
Vol.:(0123456789)

Computational Geosciences (2024) 28:1305–1329 
https://doi.org/10.1007/s10596-024-10317-7

ORIGINAL PAPER

Towards practical artificial intelligence in Earth sciences

Ziheng Sun1   · Talya ten Brink2   · Wendy Carande3 · Gerbrand Koren4 · Nicoleta Cristea12 · Corin Jorgenson14 · 
Bhargavi Janga1 · Gokul Prathin Asamani1 · Sanjana Achan1 · Mike Mahoney5 · Qian Huang6   · Armin Mehrabian7 · 
Thilanka Munasinghe8 · Zhong Liu1,7 · Aaron Margolis10 · Peter Webley13 · Bing Gong11 · Yuhan Rao9 · 
Annie Burgess16 · Andrew Huang17 · Laura Sandoval3 · Brianna R. Pagán7 · Sebnem Duzgun15

Received: 20 November 2023 / Accepted: 8 August 2024 / Published online: 2 September 2024 
© The Author(s) 2024

Abstract
Although Artificial Intelligence (AI) projects are common and desired by many institutions and research teams, there are 
still relatively few success stories of AI in practical use for the Earth science community. Many AI practitioners in Earth 
science are trapped in the prototyping stage and their results have not yet been adopted by users. Many scientists are still 
hesitating to use AI in their research routine. This paper aims to capture the landscape of AI-powered geospatial data sci-
ences by discussing the current and upcoming needs of the Earth and environmental community, such as what practical AI 
should look like, how to realize practical AI based on the current technical and data restrictions, and the expected outcome 
of AI projects and their long-term benefits and problems. This paper also discusses unavoidable changes in the near future 
concerning AI, such as the fast evolution of AI foundation models and AI laws, and how the Earth and environmental com-
munity should adapt to these changes. This paper provides an important reference to the geospatial data science community 
to adjust their research road maps, find best practices, boost the FAIRness (Findable, Accessible, Interoperable, and Reus-
able) aspects of AI research, and reasonably allocate human and computational resources to increase the practicality and 
efficiency of Earth AI research.
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1  Introduction

Recently, the rapid growth of artificial intelligence (AI) 
has ushered in transformative possibilities across various 
domains, including Earth sciences. While AI holds immense 
potential to revolutionize how scientists collect, analyze, and 
interpret data, there exists a significant hurdle to its practi-
cal application. The current landscape of AI in Earth sci-
ences presents formidable challenges, requiring substantial 
efforts that may hinder widespread engagement in AI-driven 
research. Despite exciting lab results in mineral explora-
tion, seismic analysis, and climate modeling, the practical 
implementation of AI in these fields demands meticulous 
attention [1–3]. We define practical AI as AI that is used in 
real-world applications or has strong potential for real-world 
use. This includes AI technologies that have been tested 
and validated in relevant environments and are intended 
for practical deployment. For more context, practical AI 
corresponds to Level 3 or higher in the NASA Technology 
Readiness Scale [4], which indicates that the technology has 
been validated in relevant environments and shows promise 
for practical implementation. One of the most compelling 
facets of AI in Earth sciences is its capacity to handle vast 
datasets. For instance, satellite imagery can detect changes 
in land use, monitor environmental degradation, and study 
natural disasters. In mineral exploration, AI algorithms can 
identify mineral deposits based on geophysical data patterns, 
minimizing the need for extensive field surveys. Addition-
ally, AI enhances seismic data analysis, aiding geologists 
in understanding Earth's interior structure and predicting 

earthquakes [5, 6]. Climate modeling, a complex and time-
consuming process, benefits from AI techniques, such as 
machine learning and deep learning, improving accuracy 
and efficiency [7, 8].

Amidst these advancements, popular general AI applica-
tions like ChatGPT for writing and Midjourney for image 
creation represent noteworthy progresses that science com-
munity can learn from. These applications showcase AI's 
potential to significantly impact geoscientific practices by 
uncovering relationships within diverse datasets and unveil-
ing patterns that were previously hidden. The dynamic appli-
cation of AI in Earth sciences signifies a rapidly evolving 
and exciting field. Its ability to analyze extensive datasets, 
streamline tasks, and reveal concealed relationships posi-
tions AI to revolutionize geoscientific methodologies, facili-
tating once-unattainable discoveries. This paper endeavors 
to explore best practices and future directions, providing 
insights to enhance the practicality and usability of AI for 
Earth scientists. Collaboration across disciplines, including 
computer science, mathematics, and geology, is imperative 
to develop AI tools tailored for Earth sciences. Educating 
and training geoscientists in AI tool usage fosters a culture 
of innovation and collaboration. Addressing these factors is 
crucial to making AI more practical and usable, potentially 
leading to groundbreaking discoveries. The included road-
map for AI (as shown in Fig. 1) elucidates its evolution from 
specialized training to integration into diverse datasets, rein-
forcing the importance of ongoing learning, monitoring AI 
behavior, and navigating ethical considerations. This paper 
delves into the existing challenges, best practices, and future 

Fig. 1   Road map for AI applications in Earth sciences
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aspirations of AI in Earth sciences, recognizing the necessity 
of a collective effort to unlock its full potential.

2 � The importance of AI in the Earth sciences

Before putting AI into practice, we need to understand what 
AI can do for Earth sciences. In other words, what will 
the future Earth scientific research look like? This section 
introduces research directions and attempts to picture what 
practical AI products or services will look like in the future.

2.1 � Data collection and processing

Much of the work for data collection and processing has 
been automated (Fig. 2). Coordinated data collection, stand-
ardization, and open data sharing can facilitate scientific 
research on large scientific problems, for example, global 
environmental change [9], which can be further acceler-
ated by AI-approaches. Our future society will continue to 
rely significantly on the current or under-development data 
infrastructure, like satellites, drones, stations, in-situ sen-
sors, mobile devices, etc. AI is expected to help augment the 
capture and processing of daily or on-premise datasets. For 
example, due to the interruption by uncontrollable variables 
like sun magnetic storms, sensor accidental malfunctions, 
clouds, extreme weather, dead batteries, etc., there is always 
missing data and bad quality data. AI has been one of the 
promising solutions to deliver seamless time series by auto-
mated gap-filling. One typical machine learning application 
is fixing the Landsat 7 imagery with stripes because of the 
failure of Scan Line Corrector since 2003 (reference). In the 
future, we can expect AI services that can intelligently fill 
and adjust the originally collected raw data to create more 
complete and continuous observations, which is always 
ideal. AI-enhanced data enrichment can increase meaning-
ful and actionable information for scientists from abundant 
data and provide a firmer bond between science and society.

Ideally, techniques like Diffusion Models [10] and GAN 
(Generative Adversarial Networks) [11] could create reliable 
data based on other variables’ data series, even if there is no 
device actually observing that variable. This action will save 

a huge number of resources and avoid deploying function-
overlapping physical sensors. For example, the future Earth 
Science Community could deploy a single stationary net-
work to collect all the fundamental datasets, and scientists 
across the spectrum of Earth Science domains can derive 
their domain-specific datasets from using AI. We can reuse 
the existing satellites or launch a new series of satellites to 
form a constellation covering the globe with a short revisit 
time and rich radio spectrum. Then produce all the datasets 
from the raw satellite observations using AI services in an 
automated manner. Even if the original constellation did not 
meet the coverage or frequency requirements by the domain, 
or even did not cover the domain in the original proposals, 
AI can model the relationships and transform the dataset to 
new datasets that are directly needed by scientists from the 
new domain.

2.2 � Anomaly detection

Anomalies refer to those events that do not fit into the 
expected pattern or the known physics of a model and is 
one of the most important pieces of information for scientists 
and stakeholders. Detecting anomalies in the sea of big data 
is a key task for AI/ML in the era of big data. Future Earth 
science communities will begin to understand the intercon-
nected or teleconnected processes in Earth systems to get a 
full picture of the underlying mechanisms. Right now, sci-
entists are challenged by the need to single out anomalies. It 
has been a very challenging task to distinguish useful anom-
alies from data noises or non-meaningful events [12, 13].

An example of how anomalies can be detected using 
ML is by using a hybrid architecture combining deep belief 
networks (DBN) and one-class support vector machines 
(OCSVM) [14]. The DBN model is used to extract abstract 
features, which are then fed into the OCSVM for anomaly 
detection. The DBN model's training happens layer-by-layer, 
which enables the extraction of relevant features from the 
input data. When dealing with an input vector vi, the activa-
tion of the hidden units hi is determined as follows:

(1)hi = f
(

bi +
∑

j
wijvi

)

Fig. 2   Data collection and 
processing illustration
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where f is the sigmoid function, bi biased values, and wij 
the weight matrix. The extracted features are thus provided 
as inputs to OCSVM, which finds a hyper-plane boundary 
to effectively separate the multivariate anomaly from the 
background. The decision function f(x), used for determin-
ing hyper-plane is expressed as:

where w is the weighted vector expressed as,

where �(x) is the map function and � is the offset.
In the context of anomaly detection, the hyper-plane 

determined using the above decision function can be con-
sidered an indicator to assess whether a sample, denoted as 
x, is classified as an anomaly or not based on the following 
set of rules:

The hyperplanes created through the combination of 
deep belief networks (DBN) and one-class support vec-
tor machines, both of which are ML methods, can be used 
for anomaly detection in geoscience. However, the field is 
changing fast [15] and a lot of new technologies are emerg-
ing quickly [16] since the ChatGPT was first released [17], 
e.g., large language models (transformer) [18, 19] and diffu-
sion models [20]. Large language models have shown prom-
ise in anomaly detection tasks by leveraging their ability to 
understand and analyze textual data, enabling them to iden-
tify anomalies in natural language patterns or textual data 
streams. Similarly, diffusion models, known for their capa-
bility to generate high-quality images and understand com-
plex data distributions, are now being explored for anomaly 
detection in image-based or video applications.

In the future, AI is expected to simplify the task by accu-
rately and automatically detecting useful anomalies with 
prebuilt production-level AI systems. As anomaly detection 
is often directly connected to the alert systems (e.g., flooding 
alert, wind storm alert, etc.), the adoption of AI services may 

(2)f (x) = sin(w ∗ �(x) − �)

(3)w =
∑m

i=1
ai�(xi)

f(x) > 0, if x 𝜖 background

f(x) < 0, if x 𝜖 anomaly

significantly reduce or eliminate alert spam or false alarms 
(Fig. 3). AI will relieve scientists from being overwhelmed 
by tedious data filtering tasks and focusing on finding solid 
evidence to answer core scientific problems. Another key 
place that AI could improve is the threshold settings. Right 
now, most threshold setting for anomalies is manually done 
by experts, which requires years of experience to find rea-
sonable threshold values, which are generally static and 
may not be ideal in some time-sensitive cases (e.g., missing 
signals of early warning of landslides or wildfires) [21]. AI 
can dynamically adjust the thresholds based on sophisticated 
contexts and the knowledge AI models has learned from the 
accumulated decades of historical records, which will be 
more accurate and quicker than experts-adjusted threshold 
setting approaches. The expected results will allow earlier 
and more accurate alerts for all kinds of natural hazards and 
provide better opportunities for emergency response teams 
to act and contain the damages.

2.3 � Monitoring and measurement

One of the main benefits brought by AI to Earth and environ-
mental system monitoring is automation. Most teams want to 
involve AI to maximally reduce the level of time-consuming 
human intervention in their monitoring routines. Unmanned 
monitoring is more scalable to cover larger areas at a higher 
frequency (Fig. 4). With the capability of smoothly connect-
ing workflow by direct data transformation and rule enforce-
ment by AI, the latency between the observation time and 
the monitoring time by scientists is expected to be further 
condensed until it is close to real-time synchronization. 
Many scientists envision how AI could boost data quality in 
both temporal and spatial dimensions [22]. AI is intended to 
function as a guardian to block or limit poor quality data and 
only allow good quality data to initially reach the dashboard 
of scientists or decision makers.

The measurement strategy needs to be optimized for 
the targeted problems. For field measurements, it is trou-
blesome for scientists to determine the best places to take 
measurements, how much battery the devices should be 
equipped with, and the interval for each observation period. 
AI techniques such as reinforcement learning can serve as 

Fig. 3   Anomaly detection illustration
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optimization models to answer planning questions, such as 
the best route, or the best observations to achieve a research 
goal. The models can learn based on the rules and targets set 
by scientists, like the extent of valid places suitable for sen-
sor planting, the target observation coverage, and the maxi-
mum number of available devices, etc. With algorithms like 
genetic algorithms, AI can turn the task into an optimization 
problem and find a reliable model to guide scientists to fulfill 
their measurement plan at low costs.

In addition, AI can create a pathway for blending those 
non-conventional monitoring approaches with the current 
standard monitoring strategy, such as crowdsourcing or citi-
zen science projects. For many research teams, crowdsourc-
ing is the most economical approach for monitoring and 
measurement collection. However, it is known that crowd-
sourced data quality is a big issue [23]. Although there are 
ways to improve data quality, such as assigning each crowd-
sourcer a "reliability score" and weighting the data from 
people with higher scores more heavily, it still poses a con-
cern among data users regarding the overall quality. In the 
future, we expect that AI can be embedded into the collection 
devices by citizen scientists to guide them to take better qual-
ity observations. Meanwhile, AI services will be developed 
to boost the crowdsourced data quality and make them more 
usable and trustworthy by the science community.

2.4 � Short‑term prediction

Short-term prediction generally refers to the prediction made 
several hours or several days in advance, and is the most com-
mon prediction we receive on a daily basis and essential for 
social sectors like agriculture and aviation to function. Most 
weather services are short-term, including both hindcasting 
(within ~ 6 h) or forecasting (several days). Google-owned 
DeepMind already delivers improved short-term weather 
forecasting using AI models [24]. Many workshops have 
held to discuss how to use latest AI techniques in operational 
weather forecasting [25–27]. These workshops bring together 

experts from academia, industry, and government agencies to 
share insights, collaborate on research projects, and address 
challenges in applying AI to weather prediction. In the near 
future, we expect to see the adoption of AI becoming more 
common in production-level weather services. There are many 
AI companies and tech giants actively working toward that 
goal. For the general public and local communities, they will 
see more accurate and timely short-term weather forecasts 
because AI can save the computational-expensive calculation 
required by high-resolution predictions for short turnaround 
times (i.e. < 2 h). Generative models have been used to make 
nowcasting rainfall using the radar data hours earlier and the 
results are very promising compared to other existing mod-
els [24]. Because the short-term prediction cares more about 
the trends and there is limited time for the trends becoming 
unrecognizable, AI is considered to have a huge advantage to 
tackle the task, and provide probabilistic improved values with 
enhanced accuracy and time advance.

For the Earth science research communities, the involve-
ment of AI is no doubt a huge transition from the traditional 
physics-informed numeric models to primarily data-driven 
AI models. Scientists will find the AI prediction less inter-
pretable than numeric models as AI directly learned all the 
patterns from the data instead of pre-fixed physics equa-
tions. However, AI approaches can also strengthen tradi-
tional process-based models by effectively uncovering pre-
viously unknown relations between variables or processes 
as was e.g. shown in the field of ecology [28]. The reason-
ing within models and simulated processes will no longer 
be as transparent and adjustable as the traditional models. 
The primary focus of research will be slowly shifted from 
model parameter tuning to data engineering. However, in 
the future, AI may completely replace the existing numeri-
cal model-based prediction. Scientists will continue to work 
in a hybrid environment where numerical models and AI 
models coexist for a long time, and their relationship will 
be interdependent. An ideal but very possible situation may 
be that AI models will rely on numerical model results for 

Fig. 4   Seismic wave monitoring 
and analysis with AI
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training, while numerical models can use AI models to skip 
some computation-expensive steps.

It took several years before the scientific community 
picked up ML as a new approach and explored it in envi-
ronmental applications. Instead of replacing the entire 
numerical weather prediction (NWP) models, the science 
community has explored how to use this new technology 
and smoothly evolution in each core of the current NWP 
workflow from data assimilation, forecasting to postprocess-
ing. A review from [29] includes a thorough discussion on 
the possibility of replacing the core part of the NWP mod-
els and the opportunities and challenges of AI for weather 
and climate prediction. Recently, various types of ML and 
hybrid models applications are explored from replacing 
specific parameterizations in a model to speed up complex 
and time-consuming components [30] to uncertainty quan-
tification [31] and improving models with post processing 
(e.g. downscaling; Price 2022). Table 1 listed the common 
research directions in this domain.

2.4.1 � AI‑enhanced physics model

AI-enhanced physics models, achieved through the creation 
of hybrid physics-AI models involve the incorporation of AI 
models into existing physics models (Fig. 5). AI models can 
replace one or more components of a physics-based model 
or predict intermediate quantities that are inadequately rep-
resented by physics alone. For instance, in a study by [32], 
recurrent neural network layers were integrated into the exist-
ing physics model to create a hybrid model that combines the 
strengths of both physics model and AI model. It constructs 
a deep learning architecture that incorporates these recurrent 
neural network layers into the existing physics model, allow-
ing them to capture the temporal data of the physical system 
being modeled and map its temporal evolution to state vari-
ables. This enables the hybrid model to understand how the 
system changes over time, which is crucial for predicting com-
plex physical phenomena. The AI components of the model 
are then utilized to extract the most significant features from 
the rich temporal data. The hybrid model is then trained using 
the extracted data. This resulting model excels at accurately 
predicting the complex behavior of physical phenomena [32]. 
The NN model and LSTM model rely solely on data-driven 
approaches, while the physical NN model is rooted in phys-
ics-based methods. In this comparative analysis of the four 
models, the hybrid model consistently outperforms the others, 
exhibiting superior accuracy.

2.4.2 � Physics‑informed AI model

Physics-Informed Neural Networks (PINNs) is a class 
of deep learning algorithms that integrate data with Ta
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mathematical operators and physics constants, including 
partial differential equations (PDEs) (Fig. 6). They are moti-
vated by the need for machine learning methods that can 
handle imperfect data, such as missing or noisy values and 
outliers, and still provide accurate and physically consistent 
predictions.

One illustrative example as described in [33] on how 
PINNs integrate information from both measurements and 
partial differential equations (PDEs) by embedding the PDEs 
into the loss function of a neural network using automatic 
differentiation. The one-dimensional advection–diffusion 

equation, which encapsulates the behavior of scalar quanti-
ties such as temperature or moisture in the atmosphere, can 
be expressed as:

where u is the representation of neural network, t is the time, 
and x represents the input variables. The loss function includes 
a supervised loss of data measurements of u from the initial 
and boundary conditions and an unsupervised loss of PDE 
described above are represented using the equation below:

(4)�u

�t
+ u

�u

�x
− v

�2u

�x2
= 0

Fig. 5   Flowchart for represent-
ing the AI-enhanced physics 
model

Fig. 6   Flowchart for represent-
ing physics informed AI model
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where L is the loss function. The definition of Ldata is:

Which ensures agreement with observed data and

enforces the equation's physics, where the sample points  
(

xi, ti
)

 represent the initial location and time while  
(

xj, tj
)

 
covering the entire domain; Wdata and  WPDE are the weights 
used to balance the interplay between the two loss terms 
[33]. These weights play an important role in improving 
the trainability of PINNs. The network is then trained by 
minimizing the loss via gradient-based optimizers until the 
loss is smaller than a threshold (ε).

However, not all domain scientists are convinced that AI 
can completely replace the NWP in the short term. In the 
near future, it is expected that people will continuously focus 
on a hybrid environment where numerical and AI models 
coexist for a long time. Further studies and directions are 
expected from the improvement of explainable and physics-
based AI to enhance the model's trustworthiness and using 
advanced AI approaches such as self-supervised learning 
and transfer learning to improve the models' generalization 
capability. For instance, [37] from NVIDIA delivers AI 
model for weather forecasting.

2.5 � Long‑term prediction

Long term is a relative concept in Earth sciences and could 
have different durations within different domains. In geology, 
it could mean several thousands to millions of years for global 
and regional tectonism, while in meteorology, it is several 
months to years. The phrase “Long Term” is usually used 
during strategic planning and global-scale trends are required 
as supporting information. One typical example is to forecast 
climate changes at global level for next century [38]. How-
ever, based on the experimental results thus far, both AI and 
numerical models are struggling with long term predictions. 
The advantage of AI is not obvious over physics-based mod-
els when the forecasting time scale increases. This finding 
is understandable as the performance of AI depends on the 
quality of training data. For long term predictions, the train-
ing data coverage will become relatively insufficient and the 
quality decreases. Making AI learn long-term patterns is chal-
lenging, similar to the problems blocking the numerical mod-
eling communities in the past decades. Thus, we think that for 
long-term forecasting, the speed of AI adoption will not be as 
fast as AI adoption for short-term prediction. We look forward 
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to new revolutionizing techniques that could learn solid long-
term patterns from limited training data and make accurate 
assertions about large-scale trends of Earth systems at a big-
ger time scale. Any progress in AI for long term prediction 
will have invaluable impacts to guide us in mitigating climate 
change and other grand issues facing our society.

2.6 � Answering present questions using historical 
data and knowledge

In many scientists’ impressions, AI is pictured as a robot 
which can answer any questions and provide instant appro-
priate advice based on history and context scenarios. How 
similar is this to reality? Recent natural language process-
ing research has produced some eye-opening services that 
can deliver efficient question-answering performances on 
replying to chats, searching queries, following guidance, and 
finding quote sources. It is expected to see more and more 
research on training natural language processing models 
to digest the Earth science papers to answer relevant ques-
tions. Similar to other AI models, question–answer models 
also require high quality training datasets. There are some 
ongoing efforts to prepare science questions and answers 
[39]. More AI-ready science Q&A datasets are expected to 
be created in the near future, and intelligent answering ser-
vices for Earth and environmental scientific questions are 
provided in the foreseeable future. Earth system sciences 
are sophisticated and contain much knowledge accumulated 
in many years of research and field work. It is important to 
make sure we have a strong workforce who have access to 
and understand this field of research. An AI model who can 
instantly answer the next generation’s scientific questions 
and provide personal training will be critical to accelerate 
the research progress of Earth sciences.

Recent advancements in natural language processing 
have introduced transformer-based AI models with a self-
attention mechanism. These models are revolutionizing 
how we extract knowledge from existing data. The self-
attention mechanism acts as a dynamic spotlight, enabling 
AI to understand the complex interplay of scientific concepts 
within the text. As described in [40], self-attention calculates 
a weighted sum of values (V) using the similarities between 
a query vector (Q) and a set of key vectors (K). This mecha-
nism helps in computing the context-aware representation of 
each word in the sentence considering all the other words in 
the sentence. This process can be mathematically described 
in the following equation:

Here, Q, K, and V are matrices that represent the queries, 
keys, and values, respectively. Each i-th row of the Q, K, and 

(8)Attention(Q,K,V) = softmax(
QKT

√

dk

) ∗ V
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V matrices corresponds to the i-th word in the sentence, and 
each j-th column of the matrices corresponds to the j-th 
dimension in the representation. 1

√

dk
 denotes the dimension 

of the key vector and acts as a scaling factor. The dot product 
of the query vector of the i-th word and the key vector of the 
j-th word is divided by the square root of 1

√

dk
 to ensure that 

the dot product values are within a small range of magni-
tudes. Then, the softmax function normalizes these dot prod-
ucts across all the words in the sentence to generate a prob-
ability distribution over those words. Then, the values of 
each word in the sentence are multiplied by the correspond-
ing probability and summed to obtain the context-aware 
representation of that word. Thus, self-attention allows the 
model to capture the importance of each word in relation to 
the other words in the sentence, making it an effective tool 
for various NLP tasks, including reading comprehension, 
abstractive summarization, and textual entailment.

2.7 � Exploration of unknowns

Many Earth scientists are wondering if AI can solve daunt-
ing science questions. Due to the fact that AI heavily relies 
on the training data and the patterns hidden in the histori-
cal data, many scientists doubt AI can find new knowledge 
outside the traditional unknown physics. It is true that most 
current popular AI models are probabilistic fitting and statis-
tical machines, instead of intelligent reasoning engines. One 
key capability for exploring new knowledge is self-learning 
and evolving, which is a capability most current AI models 
do not have. We expect more intelligent AI models being 
proposed and tested to explore the unknown territory in 
Earth sciences, and provide real intelligence to reveal novel 
knowledge that was not discovered before.

Some promising research at Columbia University has 
used AI to observe physical phenomena and uncover rel-
evant variables which stimulate unexpected scientific dis-
covery [41]. It could be considered a good start to use AI 
to extend our knowledge base. However, it still takes much 

effort to build general artificial intelligence to make AI mod-
els evolvable and less dependent on the scale and volume of 
the training data so AI models can do deductive reasoning 
based on the existing knowledge and derive new knowledge 
rules after combining with new observations.

2.8 � Social impacts and applications

The stakeholders of geospatial datasets also include social 
scientists. Many social studies use remote sensing and sta-
tionary observations provided by federal agencies to analyze 
the relationships between social dynamics and environmen-
tal and climate changes [42–44]. Recent COVID-19 studies 
also use AI and geospatial satellite data to detect critical 
areas where individuals have a higher risk of contracting 
COVID (Atek, 2022). As shown in Fig. 7, AI methods have 
been used in natural hazard risk assessment, such as using 
AI for assessing the properties of the physical hazard itself in 
the flooding models or estimating the loss of system function 
given hazard loading [45, 46]. More applications of AI in the 
fields between social science and geospatial data sciences 
will be created to deliver more usable and actionable results 
to inform and guide our communities and country to better 
daily decisions and policy making.

In addition, ethical questions have been raised with the 
use of AI in Earth monitoring and predictive systems [47]. 
Social scientists can study and learn about the impacts of 
such technological evolvement and echo the concerns of 
our society on AI adoption and navigate Earth AI research-
ers to develop community-friendly AI services. Recently 
social science can play an important role in explaining the 
AI-derived products and their social impacts during inter-
action with real people. Social science researchers employ 
certain cognitive biases and social expectations to explain 
the AI process [48]. Similar to philosophy, cognitive and 
social psychology, AI development also needs to answer 
questions such as what constitutes an explanation, what 
the function and structure of the explanation is, and how 
to generate explanations and evaluate the explanations’ 

Fig. 7   AI for flooding response
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quality [49]. Consequently, practical AI can build on exist-
ing research in social science since they provide a foundation 
for how people define, generate, select, evaluate and present 
explanations.

2.9 � Data discovery and data curation

AI has been applied to assist researchers in quickly and accu-
rately discovering Earth and planet science data they need. 
Generally, there are a variety of users of Earth science data, 
with varying levels of expertise and backgrounds. By lever-
aging the advances in AI fields such as NLP, data providers 
and distributors can help users find more relevant data. For 
example, NASA's distributed active archive centers hold 
EOS mission data and maintain seamless access to the data 
for users. For any DAAC to fulfill its mission, it is therefore 
essential that it be able to function as an effective data dis-
covery tool. ML can be used by search engines to determine 
the most relevant results through an enhanced understanding 
of user search queries. Traditionally, search methods rely on 
matching explicit user search queries with indexed metadata. 
When the search query doesn't exactly match the metadata, 
a large number of searches can be missing. Modern NLP 
methodologies have recently been utilized to match queries 
with data through similarity metrics, as opposed to exact 
matches [50]. A similar, but different methodology, DAACs 
examine previous publications or applications of the data 
to offer users better datasets using NLP and graph models 
[51, 52].

2.10 � Accelerating traditional models

One of the biggest challenges in adopting AI in the Earth 
science community is awareness of the power and pitfalls of 
AI. A few of these benefits and challenges are detailed here. 
Staying abreast of this fast-changing technology is difficult. 
The speed of data mining is one of the fundamental pillars 
for a functional modern society. The speed of data process-
ing and information extraction and delivery is sometimes 
prioritized over accuracy and quality. The balance between 
speed and quality has been discussed for a long time in 
natural hazard response activities or other time-sensitive 
application scenarios. Near-real-time raw data products are 
available. For AI applications, the speed of the pipeline has 
several bottlenecks like the slow turnaround in data ingest-
ing, model training, model prediction, and post-processing 
AI results into data products. The current solution focuses 
on the model training aspect, and the traditional way of 
speeding up computation like extract-transform-load paral-
lel computing on powerful computing devices still strug-
gles with the huge amount of the Earth science community 
datasets. The AI pipeline has similar time costs to numerical 
models, where retrieving data and preprocessing the data is 

time-intensive. Data pipeline engineering is an important 
component to speed up the AI workflow.

3 � Best practices for implementing practical 
AI in Earth system sciences

There are many obstacles to overcome when creating usable 
AI models. Besides handling commonly known challenges 
[1] such as shortage of training samples, poor generaliza-
tion, and lack of explainability, this section will focus on 
two more realistic problems for beginner AI scientists: how 
to use data and AI in the cloud, and community-oriented AI 
deployment and operation.

3.1 � Project‑specific AI product development 
and collaboration

Although the dream of general AI is being deeply exploited 
right now, most AI models still need to be carefully tai-
lored for specific projects and certain well-defined tasks. 
There are basically two essential steps during the AI pro-
totyping stage: problem definition and model development. 
Based on our experiences, finding correct scientific ques-
tions and giving a clean definition of the target AI tasks, is 
equally hard as actually developing AI models. It requires 
people with AI project experiences to help identify what 
problem AI is suitable and can help, and which ones it can-
not. Generally, AI requires the presence of patterns in the 
dataset, meaning the dataset must not be random or close 
to randomness. The patterns don’t have to be completely 
explicit or instantly aware in human eyes, but should exist. 
The experiment part is generally standard protocol right now 
for AI projects. People gather datasets, especially datasets 
including ground truth or the training labels (most current 
AI tasks are supervised learning). Training data preparation 
is by far the most time consuming and needs the majority 
of the attention. It is not a sequential industrial pipeline-
like practice. The data preparation and the model tuning are 
always done back and forth in many iterations. For example, 
people working on precipitation forecasting, may find some 
features like pressure, temperature, terrain, and land cover, 
are more useful in certain models and less useful in others. 
Therefore they have to prepare multiple training datasets to 
feed into different models to boost their forecasting capacity. 
In many projects, researchers have to manually repeat the 
iteration between data preparation and model tryout many 
times. Without proper project management, best practices 
like experiment transcripting and result seamless sharing, 
any AI projects can quickly collapse into a black hole which 
absorbs all the resources. These failed projects won’t deliver 
any good AI models, and have wasted numerous hours of 
researchers’ time and computational resources. That is also 
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one of the main drivers of this paper to promote best practice 
on Earth AI research productivity by enforcing AI experi-
ment recording and results sharing among team members 
or the entire community in a plain format that everyone can 
interpret. Current efforts like Geoweaver [53] have made a 
lot of progress on that and we need more efforts to dedicate 
to this aspect in ongoing and future Earth AI projects.

A great idea for an Earth AI project will definitely need 
more collaboration with many parties to help with impor-
tant aspects such as technical support, funding support, 
computing support, usability support, user feedback, and 
potential market analysis and planning. No single person 
can achieve all of these aspects. Collaboration is one of the 
major requirements for most AI endeavors. Some important 
collaboration modes are the public–private partnerships, and 
research-industry-government collaboration. Government 
agencies like NOAA, NASA, NSF have already actively 
put out calls for AI products development to achieve vari-
ous strategic goals in Earth sciences, and providing funding 
opportunities to connect resources with people equipped 
with knowledge, requirements, skills, hardware, to get things 
done. For the future generation workforce, NSF also has 
funding for universities to create programs to training stu-
dents with AI/ML techniques to further discover the patterns 
in the geospatial datasets, and develop useful AI products 
to solve the challenging scientific problems, like earthquake 
forecasting, long-term meteorology forecasting, climate 
change and consequence prediction, and food security.

3.2 � Community‑wide AI deployment 
and production

As AI is gradually reshaping the landscape of geospatial 
data sciences, many research tasks are shifting from empiri-
cal manual analysis to data-driven automatic analysis. Earth 

science scenarios for AI models exist to accommodate end 
customers. How to deliver production-level stability and reli-
ability is the biggest question for AI technologies. Most AI 
endeavors are struggling to meet the requirements of real 
world applications. Many tasks are not ready for deployment 
in AI. Scenarios like seismic signal explanation, hurricane 
forecasting, weather prediction, air quality simulation, and 
water discharge forecasting all need AI models to deliver not 
just accuracy, but also fast, explainable, reliable, and trust-
able results. That requires interactions between community 
users and AI models. For research users, they may directly 
get the AI models and deploy into their environment on lab 
servers or cloud platforms. For the public users of the prod-
uct, data product teams are required to translate AI results 
into understandable format like maps or textual statements, 
such as, “There will be flash flooding in Fairfax County from 
5:00PM to 6:00PM, please find shelter and avoid going out.” 
which will require coordination with science communicators 
and public health specialists (Fig. 8). The community needs 
to transition the current information pipeline to knit AI mod-
els into the workflow. The user end portal likely needs to be 
changed as well to let people better understand the results, 
such as attaching a probability score with each prediction 
and linking the results to the provenance so geoscientists/
meteorologists can verify and explain why such prediction 
is made (Fig. 8).

3.3 � Maintenance & operation team guidance

The popular practice of operationalizing AI is MLOps 
(Machine Learning Operations), which usually refers to 
applying principles from the DevOps (Development and 
Operations) practices to the deployment of machine learn-
ing systems and includes monitoring the system to ensure it 
continues to work in the real world [54]. MLOps considers 

Fig. 8   User interface with AI 
for flood alert
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the entire lifecycle of the model from data intake to the 
final use of the model. MLOps begins with exploratory data 
analysis, including understanding data quality and identify-
ing particular issues. Model training occurs in the middle 
of MLOps, after the data has been cleaned and bad data has 
been removed. Between training and deployment, it is neces-
sary to check model performance to ensure the model does 
not make any systemic mistakes. If the risks associated with 
misclassifications carry different real-world consequences, 
the model must be adjusted to maximize utility. For instance, 
in 2022, the city of Toronto deployed an AI model to pre-
dict whether bacterial levels at its beaches would be above 
or below the safety threshold [55]. If the consequences of 
beachgoers using an unsafe beach is worse than the conse-
quences of a safe beach going unused, the model should err 
on the side of predicting “unsafe.” During deployment and 
operations, the model must be monitored to ensure there is 
no decrease in performance due “data drift” (changes in the 
underlying data distribution) or other issues. With feedback 
from users and testing, the model can be adjusted to improve 
utility or at least avoid a decrease.

NASA’s Interagency Implementation and Advanced Con-
cepts Team (IMPACT) made MLOps for Earth observation 
a major component of its open source SpaceML Initiative 
[56]. The resulting MLOps tools reached Technology Readi-
ness Level 9, ready for deployment, and can be used for 
satellites directed toward Earth, such as Worldview, as well 
as sky-oriented satellites, such as Hubble. MLOps is par-
ticularly important given that events of interest are often rare 
compared to the gigabytes to terabytes of data that are not of 
interest. SpaceML worked with high school students from 
around the world to provide cost-efficient data labeling [28].

3.4 � AI auditing & accountability

Unlike the private AI projects, federal agencies’ AI projects 
must comply with the Executive Order, “Promoting the Use 
of Trustworthy Artificial Intelligence in the Federal Govern-
ment,” issued in December 2020 (Exec. Order No. 13960, 
2020). In October 2022, the White Office of Science and 
Technology released a “Blueprint for an AI Bill of Rights,” 
identifying five pillars: Safety and Effectiveness; Algorith-
mic Discrimination Protections; Data Privacy; Notice and 
Explanation; Human Alternatives, Consideration, and Fall-
back [57]. Additionally, the Government Accountability 
Office released a framework for AI accountability (GAO, 
2021) to guide the auditing of AI applications for both fed-
eral agencies and other entities. It has four principles includ-
ing governance, data, monitoring, and performance.

For geospatial data, the privacy risks may be limited, such 
as the use of low-resolution satellite data, or severe, in the 
case of phone and social media location data. It is relatively 
easy to deanonymize location data while allowing data users 

to track the movements of individuals to doctor’s offices 
and other sensitive locations (Valentino-DeVries, 2018). 
Before engaging in an AI project using geospatial data, it is 
important to consider how the data and results can be used, 
or potentially misused. Notice is also important for anyone 
included in the data or impacted by the results. Develop-
ers should also provide a mechanism for people who are 
impacted by the applications or whose data are used in the 
development process to report the impact and withdraw their 
data from being used.

As more complex AI algorithms are developed, expla-
nations of AI applications can be challenging to achieve. 
Explanations are particularly difficult for convolutional neu-
ral networks, which are commonly used for remote sensing 
data. A common solution is to use heatmap activations to 
ensure that the AI model is trained on the correct features of 
satellite data or other geospatial sources [58]. In all cases, it 
is necessary to not only build an AI model but to ensure it 
works as intended and does not produce negative unintended 
consequences. Some research suggests choosing inherently 
interpretable AI models instead of providing post hoc expla-
nations using explainable AI (XAI) techniques, especially 
for high stake applications [59].

The Government Accountability Office’s framework 
for AI accountability highlights the need to establish the 
process to manage, operate, and implement AI applications 
which ensure accountability. The process should be estab-
lished at both the organizational level and AI system level. 
The organizational governance process allows the entity to 
engage with diverse stakeholders to ensure accountability 
and implement a risk-management plan. The system-level 
governance process provides technical specifications and 
procedures to continuously monitor the performance of AI 
systems at both component and system level and ensure that 
AI systems that are operated for intended uses [60].

3.5 � Effectively using existing datasets and cloud 
computing

The effective utilization of geospatial datasets from institu-
tions like NASA, NOAA, USGS, EPA, and public reposito-
ries hosted on data centers or cloud platforms such as AWS, 
Azure, and Google Earth Engine is redefining the landscape 
of data-driven Earth Sciences. These repositories offer an 
extensive array of invaluable Earth observations, includ-
ing satellite imagery, climatic records, and environmental 
parameters. Accessible through robust APIs, they empower 
researchers to conduct intricate analyses and foster the 
development of AI models for comprehensive Earth sys-
tems' understanding. The scalability and computing power 
offered by major cloud platforms have revolutionized the 
capabilities of AI in Earth Sciences. With evolving AutoML 
solutions integrated into AWS, Azure, and Google Cloud, 
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scientists, including non-programmers, can navigate com-
plex AI processes through user-friendly interfaces, facilitat-
ing activities such as data preparation, model tuning, and 
deployment. These fully-managed AI services within cloud 
environments pave the way for swift prototyping and the 
development of practical AI solutions for Earth Sciences, 
underscoring the importance of aligning platform capabili-
ties with research needs and considering cost efficiency and 
data quality in leveraging cloud resources.

Utilizing APIs like NASA's EarthData and Python librar-
ies (e.g. earthaccess), researchers gain streamlined access to 
an extensive array of geospatial datasets, empowering them 
to conduct advanced analyses in Earth Sciences. The inte-
gration of Python with EarthData APIs offers a flexible and 
powerful means for querying and retrieving various data-
sets, streamlining the process for researchers to access spe-
cific data relevant to their Earth Sciences research. NASA, 
NOAA, and USGS have been actively involved in efforts to 
make their datasets cloud-native. Cloud-native format ini-
tiatives, such as NASA's adoption of cloud-optimized data 
formats like COGs (Cloud Optimized Geotiffs) or Zarr [61], 
have transformed the storage and accessibility of large-scale 
Earth observation data. These formats enable optimized stor-
age and direct access to specific subsets of data without the 
need for complete downloads, thereby significantly reducing 
data transfer and storage costs. Researchers can use Python 
libraries to directly query and access cloud-optimized data-
sets from these agencies, enabling the retrieval of specific 
subsets of data for analysis without downloading the entire 
dataset. By integrating these cloud-native data formats with 
Python-based tools, researchers can perform large-scale 
analyses, including machine learning, deep learning, and 
statistical modeling, on these extensive datasets, allowing 
for comprehensive insights into Earth systems, climate pat-
terns, and environmental changes.

For Earth AI beginners, cloud computing is becoming 
an important tool [62]. The traditional isolated local com-
puting environments have been gradually replaced by open 
and publicly-accessible cyberinfrastructure, especially in the 
form of cloud computing. Generating large enough training 
datasets is, in many Earth science domains, a very expensive 
process. Big name data providers like NASA have already 
moved most of their datasets into the cloud. Availability 
of large datasets in cloud environments prevents the need 
for downloading by individual researchers, leaving more 
time for actual research (e.g., [63]). Most steps inside the 
full-stack AI life cycles depend on the availability of cloud 
computing and its offered technologies. However, the steep 
learning curve is a big challenge for new cloud users. The 
mainstream commercial clouds such as Amazon Web Ser-
vice and Google Cloud are rapidly building their AutoML 
solutions on top of their gigantic cloud infrastructure. AI 
scientists can do everything inside their cloud environment. 

For non-programmer scientists, the cloud providers are 
forming low-coding environments (e.g., AWS SageMaker, 
Azure Machine Learning Studio, and Google AutoML) to 
allow them to finish training data preparation, model tuning, 
and service deployment by clicking buttons on a series of 
guided Graphical User Interfaces (GUI). Such cloud-native 
AI services are often referred to as fully-managed AI ser-
vices for scientists to quickly prototype and build usable AI 
services. It is a reasonable path to get a production-level AI 
application for AI beginners. However, beginners have to 
fully understand the platform to compare the capability with 
their needs and consider the cloud costs and the training data 
quality before investing too much computing time.

3.6 � AI workflow product management

3.6.1 � AI maturity/readiness level classification

It is exciting to imagine AI becoming a routine tool in Earth 
sciences, to study and solve a wide variety of problems. 
When discussing specific AI products (either models or data 
products), they can generally be categorized into various 
levels based on their maturity and readiness for practical 
use, from proof-of-concept products to solid ready-for-use 
products. Industries like unoccupied autonomous vehicles 
have specific and detailed classification about the AI at dif-
ferent levels. According to the ElementAI classification [64], 
these are basic stages in operationalizing AI in production 
environments (Table 2). Similar classification can also be 
found in [65] with more fine-grained stage divisions.

Product maturity categorization system is not specific to 
AI products. The technology readiness level [66] defined 
many years ago at NASA has been widely used. Today the 
specifications to evaluate NASA product readiness are very 
detailed and include many mission-oriented requirements 
such as resolution and the removal of artifacts [67]. Besides 
NASA, there are several similar frameworks regarding data 
maturity and product/technology readiness in other govern-
ment agencies. These frameworks are usually following 
some top guidelines to simplify the efforts by users to com-
prehend and take use of the eventual delivered products. For 
example, atmospheric scientists most likely will require the 
data products to be available in a standardized format, using 
a standard set of units and variable definitions for consist-
ency and directly digestible by their analysis.

It appears that although the AI maturity frameworks have 
a lot in common with these existing maturity frameworks, 
there are still some differences. AI maturity needs to con-
sider the interaction with its end users in daily usage, includ-
ing all the components involved including model API, client 
software, computing platforms, and algorithm robustness in 
extreme conditions. The inherent uncertainty in AI models 
requires more detailed rules to regulate what kinds of AI 
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products should be considered as “production ready”. An 
AI model might work well on the training data, but perform 
worse on new collected datasets, which is usually uncom-
mon in the conventional non-AI technologies. A more rel-
evant classification framework is the NASA technology 
readiness level framework [4], which could be appropriate 
to measure AI application’s maturity here.

3.6.2 � End to end processing pipeline

The progress of AI research and adoption in Earth sci-
ence domains is relatively slow. One main reason is lack 
of open and comprehensive end-to-end pipelines for AI 
workflows. The ideally expected deliverable for most 
Earth AI projects should be full-stack end-to-end work-
flows (or pipelines, can be used exchangeably), which are 
fully described and contain all the code files. It has been 
known that AI has a reproducibility crisis [68], due to the 
randomness and black-box nature of the involved models. 
Figure 9 shows an example workflow replicating the Kenya 
crop mask mapping workflow [69]. Each circle represents 

a Python process, and the connections indicate the order 
of execution. Most processes are actually for data prepara-
tion. Machine learning model training and testing account 
for only about a third of the processes. Unfortunately, 
most people only share the ML portion of processes and 
give less attention to the other processes, especially those 
essential upstream steps.

ML researchers look for solutions to better compose and 
share the E2E ML workflows, and one of the popular efforts 
is trying to improve geospatial AI FAIRness. FAIR prin-
ciples are not limited to dataset but also the other project 
objects such as tools workflow [70, 71]. So far, the reality 
of the current AI for Earth Science still deviates from these 
principles, therefore, hindering the reproducibility of AI. 
The challenge of reproducibility may come from various 
aspects, for instance, the changes in the systems, software 
versions, the nature of the training ML models involving 
randomness, and the ML frameworks using various preci-
sion to accelerate the training procedure. Figure 9 shows an 
example end to end workflow using NASA remote sensing 
data to map cropland in Kenya.

Table 2   AI Product Maturity Level [64]

Product Level Definition

1—Planning Problem identification based on the existing technology and available datasets
2—Experiment Prototyping and experimenting with fractional datasets and wide variety of AI models
3—Development Develop production-level data processing pipelines to apply the chosen AI model (with the best overall performance/cost rate) 

based on the originally collected training datasets
4—Production Deploy AI into production for daily usage to digest streaming observational data and make in-time prediction. Also need to 

add other supporting functionality on top of AI like security and user management to interact with real users
5—Sustaining Maintain AI services by iterating from servicing, problem feedback, retraining, to redeployment. Also with development in 

software and hardware, AI products should have upgrade plans for evolving to new models, algorithms, and technologies in 
future

Fig. 9   Example AI workflow of ML-based Kenya crop mask mapping in Geoweaver (https://​github.​com/​earth-​artif​icial-​intel​ligen​ce/​kenya-​crop-​
mask-​geowe​aver)

https://github.com/earth-artificial-intelligence/kenya-crop-mask-geoweaver
https://github.com/earth-artificial-intelligence/kenya-crop-mask-geoweaver
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4 � Example success use cases

As mentioned above, it is very challenging to realize “one-
size-fits-all” AI products, given the current AI techniques it 
is hard to implement “wide”, general purpose AI that can 
be used across multiple problems or domains. Instead, most 
current AI models are trained for a specific “narrow” pur-
pose, with a similarly narrow, specially prepared training 
dataset. There is no straightforward rule to determine when 
an AI model is considered good enough for production. 
Researchers need to compromise to determine which model 
is ready to be delivered to its intended end users. Generally, 
if a model can work with an inside-boundary accuracy for a 
specific purpose, it is considered good enough. We call it an 
“fit-for-purpose” model which is not the best possible model 
but it can do the work. For example, for snowfall forecast-
ing, suppose model A outputs 91% accuracy while model B 
gives 89% overall accuracy, while model A costs two times 
longer than model B. For most users, model B would be 
the on-purpose model as its overall performance combin-
ing accuracy and costs is the best. To give a more concrete 
understanding, the following sections will briefly introduce 
some on-going efforts within the geospatial data science 
community to make AI practically usable for their users.

4.1 � Ozone forecasting

The CMAQ model, also known as the Community Multi-
scale Air Quality model [72], is widely utilized by atmos-
pheric scientists to predict changes in air quality. It meas-
ures various parameters such as ozone, PM2.5, NO2, SO2, 
among others. However, CMAQ has consistently exhib-
ited overestimations and underestimations in specific U.S. 

regions. To address this issue, the CMAQ AI team at George 
Mason University conducted a feasibility analysis to lever-
age machine learning for calibrating CMAQ results. Subse-
quently, they implemented this approach in an experiment. 
Utilizing Geoweaver [73], a workflow was composed for 
proof of concept, and the results from training a random for-
est model on the 2021 dataset were highly promising. When 
evaluating the ML-calibrated ozone results, it became evi-
dent that they consistently outperformed the original CMAQ 
results. As a result, the GMU team seamlessly integrated this 
workflow into the production environment, allowing for the 
generation of daily ozone maps. The small circles within the 
maps represent ground truth data collected by the AirNow 
station network [74]. Figure 10 is an illustration of the com-
parison between AI and CMAQ results.

4.2 � Underwater image recognition

NOAA AI strategic plan [76] projects that AI methods are 
expected to boost transformative advancements in the qual-
ity and timeliness of atmospheric science, products, and ser-
vices. One of their preliminary efforts is using ML in detect-
ing organisms in the captured underwater images. Currently, 
underwater surveys within NOAA fisheries require a large 
amount of manual oversight by data analysts to interpret 
the images. That is not sustainable as the amount of images 
is rapidly increasing. For example, the NEFSC (Northeast 
Fisheries Science Center) Habcam (Habitat Mapping Cam-
era) benthic survey [77] now collects approximately five mil-
lion images a year. AI practitioners turn to AI for help, and 
developed VIAME (Video and Image Analytics for a Marine 
Environment) convolutional neural network [78], which has 
been tested and proven very promising at automating iden-
tification of the organisms and relieving the human analysts 

Fig. 10   Comparison of AI and 
physics model results [75]
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from the heavy burden of manually reading the huge number 
of images (Fig. 11).

4.3 � Land cover map downscaling

Within the Earth science community, a prominent and press-
ing demand revolves around the enhancement of current data 
products, primarily addressing the limitation of coarse reso-
lutions that hinder the extraction of actionable information. 
A breakthrough success story in addressing this challenge 
emerges through the innovative use of AI to refine images, 
providing unprecedented clarity and intricate details. A 
prime illustration of this triumph is found in the NOAA NOS 
(National Ocean Service) C-CAP (Coastal Change Analysis 
Program) program's initiative. Through the strategic imple-
mentation of AI, this program has achieved a remarkable feat 
by downscaling land cover maps designed for U.S. coastal 
regions. The advancement is staggering, transforming the 
resolution from a relatively coarse 30 m to an impressive 
1-m resolution [80].

The magnitude of this achievement cannot be overstated. 
The significance lies not only in the numerical leap from 30 
to 1 m but, more importantly, in the tangible impact on map 
users. The enhanced resolution enables users to discern intri-
cate details and objects with unprecedented clarity. What 
was once invisible or excessively coarse, hindering mean-
ingful interpretation, is now accessible and distinguishable. 
This success case serves as a testament to the transforma-
tive power of AI in addressing critical challenges within the 
Earth science domain. It showcases not only the potential 
for technological advancement but, crucially, the tangible 
benefits realized in providing Earth scientists with clearer, 
more detailed information that was previously elusive.

4.4 � Coral reef detection

Similarly, Coral detection is another headache problem 
for survey image interpretation which was conducted 
manually by analysts at a low efficiency. Scientists devel-
oped CoralNet [81], which can annotate coral reef images 
and automatically distinguish different species of corals, 
and has greatly assisted scientists by saving them a big 
amount of time on labeling. The latest version of CoralNet 
can also provide higher resolution products and includes 
script-level access to allow interfaces with other projects 
[82]. The model providers have benchmarked a bunch of 
machine learning models before settling on the Efficient-
Net to train the official version of the CoralNet model and 
deploy them into use after successful beta trials.

These examples showcase how AI works in real life 
to address specific Earth scientific problems which are 
very cumbersome for the existing approaches and used to 
involve heavy manual human supervision. They also prove 
that AI can do things impossible before like providing 
data in greater resolution due to automated data infusion. 
It should be noticed that due to the specialization of AI 
models, each use case is different in terms of daily opera-
tions. For example, CMAQ forecasting’s model inputs are 
continuous and time sensitive so it needs to be run every 
day on a regular basis, while the CoralNet is only triggered 
when users request new coral images. Also, it is obvious 
that no AI models are perfect and when errors happen, the 
operation team needs to respond and fix the issues in a 
timely manner, which echoes the “fall back” guideline by 
the White House AI Bill of Rights.

Fig. 11   VIAME underwater 
recognition (the number after 
fish is AI confidence score 
about the label) [79]
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4.5 � AI in volcano science

Understanding and predicting volcanic eruptions is an 
important subset of the geosciences, however volcanic sys-
tems are vastly complex, and each is unique. These com-
plicated systems still leave volcanologists with many ques-
tions: when will this volcano erupt next? Why will it erupt? 
How large of a magnitude will the eruption be? And more 
importantly how long will it erupt? Machine learning offers 
new avenues to explore these questions and to utilize multi-
disciplinary datasets. Presently, machine learning has been 
utilized to improve the quality of magmatic pressure and 
temperature estimates, allowing us to visualize the spati-
otemporal dynamics acting in volcanic plumbing systems. 
Volcanic minerals (e.g. clinopyroxene; amphibole; olivine) 
are compositionally pressure and temperature sensitive, 
meaning at different pressure and temperature conditions 
the elemental composition systematically shifts. Thus, look-
ing at the changes in chemistry within different regions of 
a mineral allows us to track the magmatic history of a vol-
cano prior to the eruption. Recent developments turned to 
using machine learning random forest methods to tackle this 
problem and have improved the accuracy and precision of 
these estimates [83, 84]. These methods utilize large open-
source datasets of experimentally derived minerals, which 
crystallized at a known pressure and temperatures, to train 
the model. Improvements to the error of these models allows 
us to see the depths of the earth in better resolution, and 
thus aid us in understanding processes that trigger volcanic 
eruptions and in detecting signs in deep magma dynamic 
variations that may be reflected through changes in eruptive 
behavior (Fig. 12), for example, the volcano monitoring plat-
form, MOUNTS [85]. Other machine learning approaches 
in volcanology are also being explored to classify and inter-
pret seismicity related to volcanic activity, which often come 
with large datasets and are important for real time volcanic 

monitoring [86–88]. Machine learning might even be the 
way forward to increase our ability to predict volcanic erup-
tions. For example, Ardid et al., [89] utilizes cross correla-
tion machine learning to generate a predictive forecasting 
model, which can improve short term eruption warning sys-
tems for gas driven volcanic eruptions. Machine learning 
advances will drive the field forward and aid us in answering 
our fundamental questions about volcanoes and allow us to 
better mitigate and respond to these hazards.

5 � Challenges of using AI in the geosciences

This section examines the general need for artificial intel-
ligence (AI) from the perspective of data scientists and data 
users in the Earth science community. Based on the current 
datasets, the research community is actively exploring AI 
models to generate higher quality socioeconomic products 
that are directly relevant to decision making in our society. 
The community is exploring AI to address the problems 
that are currently nearly impossible to solve by traditional 
research approaches. There are strong needs in data-driven 
sciences right now. This section will detail these needs.

5.1 � Tackling missing data, biases and uncertainties

AI requires continuous and high-quality data for training 
and testing. The Earth science community has a tremendous 
amount of data available. However, there is still a dearth of 
high quality data concerning the key variables, accuracy, and 
spatial–temporal coverage. In the NASA community, remote 
sensing reflectance data is the major driver behind the big 
data archive and there are numerous thematic data prod-
ucts derived from reflectance using algorithms and models, 
e.g., land surface temperature, snow cover, land cover, pre-
cipitation, soil moisture, soil temperature, air temperature, 

Fig. 12   Machine Learning 
model used to detect magma 
storage conditions
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albedo, etc. However, currently only a fraction of these data 
products can be used as training labels because of the con-
cerns over resolution and precision. Instead, NASA data is 
commonly used as input variables in the training dataset. 
Clouds and other weather conditions also caused long-term 
missing data of continuous observation of the land surface in 
remote sensing datasets (Fig. 13). Satellite SAR/LiDAR data 
can penetrate the clouds and operate day and night. How-
ever, the limited resolution, long revisiting period and high 
ratio noises in the signals degrade the advantages of satel-
lite SAR/LiDAR data over optical satellites. These missing 
areas pose major problems when applying AI to digest and 
train on NASA datasets. The designers of feature engineer-
ing of Earth AI models must be knowledgeable about these 
satellite datasets and clearly understand the issues caused 
by missing data. They should also choose carefully what 
data should go through the training process. Data gaps are 
a general issue in geospatial datasets, and not limited to AI 
use cases. However, these gaps will be a critical issue since 
it results in incomplete or biased learning patterns of AI due 
to missing information. As a result, trained AI models can 
fail to recognize correct patterns, miss important signals, or 
even become unusable in real world scenarios.

Besides the data bias, algorithmic bias, or the tendency 
of AI models to amplify the data bias (or its inability to cor-
rect them) are another major concern. For locations which 
are poorly represented in the training data [90]. AI generally 
has lower accuracy and generalization. To be practical, AI 
systems should acknowledge users with these issues and the 
known limitations by delineating the scope of model appli-
cability [91]. AI models should only be used for locations/
regions at a certain time range with comprehensively-tested 

trustworthy reliability [92]. To produce scientifically useful 
products, AI practitioners need to understand and quantify 
the errors, biases, and uncertainties in the used data [93]. 
Methods like probability-based sampling can be used to 
improve the quality of ground truth data to train the AI mod-
els [94–96]. Also, more efforts should be made to assess the 
biases in the AI outputs at various spatial–temporal scales 
to track the potential error origins during data aggregation 
[97]. As for quantification of AI uncertainty, distribution-
free methods are usually recommended [98].

5.2 � Preparing AI‑ready data

It is an unspoken truth that geospatial data scientists spend 
most of their time preparing rather than analyzing data [63]. 
The challenge with this process is that it does not only extend 
the ML cycle for experienced practitioners, but creates a high 
entry barrier for those with less experience. There has been 
little work done to develop a detailed understanding of the 
challenges associated with the data before it is used to build 
a model. Furthermore, geospatial data possess attributes that 
require special attention. According to the FAIR (short for 
Findable, Accessible, Interoperable, and Reusable) guiding 
principles [99], research data must be Findable, Accessi-
ble, Interoperable, and Reusable. Moreover, many AI/ML 
applications rely on inherently opaque model architectures 
[100]. Consequently, the quality and integrity of the data 
becomes even more vital for AI applications. However, data 
quality information is difficult to generate, curate and share, 
especially across disciplines [101]. Improvements have been 
made over the years such as the Data Product Development 
Guide (DPDG) for Data Producers. DPDG, data quality is 

Fig. 13   Missing data illustra-
tions
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included in metadata, was developed as a suggested practice 
for NASA Earth Science Data Systems [102]. Accessing 
AI-ready data is another challenge and most data centers do 
not provide such services (e.g., extreme precipitation). For 
data to be found, it is essential that it be accompanied by 
standardized metadata that is understandable by search and 
automation tools. Community-accepted standards, such as 
the SpatioTemporal Asset Catalog (STAC), allow users to 
find data both spatially and temporally.

Consumers of ML data historically downloaded their 
required data into a local machine or an on-premise HPC 
system. This has turned out to be extremely inefficient and 
time consuming. At the same time, public and private cloud 
services are becoming increasingly more common and 
affordable. This provides the opportunity for data provid-
ers to store their data in cloud-friendly formats, such as 
Zarr and cloud-optimized Geotiffs (COG). Combined with 
streaming APIs that feed data directly into model training 
platforms, users can take advantage of the data they need 
without downloading large datasets. In order to make data 
more interoperable, it should be noted that different commu-
nities may use the same data in different formats. By offering 
data in formats commonly used across these communities, 
data providers can make data more interoperable. Alterna-
tively, datasets could be accompanied by necessary prepa-
ration codes that could not only convert data formats but 
also prepare the data for downstream training frameworks 
(Tensorflow Dataset module or PyTorch DataLoaders).

A best practice is to develop benchmark datasets for cer-
tain domain problems and share with the entire community. 
Many benchmark datasets have been used in other domains 
and powered breakthrough AI projects. In comparison, the 
Earth science community has less available benchmark 
datasets with equal high quality. However, researchers have 
recently started to catch up; we see an increasing trend of 
efforts on creating benchmarks. Generally, a benchmark 
dataset should target a specific domain problem and be 
widely accepted as a common asset among the community. 
The data should be reusable and model independent so 
researchers can experiment various AI models on them and 
do intercomparison. In addition, to ensure the objectivity 
of the intercomparison, the benchmark datasets should be 
evaluated with the same set of evaluation metrics, a clear 
problem statement, and an unified way to read data using 
standard high-level language such as Python and R [103].

5.3 � Reducing experiment & operation costs

Earth scientists are spending tremendous amounts of time on 
modeling efforts to understand how the Earth systems work 
and how they are going to change under various conditions 
such as climate changes and human–environment interac-
tion. The current practice is to develop multiple models and 

run them in parallel to find out which prediction has the 
most consensus among those models. Every model runs and 
digests huge amounts of data and takes substantial comput-
ing resources which have to be done on big computing clus-
ters or even supercomputers. Some of the numeric processes 
have been considered time consuming and a better approach 
to complete them is needed. There are also increasing con-
cerns about the carbon footprint of these resource-intensive 
models [104]. Currently, the modeling community is turning 
to AI, which consumes relatively few resources and employs 
straightforward strategy to learn the underlying patterns of 
how input variables impact the target phenomenon. Intro-
ducing AI models into the existing numerical models will 
have the benefit of supplementing those missing links to 
replace the problematic and computation intensive processes 
in the numerical models, and reduce the overall costs of the 
modeling efforts (as shown in Fig. 14).

On the other hand, AI engineering has a high initial cost 
but brings more benefits and accelerates the modeling efforts 
in a long-term perspective, which will save huge amounts 
of resources and costs. If data scientists want to reuse the 
existing AI models, the process is easier because AI sup-
ports transfer learning and standardized pipelines of how the 
model is relinked and reused. Tuning efforts of AI models 
is also less time-intensive than tuning numerical models. 
Hyperparameter tuning has already been automated at some 
level by techniques like parameter searching cross validation 
(e.g., GridSearchCV or RandomizedSearchCV). The burden 
on the modelers or data scientists will be much smaller and 
they will save big chunks of time to focus on the Earth's 
scientific problems instead of modeling technical issues.

5.4 � Realizing physics‑based AI

Another ongoing interesting development is physics-based 
AI. The created models are often referred to as ‘hybrid’ 
models, combining the traditional process-based models 
with data-based approaches. Physics-based AI can pro-
vide more structure than a ‘data-only’ approach, and is a 
potential solution for biased datasets. As of yet, there is 
no clear consensus on *how* to develop physics-based AI 
solutions: these range from implementing AI into existing 
process-based models, or adding a set of (limited) physical 
constraints to a data-driven system. In the latter case, the 
physical constraints are often fundamental laws such as the 
conservation of mass, energy or momentum. The degree of 
physics inclusion is also often used to distinguish between 
different AI approaches. Recently, scientific progress has 
been made in the field of hydrology by using physics-
based approaches, illustrating its potential when traditional 
approaches provide insufficient insight [105, 106].

A recent review paper [33] has pointed out that many 
current studies are trying to incorporate physical laws into 
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machine learning models to achieve better accuracy, lower 
training costs and improved model applicability at spatio-
temporal dimension. The Earth science community is 
actively seeking solutions to inject our already learnt knowl-
edge into the AI methods to address challenges that are 
inherently suited to AI methods. A number of Python librar-
ies are under development to help build physics-informed 
AI models for various science problems. For instance, Zhu 
et al. [107] used a novel parameterization approach to train 
a neural network with physical constraints incorporated on 
hydrographic and turbulence observations in tropical Pacific. 
It shows that adding physical constraints can improve the 
generalization of trained neural networks, but many issues 
like uncertainties and requirements for high quality train-
ing samples still remain. The observed data does not always 
obey physical laws, but the models driven simply by data 
are inaccurate as well due to some hard-to-control factors 
like the low-quality training samples. A natural idea to 
boost the performance is to incorporate the laws of physics 
and the data-driven AI models, with a wish to combine the 
advantages and achieve something better than using either 
way alone. The current research on physics-informed AI is 
at its infancy stage, but with great potential only limited 
by design imagination. This is a very promising direction 
that can accelerate our Earth AI development by using both 
methods, physics-driven methods and data-driven methods, 
allowing the modelers to ‘walk with two legs,’ as it were.

5.5 � Making AI operational

AI research and development is still at the prototyping stage 
in the NASA Earth science community. “Being in opera-
tion” means making AI products accessible and usable by the 

general users without unexpected interruption and provided 
with customer support. Strategy and infrastructure to transfer 
AI research into Operation (R2O) are the required components 
to guide the transition from AI research team to the production 
team and communicate over issues, feature requests, customer 
support, etc. New engineering practical strategies like DevOps 
or recently the concept of MLOps [108], have emerged and 
become popular in the industry. MLOps denotes a collection 
of practice and skills to deploy and maintain machine learning 
models in production reliably and efficiently. It combines the 
software engineering cycles with ML model development and 
version tactics. Most importantly, the testing and validation in 
ML will be automatically conducted by continuous integration 
testing software such as Circle-CI, Github Actions, or Jenkins, 
like data validation, model improvement verification, model ser-
vice integration, etc. Similar practices might be adopted to roll 
out the AI products in the NASA data science community. How-
ever, validating satellite-based products on a global scale often 
requires in-situ observations which can be difficult to acquire, 
especially in remote regions and over oceans. Validation is often 
continuous work [23]. From the perspective of data scientists, 
operational AI will provide them with a much more powerful 
capacity to understand the Earth via the enlarged enhanced lens 
of high-resolution continuous data on key variables.

6 � More discussion points

6.1 � Training data quality

The key factor in making AI more practical and usable is 
the availability of high-quality data. Scientists need access 
to large amounts of well-curated data to train AI algorithms 

Fig. 14   AI advantages over 
existing models on costs and 
efficiency
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and validate their results. Governments, universities, and pri-
vate companies can play a role in making data more widely 
available to the scientific community. AI tools need to be 
easy to use and accessible to geoscientists. This requires 
developing user-friendly interfaces that allow scientists to 
easily input data, run analyses, and interpret results. Inter-
faces should be intuitive and should require minimal techni-
cal expertise. AI algorithms need to be robust, reliable, and 
accurate. This requires ongoing development and improve-
ment of AI algorithms, as well as testing and validation 
using real-world data.

6.2 � AI Practitioners are in the driver seat

“If I had asked people what they wanted, they would have 
said faster horses.” The famous Henry Ford “faster horse” 
quote [109] reflects that every big innovation and great novel 
product requires the people with first-hand experiences on 
the products to defend their views, make bold attempts, and 
bring what they see as the best future avenues into reality 
no matter how different they are from the paths that others 
without the firsthand experiences may promote. AI practi-
tioners should actively reach out to the intended users and 
hear their requirements; however, AI practitioners must also 
envision and figure out how AI products can target core sci-
entific problems without projects being waylaid by tedious 
technical details. Similar to how the iPhone touch screen 
replaced the traditional keyboard, AI will bring a lot of sur-
prising changes to the existing research routine of Earth and 
environmental scientists. The time-consuming cumbersome 
work can be replaced with button-clicking effortless steps 
with the help of AI services.

6.3 � Preparing next generation AI‑ML practitioners

Current students will be the next generation's AI scien-
tists. Therefore, it is essential for students to have data lit-
eracy skills for them to adequately apply AI techniques in 
respected fields of applications. "Data dexterity" is the skill 
or ability to gain the skills vital for the application and devel-
opment of AI techniques. As every AI technique depends on 
the data that is being used and fed into the models, we must 
expect our students to demonstrate a higher level of data 
dexterity to apply AI techniques properly. Future AI prac-
titioners need to demonstrate how to use strategic thinking 
combined with a solid technical foundation in topics such 
as data lifecycle, data management, workflows, metadata 
standards (e.g., the NetCDF Climate and Forecast Metadata 
Conventions [110]) etc., before implementing any AI based 
models. Munasinghe et.al [111] describes that the ability to 
properly utilize data to apply relevant analytical methods 
to solve and formulate science and engineering problems 
is also a subset of skills future and current AI practitioners 

require. Some pilot projects have been conducted, imple-
menting data-intensive courses using NASA datasets in 
class projects and assignments to promote the data dexter-
ity among students.

Nowadays, people can easily learn many advanced tech-
niques purely based on the free open materials online rather 
than in college programs. Informal AI training can also con-
tribute to the formation of the next generation of AI experts 
in geosciences. Many geoscientists do not have a degree 
in computer science or AI majors, and that should not be 
an issue. Hackweeks and mentorship training models are 
some existing modes of education and community engage-
ment [112]. Hackweeks are time-bounded events that blend 
elements of a summer school with open project work or 
"hacking" [113], and are designed in a way that encourages 
immersive, interactive learning in a space that is welcoming 
to people of all backgrounds. The content within a hackweek 
is intentionally designed co-creatively with participants, 
and there are facilitated opportunities for networking and 
community building. As an example, the NSF-funded Geo-
Science MAchine learning Resources and Training (Geo-
SMART) project seeks to develop a dynamic and sustainable 
curriculum by integrating education, cyberinfrastructure, 
and research that can be also brought into the classroom 
(https://​geo-​smart.​github.​io/). The GeoSMART educational 
pathways build upon three levels characteristics in research: 
i) basics in data science and computing, ii) machine learning 
tools, iii) research project development and deployment of 
the learnt tools to large-scale data with cloud computing. 
The hands-on component of the GeoSMART framework is 
built around the hackweek model [113].

6.4 � What role can non‑AI techniques play 
in practical AI?

Practical AI includes a stack of technologies, of which 
AI models and algorithms are only a fraction. It can be 
expected that new technologies will keep evolving within 
the AI landscape, and embedded as part of the overall 
AI solutions. Since the rise of large mega-models, driven 
predominantly by deep neural networks, many applica-
tions have focused on leveraging these models to solve 
problems from start to finish. Nevertheless, as the artificial 
intelligence community exhausted many of these solutions 
by creating more complex models with more data, their 
underlying shortcomings began to emerge. Today, it is 
generally acknowledged that these models can provide a 
variety of task-level functionalities. However, these mod-
els are typically complemented by "traditional" and "non-
AI" techniques in practice. The frontier research domains, 
such as knowledge graphs and model-based reinforcement 
learning, could be overlapped with AI and will have a 

https://geo-smart.github.io/
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great potential in practical AI. For example, opposed to 
the hard-to-explain AI models, knowledge graphs can help 
to see the patterns in explicit form of rules, and under-
stand the completeness of the datasets and components of 
the model. New technologies can also help AI make sure 
the training data does not exclude specific extreme use 
cases, creating a distribution different from the real world, 
to improve AI generalization and inclusiveness. Overall, 
there is no exclusive definition for what technologies can 
be used in practical AI. On the contrary, there are many 
possibilities where AI can benefit from other non-tradi-
tional AI techniques.

7 � Conclusion and outlook

AI is a very popular topic within the Earth science com-
munity and government agencies, and many groups are 
spending tremendous amounts of effort to make it prac-
tically usable in solving scientific problems. This paper 
captured some of the issues and future horizons for AI in 
the Earth science community. These issues can be used by 
future AI practitioners when planning out their research 
projects. Most scientists are wondering about the poten-
tial pros and cons of AI before seriously using AI in their 
research routines and operational scenarios. This posi-
tion paper aims to picture the landscape of AI-involved 
data-driven applied sciences by discussing the current and 
upcoming needs of the research community, what practical 
AI looks like, how to realize practical AI in NASA and the 
broader research community based on the current tech-
niques, and the expected outcome including both benefits 
and issues. This paper also discusses some further topics 
concerning the unavoidable changes in the near future such 
as the fast evolution of the AI foundation models and how 
the NASA community should adapt. This paper provides 
an important reference to the geospatial-data-driven sci-
ence community to adjust their research road maps and 
allocate resources to make their AI work more practical 
in real world scenarios.
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