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Abstract

Federal and local agencies have identified a need to create building databases to help ensure that critical infrastructure

and residential buildings are accounted for in disaster preparedness and to aid the decision-making processes in

subsequent recovery efforts. To respond effectively, we need to understand the built environment—where people live,

work, and the critical infrastructure they rely on. Yet, a major discrepancy exists in the way data about buildings are

collected across the United SStates There is no harmonization in what data are recorded by city, county, or state

governments, let alone at the national scale. We demonstrate how existing open-source datasets can be spatially

integrated and subsequently used as training for machine learning (ML) models to predict building occupancy type, a

major component needed for disaster preparedness and decision -making. MultipleML algorithms are compared.We

address strategies to handle significant class imbalance and introduce Bayesian neural networks to handle prediction

uncertainty. The 100-year flood in North Carolina is provided as a practical application in disaster preparedness.

Impact Statement

In this study, we show how machine learning (ML) can be used to predict a building’s occupancy type. We

identify several features from open datasets capable of predicting building occupancy type while also evaluating

multipleML approaches. Residential buildings significantly outnumber commercial buildings, with commercial

buildings significantly outnumbering other types of buildings. We evaluate multiple strategies for handling this

class imbalance and show how Bayesian neural networks can assist in uncertainty quantification. Our results

suggest strategies for utilizing ML-based approaches across the continental United States.

1. Introduction

As cities become more complex and integrative we have an increasing need to understand where urban

features are, and what their primary purpose is. Recognizing the interconnectedness of systems such as

buildings, transportation, power, and water is critical to the success, safety, and sustainability of urban

regions. Yet, there is a major discrepancy in the way building data is collected across the United States.

There is no harmonization in what data are recorded by city, county, or state governments let alone at a
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national scale. Most previous efforts to harmonize the urban environment are proprietary, owned by

groups such as Google, Yelp, and Zillow, and utilized solely in their respective apps. For example, in the

area of urban flooding, which causes billions of dollars in damages annually, a reliable building inventory

is critical for assessing the number of people affected, the propagation of shocks throughout the economy,

and forecasting detailed socioeconomic risk from flooding. Publicly available open-source building

inventory data sets exist; yet, they are not spatially aligned nor do many of them contain a critical element

necessary for disaster assessment—building occupancy type. Knowing a building’s occupancy type

(residential, commercial, educational, etc.) plays a critical role in analyzing risk, assessing damage,

performing mitigation efforts, and coordinating search and rescue.

In this work, we identify available open datasets and compare multiple (ML) algorithms in an attempt

to accurately predict building occupancy type. We use disaster assessment to demonstrate how multiple

use cases exist for the application of building occupancy type. Yet, disaster assessment is not the only use

of a publicly available building inventory. There are many applications across disaster response,

economic modeling and forecasting, and urban planning that benefit from a public dataset containing

building-type information. The user base spans individual citizens to local and state governments to

international collaboration. As a result, there are a number of groups currently attempting to produce

public datasets on par with those datasets held by private companies. The US Geological Survey,1 for

example, is collaborating on an international effort to create a building inventory for earthquake loss

assessment. GoogleAI2 is working to produce a public building inventorywith themulti-pronged goals of

assessing population estimates when census information is not up to date, coordinating the humanitarian

response in case of emergencies, measuring the consequences of natural disasters by estimating the

number of buildings or households affected, understanding the human impact on the natural environment,

assist vaccination planning by knowing the density of the population and settlements, and calculating

statistical indicators in conjunction with housing locations to predict the mean travel time to nearby health

care. On the games and public information side, the video game company Ubisoft created an online

environment based on public building inventories upon which the online action game ‘TomClancy’s The

Division’ (for Windows, Playstation, and Xbox) is based. The public building inventories in the game

enable realistic societal infrastructure and transportation simulations. Additionally, numerous YouTube

videos and educational materials have been developed around public building inventories (Foody et al.,

2017).

These multiple use cases require multipleML approaches, which we evaluate and compare.Moreover,

an imbalance in building occupancy types—states have significantlymore residential buildings than other

types of buildings—means that additional ML strategies must be employed. We present strategies for

handling class imbalance while also introducing methods for assessing uncertainty in building

occupancy-type predictions. The utility of our ML models is demonstrated in flood assessment applica-

tions in the state of North Carolina. Alabama is used to explore the transferability of the prediction model

to other states. Ultimately, we aim to assess the accuracy of building occupancy type classification

techniques using only open data that is available on the scale of the continental United States (CONUS).

Related research has shown the predictive power of various data in determining building occupancy type.

Yet, many highly predictive data sources (e.g., LIDAR (Lu et al., 2014)) are not freely and publicly

available at the continental scale. This dramatically limits their utility in any open CONUS-scale

applications.

2. Related work and the need for ML

OpenStreetMap3 (OSM,OpenStreetMap, 2022) is a crowd-sourced initiative that aims to provide free and

open access to spatial data on a global scale. OSM’s representations of streets, natural landmarks, and

1 https://pubs.usgs.gov/of/2008/1160/downloads/OF08-1160.pdf
2 https://data.europa.eu/en/news-events/news/discover-open-buildings-dataset
3OpenStreetMap, https://www.openstreetmap.org/
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building outlines are oftenmore comprehensive and accurate than traditional data sources such as the CIA

World Factbook and United States Census Topologically Integrated Geographic Encoding and Referen-

cing (TIGER)/Line data (Fan et al., 2014; Boeing, 2017; Jacobs andMitchell, 2020; Moradi et al., 2022).

Yet, even in areas with abundant data, the free-form and optional nature of OSM’s building occupancy

type attribute results in most mapped buildings having no reliable occupancy type. The lack of reliable

building occupancy type has led several researchers to explore using machine learning to predict this

value. For instance, (Atwal et al., 2022) achieved 98% accuracy in the binary classification task of

predicting residential versus non-residential occupancy type. To achieve this, the authors used other

features within the OSMdataset to train a decision tree.While the accuracy result is impressive, one of the

required inputs to the decision tree is the so-called OSMbuilding tag. There are twomajor challenges with

this requirement. First, OSM building tags are rarely available and when they are they can be ambiguous.

As noted by (Hoffmann et al., 2019) “It is important to note that, apart from the vocabulary difference and

spelling error in the building tag, OSM also faces ambiguities in their finer classification scheme that is

defined in the OSMWiki.” Such a decision tree could not be applied to tens of millions of buildings when

used at CONUS scale. Second, having access to a highly informative tag such as “house” or “apartment”

would seem to negate the need for ML.

Hoffmann et al. (Hoffmann et al., 2019) used a deep learning approach that predicted building type

from a combination of aerial and street view images. They designed a multiclass prediction system in

which the available categories were: commercial, residential, public, and industrial. (Hoffmann et al.,

2019) concludes that with amulticlass setup and the challenges of OSM, a classification accuracy of about

60–80% on average would be a realistic expectation.

Our goals in this research are fourfold. First, to demonstrate the need for both binary and multiclass

classification. Second, to see if the classification accuracy laid out by (Hoffmann et al., 2019) can be

achieved using publicly available data and without the need for proprietary APIs and commercial image

collections. Third, to determine which building-related features openly available at CONUS scale have

the most predictive power. And, fourth, to provide a method of capturing uncertainty in predictions. If the

challenges of open datasets like OSM coupled with large class imbalances limit prediction accuracy, then

we need methods for determining when ML algorithms are making reliable predictions.

It is worth noting that our building occupancy type classification is fundamentally different from the

similarly sounding building occupancy classification. Numerous studies in the literature (e.g., (Kanthila

et al., 2022; Sayed et al., 2022)) are focused on the occupants’ presence, power usage habits, and interior

conditions with the goal of enhancing building operation and management. Their focus is on curtailing

energy consumption and reducing costs. Our work focuses on determining building type (i.e. residential,

commercial, industrial, educational, etc.). We are interested in the type of structure and not how its

occupants are utilizing power, heating, and cooling. This difference in application results in a need for

different types of data, which results in different machine-learning needs and challenges.

3. ML dataset

No CONUS-scale ML-ready dataset for building occupancy type currently exists. It is not even apparent

which building-level features available openly at the CONUS scale have themost predictive power.We do

not claim that the features utilized in this study are the most predictive. Rather, we gather a sampling of

different types of open data available at the building level and perform exploratory analysis. Our goal is to

predict a building’s type (e.g., residential/commercial/industrial) based on known features of the building

(area, location, etc.). To accomplish this, we gather a number of building features from open datasets. Our

sources of building features are the Open Street Map (OSM), the Multi-Resolution Land Characteristics

Consortium (MRLC),4 the United States Census’County Business Patterns (CBP),5 and theUnited States

4 https://www.mrlc.gov/data/type/urban-imperviousness
5 https://www.census.gov/programs-surveys/cbp/data/tables.html
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Census’ American Community Survey (ACS)6. We have spatially aligned all features by using OSM

longitude and latitude to determine which county the building resides in. We have then gone to the ACS

and looked up socio-economic county data such as median income and housing density. Imperviousness

values are taken from the MRLC. The building area polygons from OSM are overlayed with 30-meter

resolution imperviousness data and a weighted average of the imperviousness underneath the building

footprint was computed. The resulting ML-ready data have the features listed in Table 1.

Assessing the accuracy of building occupancy-type predictions involves a source of “ground-truth”

data. We utilize the US structures7 dataset maintained by FEMA and created in conjunction with DHS

Science and Technology and Oak Ridge National Laboratory. US structures was created by extracting

building outlines via commercially available satellite imagery. Building occupancy type (e.g., residential,

commercial, industrial) was then determined from a combination of local governments who agreed to

share it, open data from the National Geospatial-Intelligence Agency (NGA), Census housing data, and

parcel data. These US Structures building types are what we are trying to predict. The US Structures

‘OccupancyType’ is the final column in our training data and our source of “ground-truth” values.We note

that the US Structures dataset is smaller than OSM and currently only available in Alabama, Florida,

Georgia, Louisiana,Mississippi, North Carolina, South Carolina, Texas, and Virginia. Thus, while a good

source of ground-truth data, US Structures does not preclude the need for machine learning. Utilizing

Table 1. Features utilized in our machine learning training data

Column Description Data Source

X X coordinate of the building in the EPGS:5070 system OSM

Y Y coordinate of the building in the EPGS:5070 system OSM

Area Area of building in square meters OSM

MedianIncomeCounty Median income of the county in which the building resides ACS

HousingUnitsCounty Number of housing units in the county in which the building

resides

ACS

HousingDensityCounty Number of housing units in the county divided by the number

of people residing in the county where the building resides

ACS

Impervious Percentage of the area surrounding the building that is

comprised of impervious surfaces such as roads and other

paved surfaces. The value provided is the mean area-

weighted average of imperviousness underneath the

building footprint

MRLC

AgCount Number of agricultural businesses in the county in which the

building resides

CBP

CmCount Number of commercial businesses in the county in which the

building resides

CBP

GvCount Number of government buildings in the county in which the

building resides

CBP

EdCount Number of educational buildings in the county in which the

building resides

CBP

InCount Number of industrial buildings in the county in which the

building resides

CBP

OsmNearestRoad Type of nearest road to the building OSM

OccupancyType Building occupancy classification USA Structures

6 https://www.census.gov/programs-surveys/acs/data.html
7 https://gis-fema.hub.arcgis.com/pages/usa-structures
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North Carolina as a test site, we have created an ML-ready dataset of 1,078,144 buildings with known

building occupancy types. We use Alabama US Structures as a test of transferability. An ML model

trained in North Carolina is applied to Alabama to asses if CONUS-scale prediction can be done with a

single ML model or requires state-specific models. US structures recognizes eight building occupancy

types and the occurrence of these types in North Carolina is shown in Table 2.

Evident from Table 2 is that we have a significant class imbalance. The residential buildings, for

example, outnumber the commercial buildings by 15 to 1. The residential buildings outnumber the

agricultural buildings by nearly 600 to 1. This can be a challenge for machine learning classification

algorithms. The algorithmmay not “learn,” but rather obtain high accuracy simply by picking themajority

class. We look at techniques for dealing with such imbalance.

4. Machine learning algorithms and evaluation metrics

Applications using building-type information demand multiple types of classification. For example, during

emergency response, first responders may only be interested in identifying residential buildings. In this use

case, binary classification (residential vs. non-residential) is sufficient. However, for economic forecasting

applications, a finer-grained distinction is needed (i.e., residential vs. commercial vs. industrial). In such a

scenario, multiclass classification is needed to determine a comprehensive economic assessment.We provide

examples of both scenarios. Specifically, we design a set of supervised learning models in which building

features (location, square footage, proximity to other resources, etc.) are used to predict building occupancy

type. We assess the accuracy, precision, and recall of two machine learning algorithms while also investi-

gating techniques for dealing with unbalanced classes.

For the binary classification scenario, all non-residential building types are changed to “Other.” In the

multiclass scenario, we attempted to accurately classify all eight building occupancy types recognized by

US structures. As detailed in subsequent sections, the accuracy was too low to be practically useful. We

settled on a three-class model of Residential, Commercial, or “Other.”

In both binary and multiclass scenarios, the OsmNearestRoad and OccupancyType, which are initially

text, are encoded to numbers and we scale the data (for neural networks) based on standard scores. Our

MLdataset is split into training and testing portions using the standard 80/20 training/testing split. In other

words, 80% of the buildings in North Carolina are used to train the various ML algorithms and the

remaining 20% is held aside to evaluate the trained algorithms. The training data are applied to multiple

variations of random forest and neural network approaches. We include the standard random forest

approach as a baseline and then compare variations designed to better handle class imbalance.

TrainedMLmodels are then evaluated on the test set with the followingmetrics, which are based on the

number of true positive (TP), false negative (FN), and false positive (FP) predictions.

Balanced accuracy—a variation of accuracy used in classification problems with imbalanced datasets

defined as the average of recall obtained on each class. Recall of each class is found from

Table 2. Summary statistics of building occupancy types in North Carolina

Building occupancy type Number of buildings Percentage of dataset (%)

Residential 976,690 90.6

Commercial 64,029 5.9

Industrial 16,722 1.6

Assembly 7323 0.68

Education 6457 0.60

Government 4910 0.46

Agriculture 1651 0.15

Utility and misc. 362 0.03
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Recall¼
TP

TPþFN

We also report precision, which is defined as

Precision¼
TP

TPþFP

The F1 score is the harmonic mean of precision and recall given by

F1¼
2TP

2TPþFPþFN

Precision, recall, and F1 scores exist for each class. In the binary classification scenario, for example,

there are precision, recall, and F1 values for Residential predictions as well as precision, recall, and F1

values for non-residential Predictions. We provide average precision, recall, and F1 values when

summarizing our results in tables. The reported averages are the so-called macro average, which is

computed by taking the arithmetic mean (unweighted) across the classes. This approach treats each class

with equal significance.

4.1. Binary classification

Table 3 shows the distribution of building occupancy types after non-residential buildings are converted to

“Other.” There still exists a significant imbalance in the building occupancy types. We trained a random

forest model using 5-fold cross-validation to ensure accuracy was not dependent on how the data was

split.

Undersampling refers to a group of techniques designed to balance the class distribution. Under-

sampling techniques remove examples from the training dataset that belong to the majority class in order

to better balance the class distribution. This is in contrast to oversampling, which involves adding

examples to the minority class in an effort to reduce the class distribution imbalance. Near Miss

(Zhang and Mani, 2003) refers to a collection of undersampling methods that select examples based

on the distance of majority class examples to minority class examples. Distance is determined in feature

space using Euclidean distance. NearMiss allows us to keep majority class examples that are on the

decision boundary leaving 101,453 residential buildings and the same number of non-residential

buildings.

Perhaps the simplest approach to handle a severe class imbalance is to change the decision threshold. A

random forest model is comprised ofmultiple decision trees.We can obtain from themodel the proportion

of decision trees that voted “residential” and the proportion of decision trees that voted “non-residential”

for a given building. An obvious default approach is to set the threshold at 0.5. If the proportion of decision

trees voting “residential” is above 0.5 then the algorithm predicts “residential.” Otherwise, the algorithm

predicts “non-residential.” Threshold moving simply moves this threshold attempting to achieve higher

accuracy. For example, we may require a proportion of 0.6 or greater to predict “residential.” Threshold

moving can be effective for class imbalance because it helps avoid simply predicting the majority class. In

our case, more evidence is needed before predicting “residential.”

The “best” threshold to use is determined by finding the threshold with the maximum F1 score, a

metric which is the harmonic mean of precision and recall. Figure 1 illustrates the results of threshold

moving applied to our binary classification random forest model. The points connected by a solid line

Table 3. Building occupancy type distribution for binary classification

Building occupancy type Number of buildings Ratio to residential

Residential 976,689 –

Other 101,453 1:10
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show the change in precision and recall as the threshold is modified. The large solid black dot highlights

the location where precision and recall combine to maximize F1. Our experiments revealed an optimal

threshold of 0.55.

We also trained a binary classification neural network to compare to the random forest approaches.

Because of the class imbalance, wewant the neural network to paymore attention to the fewer examples of

non-residential buildings. A common technique for achieving this is to weight the classes using:

weight¼ 1=ncð Þ× N=2ð Þ (4.1)
where nc is the number of buildings in the class and N is the total number of buildings.

We arrive at a residential weighting of 0.55 and a non-residential weighting of 5.31. The neural

network itself has two hidden layers of size 30 and 15, respectively. The network was set to train for

150 epochs. However, early stopping was applied with the training set to stop if accuracy did not improve

for seven consecutive epochs. After 36 epochs, training stopped due to no improvement in accuracy.

4.2. Multiclass classification

US structures recognizes eight building occupancy types. We first repeated the machine learning process

using all eight classes in a multiclass classification scenario. We found class imbalance to be so severe we

could not reliably predict more than the three most frequently occurring building types. The classification

accuracy for all eight occupancy types was around 30%. When Assembly, Education, Government,

Agriculture, and Utility andMisc. were combined into a single “Other” class, the accuracy only improved

to about 50%. We limit our discussion here to machine learning models designed to predict “residential,”

“commercial,” or “other.”

Ensemblemethods usemultiple learning algorithms to obtain better predictive performance than could

be obtained from a single algorithm. One-vs-rest and one-vs-one have emerged as two popular ensemble

techniques for classification. While not specifically designed for addressing class imbalance, decompos-

ing the classification problem into a set of binary classification problems can sometimes help. The one-vs-

one and one-vs-rest techniques in particular have led to promising results in empirical studies involving

imbalanced classes (Fernandez et al., 2013; Krawczyk, 2016; Zhang et al., 2016).

The one-vs-one strategy splits a multi-class classification into one binary classification problem per

each pair of classes, for example, residential vs. commercial, residential vs. other, commercial versus

other. The final class assignment is determined by aggregating the results of the binary classifiers. The

one-vs-rest strategy is a related approach, however, fewer models are created. There is one binary

classification problem per class, for example, residential vs. rest, commercial vs. rest, and other

vs. rest. We applied both approaches to our 3-class classification.

Amulticlass neural networkwas implementedwith similar characteristics to those utilized in the neural

network binary classification. The resulting class weights were 0.55 for residential buildings, 8.42 for

commercial buildings, and 14.40 for “other” buildings. In addition to class weights, focal loss (Lin et al.,

Figure 1. Precision recall curve for random forest threshold moving.
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2017) is an approach for dealing with imbalanced classes in neural networks. Focal loss addresses class

imbalance during training by applying a modulating term to the neural network loss function. The

intention is to focus learning on difficult misclassified examples. This modulating term is dynamically

scaled meaning it decays to zero as confidence in the correct class increases. Intuitively, this modulating

term decreases the contribution of easily classified examples during training while increasing the

contribution of more difficult classification examples. We implemented focal loss using the TensorFlow

software library. Both binary and multiclass focal loss were tried. The default values of the software for

setting the modulating term were used in both applications.

5. Results

5.1. Binary classification

Results from the binary classification experiments are shown in Table 4. We found fairly consistent

metrics across all four algorithms with the class-balanced neural network having the highest accuracy at

89%. Class balancing strategies for random forests produced mixed results. Threshold moving led to a

slight improvement in accuracy over the default random forest while near-miss performed worse. The

confusion matrix for neural network classification is shown in Figure 2 where we can see precision and

recall inmore detail. The neural network doeswell with residential buildings, correctly classifying 92%of

the test set. Non-residential buildings in the test set are correctly classified 85% of the time with 15% of

non-residential buildings being misclassified as residential.

Feature importance is a technique for assessing how important each of our input features is to making

accurate predictions. Features with low importance do not contribute much (do not have much weight) to

prediction accuracy. Low-importance features can be ignored creating simpler more scalable machine

learningmodels. We use a technique called Permutation Importance in which feature values are randomly

shuffled. The resulting mean accuracy decrease plot expresses how much accuracy the model loses

through feature permutation. The more the accuracy suffers, the more important the variable is for

successful classification. Feature importance was carried out on both the neural network and random

forest models.We found the same feature ranking across all models so, for brevity, we show only themean

accuracy decrease plot from the neural network. This is displayed in Figure 3.

We find that imperviousness has the most predictive power followed by a building’s area, the type of

road it is nearest to, and the building’s longitude and latitude.We had hypothesized that Census data on the

number of agricultural, commercial, industrial, and governmental businesses in the area would be helpful.

However, these data contribute little predictive power. One feature from the US Census, mean income in

the county, does help somewhat. Residential buildings vary in size across the state and we suspect the

correlation between mean income and home size in a county is being utilized.

5.2. Multiclass classification

Results from the multiclass experiments are shown in Table 5. When a random forest model is applied to

this three-class classification problem, we achieve a balanced accuracy of 67%. The confusion matrix for

Table 4. Results from binary classification experiments

Method Balanced accuracy (%) Macro F1 (%) Macro precision (%) Macro recall (%)

NN 89% 80 76 89

RF threshold 87 88 90 87

Random forest 86 88 91 85

RF near-miss 84 84 84 84

Focal loss 81 84 89 81
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this approach is shown in Figure 4. Feature importance analysis was repeated using themulticlass random

forest model. Results did not differ from those shown in Figure 3.

The severe class imbalance limits the practical application of multiclass classification with three

classes. Looking deeper into our MLmodels trained with more classes, we find predictive “confusion” is

correlated with the class imbalance. In other words, the less frequently an occupancy type appears in our

dataset, the more likely it is to be confused with other occupancy types. Industrial buildings, which are

outnumbered by residential buildings nearly 60–1, are confused for commercial buildings 33%of the time

and misclassified as residential buildings 23% of the time. Additional improvements in accuracy,

precision, and recall have been found through the addition of aerial and street view data (Hoffmann

et al., 2019). Yet, adding these additional datasets adds a reliance on proprietary APIs and commercial

image collections. In the next section, we explore Bayesian neural networks as a means of addressing

prediction uncertainty.

6. Bayesian neural networks for prediction uncertainty

The traditional approach to machine learning is to optimize a loss function to obtain an optimal setting of

the model parameters. Numerous iterations over the training data allow the model parameters to be fine-

tuned. The machine learning training process results in a set of optimal model parameters that are then

used in subsequent predictions.

ABayesian approach, by contrast, does not seek fixedmodel parameters. In a Bayesian neural network

(Wilson and Izmailov, 2020) the network weights are distributions. Passing the same input through the

trained networkwill result in different predictions as different weights are chosen from the distributions on

each pass. Getting a distribution of predictions for each input is useful as the ensemble of predictions can

be used to quantify uncertainty in neural network weights—commonly referred to as epistemic uncer-

tainty—and the probability of being in each class leads to a determination of prediction uncertainty—

commonly referred to as aleatoric uncertainty.

Figure 2. Confusion matrix for neural network binary classification. Values are listed as proportions.
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Figure 3. Permutation feature importance. Features are shown in ascending order of importance. The

bars show the mean accuracy decrease after 10 repetitions with error bars displaying the standard

deviation of the 10 repetitions. Building types and income values are county aggregates obtained from the

USCensus. Percent impervious is the percentage of area surrounding the unknown building comprised of

impervious materials.

Table 5. Results from multiclass classification experiments

Method Balanced accuracy (%) Macro F1 (%) Macro precision (%) Macro recall (%)

Random forest 67 72 78 67

One-vs-one 67 71 78 67

One-vs-rest 67 73 79 66

Focal loss 58 62 71 58

NN 37 87 85 89
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Our Bayesian neural network is implemented using the TensorFlow Probability software library

(Dillon et al., 2017). The other layers in our neural networks are standard Dense layers from the Keras

library (Chollet and others, 2015). Aleatoric uncertainty is quantified using Shannon entropy, which is

common for classification problems (Hüllermeier and Waegeman, 2021). Shannon entropy is defined as

H¼�
Xn

i¼1

pi × ln pið Þ

where n is the number of possible output categories (e.g., residential, commercial, and other) and pi is the

predicted likelihood of being in each of those categories. Entropy in information theory is analogous to

entropy in statistical thermodynamics. Larger values of H correspond to the probabilities being spread

more evenly across the possible classes. Thus, larger values ofH correspond to the neural network being

more uncertain in its prediction.

We create a Bayesian neural network for the binary classification problem and a second Bayesian

neural network for the 3-class (residential, commercial, and other) problem. After training the networks,

each building in the test set was passed through the network 100 times. The mean of the 100 predictions

was computed and Shannon entropy was used to determine prediction uncertainty. This approach enables

a user-defined uncertainty threshold. Predictions with uncertainty above the threshold are ignored due to

the neural network having little confidence in the prediction. In this manner, the user is trading off number

of predictions for higher prediction accuracy. Low values of the uncertain threshold—implying the neural

network must have high confidence in the prediction—leads to fewer predictions being made; however,

those predictions are of higher accuracy.

Figure 5 compares confusion matrices for the multiclass Bayesian neural network. The left panel

shows the results when there is no uncertainty threshold, that is the neural network is forced to make a

prediction for every building. The right panel shows the results for an example uncertainty threshold of 0.4

We are making about 50% fewer predictions in the right panel; yet, the neural network is much more

confident—and correct—in those predictions.

7. Application and transferability

As a simple demonstration of how building occupancy type prediction can be used, we identified 219,054

buildings in the OSM North Carolina dataset not used in our train/test data that had unknown building

occupancy types. Further, we obtained the 100-year flood map from the FEMA National Flood Hazards

Layer. The phrase “100-year flood” is used to describe the extent of a flood that statistically has a 1-percent

Figure 4. Confusion matrix for multiclass random forest.
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chance of occurring in any given year (Maidment, 2009). Here, it is used for illustrative purposes of a

disaster preparedness application. Flood maps indicated that 5838 buildings out of the 219,054 unknown

North Carolina buildings would be impacted by a 100-year flood. Our model predicted these to be 5452

residential, 349 commercial, and 37 “other.” The spatial distribution of the predicted residential and

commercial buildings is shown in Figures 6 and 7, respectively. This simple example highlights two

important points. First, despite open datasets such as OSM and US structures, there still exist hundreds of

thousands of buildings in North Carolina with unknown occupancy types. Public safety assessments and

economic forecasting of a natural disaster, such as a 100-year flood, are limited in their ability to fully

account for the entire state. Amachine learning approach, such as the one described here, can quickly and

reliably predict those missing occupancy types.

We obtained US structures data from Alabama to evaluate the transferability of our models. As

mentioned previously, US structures has ground truth building occupancy types for nine states. Our goal

was to assess if anMLmodel trained in one state could be used in another state. Unfortunately, this was not

the case. The Alabama dataset contained 2.2 million buildings with known occupancy types. The

multiclass model trained on North Carolina data was only able to accurately classify 48% of Alabama

buildings by default. Accuracy increased using the Bayesian approach and uncertainty thresholds.

Figure 5. Confusion matrices from the multiclass Bayesian Neural Network. On the left, results when all

predictions are kept. On the right, results when prediction uncertainty is below 0.4.

Figure 6. Predicted residential flooding for buildings with previously unknown occupancy type.
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However, the improved accuracy is not significant enough to think that one neural network model could

be applicable across the continental United States as the distributions of the selected features vary too

much between states. Put another way, while the selected features are useful for predicting building

occupancy type, the weighting of each feature varies from state to state. Practitioners may need to train

multiple state-specific neural networks. Alternatively, it may be feasible to train regional neural network

models; yet, it is unclear to us at present how to optimally construct such training datasets. More research

is needed into multi-state neural networks and the specific impacts of geographic features (that is

imperviousness) and socio-economic features (that is median income and median area). We leave this

for subsequent research.

8. Conclusion

We have identified features, freely and publicly available at the continental scale, that are useful in

building occupancy type classification. These features can become part of a CONUS-scale building

classification workflow with accuracy values comparable to existing ML systems (e.g., (Hoffmann et al.,

2019)) and without the reliance on proprietary APIs and commercial image collections. Specifically, with

the current set of features, we achieve 87% accuracy with binary classification and 74% accuracy on the

three-class (residential/commercial/other) classification problems using Bayesian neural networks and

uncertainty thresholds. As a specific comparison, our technique correctly classifies 62% of commercial

buildings when predictions are made on all buildings and 74% of commercial buildings when predictions

are limited to most certain commercial buildings. This is compared to (Hoffmann et al., 2019)’s 64% for

commercial buildings. Additionally, we have added a Bayesian component that flags uncertain predic-

tions, which can be helpful in disaster response and economic forecasting applications.

We have also found that our ML models, trained on North Carolina buildings, do not transfer well to

another state. This suggests that CONUS efforts may require regional models or even state-specific

models. Our future research will compare the accuracy of regional models (ML models trained on data

from multiple states) to the accuracy of individual state models. We will also explore more building

features from open datasets that can improve prediction accuracy.
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Figure 7. Predicted commercial flooding for buildings with previously unknown occupancy type.
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