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Abstract Low-frequency earthquakes (LFEs) are small-magnitude earthquakes that are depleted in high-
frequency content relative to traditional earthquakes of the samemagnitude. These events occur in conjunc-
tion with slow slip events (SSEs) and can be used to infer the space and time evolution of SSEs. However,
because LFEs haveweak signals, and themethods used to identify them are computationally expensive, LFEs
are not routinely cataloged in most places. Here, we develop a deep-learning model that learns from an ex-
isting LFE catalog to detect LFEs in 14 years of continuous waveform data in southern Vancouver Island. The
result shows significant increases in detection rates at individual stations. We associate the detections and lo-
cate themusing a grid search approach in a 3D regional velocitymodel, resulting in over 1million LFEs during
the performing period. Our resulting catalog is consistent with a widely used tremor catalog during periods
of large-magnitude SSEs. However, there are time periods where it registers far more LFEs than the tremor
catalog. We highlight a 16-day period in May 2010, when our model detects nearly 3,000 LFEs, whereas the
tremor catalog contains only one tremor detection in the same region. This suggests the possibility of hidden
small-magnitude SSEs that are undetected by current approaches. Our approach improves the temporal and
spatial resolution of the LFE activities and provides new opportunities to understand deep subduction zone
processes in this region.

Non-technical summary Relative to regular earthquakes, low-frequency earthquakes (LFEs) re-
lease their energy in a “slower” way and can help us to understand seismic activity on deep (30 km+) faults
and implications for earthquake hazards. However, because of their weak signals, detecting LFEs efficiently is
challenging. In this paper,wedevelopadeep learningmodel thatdetectsmore than1million LFEs in southern
Vancouver Island in 14 years. Our resulting LFE catalog is generally consistent with the tremor and slow-slip
event (SSE) catalogs. This is expectedbecause they share related, if not similar, processes. What is unexpected
is that we find LFEs that are not in the tremor and slow-slip event catalogs. This suggests that ourmethod can
find hidden small-magnitude SSEs that are undetected by existing approaches. Ourmethod canhelp advance
our understanding of seismic activity in this region.

1 Introduction
Slow slip events (SSEs) are a type of transient fault slip
during which the slip rate accelerates to speeds that
are 1-2 orders of magnitude faster than the background
tectonic loading rate (e.g., Bürgmann, 2018; Behr and
Bürgmann, 2021). SSEs occur frequently in subduction
zones around the globe (Saffer and Wallace, 2015). In
the past two decades, much effort has been dedicated
to documenting their spatial and temporal character-
istics in different tectonic environments (Obara, 2002;
Rogers and Dragert, 2003; Beroza and Ide, 2011; Obara
and Kato, 2016; Bürgmann, 2018; Behr and Bürgmann,
2021). Because slow slip events occur over significantly
longer timescales than typical earthquakes, they gener-
ate very weak seismic waves that are both lower in am-
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plitude anddepleted in high-frequency (i.e., > 1Hz) con-
tent relative to regular earthquakes (e.g. Thomas et al.,
2016).
Obara (2002) first recognized what he dubbed non-

volcanic tremor (NVT) beneath the Shikoku and Kii
peninsulas in Japan. It has a low-amplitude signalwith a
predominant frequency content of 1-10 Hz lasting a few
hours to a few days. Obara (2002) also recognized that
NVT signals propagated with a velocity most consistent
with that of S-waves and located deep on the plate in-
terface. Shortly thereafter nonvolcanic tremor was rec-
ognized as the seismic manifestation of deep slow slip
(Rogers andDragert, 2003). NVTcanbe rapidly detected
and is a useful tool for identifying and tracking SSE evo-
lution.
Many researchers have developed algorithms to de-

tect NVT. Kao et al. (2005) used the source scanning al-
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gorithm, which estimates a source brightness by stack-
ing normalized seismograms across a network that
are shifted in time according to predicted traveltimes
from each potential source location. Multiple stud-
ies have built on this foundation leveraging waveform
classification, similarity of waveform envelopes, and
the source scanning algorithm to identify tremor (Kao
et al., 2009; Bombardier et al., 2023). One of the
most widely used catalogs is that of Wech and Crea-
ger (2008), which identifies tremors in real-time by
cross-correlating waveform envelopes and grid search-
ing the location, which shifts the S-wave time until the
summed cross-correlation functions for all the station
pairs reach the maximum value (Wech, 2021). Because
there is no P-wave information alongside the S-wave
delays, the depth estimates may be unreliable (Wech,
2021). Furthermore, detections employ 5-minute time
windows, which do not allow for analysis of shorter
timescale phenomena or resolution of energy coming
from multiple locations. Another approach to iden-
tify tremor is known as the cross-station correlation
approach that relies on finding coherent shear waves
across stations by searching over a range of polarization
angles and time lags to maximize the cross-correlation
(Rubin and Armbruster, 2013; Armbruster et al., 2014;
Savard and Bostock, 2015).
NVT ismade up, inwhole or in part, of low-frequency

earthquakes (LFEs, Shelly et al., 2007). LFEs are more
traditional seismic sources that have identifiable P- and
S-waves but are deficient in high-frequency content
(above a fewHz) relative to shallow earthquakes of sim-
ilar magnitude (e.g. Thomas et al., 2016). Traditionally
LFEs are detected by template matching approaches
(e.g. Bostock et al., 2012; Chamberlain et al., 2014;
Royer and Bostock, 2014; Bostock et al., 2015; Shelly
et al., 2007) or cross-station approaches (e.g. Savard and
Bostock, 2015). These methods utilize waveform co-
herency either cross-time or cross-station to construct
a summed cross-correlation function. When it exceeds
a threshold (e.g. eight times the median absolute de-
viation, Shelly et al., 2007), the window is considered
a detection. This process can be refined by stacking
all the detected waveforms to generate new LFE tem-
plates with an increased signal-to-noise ratio. Within
this framework, groups of LFEs that occur at differ-
ent times but have similar waveform characteristics are
grouped into families that reflect slip at the same or
nearly the same location.
Although the physical process responsible for their

generation is still amatter of debate (Obara, 2002; Obara
and Hirose, 2006; Seno and Yamasaki, 2003), LFEs are
generally thought to reflect surrounding, largely aseis-
mic fault slip during SSEs (e.g. Thomas et al., 2018) and
permit analysis of space and time evolution of slip on
short timescales and in high spatial resolution. They
can be used to study slip evolution in individual SSEs
(e.g. Frank et al., 2014; Inbal et al., 2021), resolve in-
ferred smaller magnitude SSEs that are not easily iden-
tifiable in high-rate Global Navigation Satellite System
data (e.g Rousset et al., 2019), and to constrain the veloc-
ity structure of the forearc crust (e.g. Savard et al., 2018;
Calvert et al., 2020; Delph et al., 2021). Despite all the

potential uses of LFEs, they are not routinely cataloged
in Cascadia because of their low signal-to-noise ratio.
Thomas et al. (2021) proposed a machine-learning

(ML) approach that can identify LFEwaveforms in noisy
timeseries data from a single station. They have suc-
cessfully applied thismodel in Parkfield, CA, and shown
that it identified new events that are not in the original
catalog, suggesting the potential of utilizing such an ap-
proach. More recently, Münchmeyer et al. (2024) ap-
plied a similar approach and demonstrated its capabil-
ity of detecting LFEs in various regions. They showed
the transferability of the model, suggesting that the
general characteristic of LFEs can be learned. Here
we train a Convolutional Neural Network (CNN) to de-
tect LFEs in a long-term scale using the catalog of Bo-
stock et al. (2015) which was originally assembled via
template matching using continuous seismic data from
southern Vancouver Island. We find that the model
can reliably detect LFEs with a false positive rate of
<1% when applied on multiple stations. We apply the
model to 14 years of continuous seismic data recorded
in southern Vancouver Island (Figure 1) to detect LFEs
on individual stations. We associate detections and lo-
cate them using a 3D regional velocity model. For the
period with large SSEs (Michel et al., 2018), the result-
ing catalog is generally consistent with the tremor cata-
log. Furthermore, the new catalog also identifies many
LFEs that do not have corresponding tremors. Overall
this technique may be useful for efficient, operational
detection of LFEs and further understanding of the seis-
mic radiation that occurs during SSEs.

2 Methods
2.1 Training data for phase picks
The first goal of this work is to develop a phase picker
that can distinguish LFEs from noise and make arrival
time picks on records deemed to contain signal. Ac-
complishing this task requires obtaining training data
that includes many representative examples of noise,
P-, and S-waves with associated picks. We obtained
phase picks from known LFEs that were originally iden-
tified by a combination of autocorrelation and template
matching (e.g. Bostock et al., 2012; Royer and Bostock,
2014). The catalog we use is that of Bostock et al. (2015),
downloaded from the slow earthquake database (Kano
et al., 2018). For each arrival time pick in the cata-
log, we download a 30 s window of data centered on
the pick time using the Obspy package (Krischer et al.,
2015). To distinguish earthquakes fromnoise, represen-
tative noise samples are included in the training data
for the CNN. As such we download a similar number
of noise windows (defined as the time period prior to
the P arrival time pick). Noise data are randomly se-
lected when there are no known LFEs before and after
the time with a minimum separation of 180 s. This pro-
cess results in more than 500,000 waveforms for P-wave
and S-wave picks, and approximately the same amount
of noise data. We save the data at 100 Hz to achieve a
temporal resolution that can ideally detect differences
as small as 0.01 s. For the target, we use a Gaussian
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Figure 1 Mapviewof the study area. Magenta triangles show the stations used formodel training and testing; blue triangles
represent the unseen stations, which are not involved during the training process, for model testing. Circles denote the LFEs
locations from the Bostock et al. (2015) catalog, color-coded by their depth.

functionwith a standard deviation of 0.4 swith the same
length and sampling rate as the input waveform cen-
tered at the P or Swave arrival time. This Gaussian func-
tion allows some errors in the arrival time pick in the
catalog, but it is not sufficiently large that it smears the
detection resolution. For noise waveforms, we set the
target to zero (Figure 2).

2.2 Convolutional Neural Network architec-
ture and training

The input to the network is three component waveform
data. Since data windows are 30 s long and we employ
a sample rate of 100 Hz, the input data has a length of
3000 samples. Leaving the training data in the original
form, with the pick in the middle, would result in the
CNN learning to pick the middle sample each time. As
such, similar to Thomas et al. (2021)weuse a data gener-
ator during training that randomly selects subsamples
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Figure 2 Examples of LFE and noise data at station TWKB. (a) 3-component waveforms from LFE catalog (family: 006) from
Bostock et al. (2015). Gray lines show the raw data normalized by their amplitude (only a few examples are shown here); red
lines showthestackingof the family (i.e. gray lines)witha totalof 813waveforms. Blue line shows theGaussian functionas the
possibility of the S-wave arrival, which is the target for model training. Note that the model applies to individual waveforms
(i.e. gray lines), not the stacked data which is only for demonstration purposes. (b) Similar to (a) but for noise data.
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of traces from the training data, called batches, and ap-
plies the following modifications to the data prior to in-
put. First, we randomly select a start time in the first
half of the trace and include only 15 seconds of data be-
ginning at that time. This has the effect of randomly
shifting the pick in time such that it can occur at any
time during the window. Second, to account for vari-
able amplitudes in the training data, we normalize the
three component data with the maximum amplitude of
all three components and apply a logarithmic transfor-
mation to the input data, as in Thomas et al. (2021).
This transformation maps each value, x, in the original
traces to two numbers: the first is sgn(x) while the sec-
ond is the ln(ÎxÎ + ‘) where ‘ = 1 ◊ 10≠6. This has the
effect of scaling the features such that input amplitudes
donot vary over orders ofmagnitude, andpreserving in-
formation on the sign. The data generator supplies six
channels (3 components with a normalized amplitude
and sign for each) in batches to the CNN during train-
ing and augments the training data by shifting the pick
times.
For the ML model, we employ the U-Net architecture

from Thomas et al. (2021). U-Nets are composed of sev-
eral convolutional layers (Lecun et al., 1998) and links,
which allow the raw and early information to be acces-
sible to the later decision layers. This architecture has
been shown to be successful in biomedical image pro-
cessing (Ronneberger et al., 2015) and in seismic phase
identification (e.g. Zhu and Beroza, 2018). The model
contains a size factor to control the number of convo-
lution filters per layer (double the number, original and
half the number of filters). Here, we only test three net-
work sizes, called size 0.5, size 1, and size 2 model in
Thomas et al. (2021), and fix the standard deviation of
arrival time label of 0.4 s because our goal is to build and
test the feasibility of applying such a method in a noisy
environment. We find that the size 2 model works the
best for P-wave and S-wave detection in our case (Sup-
plementary Figure S1). We do not fine-tune the hyper-
parameters as they have been shown to have a minor
influence on the performance (Thomas et al., 2021).
Data partitioning is important to prevent potential

data leakage, a serious issue in ML models. One mod-
ification that we make is instead of mixing all the wave-
forms from all the events (Thomas et al., 2021), we split
the data by the event ID so that traces from the same
event will not participate in both the training and test-
ing datasets, potentially minimizing the model memo-
rization. A total of 269,422 events are used in the study.
We hold 25% of the events for model testing. We set our
model batch size to 32, meaning that themodel updates
its weights based on 32 samples in each training step,
and with a total of 30 training epochs (Supplementary
Figure S2). Once the training is completed, we evaluate
it with both the testing dataset and the continuous data.

2.3 LFE association and location
To associate the detections from our model, we require
a minimum of three detections occurring within the
same 15-second time window. This criterion results in
1,058,114 candidate LFEs that can be located. We use

a direct grid search approach to locate the LFEs. Intu-
itively, the problem requires 4 detections to avoid ambi-
guity in location and origin time. However, by using the
grid search approach, we limit the possible source loca-
tions to a specific region, which serve as an additional
constraint to alleviate this ambiguity for events with
fewer detections. Furthermore, it enables us to locate
the global minimumwithout the need to handle deriva-
tives at sharp velocity boundaries (Lomax et al., 2009).
We first calculate travel times to each station from each
potential source in a 3D grid centered at ≠123.75 and
48.7 for longitude and latitude, respectively. The spac-
ing of the grid is 1 km in each direction with a total of
120 and 140 grid points in longitude and latitude direc-
tions, respectively, and up to 60 kmdepth. Velocities are
defined on this grid by interpolating the velocity model
from Savard et al. (2018). We calculate the travel times
based on the method described in Toomey et al. (1994).
For each set of associated detections, we search over

all possible source locations seeking to minimize the
difference between the observed and simulated travel
times. Specifically, we calculate
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a source located at the j-th grid node to the station. Al-
though the origin time OT is unknown, it is a constant
applied to each associated set of detections. This con-
stant shift for all stations can be removed by subtracting
the mean value. Equation (1) can be modified to
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Where K is the number of available stations for each
associated events. We find the preferred location j by
searching the grid node with minimummisfit.

j = argminj

S

U
qK

k=1

---”̂i=1,N ;j=1,M
k

---
K

T

V (3)

In total we search over N=1,058,114 associated sets of
detections and M=1,024,800 possible source locations.

3 Results
3.1 Assessingmodel performance
We test themodel with the unexposed 25% testing data,
as introduced above. We first treat it as a simple binary
classification problem (i.e. LFE or noise) and calculate
themodel accuracy, precision, and recall (Figure 3). We
will analyze the performance of arrival time in a later
section. The metrics are defined below:

Accuracy (%) = TP + TN

TP + TN + FP + FN
◊ 100% (4)
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where true positive (TP) is defined by the number of
positive detections that are actual LFEs; true negative
(TN) is the number of negative detections that are noise;
false positive (FP) and false negative (FN) are the num-
bers of incorrect LFE and noise predictions, respec-
tively. We calculate the accuracy as a function of the
decision threshold for the P- and S-wave models and
find that the S-wave model has slightly higher accuracy
(~92%) than the P-wave (~90%) at threshold=0.1. Next,
we calculate precision as

Precision (%) = TP

TP + FP
◊ 100% (5)

Unlike accuracy, precision ignores the number from
negative predictions, and the value simply represents
the rate of positive predictions and that are actually pos-
itive. BothourPandS-model have aprecisionof ~95%at
threshold=0.1 whichmeans the predicted LFEs are gen-
erally true, and only 5% of the detections are false de-
tection i.e. noise. Furthermore, to understand the rate
of misclassification of actual LFEs we calculate recall,
or the true positive rate (TPR)

Recall (%) = TP

TP + FN
◊ 100% (6)

Recall evaluates the rate of actual LFEs and that are
successfully detected. For example both our P and
S-model have a recall of ~90% at threshold=0.1, this
means 90% of the LFEs can be identified, and 10% of
the LFEs are misclassified as noise.
A receiver operating characteristic (ROC) curve is an-

othermetric to evaluate the overall model performance
(Figure 3b). The ROC curve varies the decision thresh-
olds of a binary classifier and examines the TPR against
the false positive rate (FPR). The Area Under the ROC
Curve (AUC) is a more common representation of the
ROC curve. AUC spans a value from 0.5 to 1, where 0.5
represents randomly guessing, and 1 indicates a perfect
model. To further validate ourmodel, we perform three
different tests: testing the model with the full testing
dataset (v1); testing with only large (>M2.2) events (v2);
and recording at close (<30 km) epicentral distances
(v3). We randomly select data from the above criteria
and pass them into the generator to generate 1,000 LFEs
and 1,000 noise samples and repeat the procedure 20
times to assess the distribution of ROC curves and AUC
values (Figure 3). In comparison to the v1 test, which
had AUCs of 0.92 and 0.97 for the P- and S-wave mod-
els, respectively, we find that the model performs bet-
ter when testing it using only large events with an AUC
of 0.96 and 0.98, for P- and S-wave models, respectively.
This suggests that the ML model performs better with
the higher signal-to-noise ratio data, representative of
larger LFEs. The v3 test shows that the model does not
perform significantly better than the v1 test. This is be-
cause most of the LFEs are located beneath the stations
with depth of ~40 km (Figure 1) and thus the difference
in horizontal distances is insignificant.

3.2 Application to continuous seismic data
After evaluation of the aforementioned metrics, we set
a decision threshold at 0.1 for both the P- and S-wave

model and run our ML model on 14 years of continu-
ous waveform data from 2005 to 2018. We evaluate the
model and find that it can reliably identify known LFEs.
Figure 4 shows an example of a known LFE with S-wave
detections at multiple stations. The model clearly picks
the arrival at stations TWKB, LZB, PGC, and SSIB. For
station SILB and VGZ, the model detects the event but
with a few seconds of arrival time difference. Overall
the model is adept at identifying existing LFEs. Fur-
thermore, we find that our ML model routinely detects
events that are not in the original catalog (Figure 5).
Assuming there is only one LFE in the 15 s time win-
dow and all the detections are made independently,
the chance that such detections are false detections is
smaller than 1% given the high precision of the model
(Figure 3).
Beyond individual detections, Figure 6 shows time se-

ries of daily detection counts for the 14 stations that
were used to train the network. High LFE rates man-
ifest across the network during times of known SSEs,
while detection rates are low during inter-SSE time pe-
riods. Furthermore, despite being trained on data from
2003-2014, themodel shows promising results when ap-
plying it to data outside of this period, suggesting its
temporal extrapolation capabilities. We also apply the
trained model to 10 stations that were not used during
model training (Supplementary Figure S3). The detec-
tion counts on these stations have the same low daily
detection counts during inter-SSE periods that increase
abruptly during times of known SSEs for time periods
when data is available. The CNN has not seen any of
the LFE data from these stations, yet it can still ro-
bustly detect LFEs, and the patterns are consistent with
the original Bostock catalog (Supplementary Figure S3).
This result demonstrates the CNNs ability to extrapolate
learned information to new settings and that path, site
effects, and noise character for the unseen stations are
likely to be similar to the training stations.

3.3 P and S-wave arrival time estimates
As shown in Figure 4, arrival time prediction can
be challenging, especially for low signal-to-noise ratio
data. We find that by setting a decision threshold of 0.1,
the model has an averaged S-wave travel time misfit of
-0.2 s, with a standard deviation of 3.6 s (Figure 7). This
slightly decreases to -0.17 s and a standard deviation of
2.6 s when setting a higher threshold of 0.5. The nega-
tive mean value is mainly because the model identifies
someof the earlier P-wave arrivals. This is shown in Fig-
ure 7a in the 0-40 km distance groups, where the arrival
time misfits show a secondary peak at -6 s, near the ex-
pected S-P wave arrival time difference for the depth of
~40 km. Similarly, this can be also seen for the larger
magnitude events shown in Figure 7b where the P-wave
amplitude is expected to be more obvious. For long-
distance groups (40-80 km), this effect becomes insignif-
icant because of the attenuation of the P-wave at such
distances. Wefind that themisfits do not decreasewhen
events are less than 40 kmdeep, this is likely because all
the sources are deep and thus the difference in the hor-
izontal distance is insignificant, similar to the result of
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Figure 3 Performance analysis for our selected model (size=2). (a) Precision, recall, and accuracy curve as a function of
decision threshold. (b) ROC curve for testing with v1: full testing data, v2: large events (M>2.2) only, and v3: close epicentral
distance (<30km) events only. The AUC values and their standard deviations are calculated from 20 groups of 2,000 random
samples, mixing with half (i.e. 1,000) of noise data, from the testing dataset. (c), (d), same as (a), (b) but for S-wave model.
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Figure 4 Example of S wave detections of a known LFE (family: 022, origin time: 2005-09-09T16:55:26.065) from testing
dataset (only showing East-component). All the waveforms are normalized by their amplitude and plotted with their epicen-
tral distance along the y-axis. Bolded lines show themodel prediction. Blue dots mark the detected arrivals from themodel,
red stars show the actual arrivals.

the v1 and v3 tests in Figure 3. For the P-wave model,
we do not find the predicted arrival time useful because
the predictions are frequentlymixedwith the S-wave ar-
rivals, yielding large misfits with a standard deviation
of 4.2 s (Supplementary Figure S4). This is expected,
as shown in Figure 2, P-wave arrivals usually have such
low signal-to-noise ratio that they are rarely detected.
Thus in our daily seismicity analysis presented in Fig-
ure 6 and the later location analysis, we do not include
the detections from the P-wave model.

3.4 Location uncertainties
To assess the location uncertainty on our detected LFEs
we perform the following sensitivity test. We define a
line of 100,000 locations extending from the SE to NWat
30 km depth (Figure 8a). We then randomly select four
stations, determine the S-wave arrival times from each
location using the travel time grid, and add a travel time
perturbation by randomly selecting a travel time shift
based on the distributions of arrival time misfits shown
in Figure 7c. We then grid search the location of the per-
turbed arrival times to find the best fit solution for each
synthetic event and remove all eventswith ” > 0.5s. The

results of this analysis are shown in Figure 8b. We find
significant scatter in individual locations with an aver-
age difference in actual and estimated location of ~22
km. Unfortunately these locations provide little resolu-
tion in depth since we utilize only S-waves and signifi-
cant changes in source depth have similar distributions
of arrival times. Considering that anLFEcluster ismade
upof a groupof eventswith a similar spatial distribution
(e.g. Shelly et al., 2007) averaging the locations of LFEs
(i.e. centroid location) can significantly reduce location
uncertainties to 10 km for N=10 sources (Figure 8c) and
8 km for N=30 sources (Figure 8d, Figure S5-S7).

3.5 LFE catalog
After associating all the detections from Figure 6 and
applying the grid search approach using Equations (1)-
(3), with a requirement of at least three stations for
each location, we compile a catalog with 1,058,114 LFEs
recorded between Jan 1, 2005 and Feb. 21, 2017. This
catalog can be downloaded from Lin (2023a). The dif-
ferences in detection criteria, timespans covered, and
stations utilized makes a direct comparison of this cat-
alog with either the template-matched catalog or the
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Figure5 ExampleofSwavedetectionsof anewevent,which isnot in theoriginal catalogofBostocketal. (2015). Waveforms
are normalized by their amplitude (only showing East-component). Bolded lines and dots show the model prediction and
the detected arrivals from themodel, respectively.

tremor catalog challenging. However, we do believe
that the CNN-derived catalog contains true LFEs that
were missed by the other two detection methods. For
example, if we compare the template-matched and
CNN-derived catalogs during September 3-26, 2005 pe-
riod, the LFE catalog contains nearly double the total
number of events (N=119,064) from the Bostock et al.
(2015) catalog (N=57,054). As a proxy for the events rep-
resented in both catalogs, we determine which LFEs in
the new catalog have a corresponding detection within
15 s of an LFE in the Bostock et al. (2015) catalog. By this
metric, only 62.5% of events in the new catalog have a
corresponding detection in the template-matched cat-
alog. As mentioned above the false detection rate is
<1% for events associated across three or more stations
hence we believe there are many more LFEs to be dis-
covered utilizing the CNN.

While the total number of detections varies between
catalogs, time periods with (relatively) large LFE rates
in the CNN-derived catalog are consistent with those
in the tremor catalog (Wech, 2021, Figure 9) and the
original Bostock et al. (2015) catalog. Figure 9 shows
that the CNN-derived catalog extends further back in
time and has high event rates during times of known

SSEs identified by Bostock et al. (2015). It also has
gooddetection rate agreementwith the tremor catalog –
meaning time periods when there are hundreds of daily
tremor detections are in agreementwith those that have
thousands of LFEs daily – beginning in late 2009 until
early 2014 when the LFE detection rates decrease sig-
nificantly. This decrease is due to a lack of stations in
our data set, with only three stations (i.e. NLLB, PFB,
PGC) available. Because application of the trained CNN
is not computationally intensive, the CNN can be easily
applied to continuous seismic records hence the CNN-
derived LFE catalog containsmany LFEs that occur dur-
ing inferred smaller magnitude SSEs that aren’t readily
apparent in surface geodetic records. There are multi-
ple time periods over which the tremor catalog has few
or no detected tremors whereas the CNN-derived cata-
log contains hundreds or thousands of events over 1-2
day time periods. Also, ambient LFE activity, i.e. 1 or
more per day, is common.

For example, Figure 10 shows all high-quality (i.e.
” < 0.5s) detections in the study area between May 4
andMay 20 of 2010. In this time period the CNN detects
2,882 LFEs. In this same time period and spatial extent
the tremor catalog contains only one tremor which oc-
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Figure 6 Model performance on 14 years of continuous data at the stations shown in Figure 1. The time series show the
daily detection number for all the stations, normalized by their maximum value. The bottom rows show the original catalog
from Bostock et al. (2015) and the tremor catalog from Wech (2021). Light gray shaded areas mark the SSEs in this region
fromMichel et al. (2018)

curred on May 14th (Figure 10F). The cumulative num-
ber of LFEs vs time graph shown in Figure 10D reveals
a rich character with highly variable detection rates.
To explore this time period further, we apply a density
based clustering algorithm, DBSCAN (Ester et al., 1996;
Schubert et al., 2017), as implemented in the scikit-learn
package (Pedregosa et al., 2011) to the detections in this
time period. We set a distance threshold of 10 km and
convert time to distance by scaling time by a velocity of
10 km/day. We also require a minimum of 15 LFEs in
each cluster. Clusters comprise both core samples that
have aminimumnumber of LFEs in their neighborhood
and edge samples which are events within the neigh-
borhood of core samples but do not have the minimum
number of samples within their own neighborhood.

The clustering approach identifies groups of LFEs lo-
calized in space and time which are shown in Figure 10
A-C and E-F. We infer each of these clusters is gener-
ated by SSEs that produced tremors below the detection

threshold. In particular, the final event, cluster 10 (Fig-
ures 10D and G), appears to be an intermediate magni-
tude SSE with both a higher LFE rate (~1500 in a two-
day period) and a larger spatial footprint that extends
over most of the study area (Figure 10G). We confirmed
that the dearth of tremor in this time period was not be-
cause of any abnormality in the tremor detection algo-
rithm runby the PacificNorthwest SeismicNetworknor
is there any reason to believe the catalog is incomplete
during this timeperiod (A.G.Wech, personal communi-
cation). In fact, tremors appear to be seen in the time se-
ries data from5 stations, spanning amaximumdistance
of 50 km, on May 18th (Supplementary Figure S8). In
summary, we believe the CNN based detection method
may have identified multiple small and one intermedi-
ate magnitude slow slip event that only produced small
tremors below the detection threshold.
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Figure 7 Distribution of S arrival time misfits in different distance and magnitude groups, evaluated by ~150,000 testing
data. The model has better predictions for those close and large magnitude events.

4 Discussion

4.1 Comparison to traditional approaches

Past studies have shown that traditional template
matching methods are an effective tool for identifying
repeating LFEs in continuous seismic data (e.g. Thomas
and Bostock, 2015; Shelly et al., 2007). Despite its suc-
cess, template matching has several limitations: it re-
quires templates to be selected a priori, it finds only
known signals and cannot extrapolate to waveforms of
similar character, it requires similar station distribu-
tions through time and is computationally intensive.
The CNN we develop here has several advantages over
template matching. First, it is capable of identifying
new and knownLFEs as described above. Second, it can
be applied to new stations in the same geographic re-
gion to detect existing and new LFEs. It remains to be
seen how far beyond the study region the CNN can re-
liably identify LFEs; this likely depends on the spatial
variability of the LFE source and high-frequency noise.
Finally, it is computationally efficient. After training,
the time complexity of the model is linear, directly pro-
portional to the amount of data. In contrast, the compu-
tational time of the template matching method scales
with both the volume of data and the number of tem-
plates.

4.2 Implications of new detections

Comprehensive analysis of the LFE catalog we generate
is beyond the scope of the current work. However, the
catalog appears largely consistent with the tremor cat-
alog in that time period; relatively high detection rates
in the tremor catalog correspond to times of relatively
high detection rates in the LFE catalog during the time
period between 2010 and 2014 (during which the two
catalogs can be compared). The LFE catalog contains
many examples of high LFE occurrence rates (e.g. 100s
per day) over short time periods (e.g. 1-2 days). Given
the high precision of 95% and the requirement that de-
tections occur on at least 3 stations, the false detection
rate is less than 1%. This suggests that the vast major-
ity of detections are robust even though their arrivals
are difficult to accurately determine. We infer that these
are smallmagnitude SSEs that generate LFEs but did not
exceed the detection threshold of the tremor’s detec-
tor (i.e. Supplementary Figure S8). Additionally, cluster
10 in Figure 10D and G appears to be an intermediate
magnitude SSE that was entirely unrepresented in the
tremor catalog. Previous studies have suggested that
there is a slip rate threshold for tremor genesis (Wech
and Bartlow, 2014) so perhaps this event simply never
reached sufficiently large slip speeds. Similarly,Hulbert
et al. (2022) applied a deep learning approach to extract
tremor waveforms in this region. They were able to lo-
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Figure 8 Location sensitivity test of 100,000 simulated events moving from SE to NW. (a) Location of the 100,000 events
color-coded by their index number. All the events are set to 30 km depth, recorded by a random set of stations (triangles)
ranging fromaminimumof 4 stations to amaximumof 10 stations. (b) Locating result with averaged travel time residual <0.5
s. (c) Moving average of the located result with N=10 sources. (d) Same as (c), but for N=30 sources.

cate more tremors that were not detected in the origi-
nal catalog. These missing events are important for un-
derstanding SSEnucleationprocesses and for extending
the SSE catalog to smaller magnitudes. Finally, in the
time period between January 1 2010 and Janary 1 2014,
when there are several stations available to detect LFEs,
we find that only 7% of days contained no LFE detec-
tions whatsoever. This suggests that ambient LFE activ-
ity may be widespread, as has also been suggested for
tremor activity (Rouet-Leduc et al., 2018).

4.3 Limitations and future opportunities
We test the model performance in a broader region us-
ing the Plate Boundary Observatory stations (PB) sta-
tions, spanning from central to southern Cascadia. The
comparison with the SSEs (Michel et al., 2018) reveals
that although the peak LFE detections align with the
timing of large SSE occurrences, specifically for the
northern stations close to southern Vancouver Island
(i.e. B001-B013), the overall results are noisy and may
include many false detections (Supplementary Figure
S9). Wenote that even though themodel’s statistics indi-
cate a low false detection rate, this assessment is based

on testing data recorded in southern Vancouver Island
similar to the training data (i.e. the same set of stations
and high signal-to-noise ratio events from the LFE cata-
log of Bostock et al., 2015). The accuracy in different re-
gions will need additional assessment. In fact, noisier
performance is expected due to different noise charac-
teristics and source-station paths compared to the train-
ing data in southern Vancouver Island. Transfer learn-
ing (e.g. Chai et al., 2020) with additional training data
in this regionmay improve the detections in this region.

The CNN is successful at identifying LFEs in continu-
ous seismic data, however precise arrival time picks are
a challenge for the detector as it routinely makes picks
that are seconds different than the known LFE arrival
time in the testing data. This is undoubtedly due to the
low signal-to-noise character of LFEs and may also be
complicated by the tendency of LFEs to occur in rapid
succession. It will require additional work to accurately
locate LFEs, but we anticipate that the predictions can
be added as an additional constraint for a more robust
detection i.e. only consider events when both the P- and
S-wave are high confidence, have reasonable S-P times,
and moveout consistent with a physical source. Recent
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Figure 9 Panel A shows the cumulative number of LFEs in the CNN-derived catalog and cumulative number of tremors
located on southern Vancouver Island from (Wech, 2021). LFEs require detections on a minimum of three stations in the
same 15 s time window. Panel B shows the daily LFE and Tremor counts.

work such as grid-based Bayesian inversion may pro-
vide one solution to better locate the LFEs (Bombardier
et al., 2023). Another possible solution that would si-
multaneously validate detectedLFEs andpermit precise
locations is to combine the CNN with template match-
ing by utilizing the times of associated detections as
initial templates and cross correlating them with other
time periods in which the CNN detector registers detec-
tions on multiple stations.

5 Conclusions
LFE activity provides a tool to track fault slip evolution
during SSEs. Traditionalmethods for detecting LFEs are
computationally expensive and they are usually limited
by the assumption that sources repeat. Here we train a
CNN to detect LFEs and identify their P- and S-wave ar-
rivals in southern Vancouver Island. When applied to
the testing dataset, our model has a high accuracy of
92% and 90% for discriminating S-waves and P-waves
from noise at a decision threshold of 0.1, respectively.
This is remarkable considering the low signal-to-noise
ratio of the data. We applied the CNN to 14 years of con-
tinuous data and find that the model detects more LFEs
during times of known slow slip events present in the
tremor catalog. We then located the LFEs with a grid
search approach in a 3D regional velocity model. The

resulting new catalog found LFEs that are not present in
the tremor catalog. Notably, on May 17th, 2010, a clus-
ter contains nearly 1500 LFEswith the locations of these
events localize to a region nearly half the size of the
study area. In contrast, the tremor catalog contains no
detection at the same period in this area. This suggests
the possibility of small magnitude SSEs that fall below
the tremor detection threshold. In summary, the CNN
approach to LFE detection is promising in both its effi-
ciency and its ability to detect small amounts of seismic
radiation from SSEs that does not satisfy the tremor de-
tection criteria, providing new opportunities to under-
stand deep subduction zone processes in this region.
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Figure 10 Panels A-C and E-G show spatial extents of LFE clusters. Black lines are density contours. Grey lines are slab
isodepth contours. Panel D shows the cumulative number of LFEs as a function of time in the study area. Events are color
coded by their cluster ID. This same time period contains only one tremor (shown as a black dot in Panel F) which occurred
on May 14th. Geographic area is the same as in Figure 1.

7 Data and code availability
Most of the waveform data used for this study were
accessed through the EarthScope Data Management
Center. The CN and C8 data can be accessed from
the Canadian National Data Centre. The original LFE
catalog can be downloaded from the slow earthquake
database (Kano et al., 2018). The codes for LFE detec-
tion were taken from Thomas et al. (2021) and are avail-

able at https://zenodo.org/records/10076720 (Lin, 2023b).
LFE catalog can be downloaded from https://doi.org/
10.5281/zenodo.10016020 (Lin, 2023a).
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