traditionally, search methods rely on
matching explicit user search queries with indexed metadata.
When the search query doesn't exactly match the metadata,
a large number of searches can be missing. Modern NLP
methodologies have recently been utilized to match queries
with data through similarity metrics, as opposed to exact
matches [50]. A similar, but different methodology, DAACs
examine previous publications or applications of the data
to offer users better datasets using NLP and graph models
[51, 52].

2.10 Accelerating traditional models

One of the biggest challenges in adopting Al in the Earth
science community is awareness of the power and pitfalls of
Al A few of these benefits and challenges are detailed here.
Staying abreast of this fast-changing technology is difficult.
The speed of data mining is one of the fundamental pillars
for a functional modern society. The speed of data process-
ing and information extraction and delivery is sometimes
prioritized over accuracy and quality. The balance between
speed and quality has been discussed for a long time in
natural hazard response activities or other time-sensitive
application scenarios. Near-real-time raw data products are
available. For Al applications, the speed of the pipeline has
several bottlenecks like the slow turnaround in data ingest-
ing, model training, model prediction, and post-processing
Al results into data products. The current solution focuses
on the model training aspect, and the traditional way of
speeding up computation like extract-transform-load paral-
lel computing on powerful computing devices still strug-
gles with the huge amount of the Earth science community
datasets. The Al pipeline has similar time costs to numerical
models, where retrieving data and preprocessing the data is
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time-intensive. Data pipeline engineering is an important
component to speed up the Al workflow.

3 Best practices for implementing practical
Al in Earth system sciences

There are many obstacles to overcome when creating usable
Al models. Besides handling commonly known challenges
[1] such as shortage of training samples, poor generaliza-
tion, and lack of explainability, this section will focus on
two more realistic problems for beginner Al scientists: how
to use data and Al in the cloud, and community-oriented Al
deployment and operation.

3.1 Project-specific Al product development
and collaboration

Although the dream of general Al is being deeply exploited
right now, most Al models still need to be carefully tai-
lored for specific projects and certain well-defined tasks.
There are basically two essential steps during the Al pro-
totyping stage: problem definition and model development.
Based on our experiences, finding correct scientific ques-
tions and giving a clean definition of the target Al tasks, is
equally hard as actually developing Al models. It requires
people with Al project experiences to help identify what
problem Al is suitable and can help, and which ones it can-
not. Generally, Al requires the presence of patterns in the
dataset, meaning the dataset must not be random or close
to randomness. The patterns don’t have to be completely
explicit or instantly aware in human eyes, but should exist.
The experiment part is generally standard protocol right now
for Al projects. People gather datasets, especially datasets
including ground truth or the training labels (most current
Al tasks are supervised learning). Training data preparation
is by far the most time consuming and needs the majority
of the attention. It is not a sequential industrial pipeline-
like practice. The data preparation and the model tuning are
always done back and forth in many iterations. For example,
people working on precipitation forecasting, may find some
features like pressure, temperature, terrain, and land cover,
are more useful in certain models and less useful in others.
Therefore they have to prepare multiple training datasets to
feed into different models to boost their forecasting capacity.
In many projects, researchers have to manually repeat the
iteration between data preparation and model tryout many
times. Without proper project management, best practices
like experiment transcripting and result seamless sharing,
any Al projects can quickly collapse into a black hole which
absorbs all the resources. These failed projects won’t deliver
any good Al models, and have wasted numerous hours of
researchers’ time and computational resources. That is also
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one of the main drivers of this paper to promote best practice
on Earth Al research productivity by enforcing Al experi-
ment recording and results sharing among team members
or the entire community in a plain format that everyone can
interpret. Current efforts like Geoweaver [53] have made a
lot of progress on that and we need more efforts to dedicate
to this aspect in ongoing and future Earth Al projects.

A great idea for an Earth Al project will definitely need
more collaboration with many parties to help with impor-
tant aspects such as technical support, funding support,
computing support, usability support, user feedback, and
potential market analysis and planning. No single person
can achieve all of these aspects. Collaboration is one of the
major requirements for most Al endeavors. Some important
collaboration modes are the public—private partnerships, and
research-industry-government collaboration. Government
agencies like NOAA, NASA, NSF have already actively
put out calls for Al products development to achieve vari-
ous strategic goals in Earth sciences, and providing funding
opportunities to connect resources with people equipped
with knowledge, requirements, skills, hardware, to get things
done. For the future generation workforce, NSF also has
funding for universities to create programs to training stu-
dents with AI/ML techniques to further discover the patterns
in the geospatial datasets, and develop useful Al products
to solve the challenging scientific problems, like earthquake
forecasting, long-term meteorology forecasting, climate
change and consequence prediction, and food security.

3.2 Community-wide Al deployment
and production

As Al is gradually reshaping the landscape of geospatial
data sciences, many research tasks are shifting from empiri-
cal manual analysis to data-driven automatic analysis. Earth

Fig.8 User interface with Al
for flood alert
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science scenarios for Al models exist to accommodate end
customers. How to deliver production-level stability and reli-
ability is the biggest question for Al technologies. Most Al
endeavors are struggling to meet the requirements of real
world applications. Many tasks are not ready for deployment
in Al Scenarios like seismic signal explanation, hurricane
forecasting, weather prediction, air quality simulation, and
water discharge forecasting all need Al models to deliver not
just accuracy, but also fast, explainable, reliable, and trust-
able results. That requires interactions between community
users and Al models. For research users, they may directly
get the Al models and deploy into their environment on lab
servers or cloud platforms. For the public users of the prod-
uct, data product teams are required to translate Al results
into understandable format like maps or textual statements,
such as, “There will be flash flooding in Fairfax County from
5:00PM to 6:00PM, please find shelter and avoid going out.”
which will require coordination with science communicators
and public health specialists (Fig. 8). The community needs
to transition the current information pipeline to knit Al mod-
els into the workflow. The user end portal likely needs to be
changed as well to let people better understand the results,
such as attaching a probability score with each prediction
and linking the results to the provenance so geoscientists/
meteorologists can verify and explain why such prediction
is made (Fig. 8).

3.3 Maintenance & operation team guidance

The popular practice of operationalizing Al is MLOps
(Machine Learning Operations), which usually refers to
applying principles from the DevOps (Development and
Operations) practices to the deployment of machine learn-
ing systems and includes monitoring the system to ensure it
continues to work in the real world [54]. MLOps considers
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the entire lifecycle of the model from data intake to the
final use of the model. MLOps begins with exploratory data
analysis, including understanding data quality and identify-
ing particular issues. Model training occurs in the middle
of MLOps, after the data has been cleaned and bad data has
been removed. Between training and deployment, it is neces-
sary to check model performance to ensure the model does
not make any systemic mistakes. If the risks associated with
misclassifications carry different real-world consequences,
the model must be adjusted to maximize utility. For instance,
in 2022, the city of Toronto deployed an Al model to pre-
dict whether bacterial levels at its beaches would be above
or below the safety threshold [55]. If the consequences of
beachgoers using an unsafe beach is worse than the conse-
quences of a safe beach going unused, the model should err
on the side of predicting “unsafe.” During deployment and
operations, the model must be monitored to ensure there is
no decrease in performance due “data drift” (changes in the
underlying data distribution) or other issues. With feedback
from users and testing, the model can be adjusted to improve
utility or at least avoid a decrease.

NASA'’s Interagency Implementation and Advanced Con-
cepts Team (IMPACT) made MLOps for Earth observation
a major component of its open source SpaceML Initiative
[56]. The resulting MLOps tools reached Technology Readi-
ness Level 9, ready for deployment, and can be used for
satellites directed toward Earth, such as Worldview, as well
as sky-oriented satellites, such as Hubble. MLOps is par-
ticularly important given that events of interest are often rare
compared to the gigabytes to terabytes of data that are not of
interest. SpaceML worked with high school students from
around the world to provide cost-efficient data labeling [28].

3.4 Al auditing & accountability

Unlike the private Al projects, federal agencies’ Al projects
must comply with the Executive Order, “Promoting the Use
of Trustworthy Artificial Intelligence in the Federal Govern-
ment,” issued in December 2020 (Exec. Order No. 13960,
2020). In October 2022, the White Office of Science and
Technology released a “Blueprint for an Al Bill of Rights,”
identifying five pillars: Safety and Effectiveness; Algorith-
mic Discrimination Protections; Data Privacy; Notice and
Explanation; Human Alternatives, Consideration, and Fall-
back [57]. Additionally, the Government Accountability
Office released a framework for Al accountability (GAO,
2021) to guide the auditing of Al applications for both fed-
eral agencies and other entities. It has four principles includ-
ing governance, data, monitoring, and performance.

For geospatial data, the privacy risks may be limited, such
as the use of low-resolution satellite data, or severe, in the
case of phone and social media location data. It is relatively
easy to deanonymize location data while allowing data users
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to track the movements of individuals to doctor’s offices
and other sensitive locations (Valentino-DeVries, 2018).
Before engaging in an Al project using geospatial data, it is
important to consider how the data and results can be used,
or potentially misused. Notice is also important for anyone
included in the data or impacted by the results. Develop-
ers should also provide a mechanism for people who are
impacted by the applications or whose data are used in the
development process to report the impact and withdraw their
data from being used.

As more complex Al algorithms are developed, expla-
nations of Al applications can be challenging to achieve.
Explanations are particularly difficult for convolutional neu-
ral networks, which are commonly used for remote sensing
data. A common solution is to use heatmap activations to
ensure that the Al model is trained on the correct features of
satellite data or other geospatial sources [58]. In all cases, it
is necessary to not only build an AI model but to ensure it
works as intended and does not produce negative unintended
consequences. Some research suggests choosing inherently
interpretable Al models instead of providing post hoc expla-
nations using explainable Al (XAI) techniques, especially
for high stake applications [59].

The Government Accountability Office’s framework
for AI accountability highlights the need to establish the
process to manage, operate, and implement Al applications
which ensure accountability. The process should be estab-
lished at both the organizational level and Al system level.
The organizational governance process allows the entity to
engage with diverse stakeholders to ensure accountability
and implement a risk-management plan. The system-level
governance process provides technical specifications and
procedures to continuously monitor the performance of Al
systems at both component and system level and ensure that
Al systems that are operated for intended uses [60].

3.5 Effectively using existing datasets and cloud
computing

The effective utilization of geospatial datasets from institu-
tions like NASA, NOAA, USGS, EPA, and public reposito-
ries hosted on data centers or cloud platforms such as AWS,
Azure, and Google Earth Engine is redefining the landscape
of data-driven Earth Sciences. These repositories offer an
extensive array of invaluable Earth observations, includ-
ing satellite imagery, climatic records, and environmental
parameters. Accessible through robust APIs, they empower
researchers to conduct intricate analyses and foster the
development of Al models for comprehensive Earth sys-
tems' understanding. The scalability and computing power
offered by major cloud platforms have revolutionized the
capabilities of Al in Earth Sciences. With evolving AutoML
solutions integrated into AWS, Azure, and Google Cloud,
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scientists, including non-programmers, can navigate com-
plex Al processes through user-friendly interfaces, facilitat-
ing activities such as data preparation, model tuning, and
deployment. These fully-managed Al services within cloud
environments pave the way for swift prototyping and the
development of practical Al solutions for Earth Sciences,
underscoring the importance of aligning platform capabili-
ties with research needs and considering cost efficiency and
data quality in leveraging cloud resources.

Utilizing APIs like NASA's EarthData and Python librar-
ies (e.g. earthaccess), researchers gain streamlined access to
an extensive array of geospatial datasets, empowering them
to conduct advanced analyses in Earth Sciences. The inte-
gration of Python with EarthData APIs offers a flexible and
powerful means for querying and retrieving various data-
sets, streamlining the process for researchers to access spe-
cific data relevant to their Earth Sciences research. NASA,
NOAA, and USGS have been actively involved in efforts to
make their datasets cloud-native. Cloud-native format ini-
tiatives, such as NASA's adoption of cloud-optimized data
formats like COGs (Cloud Optimized Geotiffs) or Zarr [61],
have transformed the storage and accessibility of large-scale
Earth observation data. These formats enable optimized stor-
age and direct access to specific subsets of data without the
need for complete downloads, thereby significantly reducing
data transfer and storage costs. Researchers can use Python
libraries to directly query and access cloud-optimized data-
sets from these agencies, enabling the retrieval of specific
subsets of data for analysis without downloading the entire
dataset. By integrating these cloud-native data formats with
Python-based tools, researchers can perform large-scale
analyses, including machine learning, deep learning, and
statistical modeling, on these extensive datasets, allowing
for comprehensive insights into Earth systems, climate pat-
terns, and environmental changes.

For Earth Al beginners, cloud computing is becoming
an important tool [62]. The traditional isolated local com-
puting environments have been gradually replaced by open
and publicly-accessible cyberinfrastructure, especially in the
form of cloud computing. Generating large enough training
datasets is, in many Earth science domains, a very expensive
process. Big name data providers like NASA have already
moved most of their datasets into the cloud. Availability
of large datasets in cloud environments prevents the need
for downloading by individual researchers, leaving more
time for actual research (e.g., [63]). Most steps inside the
full-stack Al life cycles depend on the availability of cloud
computing and its offered technologies. However, the steep
learning curve is a big challenge for new cloud users. The
mainstream commercial clouds such as Amazon Web Ser-
vice and Google Cloud are rapidly building their AutoML
solutions on top of their gigantic cloud infrastructure. Al
scientists can do everything inside their cloud environment.

For non-programmer scientists, the cloud providers are
forming low-coding environments (e.g., AWS SageMaker,
Azure Machine Learning Studio, and Google AutoML) to
allow them to finish training data preparation, model tuning,
and service deployment by clicking buttons on a series of
guided Graphical User Interfaces (GUI). Such cloud-native
Al services are often referred to as fully-managed Al ser-
vices for scientists to quickly prototype and build usable Al
services. It is a reasonable path to get a production-level Al
application for Al beginners. However, beginners have to
fully understand the platform to compare the capability with
their needs and consider the cloud costs and the training data
quality before investing too much computing time.

3.6 Al workflow product management
3.6.1 Al maturity/readiness level classification

It is exciting to imagine Al becoming a routine tool in Earth
sciences, to study and solve a wide variety of problems.
When discussing specific Al products (either models or data
products), they can generally be categorized into various
levels based on their maturity and readiness for practical
use, from proof-of-concept products to solid ready-for-use
products. Industries like unoccupied autonomous vehicles
have specific and detailed classification about the Al at dif-
ferent levels. According to the ElementAl classification [64],
these are basic stages in operationalizing Al in production
environments (Table 2). Similar classification can also be
found in [65] with more fine-grained stage divisions.

Product maturity categorization system is not specific to
Al products. The technology readiness level [66] defined
many years ago at NASA has been widely used. Today the
specifications to evaluate NASA product readiness are very
detailed and include many mission-oriented requirements
such as resolution and the removal of artifacts [67]. Besides
NASA, there are several similar frameworks regarding data
maturity and product/technology readiness in other govern-
ment agencies. These frameworks are usually following
some top guidelines to simplify the efforts by users to com-
prehend and take use of the eventual delivered products. For
example, atmospheric scientists most likely will require the
data products to be available in a standardized format, using
a standard set of units and variable definitions for consist-
ency and directly digestible by their analysis.

It appears that although the Al maturity frameworks have
a lot in common with these existing maturity frameworks,
there are still some differences. Al maturity needs to con-
sider the interaction with its end users in daily usage, includ-
ing all the components involved including model API, client
software, computing platforms, and algorithm robustness in
extreme conditions. The inherent uncertainty in AI models
requires more detailed rules to regulate what kinds of Al
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Table 2 AI Product Maturity Level [64]

Product Level Definition

1—Planning

2—Experiment

Problem identification based on the existing technology and available datasets

Prototyping and experimenting with fractional datasets and wide variety of AI models

3—Development Develop production-level data processing pipelines to apply the chosen Al model (with the best overall performance/cost rate)

based on the originally collected training datasets
4—Production

Deploy Al into production for daily usage to digest streaming observational data and make in-time prediction. Also need to

add other supporting functionality on top of Al like security and user management to interact with real users

5—Sustaining

Maintain Al services by iterating from servicing, problem feedback, retraining, to redeployment. Also with development in

software and hardware, Al products should have upgrade plans for evolving to new models, algorithms, and technologies in

future

products should be considered as “production ready”. An
Al model might work well on the training data, but perform
worse on new collected datasets, which is usually uncom-
mon in the conventional non-Al technologies. A more rel-
evant classification framework is the NASA technology
readiness level framework [4], which could be appropriate
to measure Al application’s maturity here.

3.6.2 End to end processing pipeline

The progress of Al research and adoption in Earth sci-
ence domains is relatively slow. One main reason is lack
of open and comprehensive end-to-end pipelines for Al
workflows. The ideally expected deliverable for most
Earth Al projects should be full-stack end-to-end work-
flows (or pipelines, can be used exchangeably), which are
fully described and contain all the code files. It has been
known that Al has a reproducibility crisis [68], due to the
randomness and black-box nature of the involved models.
Figure 9 shows an example workflow replicating the Kenya
crop mask mapping workflow [69]. Each circle represents

e e

Full stack AI-workflow
in Geoweaver

Multi-source
Datasets

a Python process, and the connections indicate the order
of execution. Most processes are actually for data prepara-
tion. Machine learning model training and testing account
for only about a third of the processes. Unfortunately,
most people only share the ML portion of processes and
give less attention to the other processes, especially those
essential upstream steps.

ML researchers look for solutions to better compose and
share the E2E ML workflows, and one of the popular efforts
is trying to improve geospatial AI FAIRness. FAIR prin-
ciples are not limited to dataset but also the other project
objects such as tools workflow [70, 71]. So far, the reality
of the current Al for Earth Science still deviates from these
principles, therefore, hindering the reproducibility of Al
The challenge of reproducibility may come from various
aspects, for instance, the changes in the systems, software
versions, the nature of the training ML models involving
randomness, and the ML frameworks using various preci-
sion to accelerate the training procedure. Figure 9 shows an
example end to end workflow using NASA remote sensing
data to map cropland in Kenya.

ML-Based Kenya
crop mask mapping

Fig.9 Example Al workflow of ML-based Kenya crop mask mapping in Geoweaver (https://github.com/earth-artificial-intelligence/kenya-crop-

mask-geoweaver)
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4 Example success use cases

As mentioned above, it is very challenging to realize “one-
size-fits-all” Al products, given the current Al techniques it
is hard to implement “wide”, general purpose Al that can
be used across multiple problems or domains. Instead, most
current Al models are trained for a specific “narrow” pur-
pose, with a similarly narrow, specially prepared training
dataset. There is no straightforward rule to determine when
an Al model is considered good enough for production.
Researchers need to compromise to determine which model
is ready to be delivered to its intended end users. Generally,
if a model can work with an inside-boundary accuracy for a
specific purpose, it is considered good enough. We call it an
“fit-for-purpose” model which is not the best possible model
but it can do the work. For example, for snowfall forecast-
ing, suppose model A outputs 91% accuracy while model B
gives 89% overall accuracy, while model A costs two times
longer than model B. For most users, model B would be
the on-purpose model as its overall performance combin-
ing accuracy and costs is the best. To give a more concrete
understanding, the following sections will briefly introduce
some on-going efforts within the geospatial data science
community to make Al practically usable for their users.

4.1 Ozone forecasting

The CMAQ model, also known as the Community Multi-
scale Air Quality model [72], is widely utilized by atmos-
pheric scientists to predict changes in air quality. It meas-
ures various parameters such as ozone, PM2.5, NO2, SO2,
among others. However, CMAQ has consistently exhib-
ited overestimations and underestimations in specific U.S.

Fig. 10 Comparison of Al and
physics model results [75]
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regions. To address this issue, the CMAQ Al team at George
Mason University conducted a feasibility analysis to lever-
age machine learning for calibrating CMAQ results. Subse-
quently, they implemented this approach in an experiment.
Utilizing Geoweaver [73], a workflow was composed for
proof of concept, and the results from training a random for-
est model on the 2021 dataset were highly promising. When
evaluating the ML-calibrated ozone results, it became evi-
dent that they consistently outperformed the original CMAQ
results. As a result, the GMU team seamlessly integrated this
workflow into the production environment, allowing for the
generation of daily ozone maps. The small circles within the
maps represent ground truth data collected by the AirNow
station network [74]. Figure 10 is an illustration of the com-
parison between Al and CMAQ results.

4.2 Underwater image recognition

NOAA AT strategic plan [76] projects that Al methods are
expected to boost transformative advancements in the qual-
ity and timeliness of atmospheric science, products, and ser-
vices. One of their preliminary efforts is using ML in detect-
ing organisms in the captured underwater images. Currently,
underwater surveys within NOAA fisheries require a large
amount of manual oversight by data analysts to interpret
the images. That is not sustainable as the amount of images
is rapidly increasing. For example, the NEFSC (Northeast
Fisheries Science Center) Habcam (Habitat Mapping Cam-
era) benthic survey [77] now collects approximately five mil-
lion images a year. Al practitioners turn to Al for help, and
developed VIAME (Video and Image Analytics for a Marine
Environment) convolutional neural network [78], which has
been tested and proven very promising at automating iden-
tification of the organisms and relieving the human analysts

Ozone forecast
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CMAQ model
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from the heavy burden of manually reading the huge number
of images (Fig. 11).

4.3 Land cover map downscaling

Within the Earth science community, a prominent and press-
ing demand revolves around the enhancement of current data
products, primarily addressing the limitation of coarse reso-
lutions that hinder the extraction of actionable information.
A breakthrough success story in addressing this challenge
emerges through the innovative use of Al to refine images,
providing unprecedented clarity and intricate details. A
prime illustration of this triumph is found in the NOAA NOS
(National Ocean Service) C-CAP (Coastal Change Analysis
Program) program's initiative. Through the strategic imple-
mentation of Al, this program has achieved a remarkable feat
by downscaling land cover maps designed for U.S. coastal
regions. The advancement is staggering, transforming the
resolution from a relatively coarse 30 m to an impressive
1-m resolution [80].

The magnitude of this achievement cannot be overstated.
The significance lies not only in the numerical leap from 30
to 1 m but, more importantly, in the tangible impact on map
users. The enhanced resolution enables users to discern intri-
cate details and objects with unprecedented clarity. What
was once invisible or excessively coarse, hindering mean-
ingful interpretation, is now accessible and distinguishable.
This success case serves as a testament to the transforma-
tive power of Al in addressing critical challenges within the
Earth science domain. It showcases not only the potential
for technological advancement but, crucially, the tangible
benefits realized in providing Earth scientists with clearer,
more detailed information that was previously elusive.

Fig. 11 VIAME underwater
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4.4 Coral reef detection

Similarly, Coral detection is another headache problem
for survey image interpretation which was conducted
manually by analysts at a low efficiency. Scientists devel-
oped CoralNet [81], which can annotate coral reef images
and automatically distinguish different species of corals,
and has greatly assisted scientists by saving them a big
amount of time on labeling. The latest version of CoralNet
can also provide higher resolution products and includes
script-level access to allow interfaces with other projects
[82]. The model providers have benchmarked a bunch of
machine learning models before settling on the Efficient-
Net to train the official version of the CoralNet model and
deploy them into use after successful beta trials.

These examples showcase how Al works in real life
to address specific Earth scientific problems which are
very cumbersome for the existing approaches and used to
involve heavy manual human supervision. They also prove
that Al can do things impossible before like providing
data in greater resolution due to automated data infusion.
It should be noticed that due to the specialization of Al
models, each use case is different in terms of daily opera-
tions. For example, CMAQ forecasting’s model inputs are
continuous and time sensitive so it needs to be run every
day on a regular basis, while the CoralNet is only triggered
when users request new coral images. Also, it is obvious
that no Al models are perfect and when errors happen, the
operation team needs to respond and fix the issues in a
timely manner, which echoes the “fall back” guideline by
the White House Al Bill of Rights.
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4.5 Alinvolcano science

Understanding and predicting volcanic eruptions is an
important subset of the geosciences, however volcanic sys-
tems are vastly complex, and each is unique. These com-
plicated systems still leave volcanologists with many ques-
tions: when will this volcano erupt next? Why will it erupt?
How large of a magnitude will the eruption be? And more
importantly how long will it erupt? Machine learning offers
new avenues to explore these questions and to utilize multi-
disciplinary datasets. Presently, machine learning has been
utilized to improve the quality of magmatic pressure and
temperature estimates, allowing us to visualize the spati-
otemporal dynamics acting in volcanic plumbing systems.
Volcanic minerals (e.g. clinopyroxene; amphibole; olivine)
are compositionally pressure and temperature sensitive,
meaning at different pressure and temperature conditions
the elemental composition systematically shifts. Thus, look-
ing at the changes in chemistry within different regions of
a mineral allows us to track the magmatic history of a vol-
cano prior to the eruption. Recent developments turned to
using machine learning random forest methods to tackle this
problem and have improved the accuracy and precision of
these estimates [83, 84]. These methods utilize large open-
source datasets of experimentally derived minerals, which
crystallized at a known pressure and temperatures, to train
the model. Improvements to the error of these models allows
us to see the depths of the earth in better resolution, and
thus aid us in understanding processes that trigger volcanic
eruptions and in detecting signs in deep magma dynamic
variations that may be reflected through changes in eruptive
behavior (Fig. 12), for example, the volcano monitoring plat-
form, MOUNTS [85]. Other machine learning approaches
in volcanology are also being explored to classify and inter-
pret seismicity related to volcanic activity, which often come
with large datasets and are important for real time volcanic

Fig. 12 Machine Learning
model used to detect magma
storage conditions
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monitoring [86—88]. Machine learning might even be the
way forward to increase our ability to predict volcanic erup-
tions. For example, Ardid et al., [89] utilizes cross correla-
tion machine learning to generate a predictive forecasting
model, which can improve short term eruption warning sys-
tems for gas driven volcanic eruptions. Machine learning
advances will drive the field forward and aid us in answering
our fundamental questions about volcanoes and allow us to
better mitigate and respond to these hazards.

5 Challenges of using Al in the geosciences

This section examines the general need for artificial intel-
ligence (Al) from the perspective of data scientists and data
users in the Earth science community. Based on the current
datasets, the research community is actively exploring Al
models to generate higher quality socioeconomic products
that are directly relevant to decision making in our society.
The community is exploring Al to address the problems
that are currently nearly impossible to solve by traditional
research approaches. There are strong needs in data-driven
sciences right now. This section will detail these needs.

5.1 Tackling missing data, biases and uncertainties

Al requires continuous and high-quality data for training
and testing. The Earth science community has a tremendous
amount of data available. However, there is still a dearth of
high quality data concerning the key variables, accuracy, and
spatial-temporal coverage. In the NASA community, remote
sensing reflectance data is the major driver behind the big
data archive and there are numerous thematic data prod-
ucts derived from reflectance using algorithms and models,
e.g., land surface temperature, snow cover, land cover, pre-
cipitation, soil moisture, soil temperature, air temperature,
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albedo, etc. However, currently only a fraction of these data
products can be used as training labels because of the con-
cerns over resolution and precision. Instead, NASA data is
commonly used as input variables in the training dataset.
Clouds and other weather conditions also caused long-term
missing data of continuous observation of the land surface in
remote sensing datasets (Fig. 13). Satellite SAR/LiDAR data
can penetrate the clouds and operate day and night. How-
ever, the limited resolution, long revisiting period and high
ratio noises in the signals degrade the advantages of satel-
lite SAR/LiDAR data over optical satellites. These missing
areas pose major problems when applying Al to digest and
train on NASA datasets. The designers of feature engineer-
ing of Earth AI models must be knowledgeable about these
satellite datasets and clearly understand the issues caused
by missing data. They should also choose carefully what
data should go through the training process. Data gaps are
a general issue in geospatial datasets, and not limited to Al
use cases. However, these gaps will be a critical issue since
it results in incomplete or biased learning patterns of Al due
to missing information. As a result, trained Al models can
fail to recognize correct patterns, miss important signals, or
even become unusable in real world scenarios.

Besides the data bias, algorithmic bias, or the tendency
of Al models to amplify the data bias (or its inability to cor-
rect them) are another major concern. For locations which
are poorly represented in the training data [90]. AI generally
has lower accuracy and generalization. To be practical, Al
systems should acknowledge users with these issues and the
known limitations by delineating the scope of model appli-
cability [91]. AI models should only be used for locations/
regions at a certain time range with comprehensively-tested

Fig. 13 Missing data illustra-
tions
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trustworthy reliability [92]. To produce scientifically useful
products, Al practitioners need to understand and quantify
the errors, biases, and uncertainties in the used data [93].
Methods like probability-based sampling can be used to
improve the quality of ground truth data to train the AI mod-
els [94-96]. Also, more efforts should be made to assess the
biases in the Al outputs at various spatial-temporal scales
to track the potential error origins during data aggregation
[97]. As for quantification of Al uncertainty, distribution-
free methods are usually recommended [98].

5.2 Preparing Al-ready data

It is an unspoken truth that geospatial data scientists spend
most of their time preparing rather than analyzing data [63].
The challenge with this process is that it does not only extend
the ML cycle for experienced practitioners, but creates a high
entry barrier for those with less experience. There has been
little work done to develop a detailed understanding of the
challenges associated with the data before it is used to build
a model. Furthermore, geospatial data possess attributes that
require special attention. According to the FAIR (short for
Findable, Accessible, Interoperable, and Reusable) guiding
principles [99], research data must be Findable, Accessi-
ble, Interoperable, and Reusable. Moreover, many AI/ML
applications rely on inherently opaque model architectures
[100]. Consequently, the quality and integrity of the data
becomes even more vital for Al applications. However, data
quality information is difficult to generate, curate and share,
especially across disciplines [101]. Improvements have been
made over the years such as the Data Product Development
Guide (DPDG) for Data Producers. DPDG, data quality is
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included in metadata, was developed as a suggested practice
for NASA Earth Science Data Systems [102]. Accessing
Al-ready data is another challenge and most data centers do
not provide such services (e.g., extreme precipitation). For
data to be found, it is essential that it be accompanied by
standardized metadata that is understandable by search and
automation tools. Community-accepted standards, such as
the SpatioTemporal Asset Catalog (STAC), allow users to
find data both spatially and temporally.

Consumers of ML data historically downloaded their
required data into a local machine or an on-premise HPC
system. This has turned out to be extremely inefficient and
time consuming. At the same time, public and private cloud
services are becoming increasingly more common and
affordable. This provides the opportunity for data provid-
ers to store their data in cloud-friendly formats, such as
Zarr and cloud-optimized Geotiffs (COG). Combined with
streaming APIs that feed data directly into model training
platforms, users can take advantage of the data they need
without downloading large datasets. In order to make data
more interoperable, it should be noted that different commu-
nities may use the same data in different formats. By offering
data in formats commonly used across these communities,
data providers can make data more interoperable. Alterna-
tively, datasets could be accompanied by necessary prepa-
ration codes that could not only convert data formats but
also prepare the data for downstream training frameworks
(Tensorflow Dataset module or PyTorch Datal.oaders).

A best practice is to develop benchmark datasets for cer-
tain domain problems and share with the entire community.
Many benchmark datasets have been used in other domains
and powered breakthrough Al projects. In comparison, the
Earth science community has less available benchmark
datasets with equal high quality. However, researchers have
recently started to catch up; we see an increasing trend of
efforts on creating benchmarks. Generally, a benchmark
dataset should target a specific domain problem and be
widely accepted as a common asset among the community.
The data should be reusable and model independent so
researchers can experiment various Al models on them and
do intercomparison. In addition, to ensure the objectivity
of the intercomparison, the benchmark datasets should be
evaluated with the same set of evaluation metrics, a clear
problem statement, and an unified way to read data using
standard high-level language such as Python and R [103].

5.3 Reducing experiment & operation costs

Earth scientists are spending tremendous amounts of time on
modeling efforts to understand how the Earth systems work
and how they are going to change under various conditions
such as climate changes and human—environment interac-
tion. The current practice is to develop multiple models and

run them in parallel to find out which prediction has the
most consensus among those models. Every model runs and
digests huge amounts of data and takes substantial comput-
ing resources which have to be done on big computing clus-
ters or even supercomputers. Some of the numeric processes
have been considered time consuming and a better approach
to complete them is needed. There are also increasing con-
cerns about the carbon footprint of these resource-intensive
models [104]. Currently, the modeling community is turning
to Al, which consumes relatively few resources and employs
straightforward strategy to learn the underlying patterns of
how input variables impact the target phenomenon. Intro-
ducing AI models into the existing numerical models will
have the benefit of supplementing those missing links to
replace the problematic and computation intensive processes
in the numerical models, and reduce the overall costs of the
modeling efforts (as shown in Fig. 14).

On the other hand, Al engineering has a high initial cost
but brings more benefits and accelerates the modeling efforts
in a long-term perspective, which will save huge amounts
of resources and costs. If data scientists want to reuse the
existing Al models, the process is easier because Al sup-
ports transfer learning and standardized pipelines of how the
model is relinked and reused. Tuning efforts of AI models
is also less time-intensive than tuning numerical models.
Hyperparameter tuning has already been automated at some
level by techniques like parameter searching cross validation
(e.g., GridSearchCV or RandomizedSearchCV). The burden
on the modelers or data scientists will be much smaller and
they will save big chunks of time to focus on the Earth's
scientific problems instead of modeling technical issues.

5.4 Realizing physics-based Al

Another ongoing interesting development is physics-based
Al The created models are often referred to as ‘hybrid’
models, combining the traditional process-based models
with data-based approaches. Physics-based Al can pro-
vide more structure than a ‘data-only’ approach, and is a
potential solution for biased datasets. As of yet, there is
no clear consensus on *how* to develop physics-based Al
solutions: these range from implementing Al into existing
process-based models, or adding a set of (limited) physical
constraints to a data-driven system. In the latter case, the
physical constraints are often fundamental laws such as the
conservation of mass, energy or momentum. The degree of
physics inclusion is also often used to distinguish between
different Al approaches. Recently, scientific progress has
been made in the field of hydrology by using physics-
based approaches, illustrating its potential when traditional
approaches provide insufficient insight [105, 106].

A recent review paper [33] has pointed out that many
current studies are trying to incorporate physical laws into
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Fig. 14 Al advantages over
existing models on costs and
efficiency

[
|

Running multiple models in parallel

8 Time consuming

machine learning models to achieve better accuracy, lower
training costs and improved model applicability at spatio-
temporal dimension. The Earth science community is
actively seeking solutions to inject our already learnt knowl-
edge into the Al methods to address challenges that are
inherently suited to Al methods. A number of Python librar-
ies are under development to help build physics-informed
Al models for various science problems. For instance, Zhu
et al. [107] used a novel parameterization approach to train
a neural network with physical constraints incorporated on
hydrographic and turbulence observations in tropical Pacific.
It shows that adding physical constraints can improve the
generalization of trained neural networks, but many issues
like uncertainties and requirements for high quality train-
ing samples still remain. The observed data does not always
obey physical laws, but the models driven simply by data
are inaccurate as well due to some hard-to-control factors
like the low-quality training samples. A natural idea to
boost the performance is to incorporate the laws of physics
and the data-driven AI models, with a wish to combine the
advantages and achieve something better than using either
way alone. The current research on physics-informed Al is
at its infancy stage, but with great potential only limited
by design imagination. This is a very promising direction
that can accelerate our Earth Al development by using both
methods, physics-driven methods and data-driven methods,
allowing the modelers to ‘walk with two legs,” as it were.

5.5 Making Al operational
Al research and development is still at the prototyping stage

in the NASA Earth science community. “Being in opera-
tion” means making Al products accessible and usable by the
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general users without unexpected interruption and provided
with customer support. Strategy and infrastructure to transfer
Al research into Operation (R20) are the required components
to guide the transition from Al research team to the production
team and communicate over issues, feature requests, customer
support, etc. New engineering practical strategies like DevOps
or recently the concept of MLOps [108], have emerged and
become popular in the industry. MLOps denotes a collection
of practice and skills to deploy and maintain machine learning
models in production reliably and efficiently. It combines the
software engineering cycles with ML model development and
version tactics. Most importantly, the testing and validation in
ML will be automatically conducted by continuous integration
testing software such as Circle-CI, Github Actions, or Jenkins,
like data validation, model improvement verification, model ser-
vice integration, etc. Similar practices might be adopted to roll
out the Al products in the NASA data science community. How-
ever, validating satellite-based products on a global scale often
requires in-situ observations which can be difficult to acquire,
especially in remote regions and over oceans. Validation is often
continuous work [23]. From the perspective of data scientists,
operational Al will provide them with a much more powerful
capacity to understand the Earth via the enlarged enhanced lens
of high-resolution continuous data on key variables.

6 More discussion points
6.1 Training data quality
The key factor in making AI more practical and usable is

the availability of high-quality data. Scientists need access
to large amounts of well-curated data to train Al algorithms
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and validate their results. Governments, universities, and pri-
vate companies can play a role in making data more widely
available to the scientific community. Al tools need to be
easy to use and accessible to geoscientists. This requires
developing user-friendly interfaces that allow scientists to
easily input data, run analyses, and interpret results. Inter-
faces should be intuitive and should require minimal techni-
cal expertise. Al algorithms need to be robust, reliable, and
accurate. This requires ongoing development and improve-
ment of Al algorithms, as well as testing and validation
using real-world data.

6.2 Al Practitioners are in the driver seat

“If I had asked people what they wanted, they would have
said faster horses.” The famous Henry Ford “faster horse”
quote [109] reflects that every big innovation and great novel
product requires the people with first-hand experiences on
the products to defend their views, make bold attempts, and
bring what they see as the best future avenues into reality
no matter how different they are from the paths that others
without the firsthand experiences may promote. Al practi-
tioners should actively reach out to the intended users and
hear their requirements; however, Al practitioners must also
envision and figure out how Al products can target core sci-
entific problems without projects being waylaid by tedious
technical details. Similar to how the iPhone touch screen
replaced the traditional keyboard, AI will bring a lot of sur-
prising changes to the existing research routine of Earth and
environmental scientists. The time-consuming cumbersome
work can be replaced with button-clicking effortless steps
with the help of Al services.

6.3 Preparing next generation Al-ML practitioners

Current students will be the next generation's Al scien-
tists. Therefore, it is essential for students to have data lit-
eracy skills for them to adequately apply Al techniques in
respected fields of applications. "Data dexterity" is the skill
or ability to gain the skills vital for the application and devel-
opment of Al techniques. As every Al technique depends on
the data that is being used and fed into the models, we must
expect our students to demonstrate a higher level of data
dexterity to apply Al techniques properly. Future Al prac-
titioners need to demonstrate how to use strategic thinking
combined with a solid technical foundation in topics such
as data lifecycle, data management, workflows, metadata
standards (e.g., the NetCDF Climate and Forecast Metadata
Conventions [110]) etc., before implementing any Al based
models. Munasinghe et.al [111] describes that the ability to
properly utilize data to apply relevant analytical methods
to solve and formulate science and engineering problems
is also a subset of skills future and current Al practitioners

require. Some pilot projects have been conducted, imple-
menting data-intensive courses using NASA datasets in
class projects and assignments to promote the data dexter-
ity among students.

Nowadays, people can easily learn many advanced tech-
niques purely based on the free open materials online rather
than in college programs. Informal Al training can also con-
tribute to the formation of the next generation of Al experts
in geosciences. Many geoscientists do not have a degree
in computer science or Al majors, and that should not be
an issue. Hackweeks and mentorship training models are
some existing modes of education and community engage-
ment [112]. Hackweeks are time-bounded events that blend
elements of a summer school with open project work or
"hacking" [113], and are designed in a way that encourages
immersive, interactive learning in a space that is welcoming
to people of all backgrounds. The content within a hackweek
is intentionally designed co-creatively with participants,
and there are facilitated opportunities for networking and
community building. As an example, the NSF-funded Geo-
Science MAchine learning Resources and Training (Geo-
SMART) project seeks to develop a dynamic and sustainable
curriculum by integrating education, cyberinfrastructure,
and research that can be also brought into the classroom
(https://geo-smart.github.io/). The GeoSMART educational
pathways build upon three levels characteristics in research:
i) basics in data science and computing, ii) machine learning
tools, iii) research project development and deployment of
the learnt tools to large-scale data with cloud computing.
The hands-on component of the GeoSMART framework is
built around the hackweek model [113].

6.4 What role can non-Al techniques play
in practical AI?

Practical Al includes a stack of technologies, of which
Al models and algorithms are only a fraction. It can be
expected that new technologies will keep evolving within
the AI landscape, and embedded as part of the overall
Al solutions. Since the rise of large mega-models, driven
predominantly by deep neural networks, many applica-
tions have focused on leveraging these models to solve
problems from start to finish. Nevertheless, as the artificial
intelligence community exhausted many of these solutions
by creating more complex models with more data, their
underlying shortcomings began to emerge. Today, it is
generally acknowledged that these models can provide a
variety of task-level functionalities. However, these mod-
els are typically complemented by "traditional" and "non-
AI" techniques in practice. The frontier research domains,
such as knowledge graphs and model-based reinforcement
learning, could be overlapped with AI and will have a
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great potential in practical Al. For example, opposed to
the hard-to-explain AI models, knowledge graphs can help
to see the patterns in explicit form of rules, and under-
stand the completeness of the datasets and components of
the model. New technologies can also help AI make sure
the training data does not exclude specific extreme use
cases, creating a distribution different from the real world,
to improve Al generalization and inclusiveness. Overall,
there is no exclusive definition for what technologies can
be used in practical Al. On the contrary, there are many
possibilities where Al can benefit from other non-tradi-
tional Al techniques.

7 Conclusion and outlook

Al is a very popular topic within the Earth science com-
munity and government agencies, and many groups are
spending tremendous amounts of effort to make it prac-
tically usable in solving scientific problems. This paper
captured some of the issues and future horizons for Al in
the Earth science community. These issues can be used by
future Al practitioners when planning out their research
projects. Most scientists are wondering about the poten-
tial pros and cons of Al before seriously using Al in their
research routines and operational scenarios. This posi-
tion paper aims to picture the landscape of Al-involved
data-driven applied sciences by discussing the current and
upcoming needs of the research community, what practical
Al looks like, how to realize practical Al in NASA and the
broader research community based on the current tech-
niques, and the expected outcome including both benefits
and issues. This paper also discusses some further topics
concerning the unavoidable changes in the near future such
as the fast evolution of the AI foundation models and how
the NASA community should adapt. This paper provides
an important reference to the geospatial-data-driven sci-
ence community to adjust their research road maps and
allocate resources to make their AI work more practical
in real world scenarios.
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