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1 Introduction and summary

Motivation. There has been striking progress in making the idea of holography precise in the
study of three-dimensional gravity with negative cosmological constant. An initial connection
between two-dimensional conformal field theory and quantum gravity in asymptotically
anti-de Sitter space was first seen in the work of Brown and Henneaux [1]. The connection
was subsequently made more precise in string theory as an example of the AdS/CFT
correspondence [2].

One of the advantages of the special case of AdS3/CFTy is that it can be realized in string
theory with purely NS-NS flux, which admits a conventional worldsheet description. As long
as the string coupling is weak, we can use the power of worldsheet string theory to analyze the
physics of the bulk AdS solution. The amount k of quantized NS-NS 3-form flux threading
AdS3 characterizes such backgrounds. Large k corresponds to large macroscopic AdSs spaces.

Our motivation here is to go beyond AdS/CFT and understand the physics of spacetimes
that do not behave like a conventional box, which is largely the effect of considering physics



in AdS space. We would like to propose a precise holographic correspondence between a non-
gravitational field theory and string theory on a spacetime which is not asymptotically AdS.
In general this is hard to achieve even in AdS/CFT because one side of the correspondence
is typically either strongly-coupled or poorly understood.

Let us consider the specific example of type II string theory on AdSz x S% x T* with k
units of NS-NS flux threading both AdS3 and S®. This background is realized in string theory
as the near horizon limit of a collection of & NS5-branes and n; fundamental strings. The
string coupling in this background is fixed in terms of the volume Vs, k and the integer n;,
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For fixed k, weak string coupling corresponds to large n;. For this example of AdS3/CFTy
with NS-NS flux and weak string coupling, there is a tractable worldsheet formulation of the
bulk string theory; however, the dual spacetime CFT5 is still poorly understood for general
k. In part, this is because the theory on multiple NS5-branes is also poorly understood.
There is a long standing belief that this AdSs string background is dual to a CFT9 which
is connected to the symmetric product CFT, Sym® (T*) where N = knq, by a marginal
deformation; for a review see, for example, [3].

Evidence for this belief has accumulated from computations of protected observables in the
bulk string theory which do not depend sensitively on the point in moduli space, and therefore
can be matched to observables in the symmetric orbifold CFT [4-13]. For k # 1, however,
the actual spacetime CFTjy is not a symmetric orbifold CFT [14, 15]. Moreover, when k # 1
the bulk string spectrum contains a gapped continuum of states that should be reproduced
by the boundary CFTsy, but is not a part of the symmetric product of T* spectrum. For
recent progress and a more in-depth discussion of AdSj string theory with k # 1 see [14-23].

On the other hand, the case of k = 1 is very special [24, 25]. Restricting to k = 1
abelianizes the NS5-brane physics, removing all of the mysterious physics supported on
multiple NS-branes. This dramatically simplifies the spacetime CFT5. Based on the exact
match of the full non-protected spectrum, a precise holographic duality between a string-
sized AdS3 and the symmetric orbifold CFT, Sym® (T*) was proposed a few years ago by
Eberhardt, Gaberdiel and Gopakumar [25]:

Pure NS-NS strings on

AdSs x S3 x T4 D Sym® (T%). (1.2)
with k=1

This proposal predicts the holographic match of any observable, whether protected or not.
While the bulk theory — frequently dubbed the ‘tensionless string” — is still quite intricate,
the holographic dual is as nice as one could hope. There have subsequently been many checks
and tests of (1.2), which strongly support the proposed duality [26-42].

Beyond AdS. The duality (1.2) is our starting point. The other ingredient we need is
the rather magical 7T deformation of two-dimensional quantum field theory [43-46]. If the
initial undeformed theory is a CFT, this irrelevant deformation breaks conformal invariance.
However, if the initial theory is supersymmetric then the deformation can be formulated in a



way that preserves manifest (0,1), (1,1), (0,2) and (2, 2) supersymmetry [47-50]. The case
of (4,4) or (0,4) supersymmetry with a non-abelian R-symmetry is of direct interest to us for
these models. We also expect preservation of this larger supersymmetry based on the following
argument: there is a general belief that the global R-symmetry will be preserved because 17T
deformations at least preserve the energy degeneracies of the undeformed theory. This coupled
with viewing such models as special cases of theories with (2,2) or (0,2) supersymmetry
implies the preservation of the larger supersymmetry.

We are interested in what happens when one deforms the symmetric product CFT by a
TT deformation. There are two basic choices for such a deformation. The first possibility is
deforming the symmetric orbifold Sym® (T*) by the operator det(T) where T is the stress
tensor of the full theory. At leading order in the deformation parameter, this operator
takes the form

N N
(Zﬂ-) Y15, (1.3)

where Tj is the stress energy tensor of T4. This is the conventional double trace TT deformation.
The magic of this irrelevant deformation is that the energy spectrum FE,,(\) of the deformed
theory on a cylinder of radius R can be determined exactly as a function of the deformation
parameter A when the initial theory is a CF'T, which has no scale other than the radius R.
In this case, the flow equation for the energy spectrum can be solved in closed form,

1
En(N) = 5 (ﬁ +4ANE, + 4N2P2 — 1) . (1.4)

Here E, is the undeformed energy and P, is the quantized momentum on the spatial circle.
Each of these quantities is made dimensionless with an appropriate power of the radius
R along with the deformation parameter A\. The characteristic square-root form implies
a Hagedorn density of high energy states for the ‘good sign’ (A > 0) of the deformation
parameter. For the ‘bad sign’ (A < 0) most of the energies are complex and how to make
sense of the theory is unclear. We will restrict our discussion exclusively to the good sign

of the deformation.!

For the good sign and the double trace deformation (1.3), there is
no current well understood holographic or string theory interpretation like AdS/CFT; see,
however, [51-54] for interesting approaches to this question.

The other deformation that is special is the single trace combination of stress-tensors

which takes the following form at leading order in A,

N
<Z TT) . (1.5)
=1

The operator (1.5) also has conformal dimension (2,2) like (1.3). It simply 7T deforms each
block of the symmetric product with the same energy formula (1.4). While we do not expect
a single trace TT operator for AdS3/CFTs with k > 1, there is top down evidence from

'Furthermore, we only consider values of the coupling for which the square root in eq. (1.4) is real, namely
A< % for theories with ¢ = ¢c.



string theory for a holographic correspondence in which the spacetime CFT5 is deformed
by some operator with properties in common with single trace 7T [55-57]. The bulk string
theory background is no longer AdSs but is instead an asymptotically linear dilaton spacetime.
Backgrounds that interpolate between AdSs3 and a linear dilaton profile have been studied
in past work like [58, 59] and more recently in [60-66]. The initial evidence for such a
correspondence came from the study of long strings primarily in the M = 0 BTZ solution [55—
57, 67-70]. The string theory was constructed by deforming the pure NS-NS AdSs3 string
theory with £ > 1 by the exactly marginal worldsheet operator

TH(2) T (2), (1.6)

where J%(z), a € {+, —, 3} denote s[(2,R);, currents in the adjoint representation. Specifically,
it was shown in [56, 67, 68] that the long-string spectrum of the deformed background in
bosonic string theory on AdS3 x X reproduces the spectrum of a single-trace TT-deformed
symmetric orbifold on the boundary. See also [69, 71], where TsT deformations on the string
worldsheet were related to TT deformations of the spacetime theory.

From the spacetime perspective, there is a striking connection between the characteristic
square root energy formula (1.4) and the form of the supergravity solutions [71, 72]. The mass
of BTZ black holes also exhibits the same square root form while the asymptotic symmetry
group appears to know about a symmetric product structure with a particular choice of
boundary conditions [73]. All of this suggests a connection with something like a single
trace TT deformation. However unless one restricts to protected observables, the study of
the holographic dual to £ > 1 AdSs strings deformed by the current-current operator (1.6)
inherits all the challenges that AdS3/CFTs with £ > 1 already faces prior to any further
deformation. Let us summarize the issues:

e The gapped continuum of states characterizing the AdS3 spectrum for k # 1 should be
reproduced by the boundary theory. Therefore one cannot simply work with rational
boundary CFTs like the symmetric orbifold of T4.

e The exact CFTy dual to k # 1 AdSs strings lacks a first principle definition which
would allow the computation of observables like generic correlators or the partition
function.

o Even before considering any 7T deformation, the CF Ty exactly dual to AdSs strings
does not have the structure of a symmetric orbifold. If it is a deformation of the
symmetric product by a twist 2 operator, as proposed in [14, 15], then there would be
an interaction between the various copies of T*. As a consequence, even defining what
one might call the single trace deformation is non-trivial.

In order to avoid these difficulties, here we focus on the exact duality (1.2) and consider
deformations of the bulk theory by the current-current operator (1.6). In fact, inspired by the
k > 1 bosonic string computation of [55], we show that also at & = 1 the appropriate current-
current worldsheet deformation dual to the boundary field theory TT operator is given by (1.6).
We then compute the torus partition function of the spacetime holographic theory directly



from the worldsheet.? We observe that as an effect of the current-current deformation (1.6),
the localizing delta function — a hallmark of the tensionless string [26, 27, 29, 31, 40] — is
regularized and smoothened into an exponential. The localizing delta function of tensionless
string theory is recovered in the limit A — 0 by means of the distributional identity

lim 1 exp (_ﬂxﬁ) =6 (). (1.7)

A—0t A A

In section 4 we show that for any choice of (spacetime) spin structure, the string partition
function exactly reproduces the dual partition function of the single trace TT-deformed
symmetric orbifold of T#, which is given in eq. (3.36). Since this is a non-protected observable,
we are led to conjecture the exact holographic duality:

JtJt deformation of o] T et
pure NS-NS strings on — Single trace N 4de ormed
AdS3 x S3 x T4 with k = 1 Sym™ (T*)

(1.8)

As a byproduct of our analysis, taking the limit of vanishing deformation coupling A — 0,
we compute the string partition function of the tensionless string for the cusp geometry
background. The result confirms the conjecture of [28]. The string partition function we
derive exactly agrees with the one computed by Eberhardt for thermal AdS3 or for the conical
singularity geometries: the bulk partition function does not depend on the details of the bulk
geometry, but just on the geometry of the boundary and its spin structure.

In section 5, based on worldsheet computations and making contact with [74], we discuss a
non-perturbative completion of the T'T partition function formula. From the bulk perspective,
this non-perturbative completion includes states with negative winding. The latter have
energy that scales like \™! for small A and hence decouple from the tensionless string spectrum
in the limit A\ — 0. The TT deformation parameter \ acts as a regulator for negative winding
states, regularizing the infinite energy they have at A = 0.

Future directions. Before we delve into detailed computations, let us list a few future
directions suggested by our work and a few issues that deserve further investigation.

The BRST cohomology of the deformed string. The hybrid formalism has a topolog-
ically twisted N' = 4 symmetry algebra on the worldsheet. The supercharges have integer
conformal dimension and are used to define the cohomology of physical string states. How is
the BRST cohomology of physical states defined in presence of the J*J* deformation? A
potential strategy to answer this question might go along the following lines: J*J+ deforma-
tions of a CFT M can be recast as a null gauged coset of the rough form % [56].
After introducing additional ghosts for the gauged currents, it should be possible to deduce
the symmetry algebra of the deformed worldsheet theory from the symmetry algebra of
the numerator theory of the coset. The techniques developed in [75] will probably be an

important ingredient. Understanding the BRST cohomology should provide a way of probing

2In particular, we consider a specific AdSs bulk geometry with torus boundary: the so called ‘cusp geometry’.



what goes wrong in the worldsheet theory when A becomes large enough so that the square
root of (1.4) becomes complex.

Double trace TT and AdSs. In this paper we study the tensionless string theory dual to
only the single trace TT deformation (1.5) of the symmetric orbifold of T*. Can one derive the
string theory dual to the good sign double trace deformation of the symmetric product CFT?
Similarly, one can also consider combinations of single trace and double trace deformations,
even including ‘bad sign’ flows by the single trace deformation followed by a sufficiently large
‘good sign’ flow by the double trace deformation [76]. Another related direction is to explore
the root-TT proposal of [77] and its potential interpretations via coupling to gravity [78, 79]
or holography [80] using this worldsheet theory as a starting point.

Correlation functions of TT-deformed CFTs from the worldsheet. The world-
sheet should provide rules and checks on how to define good physical observables in
TT-deformed CFTs.

Organization. The paper is organized as follows: in section 2, we provide a brief introduction
to the hybrid formalism for the special case of k = 1. Section 3 explains how to compute the
partition function of the single trace TT-deformed symmetric orbifold theory. This section is
purely field theoretic, requiring no background in string theory. In section 4, after identifying
the worldsheet state dual to the single trace TT deformation, we use the hybrid formalism to
compute the partition function directly from worldsheet string theory. Finally, in section 5
we discuss the matching of string and field theory partition functions.

2 The basic setup

As a prelude to our subsequent discussion, let us briefly review some ingredients of the
tensionless worldsheet string theory. As mentioned in the introduction, we consider superstring
theory on AdSs x S? x T* with k& = 1 unit of NS-NS flux. This theory is best described in the
‘hybrid formalism’ developed by Berkovits, Vafa and Witten for this class of backgrounds [81].
This formalism has been reviewed several times in recent literature, see e.g. [75, 82, 83]. Here
we briefly sketch the field-content of the superstring in this formalism, which is essential for
the worldsheet calculations carried out in section 4. The worldsheet theory is described using

psu(1,1]2); @ (a topologically twisted T*) @ (ghosts) . (2.1)

The three factors in (2.1) (anti-)commute and form a topologically twisted N/ = 4 algebra
on the worldsheet whose cohomology describes the physical states. Let us discuss each
factor in (2.1).

The psu(1,1]|2); WZW model. This theory has central charge ¢ = —2 and admits a
free-field realization in terms of symplectic bosons and fermions, see [25, 29, 84]. In [40, 85]
an alternative free-field realization was proposed, which suits better our purpose and will
be our starting point. It consists of the following fields,

o a [v-system (8,7) with weights (1,0),



e two be-systems (p;, 0°) with i € {1,2} and weights (1,0),

in addition to their anti-holomorphic copies. The fields satisfy the OPEs

1 . 57
~ — . J ~
BEr) ~ ——— pE ) ~ (22)
and the associated action reads
1 = 20= Fai L = 950
5= / (597 + 5oy + pid0" + pidl' ) . (2.3)

Intuitively, v is a map from the worldsheet X to the conformal boundary X of AdSs, and
3 is a Lagrange multiplier which imposes the condition that v is holomorphic. Also, the 6
can be thought of as /' = 2 supercoordinates on the conformal boundary of AdSs [40]. For
completeness, we write down the free-field realization of the bosonic psu(1,1|2); currents,

Jt =8, J?* =By + (pit"), J™ =By + (pif')7, (2.4a)
KT =py0', K3 = —3(p10") + 3 (p26?), K~ =p6?, (2.4b)

while the fermionic currents take the form,

ST =pa, ST =p1, ST =—ypa, ST =(By+pit")0*, (2.4¢c)
St =p0", STTT=—p0", ST T=—yp, ST =—(By+pd)0'.  (2.4d)

We follow the conventions of [40] for the psu(1,1]|2); (anti-)commutation relations.

The topologically twisted T4. The T* theory appears in our space-time theory as the
seed theory Sym’ (T%), and also in the worldsheet theory, where it is topologically twisted.
In both cases, this sector is described by 4 free compact bosons and 4 free fermions, for
which we adopt the following notation:

« 4 bosons X7 and 0X7 with j € {1,2},

o 4 fermions ¢y’ with a € {+,—} and j € {1,2}.
Similarly for the anti-holomorphic sector. They satisfy the following OPEs
€*Pelt

i B (2P (w) ~ (2.5)

OX(2)0X7 (w) ~ Gowe po—

where et~ = ¢!2 = 1. In particular, the fermions realize su(2); @ su(2);. Let us denote by J
the Cartan generator of the su(2); where both 1™ and ™2 have charge +3,

T =g [erte? — w2, (2.

and similarly for the anti-holomorphic part. In our conventions, the topological twist amounts
to a shift of the worldsheet stress-tensor T' — T+ 0J, so that the fermions have integer
conformal dimensions after the twist. This in particular implies that the central term in
the stress-tensor OPE vanishes.



The ghosts. The ghost sector contains two bosons p and ¢ with non-zero background
charges. The scalar ¢ is the bosonization of the reparametrization be-ghost system in string
theory with central charge c¢(o) = —26. The scalar p, which has central charge c(p) = +28,
is less familiar and is a combination of the superconformal ghost and fermions. The ghosts
satisfy the following OPEs

o(z)o(w) ~—In(z—w), p)p(w)~—In(z—w). (2.7)

As expected in a critical string theory, the central charges of the three factors in (2.1) add
up to ¢ = 0.

3 The boundary field theory partition function

In this section, we compute the torus partition function of the symmetric orbifold of T*
after turning on the single trace 7T deformation. Our final result is equation (3.36). The
partition function can be directly determined from the constraint of modular invariance
and the known deformed partition function for the seed theory [86]. We will instead follow
the strategy of [67, 68] and generalize their results to the supersymmetric T4 theory by
including explicit dependence on the torus spin structure. We also discuss in detail how
to define the TT-deformed partition function in the presence of a background field for the
R-charge of the symmetric orbifold theory. We begin in section 3.1 by reviewing the partition
function of the seed T* theory before any deformation is switched on. As the second step,
in section 3.2 we discuss the TT-deformed seed theory and its associated partition function.
Finally, the torus partition function of the single trace TT-deformed symmetric orbifold
is computed in section 3.3.

3.1 The undeformed seed theory

As we discussed in the previous section, the seed CFT consists of four free fermions and four
free compact bosons. The partition function of the bosons reads

o(t)
()

where ¢ is the modular parameter of the spacetime torus and O(t) is the Narain Theta function

(3.1)

CIOENDY ¢7q7, q = exp(2mit). (3.2)
(p,p)€l4,4

The partition function of the fermions depends on the choice of spin structure and reads

~ 67% : [0 * eigu% (0] 4
R sector: 7|V (5,1)] R sector: 1901|510 ,
[n@ | [0 In@" [ |z 5.3
_ma2 . r 4 Cma2 0 rqn 4 '
— t2u2 l t2u2 l
NS sector: 9|2](4,¢)] , NSsector: —— |0 2| (%,¢t)] ,
[n(t)[* _0] ’ n* | 12]

where R and NS denote the R and NS sectors, respectively, with the insertion of the fermion
number operator (—1)¥. See appendix A for definitions of the various Theta functions.



The chemical potentials u and u are associated, respectively, to the R-symmetry currents,
see eq. (2.6). Notice the factor e B in egs. (3.3). While this factor is often omitted, it
naturally emerges in the path integral formalism. This fact is well-known in the literature;
see appendix C where we review its origin. As we briefly discuss in appendices B and C,
the inclusion of the factor e_%ug results in simpler modular properties and streamlines the
discussion in the following sections. Moreover, since 7T deformations can be defined in the
Lagrangian formalism, it is natural to adopt the path integral definition (3.3).

Assembling the bosonic and fermionic contributions, we obtain the following partition

functions:
2y © 00 19'0] wol . ey rem o]
R ()™ 0] 2] S o™ |3 o
T2 - 4 T2 -1 4 '
ERICIONINE 4 e 220, |1
erj(uﬂf):ei v 2] (2775) ) ZT (u’t)zi K, (H’t)
NS )10 2 e )% |13

Using the identity (A.9), we can trade the chemical potential u for real spin structure

parameters® ¢ and y and rewrite the partition functions (3.4) respectively as

T _ | @ LU
Zz (u,t) = Z N (t]0) , with 5 =Xt ®,
78 (u,t) = 2™ ¢ (1[0, with %=yt — (6 + b,
X 2
:<Z>: . (3.5)
T _ T4 . U gy,
Z(u,t) =27 N (t|0), with o = (x-Ht—0,
4 4 (] . U
Zhs(u,t) = 27 i (10),  with S =(x-}t—(6+}),
where, for arbitrary real numbers ¢ and y, we defined
4
1| P o(t X
2 [ (t]0) = ( )12 v ] (t) (3.6)
X n(t)] —¢

As we review in appendix C, x and ¢ can be interpreted as the real spin structure for complex
fermions on the torus. Coupling the free fermions to a background gauge field is equivalent
to allowing the fermions to have real holonomies around the cycles of the torus.

Notice that in each sector, the relation (3.5) of the chemical potential v with the real
spin structures x and ¢ is consistent with their behaviour under modular transformations, see
appendix B. In terms of the compact notation (3.6), one can study the modular properties of
the various partition functions. Let us introduce the following notation®

K4
X

a¢ + by
co + dx

7—<GZ>EPSL(2,Z), oz @E0 . (3.7)
C

Tet+d’

3Strictly speaking, the generalized values of ¢, x do not define a spin structure, but rather a Spin® structure.
Holographically, they correspond to turning on a nontrivial background gauge field in the bulk of AdSs.
“Note that this is a consistent action of PSL(2,Z) on the spin structure, see e.g. eq. (9.101e) in [87].



As we discuss in appendix B, the modular property of the partition functions in the R, NS,
R and NS sectors can be written in the compact form

7t [fj (y-l0) = 2™ [w - ﬂ (t[0). (3.8)

In fact, it is suggestive to rewrite eq. (3.8) as

7 [fy - ﬂ (v -1/0) = Z** M (t)0) (3.9)
X X

Geometrically, this equation tells us that under a change of basis (¢,1) — (at+b, ct +d) of the
lattice which defines the torus, the T* partition function should remain invariant. Under this
change of basis, the modular parameter transforms to t — (at + b)/(ct 4+ d), while the spin
structures transform via matrix multiplication as in (3.7). That is, (3.9) is the statement that
the spacetime partition function is independent of the basis chosen for the spacetime torus.

3.2 The deformed seed theory

In the previous section and in appendix C, we see that the fermionic contribution to the
undeformed T* partition function with a chemical potential for the R-symmetry current (2.6)
can be recast in terms of twisted fermions on the torus, obeying the boundary conditions

n* (01 +2m,02) = 77X F (01, 09) (01 + 27, 09) = €T (01,00),  (3.10a)
(o1, 09 + 21) = Tt (0, 09) i (01, 09 + 27) = T2 75 (01, 09),  (3.10b)
where we parameterized the torus coordinate using x = o1 + toz. Let us now consider TT

deforming the T theory. As we are going to see momentarily, the formulation in terms
of twisted fermions simplifies the discussion and makes modular properties manifest. Our

4

: (3.11)

starting point is the undeformed partition function (3.6),
7 O(t

" m (10) = Tt [gg"5a"] = — 0

X

X
2| M W

where g and § are twist operators that implement the boundary conditions (3.10b) and A

and h denote the Hamiltonian of the undeformed T* theory.
We define the deformed partition function as

VA [;’j (t]A) = Tr [ququﬁA} : (3.12)

where the energy and momenta on the cylinder read [43]

- 1 = ~
Hy+ Hy = o (—1 + 1+ AN+ B) + 4N (h — h)?) : (3.13a)

Hy—Hy=h—h. (3.13b)

Here ) is the dimensionless TT coupling. Notice that the deformed Hamiltonian depends
on x through the undeformed Hamiltonian h + h, see eq. (C.16). The deformed partition

,10,



function (3.12) can be rewritten in terms of the undeformed partition function (3.11) as [67,

68, 88, 89|
ty [ d*T |t — 72 4
AS ¢ ta) = =2 [ — L ZT
L(] () 20\ Ju 12 P 2ATy

using the integral representation
_ dry _ _
QW \/>/ 3/2 a/7'2 bro , Re[a] > 0, Re[b] > 0. (3‘15)

In eq. (3.14), H denotes the upper-half complex 7 plane. In view of the comparison with

¢
X

] (7]0), (3.14)

the worldsheet computation in section 4, it is useful to rewrite this formula in terms of
an integral over the string fundamental domain F. For an integrable function f(7) on the
upper half plane we have

L f(r) = ) (3.16)
/H 722 'yEPSZL@ Z)/ 2 n

Let us introduce a short-hand notation for the modular transformation of A [90],

A

_ 3.17
leT + d|? ( )

V'TA:

It is easy to show that
t—y-r? _htt—7f
Ay (TN
Then using egs. (3.9), (3.16) and (3.18), the partition function (3.14) can be rewritten as

s m (t])) = ti $ exp< M)ZT‘* [’y-ﬂ (70).  (3.19)

ey 7 27t A7

(3.18)

Let us study the modular behaviour of the deformed partition function (3.19) under a fixed
modular transformation w € PSL(2,Z). We have

z™ [w . ﬂ (w-tlw- A)
X

=2 exp [ TOWL =T w0,
"o 2 /fa p( 2[(%))-M]TQ>Z [W)X](IO)- (3.20)

’\/EPSL 2,7)

Relabeling the sum over v € PSL(2,Z) as a sum over 7/ = qw € PSL(2,Z), we see that
the deformed partition function obeys

2% 6P (e tlw o)) = 27 | 2] (). (3.21)
X X
As usual for TT-deformed theories, provided the TT coupling transforms as in (3.17), the

deformed partition function inherits the same modular properties as the undeformed partition
function: compare egs. (3.9) and (3.21).
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3.3 The symmetric orbifold of the deformed theory

We now turn our attention to the partition function of the symmetric orbifold of the 77T-
deformed theory. The final result is already known in the literature [67, 68, 86] for bosonic
CF'Ts, and we generalize it here to include non-trivial spin structure. In this section we have
in mind the deformed partition function of the symmetric orbifold of T*, but the derivation
will work for any single-trace TT-deformed CFT.

The symmetric orbifold Sym™ (T4) is constructed by tensoring N copies of the T4 CFT
and gauging the Sy symmetry which acts by permuting the various copies. It is convenient
to allow N to vary and introduce the ‘grand canonical’ partition function

3 m (0,t|\) =1+ i pNZ% m (tIN), (3.22)

N=1

where p = €?™7 is a fugacity conjugate to N and Z}rv4 is the single trace TT-deformed
partition function of Sym” (T*). The grand canonical partition function admits a much
simpler expansion than any individual partition function for fixed IV, and can be written
in the exponential form [9, 91, 92]
5 m ) — exp ( P50 [
X RIS >

X

deg(v)

(2’\)\)) . (3.23)

Here, the sum is over all connected covering spaces ¥’ of the torus ¥ which we place our
theory on, and v denotes the corresponding (holomorphic) covering map. For the case where
the seed theory is a CFT (which is not the case once we have applied a TT deformation), this
leads to the well-known DMVYV formula expressing symmetric orbifold partition functions
in terms of Hecke operators [9, 91, 92].

We can write the torus X as the quotient of the complex plane by the lattice Z @ Zt. The
connected covering spaces Y are in one-to-one correspondence with sublattices of Z @ Zt.
Every such sublattice can be written in the form

Span(at + b, ct + d) (3.24)

for integers a,b,c,d. That is, the covering space Y’ is a torus whose sides are the vectors
at + b and ct + d in the complex plane. Two such sublattices are equivalent if they are related
by a change of basis, i.e. by a PSL(2,7Z) matrix. The degree deg(y) of the covering map
is the determinant of the integer matrix

(i Z) . (3.25)

In order to compare the TT-deformed partition function with the undeformed CFT partition
function, we want to express it as a function of the modular parameter 7 = (at + b)/(ct + d).
This is achieved by scaling the coordinates of the covering torus in such a way that the
B-cycle has periodicity 1, i.e. performing the scaling

z z

_c 5y 2 3.26
T dxd C T d+d (3.26)
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In a CFT, the partition function would be invariant under this scaling, and so the covering
space partition function would just be the seed theory partition function with modulus
(at +b)/(ct + d). However, the TT-deformed theory is not conformal, and so the situation
is slightly more complicated. Specifically, reinstating appropriate powers of the radius R,
one sees that the dimensionless deformation parameter A scales like

A

)\ R
ATV

(3.27)
under the coordinate transformation (3.26). See also [74]. In fact, the scaling dimension
of A does not receive quantum corrections as we deform the theory, which is reflected in
the preserved modular properties of TT-deformed partition functions [90, 93]. Thus, the
covering space partition function is given by

ap + by
cp + dy

']I4

ct+d

(at+b

A ) | (3.28)

et + d|?

The modified spin structures are easily read off by noting that the fermions pick up the
monodromies

(2 4 at + b) = T2t pE () |
) (3.29)
n

(Z +ct + d) _ €$2m’(c¢>+dx)ni(z)’
on the covering surface.
As mentioned above, the set of covering spaces can be written as a sum over all such

a,b,c,d up to a change of basis. A change of basis acts as the left-multiplication of a
PSL(2,Z) matrix on the integer matrix (3.25). Every integer matrix of the form (3.25)

ab a v
(9 o

with 7/ € PSL(2,Z) and a’d = ad — bc and V' € {0,...,d — 1} [94]. Tt follows that the
set of matrices

admits a unique decomposition

ab
=0,....,d—1 31
<0d>, a,d>0, b=0,....d—1, (3.31)

are in one-to-one correspondence with the covering spaces appearing in the exponential
of (3.23).> Thus, we have

A

d?>) . (3.32)

We can now use the expression (3.19) to write the grand canonical partition function in terms

ap + by
dx

(at—l—b
d

¢ d—1 pad T4
3 L{] (0,t|\) = exp ( Z Z EZ

a,d>0 b=0

of the (undeformed) seed theory partition function, namely

5In (3.31) the further restriction a, d > 0 with respect to (3.30) avoids counting twice the same covering space.

,13,



1
083 |Jiman =y ¥ g
X a,b,c,deZ
ad—bc>0
d?r mlat+b—(ct+d)T|*\ 4| agp+bx
— Z 0). 3.33
2/\ F 3 ( AT cory) 0 353

Making again use of the decomposition (3.30), one can see that the sum over the set of all
integer matrices with positive determinant in the right-hand-side of (3.33) is a combination
of the sum over a, b,d in (3.32) and the sum over PSL(2,Z) matrices in (3.19).5 We also note
that the factor of w = ad in the denominator of the argument of the exponential in (3.32)
is canceled against the transformation

vota i

AN wolH (3.34)

in the prefactor of the integral kernel in (3.19). Here we have defined the action of v on
A as in (3.17), namely

A

m . (3-35)

Vor A=

In the following, it will prove useful to rewrite eq. (3.33) in the more compact form
¢ mly -t =T\ | ¢
log3 |?|(t, o)) e (2T ) 2T P (710) 3.36
g l A) Z 24)\ €xp 20y + 72 v X( 0) ( )

where we have defined by M, the set of integer matrices of the form (3.25) with ad — bc = w.

4 The string theory partition function

In section 2 we briefly described the worldsheet sigma model of string theory on AdSz x S3 x T4
with k = 1 unit of NS-NS flux. In this section, we compute its partition function on a locally
AdS3 geometry with torus boundary: the so called ‘cusp’ geometry. We demonstrate how to
recover from the worldsheet the single-trace TT deformation described in the preceding pages.

As reviewed in section 2, in the hybrid formalism the worldsheet CFT consists of a
PSU(1, 1|2) WZW model, a topologically twisted sigma model on T4, as well as the usual (b, c)
conformal ghost system and a scalar p with central charge ¢(p) = 28, which is unique to the
hybrid formalism. The one-loop worldsheet partition function thus factorizes into three parts:

Z(t’ T) = Zpsu (t, T)ZT4 (T)Zghosts (T) , (4.1)

where t is the modulus of the boundary torus. Since the T? sigma model is topologically
twisted, its fermions live in the Ramond sector, and so

O(r)
In(r)[12

5The additional factor of 1/2 in the right-hand-side comes again from the fact that the sum over a,b,c,d

7™ () = 195(0, 7)[* . (4.2)

overcounts equivalent covering spaces, i.e. (a,b,c,d) and (—a, —b, —c, —d) label the same covering space.
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The partition function of the ghost sector is slightly more subtle, but was worked out in [25].
The result is that the b, ¢ system effectively removes two bosonic oscillators, while the p ghost
removes two pairs of topologically twisted fermions. That is

Zghosts(T) = |77(T)|8 |192(0’7_)|_4 . (4.3)

Thus, the string partition function is simply

Z(t,7) = Zpsu(l, ) (4.4)
and so the only nontrivial part of the worldsheet calculation is the computation of the
PSU(1,1]|2) WZW model partition function.

In the next subsections, after reviewing the calculation of the path integral of the
PSU(1, 1]2) sigma model on spaces whose conformal boundaries are tori of modulus ¢, we
will show that the current-current deformation (1.6) of the PSU(1, 1|2) sigma model provides
a string partition function which exactly reproduces the TT partition function derived in
section 3, see eq. (3.36). Since these deformations do not act on the ghost or T4 sigma models,
they are purely deformations of the PSU(1, 1|2) theory, and so the string path integral will
still factorize even upon adding the deformation:

Z(t,7|X) = Zpsu(t, 7|A) (4.5)

4.1 Identifying the worldsheet deformation

Before calculating the worldsheet partition function, let us briefly argue for the form of the
marginal deformation operator on the worldsheet. In [55] it was shown that the worldsheet
operator dual to the single trace TT deformation of symmetric orbifold theories takes the
form (1.6). The computation was carried out in the near boundary limit of bosonic AdSs3
string theory with level k¥ > 1. In this section, we show that this result also persists in the
exact k = 1 superstring theory. This section uses the machinery of the hybrid formalism and
thus is somewhat technical. Given that only the result is important in the context of the rest
of the paper, this discussion can be skipped without loss of readability of the other sections.

In the spacetime theory, the deformation is by the integrated single-trace TT operator

/dzx (1TT21010- ) +(10TTe10 )+ (1018TT@ - )+ . (4.6)

From the point of view of the orbifold structure of the symmetric orbifold, this is the operator
in the w = 1 twisted sector of the symmetric orbifold which is derived from the TT operator
of the seed theory.

In the bulk, the single-trace TT operator should be dual to an operator in the w = 1
spectrally-flowed sector of the worldsheet theory. We can construct this operator using the
DDF operators of [37, 40]. The worldsheet dual of the w = 1 ground state in the symmetric
orbifold is the combination [29, 40]

10Y9=1 s (2etioHiH glg21025(2) (y _ o) (4.7)
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where OH is the Cartan of the SU(2) R-symmetry in the T% sigma model on the worldsheet.
By the state-operator correspondence, the operator TT is equivalent to the state £_oL_ 5 |0)
in the seed theory, so that

|®) = L_oL_o]0)"=! (4.8)

is the state associated to the single-trace TT operator.” On the worldsheet, the operator (4.8)
has been identified in [33, 37] and restricting to the holomorphic sector it reads

1 o
L_2]0) = §e2p+w+zHezf1—zf2+3¢+2m (62(if1 —ifa + 20 + 4ik) 0o
+20(if1 — ifo + 26 + 4ik)O(é + im)) ,

where normal ordering is assumed and we bosonized the free fields introduced in section 2
according to

B = et (i), v =e 0T (4.10a)
ol = il | p1=e W1, (4.10b)
02 = e 2 py = el (4.10c)

Given a physical vertex operator ®(z,z) on the worldsheet, one can construct an exactly
marginal deformation of the form

/d22/d2x é:lgilq)(m,z), (4.11)

where G~ is one of the worldsheet N = 4 generators needed to define the physical state
conditions of the hybrid formalism, see e.g. appendix D of [40].% For our purposes, it suffices
to know that

é— _ e—?p—ia—in1p26,y 4= 6—2p—ia—iHe—if1+if28(e—¢—m) e (4'12>

where the dots denote terms that after acting on the state in (4.7) result in contributions
vanishing inside any correlation function, see e.g. [40]. Acting with GZ; on the state (4.9)
and using that

5(y) =€?, (4.13)

we find
G~,0(0, 2) ~ —Dp(ir)e24 i 4 %8(2’ Fo — if2)Air) 20t (4.14)
= B5(1) + 3 50(difi — if2)e?) (415

At first one may think that the operator (4.8) is dual to the double trace deformation instead of the single
trace deformation of the boundary CFT. However, it was observed in [95] and confirmed in [33, 37] that in
the untwisted sector the worldsheet state (4.8) selects the stress tensor of the seed theory, instead of the stress
tensor of the full symmetric orbifold. See the discussion around eq. (2.12) in [95] and their footnote 3. See
also [96].

8The worldsheet supercurrent G~ has worldsheet conformal dimension A(é‘) = 2, so that the state
in (4.11) has conformal dimension (1,1).
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where 0 denotes the derivative with respect to the worldsheet insertion z and ~ means
equality up to total derivatives in z. Translating at a generic x we obtain

G~ ®(x,2) =G~ | $(0,2)e " = 5(5(7—33)—}—%630 (O(ifi—if2)d(y—x)) . (4.16)
Finally, reinstating the anti-holomorphic dependence and integrating over z and x we find

/d2z/d2xé:15:1®(a:,z) = /dQZ/deBB(S(Q)(’y—:I:) = /dzzﬁﬁ, (4.17)
which is exactly the deformation (1.6).

4.2 Quotients of AdS3

We are interested in computing worldsheet partition functions in the £ = 1 theory on locally-
AdS3 manifolds whose boundary is a torus. Let us denote by H? the Euclidean version of
global AdSs, also known as hyperbolic space. All locally-AdS3; manifolds can be written as
H3/T", where T is some discrete subgroup of SL(2,C). Demanding that H?/I" has a torus
boundary, there are three possible choices of I' [28, 97]:

a) I' =2 Z. We can choose the generator of I' to be of the form

627ri15 0
(0 ) (a.15)

where Im(t) > 0. The resulting bulk manifold H? /T is Euclidean thermal AdSs.

b) I' 2 Z x Zp;. This group has two generators, namely

627rit/M 0 e2mi/M 0
( 0 6—27rit/M ) 0 e—27ri/M ' (419)

The resulting bulk manifold H3/T is not smooth for M # 0, but is instead thermal
AdS3 with a conical singularity running through the non-contractible cycle. We recover
case a) by setting M = 1.

¢) ' 2 Z ®Z. In this case, the generators are non-diagonal and can be brought into the

11 1t
L) () a0

The bulk manifold H?/T" is smooth except for a cusp singularity running along the

form

non-contractible cycle, and is thus sometimes called the ‘cusp’ geometry.

In all three cases, the boundary of H?/T is a torus of modular parameter ¢, and so string
theory on all three backgrounds should be dual to a CFT living on that torus. A strong version
of the background independence of string theory would imply that the worldsheet theories
described by the cases a), b), and c) should be equivalent at the quantum level. Indeed, the
equivalence of cases a) and b) was shown explicitly in the case of the & = 1 worldsheet theory
in [28]. There, the author showed that the partition functions of the worldsheet theory on
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geometries a) and b) are equal. As a byproduct of the analysis carried out in the following
pages, we are going to show that also the partition function of the tensionless string cusp
geometry (i.e. case ¢)) equals the one computed in [28] for the geometries a) and b).

For the purposes of computing worldsheet partition functions, we can model our worldsheet
theory on the above geometries by considering the orbifold of the PSU(1, 1|2) model under
the group I'. Since we know how SL(2,R) generators act on all of the free fields, this can
be achieved by evaluating the worldsheet path integrals with twisted boundary conditions
under the action of T'.

a a) In case a), the orbifold is generated by e2mitJ; Thus, we identify & ~ 2Tt & for all

fields ® in our theory. Explicitly, we have the identifications

Ay~ 627rit,7/7 B ~ 6_2ﬂit5,

—mit,

) Lo 4.21
0~ e pi e 2

2mitJ3 /M

. g3 o
b a) In this case, the generators are e and e2™/o/M  These generators give rise to

the set of identifications

it /M 0/ M —2mit/M —2mi/M
,yNeth/ ,yNeZm/ v, B~e 2mit/ B~e 2mi/ B,

4.22
0 ~ eTtMgi o mi/M g pi ~ e My o Ti/M (422)

c a) Finally, in this case the generators are e’s and et’o , yielding the identifications®

Y~y +1l~y+t. (4.23)

Of these quotients, probably the most familiar is ¢), which corresponds to the usual procedure
of defining a torus as the quotient C/(Z @ tZ) of the complex plane, while the other two are
related to ¢) by concatenation with the exponential map v — exp(2miy/w).

In the following we will compute the PSU(1, 1]2) partition function on the cusp geometry
and show that the deformation

Sy = So+ A/J+j+, (4.24)
reproduces the single trace TT deformation of the boundary CFT.

4.3 The cusp geometry partition function

Let us consider the geometry described in case c). The calculation is similar to that of [67, 68],

with the additional subtlety of treating the worldsheet fermions and the associated spin

structure. 10

9We will discuss the action of the generators on p; and #° below.

10We consider here all four spacetime spin structures R, NS, R and ﬁé, together with the inclusion of the
chemical potential u for the worldsheet current Kg. This results in a spin-C structure labeled by the theta
characteristics ¢, x € R. Usually, in AdSs string theory computations the only spacetime spin structures
one considers are the NS and the NS sectors, which have a trivial contraction when extended to the bulk of
AdSs. This restriction seems however not necessary for the tensionless string, which localizes on the boundary
of AdS3
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As mentioned above, the cusp geometry is obtained from the PSU(1,1|2) model by
the identification

Y~y +1l~y 4t (4.25)

To calculate the worldsheet partition function in this background, we follow the general
strategy of [28], which is to treat the worldsheet theory as an orbifold of the theory on
global AdSs. To this end, we introduce two generators U,) of the Z & Z orbifold which
are defined to act on v as

Uiy —y+t, Viy—=vy+1, (4.26)

and similarly for the complex conjugate 4. Note that the Lagrange multipliers /3,5 are
invariant under the orbifold group.

Since the spacetime CFT we are interested in also has nontrivial spin structures, we need to
appropriately orbifold the worldsheet fermions as well, since these correspond holographically
to the spacetime supersymmetry generators [40]. We specifically define the action of the
orbifold generators U,V on the worldsheet fermions as

u P — eQm‘(Z)pi’ 97, N e—27ri¢9i’

, : o 4.27
V- i — eszXpi, 0t — 6—27”)(01’ ( )

where (¢, ) is the spin structure chosen on the boundary torus in the spacetime CFT.!!
Finally, the ghosts o, p and the worldsheet T* are unaffected by the orbifold.

As in any orbifold, the worldsheet torus partition function will be found by summing
over all twisted boundary conditions. That is, if ® collectively denotes the worldsheet
fundamental fields, the path integral in the orbifold theory separates into sectors with twisted
boundary conditions

D(z4+7)=UVD(2), D(z+1)=UVID(2). (4.28)

The total worldsheet partition function is given as a sum over all such sectors, so we
schematically write!?

sl =5 ([ ]) a2

a,b,c,d
uey?

where the box denotes the path integral with the twisted boundary conditions (4.28).
The worldsheet theory we are interested in is a marginal current-current deformation of the

action (2.3). As we already discussed, for the cusp geometry the appropriate current-current

deformation is J*JT. Since JT = 3 in the free field realization, we consider the action

Sy = % / (89 + 307 + pid0" + 508 — ABP) . (4.30)

"'We emphasize that in the hybrid formalism, all worldsheet fields have integer spin, and so calculations are
independent of the worldsheet spin structure. Nevertheless, as the fundamental fields are spacetime spinors,
their periodicities are dependent on the spacetime spin structure, see [98].

12We are going to discuss momentarily the precise set of integers a, b, ¢, d over which the sum in eq. (4.29) runs.
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As the theory is free, we can integrate out /3, 3 using their classical equations of motion, and
describe the resulting theory using the effective action

1 ) 1 B0t 1 = 900
A/ayaw%/(piaa + pi06°). (4.31)

S)\[/yvpv 9] = ?

In order to compute the worldsheet partition function on the cusp geometry, we need to
compute the path integral

/D(%W)/D(pi,@i,ﬁi,éi)e‘S*. (4.32)

Since the v,7 action is Gaussian, we can evaluate it explicitly by summing over saddles
and multiplying by a one-loop determinant.

In the (a,b,c,d) sector, the saddles in the path integral will be those satisfying the
twisted boundary conditions

Y(z +7) =7(2) +at +b, Y(z+1) =v(z) +ct+d,
pi(z 4 7) = XM () 0'(z + 1) = e 2T () (4.33)
pi(Z + 1) _ e27ri(c¢+dx)pi(z)’ Qi(z + 1) _ 6_2”i(0¢+dX)0i(z),

Since the path integral in a given sector factorizes, we can first compute the bosonic () path
integral and multiply the result with the fermionic (p;,#°) path integral.

The v path integral is computed as a sum over classical saddles multiplied by a one-loop
determinant. The classical equation of motion is 99y = 0, which on the worldsheet torus
has solutions of the form

v(z,2) = Az+ Cz 4+, (4.34)

where g is a constant.!® Demanding v to obey the twisted boundary conditions (4.33),
we find the constants A, C to be

at +b) — (ct +d)7 at +b) — (ct +d)r

Lt

o o=

4.
24T 2iTo (4.35)
Thus, the classical action is given by
-1 7wt +b) — (ct + d)7|?
V=_—[d = 4.
X 271')\/ 2070y 20Ty ’ (4.36)

where we have used the fact that the area of the worldsheet torus is 4727. The path integral
over 7 is thus given by the saddle-point approximation

ty 1 p<_7r|(at—|—b)—(ct+d)7-\2>.

- 4.
ANy ()| ox 2)\T9 (4.37)

13Note that the compact unbranched connected covering maps of T? are again T2. By lifting to C, it can be
shown that the (anti-)holomorphic covering maps are affine linear functions.
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The prefactor /475 in the one-loop determinant can be deduced by comparison with the

standard result for the compact boson.'*

For the fermions, the path integral is simply written in terms of Theta functions as

1
n(7)

4

4
(T)| : (4.38)

cod+ dx
—a¢p — by

Putting the fermion and boson partition functions together, along with the simple contribution
from the T and ghosts (see equation (4.5)), we obtain the result

- 2
th p<_7r|(at+b) (ct + d)7]| )ZT4

ap + bx
cp + dx

ayb = 0). 4.39
Uy I ex T (o). (439)

ucvd

The full worldsheet path integral is then found by summing over all integers a,b, ¢, d and
integrating 7 over the fundamental domain. This gives the final result for the string partition
function

Z |jj (t‘)\) = Z ta &e){p (_W‘(at+b)—(ct+d)7’2> ZT4

BN 2
abod AN JF 75 2T

ap+by
co+dy

(r|0).  (4.40)

In particular, the contribution of the w = ad — be = 1 sector amounts to

_ty dQ—TeXp <_7T’t—7‘|2> T l;ﬂ (7]0) . (4.41)

1_5 H7'22 2)\7’2

ZV
X

The grand-canonical deformed partition function. Now, we would like to compare this

GRY

w=

to the boundary field theory results for the deformed symmetric orbifold partition function
derived in section 3. In order to do this, we need to consider the grand-canonical partition
ensemble [28, 100] and introduce a chemical potential in the worldsheet theory which is
weighted by the determinant ad — bc of the integer matrix in question. The most natural
way to do this is to introduce a constant B-field

Bge = ——dy A d¥ (4.42)
2,

to the worldsheet background. Since Bg. is a closed two-form on the target space, its three-
form flux Hg. vanishes identically, and so the addition of this B-field does not change the
target space equations of motion for a consistent string background. As one can directly
check using eq. (4.34), the effect on the worldsheet theory is that the action picks up a term

1 )
by /Bgc = —2mio deg(y), (4.43)

""Comparison with the partition function of two free bosons gives t2/(2A72). An additional factor of %
comes from the identification of sectors labeled by (a, b, ¢,d) with sectors labeled by (—a, —b, —c, —d). See
also [74, 99] for a discussion on this point. Strictly speaking, the extra factor of % should not sit in front of
the whole partition sum, since the contribution of the identity is uniquely identified by (a, b, c,d) = (0,0,0,0).
In order to lighten the notation, we will not make this distinction explicit in the following.
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where deg(7) is the degree of the map ~. In the (a,b, ¢, d) winding sector, we have deg(y) =
ad —be. Thus, the effect of including the ‘topological’ term (4.43) to the action is to introduce
a factor of p?@—°¢ to the worldsheet partition function in the (a, b, ¢, d) winding sector, where

p = €2 That is, the string partition function reads
ty [ d? t4b) — (ct +d)r|? b
Z pad—bci 727— exp T |(at + ) (ct + )T’ Z’]I‘4 a¢ + bx (7]0). (4.44)
abed AN JF 15 2Ty cod + dx

Higher-genus contributions. In the preceding pages, we computed only the one-loop
partition function of the worldsheet theory. While this provides the tree-level spectrum of
the string theory in the 33-deformed background, it is in principle possible that there are
higher-order corrections (in gs) to the spectrum which must be taken into account. While
such corrections indeed exist for string backgrounds with generic tension, a remarkable feature
of the k = 1 theory on AdSz x S? x T* theory is that the worldsheet spectrum on thermal
AdS3 or the cusp geometry is one-loop exact. Let us briefly explain how this works, and
argue that the one-loop exactness remains even after turning on the S3-deformation.

The free energy of the k& = 1 string on AdSz x S® x T* is defined in analogy to an N = 4
topological string [101]. Specifically, there exists a twisted N' = 4 algebra on the worldsheet
which is used to define the BRST cohomology as well as the definition of the string free
energy. More concretely, the genus g free energy is given (for g > 2) by [29, 81]

=, <E|<G—,ua>\2igrjré—,ua|2 (Ler)™ [ |J\2>, (4.45)

see [40] for definitions of the individual generators. Now, the fermions p;, 6 enter this
correlator only through the definition of G~, which is proportional to pips, see eq. (4.12).
Thus, the number of, say, p1 zero modes minus the number of 8! zero modes is

#p1— #0" =29 —2. (4.46)

However, since p1, ' have conformal weights A(p;) = 1 and A(#!) = 0, the Riemann-Roch
theorem tells us that the free-energy (4.45) vanishes unless

#p1—#0 =g —1. (4.47)

Thus, the free energy vanishes unless 2g —2 = g — 1, i.e. g = 1.1 Furthermore, this argument
holds upon including the 33 deformation in the worldsheet action, since this deformation
does not modify the zero-mode counting of the fermions.

The tensionless string and the A — 0 limit. Finally, let us briefly explain how the
results of [25, 28] are recovered in the limit in which we turn off the deformation. The
distributional identity

o1 mlz]? )
)\11)1(1)1_‘_ 3, XP (— 3 ) =0 (x), (4.48)

15This argument is special to the case of AdSsz backgrounds whose boundaries are topologically tori. For
backgrounds with curved boundaries, the definition of the fermions p;, #* must be modified [98].
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which holds for complex numbers z, tells us that the integration kernel in the string partition
function (4.44) obeys

, to 7|(at + b) — (ct + d)7|? ta (o)
1 — = — — . 4.4
Jim, rpv: exp ( s ors 3 ((at +b) — (ct + d)1) (4.49)

That is, the worldsheet moduli space integral localizes onto worldsheets satisfying 7 = (at +
b)/(ct 4+ d) for some a,b,c,d € Z. Demanding t2, 7 > 0 (i.e. both moduli lie in the upper
half-plane), the delta function only has support for ad —bc > 0. These values of the worldsheet
moduli are precisely those for which there exists a holomorphic covering map - from the
worldsheet to the boundary. This localization is a hallmark of the tensionless worldsheet
theory before deformation [26, 27, 29, 31, 40]. The effect of the worldsheet current-current
deformation is, then, to ‘smooth out’ the localization of the moduli space path integral.

The sphere partition function. Finally, it remains to consider the genus zero contribution
to the string partition function, the so called sphere partition function. In particular, we are
interested in the sphere partition function for the string theory introduced in (1.8), obtained
by deforming the tensionless AdS3 x S* x T* cusp geometry by the worldsheet marginal
operator JT.JT. Due to the residual conformal symmetry group PSL(2, C) of the unpunctured
sphere, the sphere partition function is notoriously difficult to define, let alone calculate.'®

Let us first discuss the sphere partition function for the AdSs quotients listed in section 4.2
in absence of any deformation. While for £ = 1 we are not aware of a first principle derivation
of the sphere partition function, the latter can be computed in classical gravity when k
is large. In fact, in the limit of small o/, one expects that the sphere partition function
reproduces the leading contribution to Einstein-Hilbert gravity:

eZsphere — o~ lon-shell , (4.5())

where I, shen is the Einstein-Hilbert action evaluated on the semiclassical background in
question.'” Since AdS has constant negative curvature, one can use the Brown-Henneaux
formula [1] and the fact that R = —6/ Lids3 on-shell to write

2 ) ¢ Vol(AdSs) (4.51)

1
Ipshel = ———— [ d° R —
on-shell 167rG/ o ( * 67 Ligs

L2AdS
where c is the central charge of the dual CFT. In the case of string theory on AdSs, the
central charge appearing in the Brown-Henneaux formula actually depends on the number of
times the worldsheet wraps the boundary of AdS3 [16, 104], in our case ad — bc. The ‘central
charge’ is then equal to ¢ = co(ad — be), with cg = 6 being the central charge of the T* seed
CFT. This leads to the expectation that the sphere partition function should take the form

ad — bc Vol(AdS3)
T Lias

Zsphere = - (452)

16See however [102] for the computation of the disk partition function for the open string and [103] for the
worldsheet computation of the sphere partition function for pure NS-NS string theory on global AdSs.

17Strictly speaking the computation should not be carried out in pure AdSs gravity, but for the full
supergravity background including B field and dilaton. However, we expect this not to affect the final result.
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in the (a, b, ¢, d) winding sector, see [28, 105]. Of course, the volume of AdSj is formally infinite,
and so one must use the regularized volume (or the regularized EH action), defined through
holographic renormalization. The result depends on the choice of the specific locally AdSs
background. As we review in appendix D following [105], for the cusp geometry the regularized
Einstein-Hilbert action is found to vanish.!® On the other hand, for thermal AdSs one finds

Fovmere — g~ lonsnet — U5 _ |7 (4.53)

which agrees with the expectation that the dual CFT ground-state energy is —‘f—%.

As already mentioned, the argument above is based on the idea that string theory
should reproduce semiclassical gravity for small /. While we do not know a first principle
computation of the sphere partition function for the very ‘stringy’ k = 1 setup, one can
proceed as in [28] and assume that the semi-classical result can be trusted all the way to k = 1.
We are then led to conjecture that also at £ = 1 the cusp geometry sphere partition function
vanishes. Notice that this assumption explains why for A = 0 the one loop contribution
to the cusp geometry string partition function alone — with no need to add any further
contribution — could reproduce the full string theory partition function of thermal AdSs
and confirm the claim of [28, 32] that at £ = 1 the string partition function does not depend
on the specific choice of bulk geometry.

Let us then discuss the sphere partition function for the string theory introduced in (1.8)
and extend the discussion above to non-vanishing values of A. While the computation of the
sphere partition function at large k and A # 0 by holographic renormalization techniques is
beyond the scope of this paper, it is reasonable to expect that the deformed sphere partition
can be simply obtained by TT deforming the A = 0 result by the square root formula (1.4).
This suggests that also at A # 0 the cusp geometry sphere partition function vanishes. In
the following, we will assume that this is indeed the case, at least for £k = 1. We are going
to show in section 5 that this assumption leads to an exact match with the boundary field
theory partition function.

4.4 Different instanton sectors

Let us now be more precise about the set of integers a, b, ¢, d over which the sum in eq. (4.44)
should run. Notice that modular transformations both on the worldsheet and in spacetime

18There is an important caveat to this statement: the individual components of the Riemann and Ricci
tensors diverge at the cusp singularity (r = c0). Our computation uses the two derivative gravity action in
a regulated cusp geometry with large and small radial cutoffs. Using this regulated action, we see that the
contribution from the cusp singularity vanishes. Ideally, the partition function should be computed using
worldsheet string theory. However, beyond very special examples the calculation of the sphere partition function
in string theory is currently not understood. On the other hand, there are reasons to suspect our computation
might be unchanged. Because the geometry is Einstein and three-dimensional, the Riemann tensor can be
expressed as a product of two metric tensors. Any higher derivative diffeomorphism invariant constructed
from Riemann then turns out to be decaying at the cusp singularity. This suggests that the vanishing seen at
two derivatives might persist when higher derivative terms are taken into account in pure gravity.
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only relate terms with the same determinant'?

w = det (a b) =ad — bc. (4.54)
cd
Choosing the values of w entering the sum in eq. (4.44) amounts to picking a specific definition
of the path integral and to choosing which instanton sectors contribute to the bulk gravity
theory. Any collection {w;} C Z of integer windings would in principle produce a modular
invariant partition function. However, while we do not have a good understanding of the
worldsheet fusion rules of the JTJ* deformed worldsheet theory, we do know that closure
of the fusion rules for the A = 0 undeformed tensionless string requires to include in the
spectrum all the positive integer values of w € N [25]. As a consequence, we believe that at
least all the positive integer windings w € N should be included also in the J*.JT deformed
string theory partition function. Let us thus consider in particular the following possibilities:

1. Restrict the path integral sum over only positive integer values of the winding w € N;
2. Let the path integral sum run over all integer values of the winding w € Z.

In the first case the string partition function reads
¢ d’r i =72\ m[ ¢
Zsirin (t,o|A) exp |[—-———— | Z . 7]0), 4.55
string |)< | z:: zj\; 2 2(7 " )\)7_2 Y X ( | ) ( )
while the second option gives

np |@ wly -t —7]? i @
Zstring l ] t 0|>‘ Z Z 2 exp <_2(’7t)\)7'2> ZT |:Y . X](Tm) . (456)

WEZ  ~eM,

Let us remind the reader that for the A = 0 tensionless string, there is no distinction between
the two options above: as discussed around eq. (4.48), the exponential in eq. (4.40) localizes
to the Dirac delta

0*((at +b) = (ct +d)7) , (4.57)
so that for to > 0 and 75 > 0 negative values of w decouple and do not contribute.?’

The negative winding sectors. It is intriguing to investigate the physics of the partition
function (4.56) and to understand the nature of the states being counted. In particular, which
states are being counted by the negative winding sectors in (4.56)? To explain this, let us

consider the contribution of the w = —1 sector, which can be rewritten in the form
Tr —— | Z 0). 4.58
997907 | = 2)\ 2 eXp< N7y o 10) (4.58)

9The determinant (4.54) is identified with the asymptotic winding of the string. In the following, we will
thus frequently refer to the determinant (4.54) as ‘winding’.
20Als0 contributions from vanishing w = ad — be decouple, see [28].
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Performing the integral over 7, one identifies the seed Hamiltonian

. 1 ~ -
”HA+HA:2/\<1+\/1+4)\(h+h)+4)\2(h—h)2) ,

(4.59)
Hy — 7:[)\ =—h+ h.

Comparing with eq. (3.13) and noticing the opposite sign in front of the 1 inside the bracket,
we can rewrite it in terms of the usual 77T deformed energy Hy as

_ 1 N
Hy+Hy =~ + Hy+ Hy,
A Y A A (4.60)

H)\—'?:[)\:—H)\-FFI)\.

We thus understand that states identified by negative values of the determinant w are heavy
for small A and decouple from the spectrum in the A — 0 limit. It also becomes clear that
the deformed energy (4.60) is non-perturbative in A\. A similar computation can be easily
carried out for generic negative integer values of winding.

Let us then discuss the physics associated to the negative winding sectors. As we already
mentioned, the determinant w corresponds to the asymptotic winding of the string [28]. Its sign
tells us whether the string is winding clockwise or anticlockwise around the boundary of AdSs;
opposite orientations of the string correspond to opposite charges under the background
B field. For the undeformed A = 0 tensionless string, the only representations entering
the spectrum have SL(2,R) spin j = % and correspond to worldsheets covering the AdSg
asymptotic boundary with positive winding. These positive winding strings are located at
the boundary because of a flat potential: the B field exactly balances the tension of the
string. On the other hand, since strings of opposite winding have the same tension but
opposite charge under the B field, for negative winding strings the potential is no longer
flat and they do no longer localize at the boundary of AdSs. The states generated by their
excitations are heavy and in fact as we discussed around eqgs. (4.49) and (4.57) they decouple
from the spectrum when A = 0. The effect of the deformation by the marginal operator
JtJ* is to regularize the infinite energy of negative winding strings and results in the A~!
factor in eq. (4.60). Indeed, a similar picture for the role of negative winding states has
been discussed for k£ > 1 bosonic strings in [56, 106].

5 Comparison of string and boundary field theory partition functions

In this section we compare the boundary field theory TT deformed partition function derived
in section 3 to the string partition function computed in section 4. Inspired by the analysis
on the worldsheet, in section 5.2 we propose a non-perturbative completion of the symmetric
orbifold TT deformed partition function and compare it with various results previously
appeared in the literature.

5.1 Twisted sectors and positive winding

In section 4 we derived the grand canonical string partition function (4.55) by including in
the spectrum only positive integer values of the winding. It is easy to check that eq. (4.55)

— 26 —



exactly matches the boundary field theory TT deformed partition function computed in
section 3, see eq. (3.36),

¢

Zstring |fﬂ (t,0'|)\) = 10g3 [
X X

] (t,o|A). (5.1)
This precise match strongly supports the proposal (1.8) formulated in the Introduction and
provides a precise check of various claims which appeared in the literature in recent years.

5.2 Non-perturbative completion of TT and integer winding

As we already discussed at the end of section 4, it is intriguing to also consider the possibility
to define the string theory path integral by including all integer windings w € Z. In this case,
the string partition function is given by eq. (4.56), which rewritten in the form (4.44) reads

np ¢ _ ad—bc to
Zstring |)(] (t70|)‘) - Z p E

a,b,c,d€Z

d?r 7| (at+b)— (ct+d) 7[>\ pa [ad+by
x eXp<_ INT Z co+dx (™)

(5.2)

F T
where we remind that p = exp(2mio). From the boundary field theory perspective, eq. (5.2)
is a non-perturbative completion of eq. (3.36), which we derived in section 3. We hence find
it natural to introduce in the boundary field theory a new non-perturbative completion of
the TT kernel formula (3.36), defined as

log 3" lﬂ(t,UIA)Z > ot

a,b,c,d€Z 4\ (5 3)
2 B 9 .
></ d—;exp _ m|(at+b)—(ct+d)7| 7T ap+bx (7).
F T3 2A7y co+dy
While the matching of bulk and boundary partition functions
n ¢ n ¢
Z ring Lc (t,o|A) = log 3" \ (t.olN) (5.4)

is of course built in by definition, we are going to show that for a specific value of the
chemical potential o, namely

a:crnpz—pl—i—i%, pLER, (5.5)
the non-perturbative definition (5.3) is not new and in fact reduces to the TT non-perturbative
completion introduced and discussed in [74]. Before discussing this, in order to introduce the
necessary ingredients, it is beneficial to have a closer look at the w = 1 sector. Precisely as
in the case of the undeformed tensionless string of [25], the w = 1 sector of the bulk theory
exactly matches the untwisted sector of the dual symmetric orbifold.
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The untwisted sector and w = 1 winding. We already reviewed in section 3 that given
a 2D CFT with partition function Z(7]0) the partition function of the TT deformed field
theory takes the form [67, 88, 89]

1 dr
20 = 5 [ S Kuma(m. 03 Z(r10)
2

to d?r wly -t — 72 (5.6)
= = —exp| -5, Z(7)0),
2 epsLiaz ' F T2 2(y+ AT
where we introduced the kernel
t t—T|?
Kuw=1(7,t|X) = XQ Z exp (—Zh 3 7 > . (5.7)
~EPSL(2,2) (V¢ A) 7

It was noticed in [99] that the kernel (5.7) has exactly the form of the w = 1 sector of the
partition sum of two free bosons

XU X272 - 77, (5.8)
from a worldsheet torus to a spacetime torus with spacetime metric G, and B field Bg,
chosen as

1 (1t {0
G = -— — B = B = 2)\ . 5.9
ab oI\ (tl tt) s ab €ab ? (_5%\ 0) ( )

Indeed, for generic values of the metric and B field, the action for the free bosons (5.8) reads
1 _
S=o / 422 (Gp + Buy)0X“OX" (5.10)
T

and the associated partition function is given by

ICC:Q (p) tu T)

5.11

()t (5-11)
where
K:CZQ(/),ZL/,T) — (pz_zp)
x 3 exp (m (lat +b = (ct +d)r|* = plat + b — (ct + d)ﬂQ)) .
o 21ot9
a,b,c,deZ
(5.12)

The complex structure ¢ and the complexified Kahler structure p entering eq. (5.12) can be
written in terms of the spacetime metric and B field as®!

t:gwﬂ-\/??, p=B+iVdetG, p=B-iVdetG,  (5.13)
11 11

2'While we will always assume a real metric and therefore # is the complex conjugate of ¢, in the discussion

below it proves useful to also let the B field take complex values. As a consequence, generically p is not the
complex conjugate of p, but it is instead defined as in (5.13).
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and the free bosons obey the twisted boundary conditions

X'+ =X 2)+b, X%(z+47)=X%(2)+a, (5.14)
X'z4+1)=XY2)+d, X% z+1)=X%2) +ec. (5.15)

Indeed, it is not difficult to check that restricting to the w = ad — bc = 1 sector, and making
use of egs. (5.9) and (5.13), eq. (5.12) reduces to the kernel (5.7) [99].

Specializing to bosonic 2D CFTs with central charge ¢ = 24, in [99] eq. (5.6) was
interpreted from a string worldsheet perspective. The authors suggested that any 7T bosonic
deformed field theory with ¢ = 24 is dual to a non-critical string theory. The worldsheet CFT
defining the latter is given by the w = 1 sector of two compact free bosons with spacetime
metric and B field as in (5.9), together with the undeformed ¢ = 24 CFT itself and the usual
¢ = —26 bc ghosts of bosonic string theory. Indeed, the Dedekind eta function factors entering
the free boson partition function (5.11) cancel against the contribution of the bc ghosts and
the string partition function of such bosonic string theory reproduces eq. (5.6).

While in this manuscript we only consider superstrings and 7T-deformed supersymmetric
CF'Ts with central charge ¢ = 6, let us explain how a mechanism similar to the one advocated
in [99] indeed emerges from the worldsheet of the J*.JT deformed tensionless string, when
considering the winding one sector w = ad — bc = 1. In fact, writing

XX X 4ix?
’}/ - \/5 I ’Y - \/5 )
the action (4.36) takes exactly the form (5.10) with spacetime metric and B field as in (5.9).
Isolating the w = 1 contribution of the string partition function we computed in section 4, see

(5.16)

eq. (4.41), we exactly recover the untwisted sector of the boundary field theory, see eq. (3.14).
This precisely mimics the tensionless string duality of [25]: the w = 1 sector of the string
exactly matches the untwisted sector of the dual symmetric orbifold.

Comparison with the TT non-perturbative completion of [74]. Various non-
perturbative completions of partition function for 7T deformed theories have been discussed
in the literature [46, 74, 107]. Let us briefly review the one we will be mainly interested
in, explored by Benjamin, Collier, Kruthoff, Verlinde and Zhang in [74]. There the authors
propose a natural extension of the DMVV formula for 7T deformed symmetric product
CFTs, by defining the free energy

1 d?r
F(Pnpat) = 5 /}_ ?K:c:2(pnpat77—)zseed(7_‘0)7 (5'17>
2
where p,, reads
. . to
Pnp = p1 + 25 , p1 € R. (5.18)

Contact with the usual DMVV formula [9, 91] can be made by noticing that the kernel (5.12)
entering equation (5.17) can be expressed as a sum over terms with torus wrapping N [108],

]CCZQ(path) = Z TNIC-i-l + ICO + Z TN’C—l 3 (519)
N>0 N>0
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where?2

00 n2
,Co(p,t,T) = p2+2p Z Z e (232 , (5.20)
n=1~,7€T«\PSL(2,Z)
(L gy |2— —L |tFry-T |2
Karlptir) =20 3 of (Tl ) (5.21)

~€EPSL(2,Z)

and Ty denotes the Hecke operator acting on a weight-0 modular form ¢(p,t) as

. 1 at +b
ad=N,d>0
bmodd>

The partition sum (5.12) satisfies a number of remarkable properties, including invariance
under modular transformations of ¢, invariance under modular transformations of p and a
triality symmetry under permutations of 7,¢ and p [109]. The free energy (5.17) inherits
many of the nice properties of the partition sum (5.12): it is invariant under modular
transformations of p, under modular transformations of ¢, under the exchange of ¢ and p
and various additional properties for which we refer to [74]. The property most relevant for
us, is the invariance under the map A — ﬁ. Thanks to this symmetry, positive values of A
that would render imaginary the square root in eq. (1.3), can be interpreted as the mirror
image of positive values of A for which the square root remains real.

Let us now specialize the non-perturbative completion (5.17) by choosing as seed theory
the T* CFT. By including dependence on the spin structure, we obtain

10} to A7
F[ (pnpvt):a > — 7"
X a,b,c,deZ F T

ap+bx

cotdy (710)

(5.23)
i 2 _ —12

X exp T(pnp]at—i—b—(ct—i—d)ﬂ —pnp\at+b—(ct+d)7\) .
Toty

Some simple algebra shows that for a specific choice of the chemical potential o, namely

to
PR

o (5.24)

O=0np=—p1+1

the TT non-perturbative completion that we proposed in (5.3) reduces to the one studied
in [74], ie.

log 3P M (t,ouplA) = F m (Pup, t) - (5.25)
X X

Let us also briefly comment on what is special about choosing the chemical potential o as in
eq. (5.24). The effect of the B field introduced around eq. (4.43) to define the grand-canonical
partition function, is to replace the two free bosons action (4.36) with

_ 1 = a3
S;\Y’Y — % /dZZ (GabaXaaXb + 6ab(B - U)aXaaXb) ’ (526)

#2Gince this will not play a role in our analysis, we refer the reader to [108] and [74] for the precise definition
of Ko and an analysis of its features.
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where .
_ it
Co2)
is given by eq. (5.9). We thus see in which sense the value (5.24) of the grand-canonical

(5.27)

chemical potential o is special: it is the only value for which the total B field entering the
two free bosons action (5.26) is real.
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A Theta functions

In this appendix, we list our conventions for the Theta functions. We define Theta func-

tions as??

9 m (u,7) = Y exp(mi(n +a+ 5> +2min+a+ Hw+p+1), (A1)
nez

for any «, 8 € R and Im(7) > 0. When —1 < yx,¢ < 0 we also have [87]

9 l;ﬁ (0,7)=9 Z} (1) :e2m(¢+%)(><+%)q%(><+%)2
0o (A.2)
H <1+62ﬂ2(¢+ )qn—i-x) (1+€72ﬂi(¢+%)qn—1—x) ]
For o, € {0, —%}, the Theta functions (A.1) have special names,
0 . miu - n TIU M —2miu , n—
0 M (u,7) = V1 (u,7) = ie™q5 [[(1—¢")(1 =™ g") (1 — e 2™ "), (A3)
n=1
Y [ 01] (u,7) = Jo(u,7) = €” é H 1—q")(1+ ezmuq”)(l + 672muqn71), (A.4)
T2 n=1

1
20ur conventions are related to those in [87] by Ynere [g] = Dthere [gi %] .
2
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") (14 @mgE) (14 e migh) (A.5)

3
_

|
K

‘| (uv T) = §3(u77-) =

i
I

<
| ——
[
N NN

i3
|
=)

n) (1 . 62m'uqn7%) (1 . 6727riuqnf%) . (Aﬁ)

53
L —|
o |

1 (u,7) = 94(u, 1) =

S
Il
—

For o, 8 € {0,—1}, we can summarize egs. (A.3)-(A.6) as

! L’il (w,7) = i) s b gd (4]

00 (A.7)
X H(l — qn) (1 + 627ri(oc+%+u)qn+5) (1 + e—27ri(a+%+u)qn_1_g> .
n=1
Defining x and ¢ as
u:(X_B)T—(Qb—Oz), (A.S)
and comparing egs. (A.2) and (A.7), it is easy to check that
2 IB 2 u%
‘79 X] 0,7) = ‘19 [ ] (u,T) e (A.9)
—¢ —
or equivalently
8 ’ 2
‘19 [ ] (U7T) — |7.9 X¢] (0’7') 627F(X_ﬁ)27—2 X (A]_O)
—« _

B Modular properties

In this appendix, we collect various modular properties that we have used throughout the
text. We begin with the modular transformation of the torus modular parameter ¢, and

the real spin structures,

_at+b lqs )

X

. = <a’ b) € PSL(2,Z), (B.1)
X cd

|-

where in the second equation (v - ) means matrix multiplication on the column vector.
Let us now discuss the modular behavior of the partition functions defined in egs. (3.4).

Using the identity (A.9), it is straightforward to rewrite them as in eqs. (3.5). Therefore, it

is sufficient to consider the partition function defined in eq. (3.6), which we rewrite here,

4
S | @ _ e 9 X] B.
L( (t]0) 2| | <o (t) (B.2)
The Theta functions obey the identity [87]
1 S b+ ’
9] X . = || TOTX B.
a0 l—¢] O = | o+ Y B3
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Using this, one can show that

VA [7 : ﬂ (v-t0) = 2™ [;’j (t|0), ~ € PSL(2,Z). (B.4)

a2
In passing let us mention the modular property of the exponential ¢ 2“2 in egs. (3.4),

2 2 s 2 - =2
U U TICU TICU
. Ty 2 _ (B.5)

tn i +2(ct+d) 2(ct+d)

Using this, it is easy to derive the familiar modular transforglation of partition functions
defined without the insertion of the exponential factor e *2“2, for example,

micu?

e 2(ct+d)

2
ZE (u,t), v €PSL(2,2), (B.6)

T4 —
Zg (yuy-t) =

where u denotes the chemical potential.
Finally, we consider the chemical potential defined in eq. (A.8). By a direct calculation
and using the transformation in eq. (B.1), one can show that

u

B.7
ct+d’ (B.7)

Yrou—

which is the usual modular transformation of the chemical potential.

C Free fermion partition functions

In this appendix we review the path integral derivation of the partition function for complex
free fermions. We comment on modular properties and compare the result with the operator
formalism.

Consider a complex free fermion

1
)
Tl — X2

YT (@)Y (22) ~ () =y, (C.1)

together with its anti-holomorphic analogue ¢, ¢~. Let us label points on the torus by
x =01+ toy, T =01+ tog, (C.2)
where 01,09 € [0,27) parametrize the two cycles, and assume periodic boundary conditions

YE (o1 + 21, 09) = Y E (01, 09), VE (01 + 27, 02) = P (01, 09), (C.3)

F (01,02 + 27) = F(01,02) , (01,09 4 27) = (01,02).
The discussion for the other spin structures is completely analogous. In the operator formalism
the partition function of these free fermions reads

1 2

[n(t)[*

As we saw in appendix B the partition function (C.4) is not modular invariant. On the

A (qLo—ﬁ e2miuo glo—3 e—2m'ajo) — (C.4)

0

9 H (u, 1)

other hand, since in the path integral a modular transformation amounts to a change of
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coordinates followed by a Weyl transformation, we expect a modular invariant result. Let
us see how this comes about. The free fermion action reads

Sieo = — [ o [y 0p0™ +3%0.07] (C5)
Introducing a constant background gauge field, it can be promoted to
Sy = % / Qo 9+ (05 — Ap)p™ + 9T (0 + A)7] - (C.6)
We are interested in computing the associated path integral
AR / DYDY DT D2 (C.7)

The background gauge fields Az and A, entering eq. (C.6) are related to the chemical
potentials v and u as

U U
Az = ——, Ay =——. .
27‘2 27‘2 (C 8)

As we are going to see momentarily, it is with this choice of normalization that the linear terms
in v and u in (C.4) and (C.7) agree. In the following it proves useful to introduce the notation

u=xt—ao, (C.9)

and the real function

Bu](z) = 2;@ _2) = —o1x — 026, (C.10)

in terms of which the background gauge fields read
Az =109, Ay = —i0,P. (C.11)

One can then rewrite the action (C.6) as

1
Sp=- / a2 [t O™ + 77 07| (C.12)
where

gt = eyt it = et (C.13)
Notice that while the fermions ¥* and ¥+ are periodic, n* and 7= obey the twisted boundary

conditions
0 (01427, 09) = eT X (01, 09), (01427, 09) = e TN (01, 09) (C.14a)
N (01,02421) =TT (01, 0), 7 (01,0042m) =T (01,02) . (C.14D)

The partition function for twisted fermions has been computed in [110], see also [87] for
a review. It reads

Zy"t = / Dyt Dy Dt D e = Tr (g9 ¢ =
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where h is the holomorphic Hamiltonian

> 1 2 1
h = Lo—— S (mAx) bl by +§(x—%) -5 (C.16)
m=1

Similarly for the anti-holomorphic sector. In (C.15), g and g are twist operators implementing
the boundary condition (C.14b). The boundary condition (C.14a) instead determines a

quantization of the free fermion modes b,,4, and Al in units of m + x € Z + x. In fact,

m—+x
1

the zero point energy (yx — )% in (C.16) arises as a normal ordering constant of the twisted

free fermions, see [87]. Finally, using the identity (A.9), one obtains
e_%rug

0
nor | M (1)

We see that the result of the path integral computation differs from eq. (C.4) for a factor

27r2

e 7 2. It is easy to check that thanks to this factor the partition function (C.17) is modular

2

= / Dyt Dy D Dite ™ = (C.17)

invariant, see appendix B.
Alternatively to eq. (C.6), one can couple the background gauge field as

= % /de 6502 + Aa)0™ + 0+ (0, + A2)d7 ] (C.18)
Also in this case the action can be brought into the form
_ 1 /d%: [ 00 + 7 0| (C.19)
- i 'z ;
by defining the twisted fermions as
gt = Tyt it = iyt (C.20)

This time the ‘rotation’ (C.20) is anomalous and the path-integral measure is not invariant:

an axial anomaly arises,

L 2
DY DY DYDY = Dyt Dy DT DR exp (7_7T|u]2) . (C.21)
2

into account the anomaly one finds

27,2

The computation of the path integral partition function then proceeds as above and taking
e uy

0
9 u,
(o) M (1)

The path integral this time differs from the operator formalism partition function (C.4) by a

2

L — / Dyt Dy~ Dt Dite ™t = (C.22)

27,2
factor e “1. Also in this case, the path integral partition function (C.22) is modular invariant.

To sum up, the path integral for a complex free fermion coupled to a constant background
gauge field differs from the partition function computed in the operator formalism by a factor

_ 27 27 2
e : or e "1, depending on the definition of the path integral one adopts.
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/

Figure 1. The fundamental domain of the cusp geometry. The conformal boundary at r =0 is a
torus formed by identifying v ~ v+ 1 ~ v 4 ¢t. There is a ‘cusp’ of zero volume at r = oco.

D The sphere partition function

In this appendix following [105] we review the computation of the on-shell Einstein-Hilbert
action of the cusp geometry and thermal AdSs geometries.

The cusp geometry. For the cusp geometry, the regularized Einstein-Hilbert action is found
to vanish. This can be seen as follows. The cusp geometry is defined by the coordinate system

2 _ dr2+d'ydﬁ

ds 5 ,

D.1
. (D.1)
in units with Laqs = 1. Here, v takes values in T? and r € (0,00). The ‘cusp’ is located
at r — oo, while the boundary is located at r — 0, see figure 1.

In order to calculate the EH action on the cusp geometry, we introduce two cutoffs, one
at r = € near the boundary and one at r = A near the cusp. The regularized EH action is

1
167G

1 1
3 2)4+—— 2 K 7/ 2 D.2
/Md x\/g(R+ )+87rG aMd V. +87TG 8Md zVh, (D.2)

I(e,A)=—

where M is the cusp geometry cut off at € < r < A, the boundary M is the two tori at r = ¢
and r = A, and the last term is a counterterm added to cancel the infinite-volume divergence.
The extrinsic curvature can be calculated, and the result is

K=-2, at r=c¢,

(D.3)
K=2, at r=A.
Thus, the regularized Einstein Hilbert action can be computed and we find
I(e,A) = — ! / \f(R+2)+i VK + — [ V&
Y 16nG g 871G Jom 81G Jom D4
1 /Adr/ dzd (-4 1 d:Udy+ 1 dz dy (D-4)
TG ) e Y TS T 8rG e 2 T BaG e A2

which vanishes identically upon performing the r integral in the bulk term.
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) K \ (7:7)

vl =1 ] = |l

Figure 2. The fundamental domain of thermal AdSs, defined by the quotient (r,~,%) ~ (|z|r, zv, Z7)

with z = 2™,

Thermal AdS3. For the case of thermal AdSs, we can compute the on-shell Einstein-Hilbert

action as follows. We again use the metric (using units with Lagg, = 1)

dr? 4 dy dy
)

ds? = (D.5)

with the identification (r,7,%) ~ (|z|r,xy,Z%). A convenient fundamental domain for
thermal AdSs is the set of points such that

o] <r?+]? <1, (D.6)
see figure 2. With this in mind, it is convenient to choose coordinates
r=1/lsing, vy=~Lcosgpe?, F=lcospe (D.7)

such that the fundamental domain corresponds to |z| < ¢ < 1. As the divergence in the
volume arises as ¢ — 0, we can regulate by cutting off ¢ > . The regularized EH action is

I(e) = — d3R2—/d2K—d2h. D.8
() e /M z/g(R+2) + aVh t o vVh (D.8)
The extrinsic curvature of the boundary is given by
1 2
P + cos” € (D.9)
cos€e

and the various terms equate to

_ 9y — "2 (1 _ _~
167G /Md VIR +2) 2G ( sin25) ’

1 mty 1 4 cos® e
d2 WK = =21 "" = D.10
G wVh 2G  sinZe ( )
/d2 _ mtacose
87G T 2GsinZe”

Thus, the regularized EH action is

7wty (1 —cose Tt
_ ~ D.11
() 2G < sin?e > 4G + ( )
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To write this in terms of dual CFT data, we can use the Brown-Henneaux formula G =
3LAdS/2C for Lags = 1 to write

cTm t2
Ion-shen = — 6 ' (D12)
so that the sphere partition function reads
I c7rt2 <
Zsphere =e Tonshell =76 = |$| 12, (D.l?))

[

This is in line with the expectation that the dual CFT ground-state energy is — 5.
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