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Abstract

With the surge of data-driven solutions for trajectory analysis opera-

tions, the need for accurate trajectory trip data has spiked. However,

the available datasets are raw trajectories spanning from hours to

years, not representing actual trips for downstream applications.

Therefore, pre-processing steps, such as basic rules to extract trips,

are needed to use the datasets. However, this paper demonstrates

that the current pre-processing steps are not enough and result in

low accuracy, negatively affecting the downstream applications.

This paper presents an overview of an accurate and scalable algo-

rithm for splitting raw trajectories for trip extraction. We go beyond

the basic rules to introduce a realistic definition of a trip and offer

two scalable heuristics over the exhaustive brute force approach

of the algorithm with similar accuracy. Experimental results show

that the proposed algorithm is: (a) far more accurate than the basic

rules, (b) scalable when employing either of the heuristics.
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1 Introduction

The wide spread of internet of things, location detection technology,

and location-tracking devices have enabled the means to collect

real trajectory movement data where many are publicly available

(e.g., [4, 7, 13, 24, 27, 29, 38, 44]). There is even an industry that

sells such datasets (e.g., [28, 35, 36]). The availability of such data

has empowered a myriad of trajectory analysis needs (e.g., see [40,
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48] for surveys) that are deemed essential for various important

applications and domains, e.g., transportation [12, 26], location-

based services [1, 21, 23, 49], urban planning [32, 42], the health

domain [3, 33], and evaluating trajectory analysis techniques [16–

19, 45].

Despite their wide availability and usefulness for various applica-

tions, a large ratio of available trajectory data is not suitable to such

applications. In particular, many trajectory datasets (e.g., [29, 34])

are released in their raw form as a sequence of locations spanning

anywhere between hours and years. For example, the San Francisco

Municipal Transportation trajectory dataset [29] is composed of

1,237 vehicles trajectories, each spanning a whole year. Such tra-

jectories are not helpful to a wide spectrum of trajectory analysis

applications that need to have access to meaningful trips. Examples

of such applications would include anything that needs access to

an Origin-Destination (OD) matrix, estimated time of arrival (ETA),

routing, and trajectory similarity. However, the raw form of trajec-

tories is composed of a set of back-to-back trips and unnecessary

idle time. Hence, there is an immense need to extract meaningful

trips from any raw trajectory. In practice, a pre-processing step

needs to be applied before using the dataset. Commonly, this in-

cludes applying a set of basic rules to split each raw trajectory into

individual trips. Such rules are typically about spatial, temporal, and

speed constraints. For example, two consecutive GPS points have a

significant spatial or temporal gap (more than a certain threshold),

then they belong to two different trips. Such gaps represent the

case of when the location-detection device was either not sending

information or sending erroneous locations. Another rule is if a set

of consecutive GPS points are in the same location, the trip will be

ended at the first point in the set, duplicates will be removed, and

the end point will be the start of a new trip. Such rule represents a

significant idle time, e.g., parking.

This paper makes the case that these basic rules are not enough

and would degrade the accuracy of downstream operations, as we

define a meaningful trip to be a single destination trip without

intermediate stops. For example, in the Estimated Time of Arrival

(ETA) application, we can use the duration of a single destination

as is and it will be accurate. However, if we use the duration of a

multiple destination trip, because it was not detected by the basic

rules, then it will be inaccurate and will give the illusion of traffic

congestion between the start and end of the trip. This scenario can

be wrongly interpreted by any algorithm as a traffic congestion.

Unfortunately, multiple destination trips (e.g., back-to-back taxi

trips) are undetectable using the basic rules as they do not have

spatial or temporal gaps, or idle points, which negatively affects

any historical trajectory-dependent operation or application (e.g.,

data-driven routing [14, 47], travel time estimation [41, 46], and

edge weight inference [31, 43]). Such operations would only work

accurately if fed with single-destination trips.
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The rest of the paper is organized as follows: Section 2 highlights

related work. Section 3 introduces our objective function for tra-

jectory splitting. A brute force approach to achieve the objective

function is introduced in Section 4. Two scalable heuristics are pre-

sented in Section 5. Section 6 presents our experimental evaluation,

while Section 7 concludes the paper.

2 Related Work

The process of splitting a long raw trajectory into a set of sub

trajectories have been done for different purposes andwith different

titles, including trajectory segmentation [9] and trip extraction [37].

The body of work in this domain can be broadly categorized into

the three below categories:

Rule-based Trajectory Segmentation. Working with raw tra-

jectories, researchers have used some basic rules to segment each

trajectory into a set of more realistic trajectories based on either

finding outlier points [9], discovering idle states [10], or finding

speeds exceeding a certain threshold [5]. This has then become con-

ventional wisdom and a preprocessing step for any trajectory oper-

ation using raw trajectories. Follow up work has added more strict

rules that are applicable to flight and animal trajectories [11, 37].

However, such additional rules are not suitable for vehicle trajec-

tories, which is the focus of this paper. Applying such additional

rules to vehicles would result in over cutting, i.e., splitting the raw

trajectory into too many unnecessary splits. For example, while

a sharp u-turn would be allowed in a vehicle trajectory, it is not

for flight trajectories. Hence, applying such rule would result in

an unnecessary split (i.e., over cut) of the raw vehicle trajectories,

which will degrade the accuracy of downstream operations.

Modality-based Trajectory Segmentation. This category of

work aims to segment personal trajectories based on their modality,

e.g., walking, biking, bus, and vehicle. This is the most common

purpose of segmentation, as each type of trajectories can be pro-

cessed individually for a different purpose, e.g., walking trajecto-

ries can help in understanding customers’ behavior while vehicle

trajectories can help in traffic studies. There have been numer-

ous approaches for such segmentation and many of them have

employed various machine learning approaches to learn form his-

torical data [6, 20, 39]. Other approaches use rule-based measures

to separate each modality [30, 40]. None of these techniques are

applicable to the case of trip extraction from vehicle trajectories. In

fact, employing modality-based trajectory segmentation to separate

vehicle trajectories may result in long raw vehicle trajectories that

would still need to be split into individual single-destination trips.

Behavior-based Trajectory Segmentation. This is used for ex-

tracting human trips with different purposes or extracting the ac-

celeration patterns for the same trip. A majority of the solutions

utilize a rule-based approach to detect behavior changes and seg-

ment the trajectory accordingly. However, such segmentation is

specific to the type of the trajectory being segmented in order to

set the thresholds correctly [2]. For example, rules for human tra-

jectories are based on human behavior [15], and rules for vehicle

trajectories are based on driving behavior [22]. More recent general-

ized approaches use machine learning to learn and detect behavior

changes with no underlying knowledge of the trajectory type [8].

Behavior change segmentation, even for trajectory vehicles, are not

applicable to our case of trip extraction, as they tend to over cut,

e.g., a single-destination trip with different driving behaviors in

highway and residential area segments may be unnecessarily split.

3 Splitting Objective Function

This section sets our proposed objective function that any trajectory

splitting algorithm should strive to achieve to produce realistic

trajectory trips.

The Objective Function. Given a raw trajectory 𝑇 of 𝑁 points, 𝑃0
to 𝑃𝑁−1, split 𝑇 into a set of trips 𝑆 , where each trip in 𝑆 starts at

some trajectory point 𝑃𝑖 and ends at 𝑃 𝑗 , and satisfies two properties:
(1) Property 1: The actual travelled distance from 𝑃𝑖 to 𝑃 𝑗 in trajectory
𝑇 is within a deviation parameter 𝛼 ≥ 1 from their shortest path

road network distance, i.e., Distance(𝑃𝑖 ,𝑃 𝑗 ) ≤ 𝛼 × ShortestRoad(𝑃𝑖 ,𝑃 𝑗 ),
(2) Property 2. The end point 𝑃 𝑗 should satisfy Property 1 while point
𝑃 𝑗+1 should not. In effect, 𝑆 should be as long as possible.

The Deviation Parameter 𝛼 . Drivers may not necessarily travel

the shortest distance for various reasons. For example, drivers may

have a personal route preference, or follow a routing service that

suggested a longer, but faster, route. While this may be a common

scenario, it is reasonable to assume that any route taken is still

within a ratio from the shortest path. Hence, Property 1 in our ob-

jective function introduces the deviation parameter 𝛼 that controls

what is considered as a reasonable, hence accurate, trip.

4 Brute Force Splitting

A brute force approach to achieve our proposed objective function is

to simply go through each point in the raw trajectory and compute

the cumulative distance of the current path and the shortest path

distance from the starting point to the current point. To determine

whether the current point is a splitting point, 𝛼 is applied to the

shortest path distance and if the cumulative distance is still larger,

then the current point is a splitting point satisfying Property 1. Also,

Property 2 is satisfied, as all the raw trajectory points are scanned

one by one, so, the brute force approach would be able to find the

exact split point that will satisfy that property.

In terms of scalability, the brute force approach computes two

shortest path distances for every trajectory point. This is computa-

tionally expensive and not scalable. For example, calling the shortest

path function, twice per point, using OSRM API [25] takes 30 msec.

Applying this for the whole San Francisco dataset [29] that has

500M trajectory points, reduced to 250M points by the basic rules

that remove outliers and idle points, it would take 86 days to split

all trajectories, which is not scalable for a preprocessing step.

5 Heuristic Splitting

Due to the scalability challenges of the brute force approach, we

are introducing two heuristics, namely, Direction and Euclidean

heuristics, that aim to reduce the number of shortest path calls

while maintaining the accuracy of the objective function.

Direction Heuristic. The main idea of the Direction-based Heuris-

tic is to use the eight cardinal directions (north, northeast, east,

southeast, south, southwest, west, and northwest) as a means of

speculating if the given trajectory is moving back towards the start-

ing point of the current trip. The rationale is that if the direction

from the starting point is opposite to the current direction, then it
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(a) T-Drive Dataset (b) San Francisco Dataset

Figure 1: Point Accuracy Ratio (%)

is a strong indication that a deviation is happening and the current

point is a potential splitting point. In this case, the shortest path

calls are only performed when the two directions (direction form

starting point and current direction) are opposite. Calling a shortest

path here does not mean that this would be a splitting point. It

just means that this is a candidate to be a split point, which may

end up to be a true split point or not. The optimization here comes

from the fact that we call the shortest path function only for those

candidate points, rather than for all points as it was the case for the

brute force approach. Note that for this heuristic, the eight cardinal

directions can be replaced with any other direction convention.

Euclidean Heuristic. The Euclidean-based Heuristic uses the Eu-

clidean distance to speculate if the trajectory is moving back to its

starting point or not. If the Euclidean distance from the starting

point to the current point is smaller than the previous distance,

then there is a high chance that a deviation is occurring and the

current point is considered as a candidate split point. Same like the

case of the direction heuristic, the shortest path function is called

only for those candidate points rather than all points, which would

be a significant performance gain over the brute force approach.

6 Experiments

This section evaluates the performance of the proposed splitting

heuristics from two aspects: (1) The accuracy of the two heuristics

in terms of the ratio of points satisfying Property 1 of the objective

function, and (2) The scalability of the two heuristics in terms

of their ability to support much larger datasets that cannot be

supported by the brute force approach. All experiments in this

section run using two public datasets: (1) San Francisco dataset [29],

which include 500M time stamped GPS points for 1,237 transit

vehicles trajectories, each spanning the full year of 2021, sampled

every minute in San Francisco CA, USA. (2) T-Drive [34], which

include 15M time stamped GPS points for 10,357 taxi trajectories

spanning one week of February 2008, sampled every 5 minutes in

Beijing, China. All shortest path computations for all algorithms

are API calls to the Open Source Routing Machine (OSRM) [25]. All

experiments are performed on a Linux server with 8 CPU@3.5GHz,

64 GB Memory and 2TB HDD.

Heuristics Accuracy. This experiment studies the accuracy of

both the Direction and Euclidean heuristics. As we consider that

the brute force approach of the algorithm as the most accurate

approach, we are measuring the accuracy of the two heuristics as a

(a) T-Drive Dataset (b) San Francisco Dataset

Figure 2: Number of Shortest Path Calls

percentage from the brute force approach. If we look at the ratio

of points satisfying Property 1 of the objective function in Figure 1,

we find that both heuristics achieve over 95% accuracy for 𝛼 values

greater than 1.5, indicating that they are effective in adhering to

our trip definition. The Euclidean heuristic slightly outperforms

the Direction heuristic, especially in the T-Drive dataset, although

differences are minimal for the large San Francisco dataset due to

high sampling rates. Overall, both heuristics hold high accuracy,

with Euclidean generally offering better performance.

Heuristics Scalability. This experiment examines the scalability of

the Direction and Euclidean heuristics by comparing their efficiency

to the exhaustive brute force approach. If we consider the number of

shortest path calls for each heuristic in Figure 2, we find that in the

T-Drive dataset, the brute force method requires nearly 6 million

shortest path calls, unaffected by 𝛼 . Both heuristics need about one-

sixth of the calls compared to brute force, making them six times

more scalable. As 𝛼 increases, the number of calls slightly rises due

to longer trips and more split candidates. For the San Francisco

dataset, the brute force method requires nearly 250 million calls

while the heuristics only needed between 30 to 40 million calls,

making them six to eight times more scalable. Though the Euclidean

heuristic is more sensitive to 𝛼 than the Direction heuristic, overall,

both heuristics are highly scalable compared to the brute force

approach for all values of 𝛼 .

7 Conclusion

This paper makes the case of the need to go beyond just applying

a set of basic rules to split raw trajectories to actual trip trajecto-

ries. The paper then introduces a new definition of what would

be counted as a realistic trip, as well as introducing a clear objec-

tive function that needs to be achieved to enure realistic trajec-

tory splitting to actual trips. A brute force algorithm that strictly

adheres to the proposed objective function is introduced, yet, it

would need exhaustive computations, making it not scalable to large

datasets. Therefore, two heuristics are proposed, Direction-based

and Euclidean-based heuristics that aim to mimic the behavior of

the brute force approach, yet, in a much more scalable way, without

sacrificing the accuracy in terms of adhering to the main objective

function. Experimental results based on two real datasets show that

both heuristics are able to achieve more than 90% accuracy with

significantly much less computations.
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