Modulation of Saprolegnia parasitica growth with copper and ionophores

Running title: Cu/ionophores inhibit S. parasitica

Tomisin Happy Ogunwa, Madison Grace Thornhill, Daniel Ledezma and Ryan Loren

Peterson[†]

Department of Chemistry, Texas State University, 601 University Drive, San Marcos, Texas,

United States, 78666.

† Corresponding author

ACKNOWLEDGEMENTS

We would also like to thank Dr. Mike Mathews, Dr. John Hawke, and Chris Darnall, and the

members of the A.E. Wood Fish Hatchery for supports, helpful advice and discussions.

DATA AVAILABILITY STATEMENT

The data presented in this study are available from the corresponding author upon reasonable

request.

FUNDING

This research was supported with grant from the U.S Department of Agriculture (USDA 2022-

67015-36341).

CONFLICT OF INTEREST STATEMENT

The authors declare that no conflict of interest exists.

PERMISSION TO REPRODUCE MATERIAL FROM OTHER SOURCES

Figure 9a and 9b were made using the Biorender (https://www.biorender.com) with agreement

number: VO26XW8B7J and JE26XW8FTY, respectively.

ORCID

Tomisin Happy Ogunwa: https://orcid.org/0000-0001-7614-7306

1

Ryan Loren Peterson: https://orcid.org/0000-0002-9654-703X

Abstract

Saprolegnia parasitica is an oomycete pathogen responsible for saprolegniasis diseases that result in large production losses in the catfish and salmon aquaculture industry. The use of copper sulfate as an anti-Saprolegnia treatment has been reported as an alternative to malachite green, formaldehyde and hydrogen peroxide treatment methods. The current study investigates a new strategy to inhibit Saprolegnia parasitica growth by combining copper and ionophores at low levels. The chemical agents tetraethylthiuram disulfide (TDD), ciclopirox olamine (CLP), 2-mercaptopyridine N-oxide (MPO), 5-chloro-8-hydroxy-7-iodoquinoline (CHI), 5,7-dichloro-8-hydroxyquinoline (DHQ) and 8-Quinolinol (8QN) were identified to inhibit S. parasitica growth in a copper-dependent manner. At concentrations below the lethal dose of individual ionophore, increasing copper concentrations resulted in synergetic S. parasitica growth inhibition. The addition of the exogenous copper chelator bathocuproine sulfate (BCS), reversed the inhibition of S. parasitica growth by TDD, CLP, MPO, and 8QN but not CHI and DHQ. Our data demonstrates that ionophores, in combination with low levels of copper, can effectively limit S. parasitica growth both in a liquid and solid support growth environment. Investigations into the underlying mechanism of Cu-ionophore toxicity are discussed.

Keywords: Saprolegnia parasitica, ionophores, copper, aquaculture, metal ions

1. INTRODUCTION

Saprolegnia parasitica is a devastating oomycete pathogen infecting salmon, trout, catfish, and ornamental fish species commonly found as a white cotton-like growths on wounded and vulnerable adult fish as well as developing embryos (Bruno et al., 2011). Saprolegniasis is prevalent in hatcheries, but environmental factors, including poor water quality, rapid temperature changes, and wounds, can increase animal susceptibility to infection. Saprolegniasis leads to severe yield losses (~ 10 percent loss) in fish production with a concomitant reduction in the quality of fish and farmers' profits (Earle & Hintz, 2014). Despite the various efforts applied to control the disease over the years, very little progress has been made towards developing new United States Food and Drug Administration (FDA)-approved methods for Saprolegniasis treatment and prevention, notwithstanding the significant efforts to approve Cu-sulfate (Straus et al., 2016; Straus et al., 2020; Straus, Mitchell, Radomski, et al., 2009) and peracetic acid (Good et al., 2020) as chemical treatment methods. Currently, only two products are FDA approved for saprolegnia treatment which include PEROX-AID and Parasite-S (Haskell et al., 2004).

Malachite green, hydrogen peroxide and formaldehyde are among the agents previously adopted to combat saprolegniasis in fish production (Gaikowski et al., 1998; Stammati et al., 2005; Walser & Phelps, 1994). Although some of these fungicides proved beneficial in the control and prevention of the disease, malachite green is now banned worldwide due to environmental impact, including teratogenic and carcinogenic effects on exposed rainbow trout, egg and fry (Srivastava et al., 2004). Newer alternative saprolegniasis chemical treatment methods have included the use of Cu-sulfate, peractic acid, Clotrimazole, and Saprolmycin A-E (Nakagawa et al., 2012; Warrilow et al., 2014). Additionally, natural products have been tested and shown to control *S. parasitica* growth. Among these plants, *Punica granatum*,

Cyperus esculentus, Carthamus tinctorius and Thymus vulgaris showed potential to suppress mycelial growth of Saprolegnia diclina in vitro at various concentrations (Emara et al., 2020; Mostafa et al., 2020; Xue-Gang et al., 2013). However, the mechanism and chemical compounds resulting in anti-oomycete activity are not well defined (Caruana et al., 2012).

There has been considerable effort to approve copper sulfate as a cost-effective treatment method to control *S. parasitica* infection in catfish (Straus, Mitchell, Carter, et al., 2009; Straus et al., 2011; Sun et al., 2014). One drawback is that local water quality and hardness can impact copper solubility and overall treatment effectiveness (Straus, Mitchell, Carter, et al., 2009). We hypothesized that small copper-binding agents, such as the general class of ionophores, may overcome the copper solubility challenges experienced with local water quality while simultaneously assisting in the delivery of copper ions into the pathogen cytoplasm. Herein, we report a new strategy designed to inhibit *S. parasitica* growth, which combines ionophore small molecules with copper sulfate. The data obtained in our experiments suggest that copper can modulate the growth of *S. parasitica* when combined with selected ionophores, even at minimal concentrations. This opens new potential anti-oomycete therapeutic avenues that may be more efficient than employing Cu-sulfate alone to combat outbreaks in an aquaculture setting.

2. MATERIALS AND METHODS

2.1 Chemicals

All chemical agents used in this study were purchased from commercial vendors at >98% purity levels and used as received. Milli-Q (18Ω -resistance) water was used for the preparation of all media and solutions. Chemical compounds including bathocuproine sulfate (BCS), tetraethylthiuram disulfide (TDD), ciclopirox olamine (CLP), 2-mercaptopyridine N-oxide (MPO), 5-chloro-8-hydroxy-7-iodoquinoline (CHI), 5,7-dichloro-8-hydroxyquinoline (DHQ),

8-Quinolinol (8QN), bicinchonic acid disodium salt (BCA), 2-thiophene carboxylic acid

(TCA), ammonium tetrathiomolybdate (ATM), quercetin (QUE), curcumin (CUR), azelaic

acid (AZE), copper (II) dibutyldithiocarbamate (CDT), bathophenanthroline disulfonic acid

disodium salt (BPS), 2-mercaptopyridine N-oxide zinc salt (MPOZ), kaempferol (KAE) and

ethylenedinitrilotetraacetic acid disodium salt dihydrate (Na-EDTA) were purchased from

vendors in the United States.

2.2 Preparation of 2222X growth media

Chemically defined 2222X growth media was developed for this project based on growth

experiments described by Powell et al. and consisted of 2 g/L monosodium glutamate, 2 g/L

glucose, 3.4 g/L yeast nitrogen base (YNB), and 200 mg/L methionine at a pH of 6.0 and

sterilized via ultra-filtration (Powell et al., 1972). Solid 2222X plates were made using 15 g/L

agar added prior to autoclaving.

2.3 Maintenance and propagation of Saprolegnia parasitica

Saprolegnia parasitica CBS223.65 reference strain, purchased from the Westerdijk Fungal

Biodiversity Institute (Utrecht, Netherlands), was used for all experiments in this study and

maintained on the 2222X agar plates. Transfer of S. parasitica samples from plate to plate or

experimental tubes was done using disposable sterile 3 mm biopsy punches (Robbins

Instruments, India).

2.4 *In vitro* screening protocol

A 3 mm agar plug of S. parasitica was used to inoculate a 10 ml of 2222X solution in a 50 ml

vented conical tube and incubated at 28 °C with 220 rpm for 5 days. The off-white S. parasitica

filamentous mycelium was removed with forceps, drained, and transferred to a pre-weighed

spin filter tube (CLS9301), and centrifuged for 2 minutes at 8000 X g to remove excess liquid

5

prior to weighing.

For the initial screening of metal-binding compounds against S. parasitica growth, each

chemical compound (10 µM final concentration using a 50mM stock in DMSO) was added to

a culture tube containing 10 ml of 2222X media supplemented with 100 µM Cu-sulfate and

cultured as described above. Only compounds exhibiting total growth inhibition were further

evaluated. For IC₅₀ determination, the concentration of each metal-binding compound was

varied as appropriate: TDD $(0-50 \mu M)$, CLP $(0-2 \mu M)$, MPO $(0-2 \mu M)$, CHI $(0-50 \mu M)$,

DHQ (0 – 50 μ M), and 8QN (0 – 10 μ M) in a 10 ml 2222X media and cultured as described

above.

2.5 Oxyblot determination of oxidized and carbonylated proteins

To investigate the ability of copper and ionophore mixtures to induce metal-mediated oxidative

stress in S. parasitica, we quantified protein oxidation levels in S. parasitica lysates using the

OxyBlot Protein Oxidation Detection kit (Millipore, Billerica, MA, USA). Carbonylated

proteins were derivatized with 2,4 Dinitrophenyl hydrazine (DNP) reagent and assayed via

western blot using an anti-DNP primary antibody as described below. In brief, S. parasitica

samples were grown for four days and then acutely exposed to various treatments including

copper, BCS and MPO for two hours. The samples were harvested and lysed in the presence

of 50 mM DTT and proteinase inhibitors. Each lysate was centrifuged at 17,000g for 10 mins

at 4°C and the supernatant was used in the derivatization step. The carbonyl groups in S.

parasitica protein samples (80 μg) were derivatized to 2,4-dinitrophenylhydrazone (DNP) via

a reaction with 2,4-dinitrophenylhydrazine (DNPH) in the presence of 6% Sodium dodecyl

sulfate (SDS). After incubation at 25°C for 15 minutes, the reaction was quenched by adding

the neutralization solution. Next, 4-12% SDS-PAGE was carried out on the derivatized

samples. The samples were then transferred to a nitrocellulose membrane and incubated with

rabbit anti-DNP (1:150 dilution) for 1hr at RT. Goat anti-rabbit Alexa fluor 647 (1:300

dilution) was added, and the blot developed according to western blotting protocol. Finally,

images were generated using the Image Lab software (Bio-Rad).

2.6 Data analysis

The growth inhibition of S. parasitica with selected ionophores were analyzed using Microsoft

excel package and presented as the mean percentage of growth compared to control conditions

(i.e. 2222X media alone). Images were taken with a digital camera.

3. RESULTS

The inoculation of liquid 2222X growth media with a 4 mm gel plug of S. parasitica, cultured

on 2222X plates, leads to the reproducible culture of S. parasitica which can be achieved in a

standard shaking incubator at 28 °C (Fig. 1). Using this protocol, we determined the lethal dose

of Cu^{2+} , as $CuSO_4$, against S. parasitica in vitro. The IC_{50} value for Cu^{2+} was ~100 μM while

a concentration of 200 μM Cu²⁺ completely inhibited S. parasitica growth (Fig. 2). To identify

chemical compounds that could enhance Cu²⁺ toxicity against S. parasitica, we carried out a

screening experiment on nineteen chemical compounds at a concentration of 10 µM with and

without supplemental 100 μM Cu²⁺. These experiments revealed six compounds with copper-

dependent activity against the S. parasitica growth (Fig. 3). Tetraethylthiuram disulfide (TDD),

ciclopirox olamine (CLP), 2-mercaptopyridine N-oxide (MPO) and 8-Quinolinol (8QN),

chemical compounds highlighted in green, inhibited S. parasitica growth in copper-dependent

manner whereas those in blue including 5-chloro-8-hydroxy-7-iodoquinoline (CHI) and 5,7-

dichloro-8-hydroxyquinoline (DHQ) displayed copper-independent growth inhibition. In

addition, compounds highlighted in gray moderately suppressed S. parasitica growth at 100

μM concentration. However, those shaded in white demonstrated negligible effects on S.

parasitica growth. Chemical compounds highlighted in green were selected for further

7

characterization as they exhibited copper-dependent activity (vide infra).

3.1 Dose-dependent effect of ionophores on S. parasitica growth in vitro

To establish the lethal dose for each of the ionophores against *S. parasitica*, a concentration-dependent experiment was carried out on the selected (six) copper-dependent ionophores. These experiments revealed a range in IC₅₀ values from < 0.6 to >15 μ M (Figure 4). The least effective compound was TDD with an estimated 17 μ M concentration needed to suppress ~ 50% to *S. parasitica* growth (Fig. 4a). CLP and MPO exhibited high toxicity with a lethal dose of 1 μ M each (Fig. 4b, c) whereas CHI caused *S. parasitica* death at approximately 4 μ M (Fig. 4d). DHQ and 8QN were the most effective compounds at preventing *S. parasitica* growth with IC₅₀ concentration of approximately 0.5 μ M (Fig. 4e, F). However, 8QN required a much higher concentration of 8 μ M to completely inhibit *S. parasitica* propagation. Notably, all the selected ionophores showed a concentration-dependent pattern in suppressing *S. parasitica* growth *in vitro*.

3.2 Effect of copper-ionophore on S. parasitica growth

To determine whether the selected ionophores can boost Cu^{2+} toxicity against *S. parasitica*, we varied the copper concentration at a fixed ionophore dose. A unique concentration for each ionophore below the IC_{50} was selected. Interestingly, a combination of 10 μ M TDD with 16 μ M copper completely inhibited *S. parasitica* (Fig. 5a) growth. For CLP, 0.6 μ M of the ionophore with copper led to the dose-dependent suppression of *S. parasitica* growth (Fig. 5b). Increasing the dose of CLP to 0.8 μ M yielded a total inhibition of the oomycete growth at 4 μ M copper (Fig. S1). MPO exhibited a high sensitivity to copper by killing *S. parasitica* at a dose of 0.4 μ M and 1 μ M, respectively (Fig. 5c). Using a higher MPO dose (0.6 μ M) resulted in the total death of *S. parasitica* at 0.5 μ M copper (Fig. S2). However, lowering the MPO concentration to 0.2 μ M was not completely lethal to the pathogen in the presence of 100 μ M copper (Fig. S3). These results are consistent with the data on MPZO, the zinc salt of the

pyrithione (MPO) which exhibited reversible Cu²⁺-dependent toxicity against S. parasitica

(Fig. S4).

For the chemicals CHI and DHQ, a sigmoidal copper dose response is observed (Fig. 5d, e).

Specifically, at 1 µM CHI and 0.4 µM DHQ, a low level of copper appeared to boost the growth

of S. parasitica up to 2 μM copper (Fig. 5d, e). Repeating the experiment at a higher CHI dose

(2 μM) yielded a consistent effect showing a sigmoidal curve on S. parasitica growth (Fig. S5).

Similarly, the concentration of DHQ was increased in the presence of 100 µM copper and the

results corroborated previous observation that S. parasitica can survive a combined 100 µM

Cu²⁺ and 0.6 μM DHQ (Fig. S6). However, the ionophore 8QN with a relatively lesser toxicity

against S. parasitica in the earlier dose-dependent assay demonstrated an improved toxicity as

1 μM in the presence of 4 μM copper completely blocked the growth of the pathogen (Fig. 5f).

Increasing 8QN concentration to 2 μM in the presence of lower dose (2 μM) copper was also

lethal to S. parasitica (Fig. S7).

3.3 BCS reverses the toxicity of ionophores-Cu²⁺ against S. parasitica

To further verify the role of copper in the observed toxicity against S. parasitica when

combined with non-lethal doses of ionophores, we used the extracellular copper chelator

bathocuproine sulfate disodium salt hydrate (BCS) to sequester copper in the extracellular

growth media. The results confirmed that 10 µM TDD consistently inhibited S. parasitica

growth in the 2222X culture media, and the addition of 8 µM copper highly enhanced the

growth suppression (Fig. 6a). However, the addition of 250 μM BCS which prevented Cu^{2^+}

from entering the intracellular space (cytosol) reversed the inhibition induced by copper-

ionophore (Fig. 6a). Increasing the copper concentration to 16 μM and 32 μM, respectively, in

the presence of 10 µM TDD completely blocked S. parasitica growth. However, the lethal

effect was reversed in the presence of 250 µM BCS. Meanwhile, the addition of 10 µM TDD

and 250 µM BCS in the absence of copper was not lethal to S. parasitica which buttressed the role of copper in curving S. parasitica growth. A similar trend was observed for CLP and MPO (Fig. 6b and 6c). BCS exhibited the ability to reverse the lethal effect of CLP-Cu²⁺ and MPO-Cu²⁺ on S. parasitica. Remarkably, BCS in the absence of ionophore or copper has no lethal effect on the growth of S. parasitica. Therefore, it may not contribute to the observed modulatory activity of Cu²⁺ and ionophores against S. parasitica in this study. Surprisingly, CHI and DHQ in combination with 250 µM BCS resulted in total inhibition of S. parasitica growth (Fig. 6d and 6f). Addition of 8 µM copper to S. parasitica in the presence of 2 µM CHI supported the growth of the pathogen in vitro. However, the addition of BCS to the system resulted in the death of S. parasitica (Fig. 6d). We increased the concentration of copper to 16 uM in the presence of CHI and noticed that the growth of S. parasitica was slightly enhanced. More importantly, addition of BCS (250 μ M) to the culture resulted in the death of S. parasitica. A similar pattern was recorded for DHQ (Fig. 6e), with copper leading to the improved growth rate of the pathogen, whereas the addition of BCS led to death. This suggests that CHI and DHQ likely share a common mechanism that differs from that of TDD, CLP, MPO and 8QN. Fig. 6f indeed showed that 8QN (8 μ M) and 2 μ M Cu²⁺ suppressed the growth of S. parasitica in comparable manner to TDD, CLP and MPO. Increasing the dose of Cu²⁺ to 4 μ M in the presence of 8QN resulted in the death of the pathogen whereas addition of 250 μ M BCS yielded a reversal of the lethal effect (Fig. 6f).

3.4 Modulating S. parasitica growth on solid media with copper and ionophores

To mimic the effects of the Cu^{2+} - ionophore strategy on *S. parasitica* grown on the solid host, we prepared 2222X solid media plates and cultured the oomycete, treated with Cu^{2+} or ionophores for three days at room temperature. Data generated will corroborate the observed effect of copper and ionophores on *S. parasitica* carried out in 2222X media (solution). We

determined the dose-dependent effect of copper (Fig. S8), ionophores (Fig. 7) and Cu²⁺-

ionophore (Fig. 8) on the mycelial growth of S. parasitica. The inhibitory effect of each

ionophore against the pathogen was dose-dependent. However, a relatively higher dose was

required to completely block the mycelial growth of S. parasitica on the solid media than in

solution. Reason?

3.5 Mechanisms underlying the toxicity of Cu²⁺-ionophore against S. parasitica

To verify whether metal-mediated oxidative stress plays a direct role in the copper and

ionophore toxicity observed in this study, we utilized the oxyblot kit to derivatize and detect

oxidized proteins in S. parasitica lysates under various treatment conditions (Fig.10). Similar

levels of oxidized proteins are observed across 2-hour acute treatment conditions involving

combinations of MPO, Cu and BCS (Fig 10A). This suggests that the mechanisms underlying

the Cu²⁺ - ionophore toxicity in S. parasitica may be targeted and not involve a general increase

of metal-mediated oxidative stress. How?

4. DISCUSSION

Research efforts have continued till date to seek alternatives and develop new strategies for the

control of Saprolegniasis in aquaculture, with special attention on toxicity and safety (Ali et

al., 2019; Meneses et al., 2022; Werner et al., 2020; Zhang et al., 2019). Based on the known

antimicrobial activity of copper, we evaluated a new strategy that can increase the antimicrobial

efficiency of copper against S. parasitica by combining low doses of ionophores and copper

sulfate (Straus et al., 2020). Therefore, we prepared a synthetically defined media (2222X

media) that can successfully and reproducibly support S. parasitica growth. In this 2222X

growth media, 100 µM Cu sulfate can reproducibly suppress 50% of total S. parasitica

mycelium growth (Fig. 2). This copper concentration is consistent with other reports using

copper sulfate as an anti-*Saprolegnia* treatment to suppress *S. parasitica* growth on largemouth bass and catfish eggs (Straus et al., 2020; Straus, Mitchell, Carter, et al., 2009). Screening eighteen potential Cu-binding small molecules revealed six compounds that were able to completely suppress *S. parasitica* growth at a concentration of 10 μM in combination with 100 μM Cu-Sulfate (Fig 3.). Among these six promising compounds, four displayed Cu-dependent antimicrobial activity, and two inhibited *S. parasitica* growth regardless of exogenous copper

concentration.

Further investigation into the effectiveness of these six chemical compounds was conducted to determine their IC₅₀ doses in 2222X growth media alone. Interestingly, all six compounds were effective at inhibiting Saprolegnia growth with lethal doses in the micromolar range (Fig. 4). The compound DHQ was the most effective with a lethal dose at $0.8 \,\mu\text{M}$ (Fig. 4E), followed by MPO and CLP with a lethal dose of approximately 1 μ M. The compounds CHI and 8QN were slightly less effective, with a lethal dose accruing at 4 μ M and 8 μ M, respectively. In the absence of Cu, a higher 20 μ M concentration of TDD was needed. These data contribute to the ongoing research efforts to fully understand the bioactivities of ionophores, including their cellular toxicity, antimicrobial and antioxidant effects (Song et al., 2019). Indeed, these findings are comparable to the reported effect of ionophores against the fungal pathogen *C. neoformans* (Helsel et al., 2017).

We next investigated the effectiveness of the six chemical compounds identified in our initial screen to increase Cu toxicity on *S. parasitica*. Using a dose of each compound at or below the IC₅₀, we systematically altered supplemental copper concentrations to determine the minimal copper dose needed to completely suppress *S. parasitica* propagation. We observed that increasing the copper dose at the fixed ionophore concentration revealed two distinct trends in *S. parasitica* Cu-dependent growth behavior (Fig. 5). The chemicals TDD, CLP, MPO, and 8QN, which are more active with increasing Cu concentrations, were considered as

one group (Fig 5. A.B.C.F). However, DHQ and CHI, which display moderate growth

inhibition at both low and high levels of supplemental copper were considered a second defined

group. The anti-saprolegnia activity of DHQ and CHI is abolished at a copper concentration of

1 μM but then restored at higher levels of supplemental copper. These trends in S. parasitca

copper-dependent growth behavior are largely conserved when applied to S. parasitica solid-

supported growth assays (Fig. 8). The ability to inhibit S. parasitica, both in liquid culture as

well as solid-supported growth formats, suggests that the combination of copper sulfate and

small chemical agents may effectively treat S. parasitica infection on both developing fish

embryos as well as adult fish.

The cell impermeable copper-specific chelator BCS was used to restrict supplemental

copper to the extracellular environment to clarify copper's role in the observed anti-

Saprolegnia activity. The addition of BCS can completely reverse the lethality of the group

one chemicals (i.e. TDD, MPO, CLP and 8QN) while increasing the effectiveness of the group

two chemicals (i.e. DHQ and CHI; (Fig. 6)). Based on these experiments, we propose the mode

of action for group one chemicals require copper to suppress S. parasitica growth whereas

group two chemicals operate in a copper independent mechanism. This suggests that group one

chemicals function as Cu-ionophores (Fig. 9a,b) to disrupt cellular copper homeostasis by

trafficking copper ions across the plasma membrane that does not rely on metal ion transports

including the divalent metal transporter (DMT) or Copper-transporters (CTR) families (Lingli

& Lin, 2013; Mandal et al., 2020).

Group one chemicals, such as MPO and its' respective metal salts, have been shown to interact

with the cell membrane to transport metal ions into the cytoplasm, resulting in metal

accumulation, which may alter the metabolic processes in the cell (Reeder et al., 2011). Two

MPO molecules can bind a single divalent copper ion to form Cu(MPO)₂ (Mishra et al., 2023),

as shown in Figure 9c-e. We hypothesize this neutral Cu(MPO)₂ complex is responsible for

cytosolic Cu-delivery. Interestingly, MPO has successfully been used to combat fungal

pathogens such as Malassezia restricta and Malassezia glabosa in human scalps (Park et al.,

2018). Similarly, its zinc salt (MPOZ) is applied in commercial skin care products to treat

psoriasis, seborrheic dermatitis, eczema, and acne (Mangion et al., 2021; Sadeghian et al.,

2011). Similarly, the compounds 8QN, TDD, and CLP also have the capacity to bind metal

ions and exhibit broad-spectrum antimicrobial activities (Abrams et al., 1991; Helsel et al.,

2017). Our data suggest that the 8QN, TDD, and CLP modes of action for S. parasitica growth

inhibition may involve metal binding and trafficking, specifically with copper ions (Helsel &

Franz, 2015; Mishra et al., 2023).

To test whether the mode of action of Cu²⁺-ionophore treatment on S. parasitica involved a

mechanism involving metal-mediated oxidative stress, we performed a time-course experiment

to quantify cellular protein oxidation. Using the OxyBlot immunodetection assay on total cell

lysates revealed no significant difference in oxidative protein levels among MPO-Cu treated

samples relative to control conditions (Fig. 10). This suggests that MPO-Cu toxicity may not

involve global changes in cellular oxidative stress but rather a more specific pathway. Excess

copper has recently been shown to alter mitochondrial metabolic enzymes and related protein-

binding processes (Kahlson & Dixon, 2022). We suspect that this alteration, termed

cuproptosis, may play a role in the observed Cu-ionophore toxicity in the current study. This

pathway will be further explored in our future project.

5. CONCLUSION

The oomycete pathogen S. parasitica can cause large production losses across the entire

lifespan of catfish and salmon aquaculture production stages from hatcheries to harvest. Herein,

we tested and developed a new strategy for boosting copper toxicity against the oomycete by

combining ionophores with minimal doses of copper sulfate. The six chemical agents identified

in this study were effective at inhibiting S. parasitica at low micromolar concentrations in the

presence of copper. This observation was verified using a copper-specific and cell impermeable

chelator (BCS) to restrict bioavailable cellular copper level, reversing the toxicity and growth

of the pathogen. This suggests that the growth of S. parasitica can be effectively controlled by

using a low dose of copper and ionophore. Our laboratory's efforts are ongoing to assess the

effectiveness of Cu-ionophore combinations in inhibiting S. parasitica growth on developing

catfish embryos.

AUTHOR CONTRIBUTIONS

Tomisin Happy Ogunwa: Investigation, analyses, writing, proofreading

Madison Grace Thornhill: Methodology, validation, investigation

Daniel Ledezma: Methodology, investigation, preliminary data collection

Ryan Loren Peterson: Funding acquisition, project design and supervision, review, editing.

REFERENCES

Abrams, B. B., Hänel, H., & Hoehler, T. (1991). Ciclopirox olamine: a hydroxypyridone

antifungal agent. Clinics in dermatology, 9(4), 471-477.

Ali, S. E., Gamil, A. A., Skaar, I., Evensen, Ø., & Charo-Karisa, H. (2019). Efficacy and safety of boric acid as a preventive treatment against Saprolegnia infection in Nile tilapia

(Oreochromis niloticus). Scientific reports, 9(1), 1-9.

Bruno, D., VanWest, P., & Beakes, G. (2011). Saprolegnia and other oomycetes. Fish Diseases

and Disorders: Volume 3: Viral, Bacterial and Fungal Infections, 2nd Edition.

Caruana, S., Yoon, G. H., Freeman, M., Mackie, J., & Shinn, A. (2012). The efficacy of selected plant extracts and bioflavonoids in controlling infections of Saprolegnia australis

(Saprolegniales; Oomycetes). Aquaculture, 358, 146-154.

Earle, G., & Hintz, W. (2014). New approaches for controlling Saprolegnia parasitica, the causal agent of a devastating fish disease. Tropical life sciences research, 25(2), 101.

Emara, E. K., Gaafar, A. Y., & Shetaia, Y. M. (2020). In vitro screening for the antifungal activity of some Egyptian plant extracts against the fish pathogen Saprolegnia parasitica.

15

Aquaculture Research, 51(11), 4461-4470.

- Gaikowski, M. P., Rach, J. J., Olson, J. J., Ramsay, R. T., & Wolgamood, M. (1998). Toxicity of hydrogen peroxide treatments to rainbow trout eggs. *Journal of Aquatic Animal Health*, 10(3), 241-251.
- Good, C., Davidson, J., Straus, D. L., Harper, S., Marancik, D., Welch, T., Peterson, B., Pedersen, L. F., Lepine, C., & Redman, N. (2020). Assessing peracetic acid for controlling post-vaccination Saprolegnia spp.-associated mortality in juvenile Atlantic salmon Salmo salar in freshwater recirculation aquaculture systems. Aquaculture Research, 51(6), 2624-2627.
- Haskell, S. R., Payne, M. A., Webb, A. I., Riviere, J. E., & Craigmill, A. L. (2004). Current approved drugs for aquatic species. *Journal of the American Veterinary Medical Association*, 224(1), 50-51.
- Helsel, M. E., & Franz, K. J. (2015). Pharmacological activity of metal binding agents that alter copper bioavailability. *Dalton Transactions*, *44*(19), 8760-8770.
- Helsel, M. E., White, E. J., Razvi, S. Z. A., Alies, B., & Franz, K. J. (2017). Chemical and functional properties of metal chelators that mobilize copper to elicit fungal killing of Cryptococcus neoformans. *Metallomics*, *9*(1), 69-81.
- Kahlson, M. A., & Dixon, S. J. (2022). Copper-induced cell death. *Science*, *375*(6586), 1231-1232.
- Lingli, J., & Lin, Z. (2013). Divalent metal transporter 1 (Dmt1) mediates copper transport in the duodenum of iron-deficient rats and when overexpressed in iron-deprived HEK-293 cells. *The Journal of nutrition*, 143(12), 1927-1933.
- Mandal, T., Kar, S., Maji, S., Sen, S., & Gupta, A. (2020). Structural and functional diversity among the members of CTR, the membrane copper transporter family. *The Journal of membrane biology*, 253, 459-468.
- Mangion, S. E., Holmes, A. M., & Roberts, M. S. (2021). Targeted Delivery of Zinc Pyrithione to Skin Epithelia. *Int J Mol Sci*, 22(18). https://doi.org/10.3390/ijms22189730
- Meneses, J. O., da Silva, I. C. A., da Cunha, A. F. S., dos Santos Cunha, F., Dias, J. A. R., Abe, H. A., Paixão, P. E. G., da Costa Sousa, N., do Couto, M. V. S., & dos Santos Lima, B. (2022). Protective effect of Terminalia catappa leaf extracts against Saprolegniosis on angelfish eggs. *Aquaculture Research*, *53*(2), 377-387.
- Mishra, A., Djoko, K. Y., Lee, Y.-H., Lord, R. M., Kaul, G., Akhir, A., Saxena, D., Chopra, S., & Walton, J. W. (2023). Water-soluble copper pyrithione complexes with cytotoxic and antibacterial activity. *Organic & Biomolecular Chemistry*, *21*(12), 2539-2544.
- Mostafa, A. A.-F., Al-Askar, A. A., & Yassin, M. T. (2020). Anti-saprolegnia potency of some plant extracts against Saprolegnia diclina, the causative agent of saprolengiasis. *Saudi Journal of Biological Sciences*, *27*(6), 1482-1487.
- Nakagawa, K., Hara, C., Tokuyama, S., Takada, K., & Imamura, N. (2012). Saprolmycins A–E, new angucycline antibiotics active against Saprolegnia parasitica. *The Journal of Antibiotics*, 65(12), 599-607.
- Park, M., Cho, Y.-J., Lee, Y. W., & Jung, W. H. (2018). Understanding the mechanism of action of the anti-dandruff agent zinc pyrithione against Malassezia restricta. *Scientific reports*, 8(1), 1-11.
- Powell, J. R., Scott, W. W., & Krieg, N. R. (1972). Physiological parameters of growth in Saprolegnia parasitica Coker. *Mycopathologia et Mycologia applicata*, *47*(1), 1-40.
- Reeder, N. L., Kaplan, J., Xu, J., Youngquist, R. S., Wallace, J., Hu, P., Juhlin, K. D., Schwartz, J. R., Grant, R. A., & Fieno, A. (2011). Zinc pyrithione inhibits yeast growth through

- copper influx and inactivation of iron-sulfur proteins. *Antimicrobial agents and chemotherapy*, 55(12), 5753-5760.
- Sadeghian, G., Ziaei, H., & Nilforoushzadeh, M. A. (2011). Treatment of localized psoriasis with a topical formulation of zinc pyrithione. *Acta Dermatovenerol Alp Pannonica Adriat*, 20(4), 187-190. https://www.ncbi.nlm.nih.gov/pubmed/22367374
- Song, J., Li, R., & Jiang, J. (2019). Copper homeostasis in Aspergillus fumigatus: opportunities for therapeutic development. *Frontiers in microbiology*, *10*, 774.
- Srivastava, S., Sinha, R., & Roy, D. (2004). Toxicological effects of malachite green. *Aquatic toxicology*, 66(3), 319-329.
- Stammati, A., Nebbia, C., De Angelis, I., Albo, A. G., Carletti, M., Rebecchi, C., Zampaglioni, F., & Dacasto, M. (2005). Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. *Toxicology in vitro*, *19*(7), 853-858.
- Straus, D. L., Farmer, B. D., Ledbetter, C. K., Beck, B. H., Williams, R. S., Clark, M. L., & Freeze, T. M. (2016). Use of copper sulfate to control egg saprolegniasis at a commercial sunshine bass hatchery. *North American Journal of Aquaculture*, 78(3), 243-250.
- Straus, D. L., Ledbetter, C. K., & Heikes, D. L. (2020). Inhibiting fungus on largemouth bass eggs with copper sulfate and its toxicity to fry and juveniles. *Journal of the World Aquaculture Society*, *51*(1), 214-223.
- Straus, D. L., Mitchell, A. J., Carter, R. R., & Steeby, J. A. (2009). Optimizing copper sulfate treatments for fungus control on channel catfish eggs. *Journal of Aquatic Animal Health*, *21*(2), 91-97.
- Straus, D. L., Mitchell, A. J., Carter, R. R., & Steeby, J. A. (2011). Dose-confirmation of copper sulfate for treating fungus on channel catfish, Ictalurus punctatus, eggs at a commercial hatchery. *Journal of Applied Aquaculture*, 23(3), 199-206.
- Straus, D. L., Mitchell, A. J., Radomski, A. A., Carter, R. R., & Steeby, J. A. (2009). Laboratory dose confirmation of copper sulfate for treating fungus on channel catfish eggs. *North American Journal of Aquaculture*, 71(4), 333-338.
- Sun, Q., Hu, K., & Yang, X. L. (2014). The efficacy of copper sulfate in controlling infection of Saprolegnia parasitica. *Journal of the World Aquaculture Society*, 45(2), 220-225.
- Tedesco, P., Fioravanti, M. L., & Galuppi, R. (2019). In vitro activity of chemicals and commercial products against Saprolegnia parasitica and Saprolegnia delica strains. *J Fish Dis*, 42(2), 237-248. https://doi.org/10.1111/jfd.12923
- Walser, C. A., & Phelps, R. P. (1994). The use of formalin and iodine to control Saprolegnia infections on channel catfish, Ictalurus punctatus, eggs. *Journal of Applied Aquaculture*, *3*(3-4), 269-278.
- Warrilow, A. G., Hull, C. M., Rolley, N. J., Parker, J. E., Nes, W. D., Smith, S. N., Kelly, D. E., & Kelly, S. L. (2014). Clotrimazole as a potent agent for treating the oomycete fish pathogen Saprolegnia parasitica through inhibition of sterol 14α -demethylase (CYP51). *Applied and environmental microbiology*, 80(19), 6154-6166.
- Werner, E., Montenegro, I., Said, B., Godoy, P., Besoain, X., Caro, N., & Madrid, A. (2020). Synthesis and anti-saprolegnia activity of new 2', 4'-dihydroxydihydrochalcone derivatives. *Antibiotics*, 9(6), 317.
- Xue-Gang, H., Lei, L., Cheng, C., Kun, H., Xian-Le, Y., & Gao-Xue, W. (2013). In vitro screening of Chinese medicinal plants for antifungal activity against Saprolegnia sp. and Achlya klebsiana. *North American Journal of Aquaculture*, 75(4), 468-473.

Zhang, Q., Li, A., & Liu, L. (2019). Inhibitory Effects of Galla chinensis, Tannic Acid, and Gallic

Acid on Saprolegnia parasitica. The Israeli Journal of Aquaculture-Bamidgeh.

Figure legends

Fig. 1. Saprolegnia parasitica growth behavior on synthetic 2222X growth media: (a) solid

agar plate cultured for 5 days at room temperature. (b) S. parasitica cultured from a 4 mm gel

punch and cultured in 10mL of 2222X media at 28°C and 220 rpm for 5 days.

Fig. 2. Effect of copper (Cu^{2+}) on the growth of S. parasitica in synthetically defined 2222X

media. Total growth was measured in 2222X media after 5-day incubation at 28 °C and 222

rpm. A. Addition of Cu²⁺ induced a brownish color in S. parasitica compared to the control.

B. The growth behavior of *S. parasitica* as a function of supplemental copper concentration.

An IC₅₀ for Cu^{2+} was 100 μ M, whereas no growth was detected at a copper concentration >

200 µM. Error bars represent the standard deviation of the mean of data from triplicate

experiments.

Fig. 3. Chemical structure and metal-dependent activities of select chemical compounds used

in this study. In vitro screening was achieved using doses of 10 µM of each chemical compound

in the presence or absence of supplemental CuSO₄ (up to 100 µM) in 2222X media.

Compounds highlighted in green inhibited S. parasitica growth with added Cu²⁺ whereas

compounds shaded blue exhibited growth inhibition without Cu²⁺ dependency. Compounds

highlighted as gray showed only moderate effect. However, those that displayed negligible

effect on S. parasitica growth in vitro are highlighted in white (Helsel et al., 2017; Tedesco et

al., 2019).

Fig. 4. Dose-dependent assay of ionophores against S. parasitica. Lethal dose for each

ionophore was determined *in vitro* as (a) TDD (20 μM), (b) CLP (1 μM), (c) MPO (1 μM), (d)

CHI (4 μ M), (e) DHQ (0.8 μ M) and (f) 8QN (0.5 μ M). Growth was measured at 28°C after 5

days and normalized to the growth of control. Error bars represent the standard deviation of

the mean of data from triplicate experiments.

Fig. 5. Effect of copper - ionophore on S. parasitica growth in vitro. A low dose for each

ionophore (a) 10 µM TDD, (b) 1 µM CLP, (c) 1 µM MPO, (d) 4 µM CHI, (e) 0.8 µM DHQ

and (f) 8 µM 8ON was combined with increasing concentration of Cu²⁺ to determine the precise

Cu²⁺- ionophore dose that can potently suppress S. parasitica growth. Growth was measured

at 28°C after 5 days and normalized to the growth of control. Error bars represent the standard

deviation of the mean of data from triplicate experiments.

Fig. 6. Effect of withholding Cu²⁺ in the extracellular space against S. parasitica growth in

vitro. A combination of copper and ionophores was lethal to S. parasitica at low dose (32μM

 Cu^{2+}). (a) 10 μ M TDD, (b) 1 μ M CLP, (c) 1 μ M MPO, (d) 4 μ M CHI, (e) 0.8 μ M DHQ and (f)

8 μM 8QN. Growth was measured at 28°C after 5 days and normalized to the growth of control.

19

Error bars represent the standard deviation of the mean of data from triplicate experiments.

Fig. 7. Effect of ionophores on S. parasitica grown on solid media. The effect of each

ionophore is dose dependent. (a) TDD (0 μ M – 80 μ M), (b) CLP (0 μ M – 32 μ M), (c) MPO (0

 μ M – 16 μ M), (d) 8QN (0 μ M – 320 μ M), (e) CHI (0 μ M – 16 μ M) and (f) DHQ (0 μ M – 8

μM). Images were taken after 3 days at room temperature to determine growth of S. parasitica

mycelia.

Fig. 8. Effect of Cu²⁺-ionophore on S. parasitica grown on solid media. The effect of each

ionophore is dose-dependent. (a) TDD (0 μ M – 80 μ M), (b) CLP (0 μ M – 32 μ M), (c) MPO (0

 μ M $- 16 \mu$ M), (d) 8QN (0 μ M $- 320 \mu$ M), (e) CHI (0 μ M $- 16 \mu$ M) and (f) DHQ (0 μ M - 8

μM). Images were taken after 3 days at room temperature to determine growth of S. parasitica

mycelia (Tedesco et al., 2019).

Fig. 9. Schematic description of molecular mechanism underlying copper-ionophore inhibition

S. parasitica growth. (a) Depicts mechanism of TDD, CLP, MPO and 8QN in the presence of

copper. Copper is delivered in complex with the ionophores (ionophore - Cu²⁺) to S. parasitica

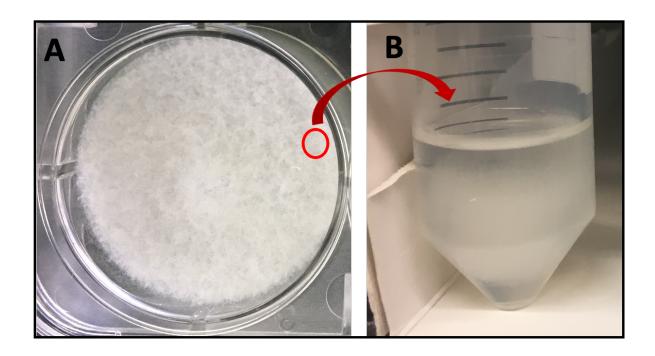
cytoplasm, resulting in the over-accumulation of the metal with its associated toxicity. (b)

Addition of BCS rescued the growth of S. parasitica by keeping copper in the extracellular

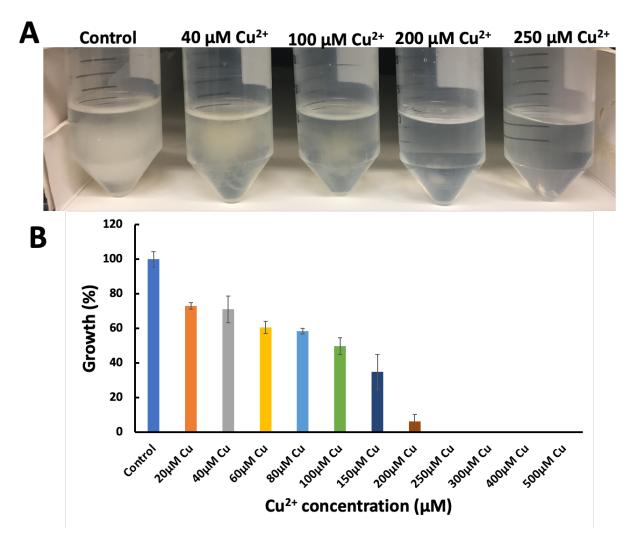
space. BCS competes with the ionophores and favorably bind copper and sequestrating the

metal in the extracellular space. The complex formed between copper and (c) MPO, (d) 8QN,

(e) TDD which requires an activating stimulus prior copper-binding.


Fig. 10. Mechanism underlying the ionophore-copper toxicity in S. parasitica. (a) Determining

the possible contribution of oxidative stress in the ionophore (MPO)-copper toxicity against S.


parasitica, the carbonyl groups in 80 µg S. parasitica protein samples were derivatized to 2,4-

dinitrophenylhydrazone (DNP) in the presence of 6% sodium dodecyl sulfate (SDS), followed

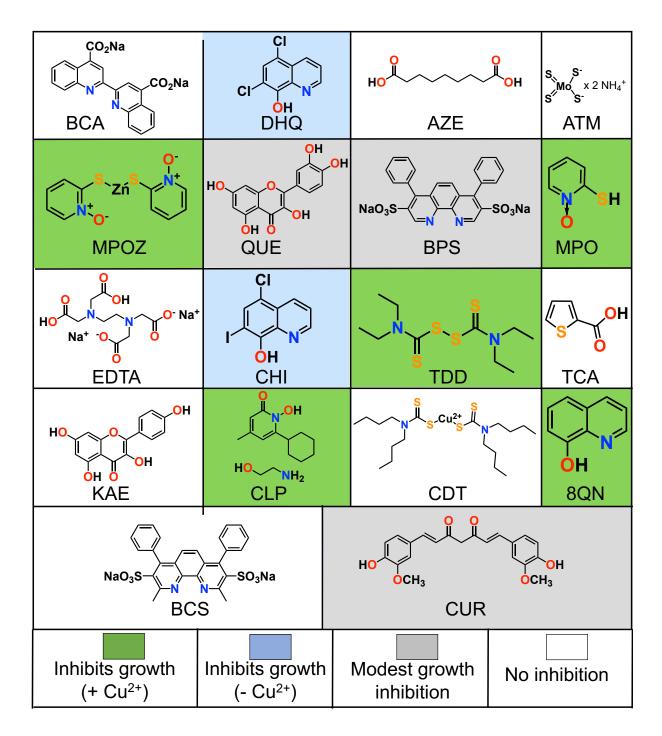

by an incubation at 25°C for 15 minutes. The reaction was stopped by adding the neutralization solution and the samples run on a 12% SDS-PAGE. (b) Total proteins in *S. parasitica* on an SDS-PAGE gel. Consistent protein bands were observed in the pathogen under all treatments.

Fig. 1. Saprolegnia parasitica growth behavior on synthetic 2222X growth media: (a) solid agar plate cultured for 5 days at room temperature. (b) *S. parasitica* cultured from a 4 mm gel punch and cultured in 10mL of 2222X media at 28°C and 220 rpm for 5 days.

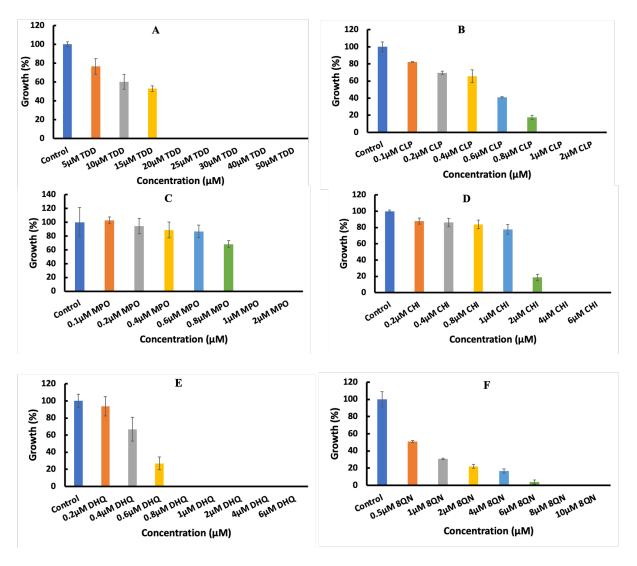


Fig. 2. Effect of copper (Cu²⁺) on the growth of *S. parasitica* in synthetically defined 2222X media. Total growth was measured in 2222X media after 5-day incubation at 28 °C and 222 rpm. **A.** Addition of Cu²⁺ induced a brownish color in *S. parasitica* compared to the control. **B.** The growth behavior of *S. parasitica* as a function of supplemental copper concentration. An IC₅₀ for Cu²⁺ was $100 \,\mu\text{M}$, whereas no growth was detected at a copper concentration > $200 \,\mu\text{M}$. Error bars represent the standard deviation of the mean of data from triplicate experiments.

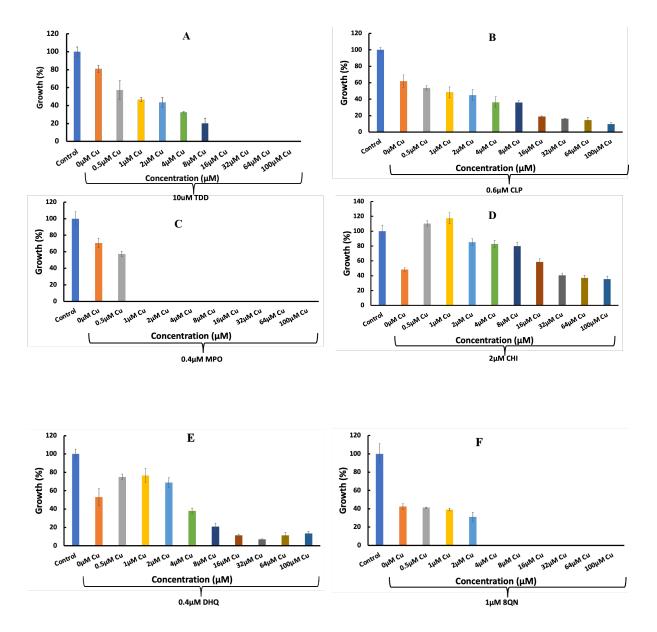
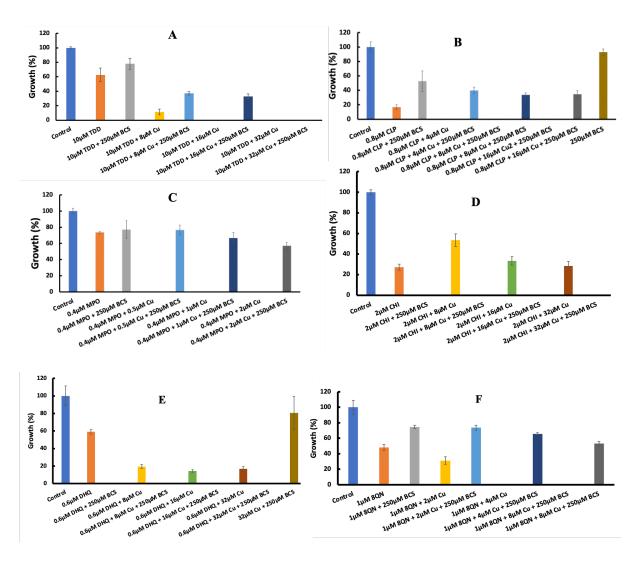
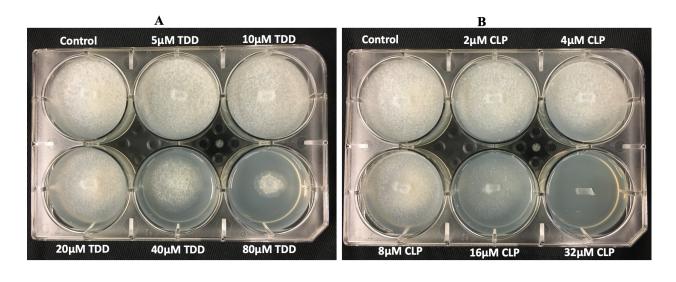
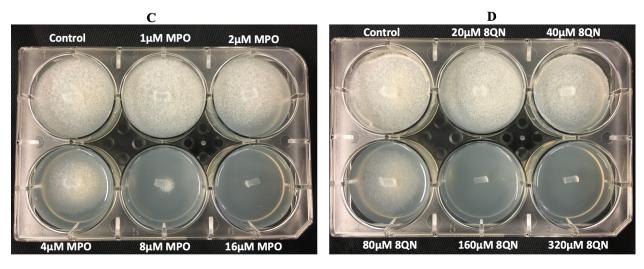
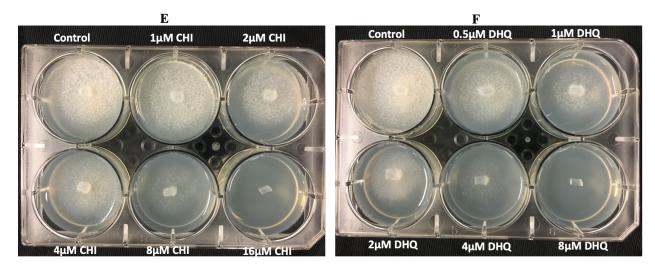


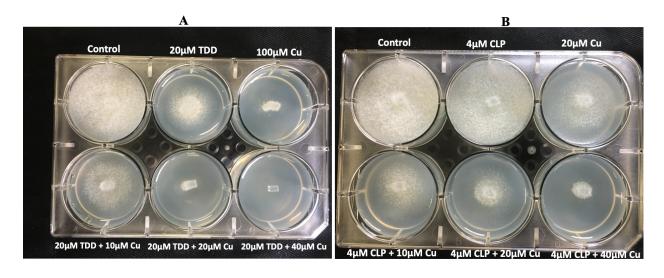
Fig. 3. Chemical structure and metal-dependent activities of select chemical compounds used in this study. *In vitro* screening was achieved using doses of 10 μ M of each chemical compound in the presence or absence of supplemental CuSO₄ (up to 100 μ M) in 2222X media. Compounds highlighted in green inhibited *S. parasitica* growth with added Cu²⁺ whereas compounds shaded


blue exhibited growth inhibition without Cu²⁺ dependency. Compounds highlighted as gray showed only moderate effect. However, those that displayed negligible effect on *S. parasitica* growth *in vitro* are highlighted in white (Helsel et al., 2017; Tedesco et al., 2019).


Fig. 4. Dose-dependent assay of ionophores against *S. parasitica*. Lethal dose for each ionophore was determined *in vitro* as (a) TDD (20 μM), (b) CLP (1 μM), (c) MPO (1 μM), (d) CHI (4 μM), (e) DHQ (0.8 μM) and (f) 8QN (0.5 μM). Growth was measured at 28°C after 5 days and normalized to the growth of control. Error bars represent the standard deviation of the mean of data from triplicate experiments.




Fig. 5. Effect of copper - ionophore on *S. parasitica* growth *in vitro*. A low dose for each ionophore (a) 10 μM TDD, (b) 1 μM CLP, (c) 1 μM MPO, (d) 4 μM CHI, (e) 0.8 μM DHQ and (f) 8 μM 8QN was combined with increasing concentration of Cu²⁺ to determine the precise Cu²⁺ ionophore dose that can potently suppress *S. parasitica* growth. Growth was measured at 28°C after 5 days and normalized to the growth of control. Error bars represent the standard deviation of the mean of data from triplicate experiments.


Fig. 6. Effect of withholding Cu²⁺ in the extracellular space against *S. parasitica* growth *in vitro*. A combination of copper and ionophores was lethal to *S. parasitica* at low dose (32μM Cu²⁺). (a) 10 μM TDD, (b) 1 μM CLP, (c) 1 μM MPO, (d) 4 μM CHI, (e) 0.8 μM DHQ and (f) 8 μM 8QN. Growth was measured at 28°C after 5 days and normalized to the growth of control. Error bars represent the standard deviation of the mean of data from triplicate experiments.

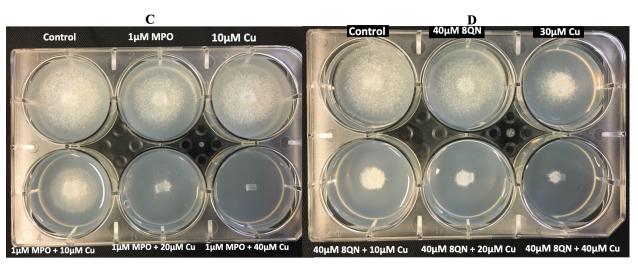


Fig. 7. Effect of ionophores on *S. parasitica* grown on solid media. The effect of each ionophore is dose dependent. (a) TDD (0 μ M – 80 μ M), (b) CLP (0 μ M – 32 μ M), (c) MPO (0 μ M – 16 μ M), (d) 8QN (0 μ M – 320 μ M), (e) CHI (0 μ M – 16 μ M) and (f) DHQ (0 μ M – 8 μ M). Images were taken after 3 days at room temperature to determine growth of *S. parasitica* mycelia.

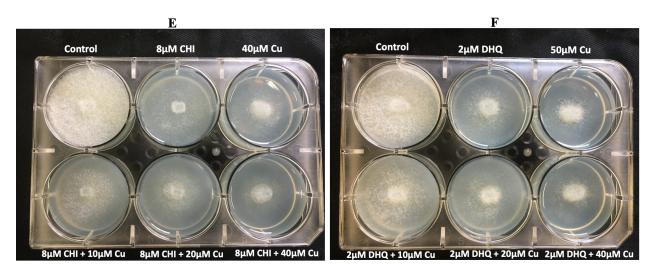
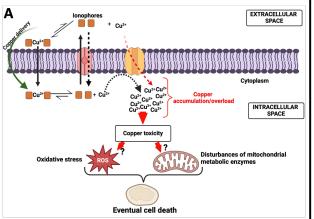
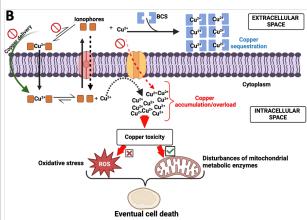
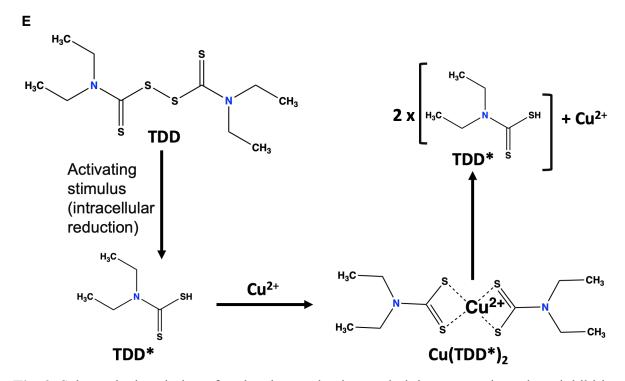





Fig. 8. Effect of Cu²⁺-ionophore on S. parasitica grown on solid media. The effect of each

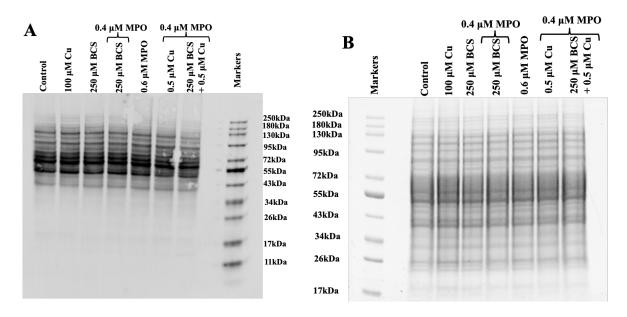

ionophore is dose-dependent. (a) TDD (0 μ M – 80 μ M), (b) CLP (0 μ M – 32 μ M), (c) MPO (0 μ M – 16 μ M), (d) 8QN (0 μ M – 320 μ M), (e) CHI (0 μ M – 16 μ M) and (f) DHQ (0 μ M – 8 μ M). Images were taken after 3 days at room temperature to determine growth of *S. parasitica* mycelia (Tedesco et al., 2019).

Fig. 9. Schematic description of molecular mechanism underlying copper-ionophore inhibition *S. parasitica* growth. (a) Depicts mechanism of TDD, CLP, MPO and 8QN in the presence of copper. Copper is delivered in complex with the ionophores (ionophore - Cu²⁺) to *S. parasitica* cytoplasm, resulting in the over-accumulation of the metal with its associated toxicity. (b) Addition of BCS rescued the growth of *S. parasitica* by keeping copper in the extracellular space. BCS competes with the ionophores and favorably bind copper and sequestrating the metal in the extracellular space. The complex formed between copper and (c) MPO, (d) 8QN, (e) TDD which requires an activating stimulus prior copper-binding.

Fig. 10. Mechanism underlying the ionophore-copper toxicity in *S. parasitica*. (a) Determining the possible contribution of oxidative stress in the ionophore (MPO)-copper toxicity against *S. parasitica*, the carbonyl groups in 80 μg *S. parasitica* protein samples were derivatized to 2,4-dinitrophenylhydrazone (DNP) in the presence of 6% sodium dodecyl sulfate (SDS), followed by an incubation at 25°C for 15 minutes. The reaction was stopped by adding the neutralization solution and the samples run on a 12% SDS-PAGE. (b) Total proteins in *S. parasitica* on an SDS-PAGE gel. Consistent protein bands were observed in the pathogen under all treatments.