Environmental Data Science (2025), 4: €10, 1-15
doiz10.1017/eds.2025.2 CAMBRIDGE

UNIVERSITY PRESS

APPLICATION PAPER 0

Building occupancy type classification and uncertainty
estimation using machine learning and open data

Tom Narock' @, J. Michael Johnson”, Justin Singh-Mohudpur” and Arash Modaresi Rad’

!Center for Natural, Computer, and Data Sciences, Goucher College, Baltimore, MD, USA
2Lynker, Boulder, CO, USA

3School of Computing, Boise State University, Boise, ID, USA

Corresponding author: Tom Narock; Email: thomas.narock@goucher.edu

Received: 02 June 2023; Revised: 12 December 2024; Accepted: 02 January 2025

Keywords: Bayesian neural network; building type classification; flood risk; machine learning; open data

Abstract

Federal and local agencies have identified a need to create building databases to help ensure that critical infrastructure
and residential buildings are accounted for in disaster preparedness and to aid the decision-making processes in
subsequent recovery efforts. To respond effectively, we need to understand the built environment—where people live,
work, and the critical infrastructure they rely on. Yet, a major discrepancy exists in the way data about buildings are
collected across the United SStates There is no harmonization in what data are recorded by city, county, or state
governments, let alone at the national scale. We demonstrate how existing open-source datasets can be spatially
integrated and subsequently used as training for machine learning (ML) models to predict building occupancy type, a
major component needed for disaster preparedness and decision -making. Multiple ML algorithms are compared. We
address strategies to handle significant class imbalance and introduce Bayesian neural networks to handle prediction
uncertainty. The 100-year flood in North Carolina is provided as a practical application in disaster preparedness.

Impact Statement

In this study, we show how machine learning (ML) can be used to predict a building’s occupancy type. We
identify several features from open datasets capable of predicting building occupancy type while also evaluating
multiple ML approaches. Residential buildings significantly outnumber commercial buildings, with commercial
buildings significantly outnumbering other types of buildings. We evaluate multiple strategies for handling this
class imbalance and show how Bayesian neural networks can assist in uncertainty quantification. Our results
suggest strategies for utilizing ML-based approaches across the continental United States.

1. Introduction

As cities become more complex and integrative we have an increasing need to understand where urban
features are, and what their primary purpose is. Recognizing the interconnectedness of systems such as
buildings, transportation, power, and water is critical to the success, safety, and sustainability of urban
regions. Yet, there is a major discrepancy in the way building data is collected across the United States.
There is no harmonization in what data are recorded by city, county, or state governments let alone at a
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national scale. Most previous efforts to harmonize the urban environment are proprietary, owned by
groups such as Google, Yelp, and Zillow, and utilized solely in their respective apps. For example, in the
area of urban flooding, which causes billions of dollars in damages annually, a reliable building inventory
is critical for assessing the number of people affected, the propagation of shocks throughout the economy,
and forecasting detailed socioeconomic risk from flooding. Publicly available open-source building
inventory data sets exist; yet, they are not spatially aligned nor do many of them contain a critical element
necessary for disaster assessment—building occupancy type. Knowing a building’s occupancy type
(residential, commercial, educational, etc.) plays a critical role in analyzing risk, assessing damage,
performing mitigation efforts, and coordinating search and rescue.

In this work, we identify available open datasets and compare multiple (ML) algorithms in an attempt
to accurately predict building occupancy type. We use disaster assessment to demonstrate how multiple
use cases exist for the application of building occupancy type. Yet, disaster assessment is not the only use
of a publicly available building inventory. There are many applications across disaster response,
economic modeling and forecasting, and urban planning that benefit from a public dataset containing
building-type information. The user base spans individual citizens to local and state governments to
international collaboration. As a result, there are a number of groups currently attempting to produce
public datasets on par with those datasets held by private companies. The US Geological Survey,' for
example, is collaborating on an international effort to create a building inventory for earthquake loss
assessment. Google AT is working to produce a public building inventory with the multi-pronged goals of
assessing population estimates when census information is not up to date, coordinating the humanitarian
response in case of emergencies, measuring the consequences of natural disasters by estimating the
number of buildings or households affected, understanding the human impact on the natural environment,
assist vaccination planning by knowing the density of the population and settlements, and calculating
statistical indicators in conjunction with housing locations to predict the mean travel time to nearby health
care. On the games and public information side, the video game company Ubisoft created an online
environment based on public building inventories upon which the online action game ‘Tom Clancy’s The
Division’ (for Windows, Playstation, and Xbox) is based. The public building inventories in the game
enable realistic societal infrastructure and transportation simulations. Additionally, numerous YouTube
videos and educational materials have been developed around public building inventories (Foody et al.,
2017).

These multiple use cases require multiple ML approaches, which we evaluate and compare. Moreover,
an imbalance in building occupancy types—states have significantly more residential buildings than other
types of buildings—means that additional ML strategies must be employed. We present strategies for
handling class imbalance while also introducing methods for assessing uncertainty in building
occupancy-type predictions. The utility of our ML models is demonstrated in flood assessment applica-
tions in the state of North Carolina. Alabama is used to explore the transferability of the prediction model
to other states. Ultimately, we aim to assess the accuracy of building occupancy type classification
techniques using only open data that is available on the scale of the continental United States (CONUS).
Related research has shown the predictive power of various data in determining building occupancy type.
Yet, many highly predictive data sources (e.g., LIDAR (Lu et al., 2014)) are not freely and publicly
available at the continental scale. This dramatically limits their utility in any open CONUS-scale
applications.

2. Related work and the need for ML

OpenStreetMap® (OSM, OpenStreetMap, 2022) is a crowd-sourced initiative that aims to provide free and
open access to spatial data on a global scale. OSM’s representations of streets, natural landmarks, and

Uhttps://pubs.usgs.gov/of/2008/1160/downloads/OF08-1160.pdf
2 https://data.europa.eu/en/news-events/news/discover-open-buildings-dataset
3 OpenStreetMap, https://www.openstreetmap.org
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building outlines are often more comprehensive and accurate than traditional data sources such as the CIA
World Factbook and United States Census Topologically Integrated Geographic Encoding and Referen-
cing (TIGER)/Line data (Fan et al., 2014; Boeing, 2017; Jacobs and Mitchell, 2020; Moradi et al., 2022).
Yet, even in areas with abundant data, the free-form and optional nature of OSM’s building occupancy
type attribute results in most mapped buildings having no reliable occupancy type. The lack of reliable
building occupancy type has led several researchers to explore using machine learning to predict this
value. For instance, (Atwal et al., 2022) achieved 98% accuracy in the binary classification task of
predicting residential versus non-residential occupancy type. To achieve this, the authors used other
features within the OSM dataset to train a decision tree. While the accuracy result is impressive, one of the
required inputs to the decision tree is the so-called OSM building tag. There are two major challenges with
this requirement. First, OSM building tags are rarely available and when they are they can be ambiguous.
As noted by (Hoffmann et al., 2019) “It is important to note that, apart from the vocabulary difference and
spelling error in the building tag, OSM also faces ambiguities in their finer classification scheme that is
defined in the OSM Wiki.” Such a decision tree could not be applied to tens of millions of buildings when
used at CONUS scale. Second, having access to a highly informative tag such as “house” or “apartment”
would seem to negate the need for ML.

Hoffmann et al. (Hoffmann et al., 2019) used a deep learning approach that predicted building type
from a combination of aerial and street view images. They designed a multiclass prediction system in
which the available categories were: commercial, residential, public, and industrial. (Hoffmann et al.,
2019) concludes that with a multiclass setup and the challenges of OSM, a classification accuracy of about
60-80% on average would be a realistic expectation.

Our goals in this research are fourfold. First, to demonstrate the need for both binary and multiclass
classification. Second, to see if the classification accuracy laid out by (Hoffmann et al., 2019) can be
achieved using publicly available data and without the need for proprietary APIs and commercial image
collections. Third, to determine which building-related features openly available at CONUS scale have
the most predictive power. And, fourth, to provide a method of capturing uncertainty in predictions. If the
challenges of open datasets like OSM coupled with large class imbalances limit prediction accuracy, then
we need methods for determining when ML algorithms are making reliable predictions.

It is worth noting that our building occupancy type classification is fundamentally different from the
similarly sounding building occupancy classification. Numerous studies in the literature (e.g., (Kanthila
etal., 2022; Sayed et al., 2022)) are focused on the occupants’ presence, power usage habits, and interior
conditions with the goal of enhancing building operation and management. Their focus is on curtailing
energy consumption and reducing costs. Our work focuses on determining building type (i.e. residential,
commercial, industrial, educational, etc.). We are interested in the type of structure and not how its
occupants are utilizing power, heating, and cooling. This difference in application results in a need for
different types of data, which results in different machine-learning needs and challenges.

3. ML dataset

No CONUS-scale ML-ready dataset for building occupancy type currently exists. It is not even apparent
which building-level features available openly at the CONUS scale have the most predictive power. We do
not claim that the features utilized in this study are the most predictive. Rather, we gather a sampling of
different types of open data available at the building level and perform exploratory analysis. Our goal is to
predict a building’s type (e.g., residential/commercial/industrial) based on known features of the building
(area, location, etc.). To accomplish this, we gather a number of building features from open datasets. Our
sources of building features are the Open Street Map (OSM), the Multi-Resolution Land Characteristics
Consortium (MRLC),* the United States Census’ County Business Patterns (CBP), and the United States

4 b . .
https://www.mrlc.gov/data/type/urban-imperviousness
3 https://www.census.gov/programs-surveys/cbp/data/tables.html
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Table 1. Features utilized in our machine learning training data

Column Description Data Source
X X coordinate of the building in the EPGS:5070 system OSM
Y Y coordinate of the building in the EPGS:5070 system OSM
Area Area of building in square meters OSM

MedianIncomeCounty Median income of the county in which the building resides ACS
HousingUnitsCounty ~ Number of housing units in the county in which the building ACS
resides
HousingDensityCounty Number of housing units in the county divided by the number ACS
of people residing in the county where the building resides
Impervious Percentage of the area surrounding the building that is MRLC
comprised of impervious surfaces such as roads and other
paved surfaces. The value provided is the mean area-
weighted average of imperviousness underneath the
building footprint

AgCount Number of agricultural businesses in the county in which the CBP
building resides

CmCount Number of commercial businesses in the county in which the CBP
building resides

GvCount Number of government buildings in the county in which the CBP
building resides

EdCount Number of educational buildings in the county in which the CBP
building resides

InCount Number of industrial buildings in the county in which the CBP
building resides

OsmNearestRoad Type of nearest road to the building OSM

OccupancyType Building occupancy classification USA Structures

Census’ American Community Survey (ACS)®. We have spatially aligned all features by using OSM
longitude and latitude to determine which county the building resides in. We have then gone to the ACS
and looked up socio-economic county data such as median income and housing density. Imperviousness
values are taken from the MRLC. The building area polygons from OSM are overlayed with 30-meter
resolution imperviousness data and a weighted average of the imperviousness underneath the building
footprint was computed. The resulting ML-ready data have the features listed in Table 1.

Assessing the accuracy of building occupancy-type predictions involves a source of “ground-truth”
data. We utilize the US structures’ dataset maintained by FEMA and created in conjunction with DHS
Science and Technology and Oak Ridge National Laboratory. US structures was created by extracting
building outlines via commercially available satellite imagery. Building occupancy type (e.g., residential,
commercial, industrial) was then determined from a combination of local governments who agreed to
share it, open data from the National Geospatial-Intelligence Agency (NGA), Census housing data, and
parcel data. These US Structures building types are what we are trying to predict. The US Structures
‘OccupancyType’ is the final column in our training data and our source of “ground-truth” values. We note
that the US Structures dataset is smaller than OSM and currently only available in Alabama, Florida,
Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Texas, and Virginia. Thus, while a good
source of ground-truth data, US Structures does not preclude the need for machine learning. Utilizing

6
https://www.census.gov/programs-surveys/acs/data.html
" https://gis-fema.hub.arcgis.com/pages/usa-structures
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Table 2. Summary statistics of building occupancy types in North Carolina

Building occupancy type Number of buildings Percentage of dataset (%)
Residential 976,690 90.6
Commercial 64,029 59

Industrial 16,722 1.6

Assembly 7323 0.68
Education 6457 0.60
Government 4910 0.46
Agriculture 1651 0.15

Utility and misc. 362 0.03

North Carolina as a test site, we have created an ML-ready dataset of 1,078,144 buildings with known
building occupancy types. We use Alabama US Structures as a test of transferability. An ML model
trained in North Carolina is applied to Alabama to asses if CONUS-scale prediction can be done with a
single ML model or requires state-specific models. US structures recognizes eight building occupancy
types and the occurrence of these types in North Carolina is shown in Table 2.

Evident from Table 2 is that we have a significant class imbalance. The residential buildings, for
example, outnumber the commercial buildings by 15 to 1. The residential buildings outnumber the
agricultural buildings by nearly 600 to 1. This can be a challenge for machine learning classification
algorithms. The algorithm may not “learn,” but rather obtain high accuracy simply by picking the majority
class. We look at techniques for dealing with such imbalance.

4. Machine learning algorithms and evaluation metrics

Applications using building-type information demand multiple types of classification. For example, during
emergency response, first responders may only be interested in identifying residential buildings. In this use
case, binary classification (residential vs. non-residential) is sufficient. However, for economic forecasting
applications, a finer-grained distinction is needed (i.e., residential vs. commercial vs. industrial). In such a
scenario, multiclass classification is needed to determine a comprehensive economic assessment. We provide
examples of both scenarios. Specifically, we design a set of supervised learning models in which building
features (location, square footage, proximity to other resources, etc.) are used to predict building occupancy
type. We assess the accuracy, precision, and recall of two machine learning algorithms while also investi-
gating techniques for dealing with unbalanced classes.

For the binary classification scenario, all non-residential building types are changed to “Other.” In the
multiclass scenario, we attempted to accurately classify all eight building occupancy types recognized by
US structures. As detailed in subsequent sections, the accuracy was too low to be practically useful. We
settled on a three-class model of Residential, Commercial, or “Other.”

In both binary and multiclass scenarios, the OsmNearestRoad and OccupancyType, which are initially
text, are encoded to numbers and we scale the data (for neural networks) based on standard scores. Our
ML dataset is split into training and testing portions using the standard 80/20 training/testing split. In other
words, 80% of the buildings in North Carolina are used to train the various ML algorithms and the
remaining 20% is held aside to evaluate the trained algorithms. The training data are applied to multiple
variations of random forest and neural network approaches. We include the standard random forest
approach as a baseline and then compare variations designed to better handle class imbalance.

Trained ML models are then evaluated on the test set with the following metrics, which are based on the
number of true positive (TP), false negative (FN), and false positive (FP) predictions.

Balanced accuracy—a variation of accuracy used in classification problems with imbalanced datasets
defined as the average of recall obtained on each class. Recall of each class is found from
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TP

Recall = —
T TP IFN

We also report precision, which is defined as

TP

P .. __
recision TP+ FP

The F1 score is the harmonic mean of precision and recall given by

- 2TP
" 2TP+FP+FN

Precision, recall, and F1 scores exist for each class. In the binary classification scenario, for example,
there are precision, recall, and F1 values for Residential predictions as well as precision, recall, and F1
values for non-residential Predictions. We provide average precision, recall, and F1 values when
summarizing our results in tables. The reported averages are the so-called macro average, which is
computed by taking the arithmetic mean (unweighted) across the classes. This approach treats each class
with equal significance.

F1

4.1. Binary classification

Table 3 shows the distribution of building occupancy types after non-residential buildings are converted to
“Other.” There still exists a significant imbalance in the building occupancy types. We trained a random
forest model using 5-fold cross-validation to ensure accuracy was not dependent on how the data was
split.

Undersampling refers to a group of techniques designed to balance the class distribution. Under-
sampling techniques remove examples from the training dataset that belong to the majority class in order
to better balance the class distribution. This is in contrast to oversampling, which involves adding
examples to the minority class in an effort to reduce the class distribution imbalance. Near Miss
(Zhang and Mani, 2003) refers to a collection of undersampling methods that select examples based
on the distance of majority class examples to minority class examples. Distance is determined in feature
space using Euclidean distance. NearMiss allows us to keep majority class examples that are on the
decision boundary leaving 101,453 residential buildings and the same number of non-residential
buildings.

Perhaps the simplest approach to handle a severe class imbalance is to change the decision threshold. A
random forest model is comprised of multiple decision trees. We can obtain from the model the proportion
of decision trees that voted “residential” and the proportion of decision trees that voted “non-residential”
for a given building. An obvious default approach is to set the threshold at 0.5. If the proportion of decision
trees voting “residential” is above 0.5 then the algorithm predicts “residential.” Otherwise, the algorithm
predicts “non-residential.” Threshold moving simply moves this threshold attempting to achieve higher
accuracy. For example, we may require a proportion of 0.6 or greater to predict “residential.” Threshold
moving can be effective for class imbalance because it helps avoid simply predicting the majority class. In
our case, more evidence is needed before predicting “residential.”

The “best” threshold to use is determined by finding the threshold with the maximum F1 score, a
metric which is the harmonic mean of precision and recall. Figure 1 illustrates the results of threshold
moving applied to our binary classification random forest model. The points connected by a solid line

Table 3. Building occupancy type distribution for binary classification

Building occupancy type Number of buildings Ratio to residential
Residential 976,689 -
Other 101,453 1:10
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Figure 1. Precision recall curve for random forest threshold moving.

show the change in precision and recall as the threshold is modified. The large solid black dot highlights
the location where precision and recall combine to maximize F1. Our experiments revealed an optimal
threshold of 0.55.

We also trained a binary classification neural network to compare to the random forest approaches.
Because of the class imbalance, we want the neural network to pay more attention to the fewer examples of
non-residential buildings. A common technique for achieving this is to weight the classes using:

weight=(1/n.) x (N/2) (4.1)

where n, is the number of buildings in the class and N is the total number of buildings.

We arrive at a residential weighting of 0.55 and a non-residential weighting of 5.31. The neural
network itself has two hidden layers of size 30 and 15, respectively. The network was set to train for
150 epochs. However, early stopping was applied with the training set to stop if accuracy did not improve
for seven consecutive epochs. After 36 epochs, training stopped due to no improvement in accuracy.

4.2. Multiclass classification

US structures recognizes eight building occupancy types. We first repeated the machine learning process
using all eight classes in a multiclass classification scenario. We found class imbalance to be so severe we
could not reliably predict more than the three most frequently occurring building types. The classification
accuracy for all eight occupancy types was around 30%. When Assembly, Education, Government,
Agriculture, and Utility and Misc. were combined into a single “Other” class, the accuracy only improved
to about 50%. We limit our discussion here to machine learning models designed to predict “residential,”
“commercial,” or “other.”

Ensemble methods use multiple learning algorithms to obtain better predictive performance than could
be obtained from a single algorithm. One-vs-rest and one-vs-one have emerged as two popular ensemble
techniques for classification. While not specifically designed for addressing class imbalance, decompos-
ing the classification problem into a set of binary classification problems can sometimes help. The one-vs-
one and one-vs-rest techniques in particular have led to promising results in empirical studies involving
imbalanced classes (Fernandez et al., 2013; Krawczyk, 2016; Zhang et al., 2016).

The one-vs-one strategy splits a multi-class classification into one binary classification problem per
each pair of classes, for example, residential vs. commercial, residential vs. other, commercial versus
other. The final class assignment is determined by aggregating the results of the binary classifiers. The
one-vs-rest strategy is a related approach, however, fewer models are created. There is one binary
classification problem per class, for example, residential vs. rest, commercial vs. rest, and other
vs. rest. We applied both approaches to our 3-class classification.

A multiclass neural network was implemented with similar characteristics to those utilized in the neural
network binary classification. The resulting class weights were 0.55 for residential buildings, 8.42 for
commercial buildings, and 14.40 for “other” buildings. In addition to class weights, focal loss (Lin et al.,
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2017) is an approach for dealing with imbalanced classes in neural networks. Focal loss addresses class
imbalance during training by applying a modulating term to the neural network loss function. The
intention is to focus learning on difficult misclassified examples. This modulating term is dynamically
scaled meaning it decays to zero as confidence in the correct class increases. Intuitively, this modulating
term decreases the contribution of easily classified examples during training while increasing the
contribution of more difficult classification examples. We implemented focal loss using the TensorFlow
software library. Both binary and multiclass focal loss were tried. The default values of the software for
setting the modulating term were used in both applications.

5. Results

5.1. Binary classification

Results from the binary classification experiments are shown in Table 4. We found fairly consistent
metrics across all four algorithms with the class-balanced neural network having the highest accuracy at
89%. Class balancing strategies for random forests produced mixed results. Threshold moving led to a
slight improvement in accuracy over the default random forest while near-miss performed worse. The
confusion matrix for neural network classification is shown in Figure 2 where we can see precision and
recall in more detail. The neural network does well with residential buildings, correctly classifying 92% of
the test set. Non-residential buildings in the test set are correctly classified 85% of the time with 15% of
non-residential buildings being misclassified as residential.

Feature importance is a technique for assessing how important each of our input features is to making
accurate predictions. Features with low importance do not contribute much (do not have much weight) to
prediction accuracy. Low-importance features can be ignored creating simpler more scalable machine
learning models. We use a technique called Permutation Importance in which feature values are randomly
shuffled. The resulting mean accuracy decrease plot expresses how much accuracy the model loses
through feature permutation. The more the accuracy suffers, the more important the variable is for
successful classification. Feature importance was carried out on both the neural network and random
forest models. We found the same feature ranking across all models so, for brevity, we show only the mean
accuracy decrease plot from the neural network. This is displayed in Figure 3.

We find that imperviousness has the most predictive power followed by a building’s area, the type of
road it is nearest to, and the building’s longitude and latitude. We had hypothesized that Census data on the
number of agricultural, commercial, industrial, and governmental businesses in the area would be helpful.
However, these data contribute little predictive power. One feature from the US Census, mean income in
the county, does help somewhat. Residential buildings vary in size across the state and we suspect the
correlation between mean income and home size in a county is being utilized.

5.2. Multiclass classification

Results from the multiclass experiments are shown in Table 5. When a random forest model is applied to
this three-class classification problem, we achieve a balanced accuracy of 67%. The confusion matrix for

Table 4. Results from binary classification experiments

Method Balanced accuracy (%) Macro F1 (%) Macro precision (%) Macro recall (%)
NN 89% 80 76 89
RF threshold 87 88 90 87
Random forest 86 88 91 85
RF near-miss 84 84 84 84
Focal loss 81 84 89 81
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Figure 2. Confusion matrix for neural network binary classification. Values are listed as proportions.

this approach is shown in Figure 4. Feature importance analysis was repeated using the multiclass random
forest model. Results did not differ from those shown in Figure 3.

The severe class imbalance limits the practical application of multiclass classification with three
classes. Looking deeper into our ML models trained with more classes, we find predictive “confusion” is
correlated with the class imbalance. In other words, the less frequently an occupancy type appears in our
dataset, the more likely it is to be confused with other occupancy types. Industrial buildings, which are
outnumbered by residential buildings nearly 60-1, are confused for commercial buildings 33% of the time
and misclassified as residential buildings 23% of the time. Additional improvements in accuracy,
precision, and recall have been found through the addition of aerial and street view data (Hoffmann
et al., 2019). Yet, adding these additional datasets adds a reliance on proprietary APIs and commercial
image collections. In the next section, we explore Bayesian neural networks as a means of addressing
prediction uncertainty.

6. Bayesian neural networks for prediction uncertainty

The traditional approach to machine learning is to optimize a loss function to obtain an optimal setting of
the model parameters. Numerous iterations over the training data allow the model parameters to be fine-
tuned. The machine learning training process results in a set of optimal model parameters that are then
used in subsequent predictions.

A Bayesian approach, by contrast, does not seek fixed model parameters. In a Bayesian neural network
(Wilson and Izmailov, 2020) the network weights are distributions. Passing the same input through the
trained network will result in different predictions as different weights are chosen from the distributions on
each pass. Getting a distribution of predictions for each input is useful as the ensemble of predictions can
be used to quantify uncertainty in neural network weights—commonly referred to as epistemic uncer-
tainty—and the probability of being in each class leads to a determination of prediction uncertainty—
commonly referred to as aleatoric uncertainty.

https://doi.org/10.1017/eds.2025.2 Published online by Cambridge University Press
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Feature importances using permutation method
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Mean accuracy decrease
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Government Buildings
Commercial Buildings
Housing Density
Agricultural Buildings
Housing Units County
Industrial Buildings
Educational Buildings
Median Income
Latitude

Longitude

Nearest Road Type
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Percentage Impervious

Figure 3. Permutation feature importance. Features are shown in ascending order of importance. The
bars show the mean accuracy decrease after 10 repetitions with error bars displaying the standard
deviation of the 10 repetitions. Building types and income values are county aggregates obtained from the
US Census. Percent impervious is the percentage of area surrounding the unknown building comprised of
impervious materials.

Table 5. Results from multiclass classification experiments

Method Balanced accuracy (%) Macro F1 (%) Macro precision (%) Macro recall (%)
Random forest 67 72 78 67
One-vs-one 67 71 78 67
One-vs-rest 67 73 79 66
Focal loss 58 62 71 58
NN 37 87 85 89
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Figure 4. Confusion matrix for multiclass random forest.

Our Bayesian neural network is implemented using the TensorFlow Probability software library
(Dillon et al., 2017). The other layers in our neural networks are standard Dense layers from the Keras
library (Chollet and others, 2015). Aleatoric uncertainty is quantified using Shannon entropy, which is
common for classification problems (Hiillermeier and Waegeman, 202 1). Shannon entropy is defined as

H= —zn:Pi  In(p;)
=1

where 7 is the number of possible output categories (e.g., residential, commercial, and other) and p; is the
predicted likelihood of being in each of those categories. Entropy in information theory is analogous to
entropy in statistical thermodynamics. Larger values of H correspond to the probabilities being spread
more evenly across the possible classes. Thus, larger values of H correspond to the neural network being
more uncertain in its prediction.

We create a Bayesian neural network for the binary classification problem and a second Bayesian
neural network for the 3-class (residential, commercial, and other) problem. After training the networks,
each building in the test set was passed through the network 100 times. The mean of the 100 predictions
was computed and Shannon entropy was used to determine prediction uncertainty. This approach enables
a user-defined uncertainty threshold. Predictions with uncertainty above the threshold are ignored due to
the neural network having little confidence in the prediction. In this manner, the user is trading off number
of predictions for higher prediction accuracy. Low values of the uncertain threshold—implying the neural
network must have high confidence in the prediction—leads to fewer predictions being made; however,
those predictions are of higher accuracy.

Figure 5 compares confusion matrices for the multiclass Bayesian neural network. The left panel
shows the results when there is no uncertainty threshold, that is the neural network is forced to make a
prediction for every building. The right panel shows the results for an example uncertainty threshold of 0.4
We are making about 50% fewer predictions in the right panel; yet, the neural network is much more
confident—and correct—in those predictions.

7. Application and transferability

As a simple demonstration of how building occupancy type prediction can be used, we identified 219,054
buildings in the OSM North Carolina dataset not used in our train/test data that had unknown building
occupancy types. Further, we obtained the 100-year flood map from the FEMA National Flood Hazards
Layer. The phrase “100-year flood” is used to describe the extent of a flood that statistically has a 1-percent
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Figure 5. Confusion matrices from the multiclass Bayesian Neural Network. On the left, results when all
predictions are kept. On the right, results when prediction uncertainty is below 0.4.
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Figure 6. Predicted residential flooding for buildings with previously unknown occupancy type.

chance of occurring in any given year (Maidment, 2009). Here, it is used for illustrative purposes of a
disaster preparedness application. Flood maps indicated that 5838 buildings out of the 219,054 unknown
North Carolina buildings would be impacted by a 100-year flood. Our model predicted these to be 5452
residential, 349 commercial, and 37 “other.” The spatial distribution of the predicted residential and
commercial buildings is shown in Figures 6 and 7, respectively. This simple example highlights two
important points. First, despite open datasets such as OSM and US structures, there still exist hundreds of
thousands of buildings in North Carolina with unknown occupancy types. Public safety assessments and
economic forecasting of a natural disaster, such as a 100-year flood, are limited in their ability to fully
account for the entire state. A machine learning approach, such as the one described here, can quickly and
reliably predict those missing occupancy types.

We obtained US structures data from Alabama to evaluate the transferability of our models. As
mentioned previously, US structures has ground truth building occupancy types for nine states. Our goal
was to assess if an ML model trained in one state could be used in another state. Unfortunately, this was not
the case. The Alabama dataset contained 2.2 million buildings with known occupancy types. The
multiclass model trained on North Carolina data was only able to accurately classify 48% of Alabama
buildings by default. Accuracy increased using the Bayesian approach and uncertainty thresholds.
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Distribution of predicted commercial buildings

. 40
30 =
\ c
\‘ 3
3
\ 2
20
o
-
=X
3
[1)+]
10 @
! A,

Figure 7. Predicted commercial flooding for buildings with previously unknown occupancy type.

However, the improved accuracy is not significant enough to think that one neural network model could
be applicable across the continental United States as the distributions of the selected features vary too
much between states. Put another way, while the selected features are useful for predicting building
occupancy type, the weighting of each feature varies from state to state. Practitioners may need to train
multiple state-specific neural networks. Alternatively, it may be feasible to train regional neural network
models; yet, it is unclear to us at present how to optimally construct such training datasets. More research
is needed into multi-state neural networks and the specific impacts of geographic features (that is
imperviousness) and socio-economic features (that is median income and median area). We leave this
for subsequent research.

8. Conclusion

We have identified features, freely and publicly available at the continental scale, that are useful in
building occupancy type classification. These features can become part of a CONUS-scale building
classification workflow with accuracy values comparable to existing ML systems (e.g., (Hoffmann et al.,
2019)) and without the reliance on proprietary APIs and commercial image collections. Specifically, with
the current set of features, we achieve 87% accuracy with binary classification and 74% accuracy on the
three-class (residential/commercial/other) classification problems using Bayesian neural networks and
uncertainty thresholds. As a specific comparison, our technique correctly classifies 62% of commercial
buildings when predictions are made on all buildings and 74% of commercial buildings when predictions
are limited to most certain commercial buildings. This is compared to (Hoffmann et al., 2019)’s 64% for
commercial buildings. Additionally, we have added a Bayesian component that flags uncertain predic-
tions, which can be helpful in disaster response and economic forecasting applications.

We have also found that our ML models, trained on North Carolina buildings, do not transfer well to
another state. This suggests that CONUS efforts may require regional models or even state-specific
models. Our future research will compare the accuracy of regional models (ML models trained on data
from multiple states) to the accuracy of individual state models. We will also explore more building
features from open datasets that can improve prediction accuracy.
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